Math 3371 first exam topics & practice

Bounds, sup, inf, completeness

- 1. According to definitions, is \emptyset bounded above? If so, give an upper bound.
- 2. Give examples of a set S with $\sup S \in S$. Give an example where $\sup S \notin S$. Same with inf. Do all these without using intervals.
- 3. Give an example where $\sup S$ does not exist. Same with inf.
- 4. Give an example of a bounded subset of $S \subseteq \mathbb{Q}$ with $\sup S \notin \mathbb{Q}$.
- 5. Let $S = {\sin n \mid n \in \mathbb{N}}$. Show that $\sup S$ and $\inf S$ exist, and say what they are. (don't prove what they are)

Nested intervals, Archimedean property

- 6. Give examples of infinitely many nested closed intervals whose intersection is: a closed interval, a single point, all of ℝ, the empty set. For each one, either give an example or show that it's impossible.
- 7. Explain how the Archimedian property implies that there is no "biggest real number".

Cardinality

- 8. Show that the set of multiples of 7 has the same cardinality as \mathbb{N} .
- 9. Give an example of an uncountable set other than \mathbb{R} or an interval.

Convergence

- 10. Show that these converge: $\frac{2n^3+1}{n^3}$, $\frac{2n}{n^3+1}$, $\frac{2n+1}{3n^3}$. Do these with limit rules (easy), or using the definition of convergence (harder).
- 11. Assume that $(x_n) \to 3$, and show $(2x_n + 1) \to 7$. (Again, try using limit rules, and also from the definition.)

Monotone convergence theorem, Bolzano-Weierstrauss theorem

- 12. Invent an example sequence for which the monotone convergence theorem applies.
- 13. Invent an example sequence which is bounded but not convergent. What does the Bolzano-Weierstrauss theorem say about that sequence?
- 14. Use the Bolzano-Weierstrauss theorem (contrapositive) to show this sequence diverges: (1, 1/2, 1, 1/3, 1, 1/4, 1, 1/5, ...)

Open & closed sets

- 15. Give examples of an open set, a closed set, and a set which is neither open nor closed. Don't use intervals.
- 16. Prove from the definition that (0, 1) is open.
- 17. Prove from the definition that 3 is a limit point of $\mathbb{Q}.$
- 18. If A and B are both not open, is $A \cup B$ not open? How about $A \cap B$? Prove your answer either way.

Answers!

- 1. It is bounded above by any real number.
- 2. $S = \{1, 2\}$ has $\sup S \in S$. $S = \{1 - \frac{1}{n} \mid n \in \mathbb{N}\}$ has $\sup S \notin S$.
- 3. $S = \mathbb{R}$ has no sup or inf.
- 4. $S = \mathbb{Q} \cap (0, \sqrt{2}).$
- 5. S is bounded above and below, so the sup and inf exist by the Axiom of Completeness. They are 1 and -1.
- 6. Closed interval: $\{[-\frac{1}{n}, 1-\frac{1}{n}]\}$. Single point: $\{[-\frac{1}{n}, \frac{1}{n}]\}$. All of \mathbb{R} is possible only when every interval is all of \mathbb{R} , which doesn't really count as closed intervals. The empty set is impossible because NIP says the intersection must be nonempty.
- 7. The Archimedean property (big version) says: "For any $x \in \mathbb{R}$, there is some $n \in \mathbb{N}$ with n > x." This means that there can be no biggest real number: if you think that x is the biggest real number, then immediately we find some n > x which is a contradiction.
- 8. f(x) = 7x is a bijection from N to the set of multiples of 7, so these sets have the same cardinality.
- 9. The set of irrational numbers is uncountable. Or something like $[1,2] \cup [2,3]$ which is uncountable but not an interval.

10.
$$\frac{2n^3+1}{n^3} \to 2$$

Proof. Let $\varepsilon > 0$ be given, we will find $N \in \mathbb{N}$ such that, when n > N, we have

$$\left|\frac{2n^3+1}{n^3}-2\right|<\varepsilon.$$

We simplify:

$$\frac{2n^3 + 1}{n^3} - 2 \bigg| = \bigg| \frac{1}{n^3} \bigg| = \frac{1}{n^3}$$

I want $\frac{1}{n^3} < \varepsilon$, so I need $n > \frac{1}{\sqrt[3]{\varepsilon}}$. Let $N > \frac{1}{\sqrt[3]{\varepsilon}}$. Then if n > N we have:

$$\left|\frac{2n^3 + 1}{n^3} - 2\right| = \frac{1}{n^3} < \frac{1}{N^3} < \frac{1}{1/\sqrt[3]{\varepsilon^3}} = \varepsilon$$

as desired.

 $\frac{2n}{n^3+1} \to 0$

Proof. For this one I'll just do the red part– I will expect you to write out the whole proof on the test.

$$\left|\frac{2n}{n^3+1}-0\right| = \frac{2n}{n^3+1} < \frac{2n}{n^3} = \frac{2}{n^2}$$
 so we need $n > \sqrt{2/\varepsilon}$.

 $\frac{2n+1}{3n^3} \to 0$

Proof. For this one I'll just do the red part– I will expect you to write out the whole proof on the test.

$$\left|\frac{2n+1}{3n^3} - 0\right| = \frac{2n+1}{3n^3} < \frac{2n+n}{3n^3} = \frac{3n}{3n^3} = \frac{1}{n^2}$$

so we need $n > \frac{1}{\sqrt{\varepsilon}}$.

11. $(2x_n + 1) \to 7$

Proof. Let $\varepsilon > 0$ be given, we will find $N \in \mathbb{N}$ such that, when n > N, we have

$$|2x_n + 1 - 7| < \varepsilon.$$

$$|2x_n + 1 - 7| = |2x_n - 6| = 2|x_n - 3|$$

I want this to be less than ε , so I need $|x_n - 3| < \varepsilon/2$.

Since $x_n \to 3$, we may choose N so big that n > N implies $|x_n - 3| < \varepsilon/2$. Then if n > N we have:

$$|2x_n + 1 - 7| = 2|x_n - 3| < 2\frac{\varepsilon}{2} = \varepsilon$$

as desired.

- 12. $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ is monotone (decreasing) and bounded, so it converges.
- 13. $\{(-1)^n\}$ is bounded but not convergent. B-W theorem says that there is a convergent subsequence.
- 14. I can find 2 subsequences converging to two different limits: one is (1, 1, 1, 1, ...) which converges to 1, and the other is $(\frac{1}{n})$, which converges to 0.
- 15. $(0,1) \cup (2,3)$ is open. $\{1,2,3\}$ is closed. $\{\frac{1}{n}\}$ is neither open nor closed.
- 16. Choose any $x \in (0, 1)$, and we need to find some $\varepsilon > 0$ with $V_{\varepsilon}(x) \subseteq (0, 1)$. Draw a picture, it is clear that letting $\varepsilon = \min(x, 1 x)$ will do it.
- 17. We must show that, for any $\varepsilon > 0$, the neighborhood $V_{\epsilon}(3) \cap \mathbb{Q}$ contains some points other than 3. Since \mathbb{Q} is dense, this means that between any two reals is a rational. Thus there is a rational number q with $3 < q < 3 + \varepsilon$, and so $q \in V_{\epsilon}(3)$ as desired.
- 18. If A and B are both not open, then $A \cup B$ might be open: for example let A = (0, 1] and B = [1, 2). Then $A \cup B = (0, 2)$ which is open.

If A and B are both not open, then $A \cap B$ might be open: for example let A = [0, 2) and B = (1, 3]. Then $A \cap B = (1, 2)$ which is open.