
Math 3371 second exam topics & practice

Closure of a set

1) Find the closure of these sets (don’t have to prove it): (0, 1), [0, 1], {1, 2, 3}, (0, 1) ∩ Q, {1/n | n ∈
N},Q− N

Compact sets

2) Show that a closed interval is compact. (Be able to do this using sequences, or with the Heine-Borel
theorem.)

3) Show that an open interval is not compact.

4) Show that (0, 1) is not compact by giving an open cover with no finite subcover.

Connected sets

5) Show that R−Q is not connected.

6) Show that: ⋃
n∈N

(2n, 2n+ 1)

is not connected.

7) Prove from the definition that a set of a single point is connected.

8) Is ∅ connected? Prove your answer.

Limits of functions

9) Show that lim
x→3

x+ 1

x− 2
= 4. (Be able to do this using the ε-δ definition, or using algebraic limit rules.)

10) Show that lim
x→−2

x+ 3

x2 + x− 2
does not exist.

11) Find lim
x→0

f(x) and lim
x→1

f(x), (and prove it) where:

f(x) =

{
x if x ∈ Q
0 if x 6∈ Q



Continuity

12) Find a point where x+1
x−2 is continuous, and prove it.

13) Find a point where this function is discontinuous, and prove it:

f(x) =

{
3x+ 5 if x ≤ 2

x2 if x > 2

14) Show that [[x]] is discontinuous at every c ∈ Z, and continuous at every c 6∈ Z.

Uniform Continuity

15) Give an example of a function f such that f is continuous on R but not uniformly continuous on R
(and prove it).

16) Show that x+1
x−2 is not uniformly continuous on R− {2}.

17) Show that x2 − 6x+ 3 is uniformly continuous on [−5,−1].



Answers!

1) [0, 1], [0, 1], {1, 2, 3}, [0, 1], {1/n | n ∈ N} ∪ {0},R

2) Using Heine-Borel: a closed interval is closed and bounded, so it’s compact.

Using sequences is a lot harder. Let xn ∈ [a, b], we’ll show there is a subsequence which converges to
some point in [a, b]. Since xn is bounded, by Bolzano-Weierstrauss there is a convergent subsequence,
say xnk

→ x. We need to show x ∈ [a, b]. Since all xn ∈ [a, b], we have xn ≤ b for all n, so xnk
≤ b for

all k, and since xnk
→ x we will have x ≤ b by the order-limit rules. For the same reason we will have

x ≥ a so x ∈ [a, b] as desired.

3) Using Heine-Borel: an open interval is not closed, so it’s not closed-and-bounded, so it’s not compact.

Using sequences: For the open interval (a, b), let xn = a + 1
n . Then xn ∈ (a, b) (when n is large

enough) but xn → a, so all subsequences converge to a, which is not an element of (a, b). So xn has
no subsequence converging to an element of (a, b), so (a, b) is not compact.

4) Ox = (0, x) for x ∈ (0, 1) gives an open cover with no finite subcover.

5) Let A = (−∞, 0)−Q and B = (0,∞)−Q. Then A∪B = R−Q, and Ā = (−∞, 0] and B̄ = [0,∞) so
Ā ∩B = A ∩ B̄ = ∅.

6) Let A = (2, 3), and B =
⋃

n≥2(2n, 2n+ 1). Then check all the details.

7) Say our set is {x}. We prove by contradiction: assume that {x} is disconnected, so we have {x} = A∪B
where A and B are nonempty and Ā∩B = A∩B̄ = ∅. But if A and B are nonempty with A∪B = {x},
then we must have A = B = {x}. And this would mean Ā ∩B 6= ∅ which is a contradiction.

8) The empty set is connected. We will prove this by contradiction. Assume that ∅ is disconnected, so
∅ = A ∪B where A and B are nonempty and . . . . This immediately is a contradiction, since ∅ cannot
be a unioin of nonempty sets.

9) Using the limit rules is easy.

Using the definition: Let ε > 0 be given, we will find δ > 0 such that:

0 < |x− 3| < δ =⇒
∣∣∣∣x+ 1

x− 2
− 4

∣∣∣∣ < ε.

We simplify: ∣∣∣∣x+ 1

x− 2
− 4

∣∣∣∣ =

∣∣∣∣−3x+ 9

x− 2

∣∣∣∣ = 3|x− 3| · 1

|x− 2|

Now if δ < 1/2 we have 2.5 < x < 4.5, so x− 2 > 1/2 so 1
|x−2| < 2. Thus the above becomes∣∣∣∣x+ 1

x− 2
− 4

∣∣∣∣ = 3|x− 3| · 1

|x− 2|
< 3|x− 3| · 2 = 6|x− 3|.

Let δ < min(1/2, ε/6). Then when |x− 3| < δ we have:∣∣∣∣x+ 1

x− 2
− 4

∣∣∣∣ < 6|x− 3| < 6 · ε
6

= ε

as desired.



10) By simplifying a bit we can notice that this is the same as 1
x−2 , so the discontinuity will be at x = 2.

Let xn = 2 + 1/n, then we have xn → 2, but:

f(xn) =
1

(2 + 1/n)− 2
= n

and this does not converge to f(2), so f(x) is not continuous.

11) First we’ll show limx→0 f(x) = 0. Let ε > 0 be given, we will find δ > 0 such that:

0 < |x| < δ =⇒ |f(x)| < ε.

Since f(x) is always either x or 0, we will always have |f(x)| ≤ |x|. Thus we can take any δ < ε, and
when |x| < δ we have

|f(x)| ≤ |x| < δ = ε

as desired.

Now we’ll show limx→1 f(x) does not exist. Let xn be a sequence of rationals converging to 1, and let yn
be a sequence of irrationals converging to 1. Then xn and yn have the same limit, but f(xn) = xn → 1,
while f(yn) = 0→ 0. Since f(xn) and f(yn) have different limits, f is not continuous.

12) We’ll show it’s continuous at 0. I’ll just write out the red part:∣∣∣∣x+ 1

x− 2
+

1

2

∣∣∣∣ =

∣∣∣∣2(x+ 1) + (x− 2)

2(x− 2)

∣∣∣∣ =
3

4
|x| · 1

|x− 2|

Now if δ < 1, then |x| < 1 means |x− 2| > 1 so 1
|x−2| < 1. Then the above becomes∣∣∣∣x+ 1

x− 2
+

1

2

∣∣∣∣ < 3

4
|x| · 1.

Then we let δ < min(1, 43ε).

13) It is discontinuous at x = 2. Let xn = 2 + 1/n and yn = 2− 1/n. Then xn and yn have the same limit.
We’ll show f(xn) and f(yn) have different limits. We have f(xn) = f(2 + 1/n) = (2 + 1/n)2 → 22 = 4
and f(yn) = f(2− 1/n) = 3(2− 1/n) + 5)→ 3(2) + 5 = 11 as desired.

14) First we’ll show it’s discontinuous at c ∈ Z. Do this using sequences xn = c + 1/n and yn = c − 1/n.
I’ll leave the details to you.

Now we’ll show it’s continuous when c 6∈ Z. Let ε > 0 be given, we will find δ > 0 such that:

0 < |x− c| < δ =⇒ |[[x]]− [[c]]| < ε.

We need to choose δ so small that when x is within δ of c, we will have [[x]] = [[c]]. It will suffice to
choose δ < min(c− [[c]], [[c]] + 1− c). (Look on a picture- this makes δ smaller than the distance from
c to the nearest integer.) Now if |x− c| < δ we’ll have [[x]] = [[c]] and so:

|[[x]]− [[c]]| = 0 < ε

as desired.

15) f(x) = x2 is continuous on R but not uniformly continuous on R. It’s continuous because it’s a
polynomial. (We proved any polynomial is continuous. Otherwise you can show directly using the
εs.) To show it’s not uniformly continuous, let xn = n and yn = n + 1

n . Then we can check that
|xn − yn| → 0, but:

|f(xn)− f(yn)| = |n2 − (n− 1

n
)2| = |2− 1

n2
| → 2 6= 0

so f is not uniformly continuous on R.



16) Let xn = 2 + 1/n and yn = 2− 1/n. Then |xn − yn| → 0, but we have

|f(xn)− f(yn)| =
∣∣∣∣2 + 1/n+ 1

2 + 1/n− 2
− 2− 1/n+ 1

2− 1/n− 2

∣∣∣∣ = |3n+ 1 + (3n− 1)| = |6n| 6→ 0

17) Let ε > 0 be given, we will find δ > 0 such that for all x, y ∈ [−5,−1] we have:

0 < |x− y| < δ =⇒ |f(x)− f(y)| < ε.

We simplify:

|f(x)− f(y)| = |x2 − 6x+ 3− (y2 − 6y + 3)| = |x2 − y2 − 6x+ 6y| ≤ |x2 − y2|+ | − 6x− 6y|
= |x− y||x+ y|+ 6|x− y| = |x− y|(|x+ y|+ 6)

and |x+ y| ≤ | − 5 +−5| = 10 since x, y ∈ [−5,−1], so we have |f(x)− f(y)| < 16|x− y|.
Let δ = ε

16 . Then when |x− y| < δ we have:

|f(x)− f(y)| = |x2 − 6x+ 3− (y2 − 6y + 3)| ≤ 16|x− y| < 16 · ε
16

= ε

as desired.


