Math 3371 second exam topics \& practice

Closure of a set

1) Find the closure of these sets (don't have to prove it): $(0,1),[0,1],\{1,2,3\},(0,1) \cap \mathbb{Q},\{1 / n \mid n \in$ $\mathbb{N}\}, \mathbb{Q}-\mathbb{N}$

Compact sets

2) Show that a closed interval is compact. (Be able to do this using sequences, or with the Heine-Borel theorem.)
3) Show that an open interval is not compact.
4) Show that $(0,1)$ is not compact by giving an open cover with no finite subcover.

Connected sets

5) Show that $\mathbb{R}-\mathbb{Q}$ is not connected.
6) Show that:

$$
\bigcup_{n \in \mathbb{N}}(2 n, 2 n+1)
$$

is not connected.
7) Prove from the definition that a set of a single point is connected.
8) Is \emptyset connected? Prove your answer.

Limits of functions

9) Show that $\lim _{x \rightarrow 3} \frac{x+1}{x-2}=4$. (Be able to do this using the $\epsilon-\delta$ definition, or using algebraic limit rules.)
10) Show that $\lim _{x \rightarrow-2} \frac{x+3}{x^{2}+x-2}$ does not exist.
11) Find $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow 1} f(x)$, (and prove it) where:

$$
f(x)= \begin{cases}x & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Continuity

12) Find a point where $\frac{x+1}{x-2}$ is continuous, and prove it.
13) Find a point where this function is discontinuous, and prove it:

$$
f(x)= \begin{cases}3 x+5 & \text { if } x \leq 2 \\ x^{2} & \text { if } x>2\end{cases}
$$

14) Show that $[[x]]$ is discontinuous at every $c \in \mathbb{Z}$, and continuous at every $c \notin \mathbb{Z}$.

Uniform Continuity

15) Give an example of a function f such that f is continuous on \mathbb{R} but not uniformly continuous on \mathbb{R} (and prove it).
16) Show that $\frac{x+1}{x-2}$ is not uniformly continuous on $\mathbb{R}-\{2\}$.
17) Show that $x^{2}-6 x+3$ is uniformly continuous on $[-5,-1]$.

Answers!

1) $[0,1],[0,1],\{1,2,3\},[0,1],\{1 / n \mid n \in \mathbb{N}\} \cup\{0\}, \mathbb{R}$
2) Using Heine-Borel: a closed interval is closed and bounded, so it's compact.

Using sequences is a lot harder. Let $x_{n} \in[a, b]$, we'll show there is a subsequence which converges to some point in $[a, b]$. Since x_{n} is bounded, by Bolzano-Weierstrauss there is a convergent subsequence, say $x_{n_{k}} \rightarrow x$. We need to show $x \in[a, b]$. Since all $x_{n} \in[a, b]$, we have $x_{n} \leq b$ for all n, so $x_{n_{k}} \leq b$ for all k, and since $x_{n_{k}} \rightarrow x$ we will have $x \leq b$ by the order-limit rules. For the same reason we will have $x \geq a$ so $x \in[a, b]$ as desired.
3) Using Heine-Borel: an open interval is not closed, so it's not closed-and-bounded, so it's not compact. Using sequences: For the open interval (a, b), let $x_{n}=a+\frac{1}{n}$. Then $x_{n} \in(a, b)$ (when n is large enough) but $x_{n} \rightarrow a$, so all subsequences converge to a, which is not an element of (a, b). So x_{n} has no subsequence converging to an element of (a, b), so (a, b) is not compact.
4) $O_{x}=(0, x)$ for $x \in(0,1)$ gives an open cover with no finite subcover.
5) Let $A=(-\infty, 0)-\mathbb{Q}$ and $B=(0, \infty)-\mathbb{Q}$. Then $A \cup B=\mathbb{R}-\mathbb{Q}$, and $\bar{A}=(-\infty, 0]$ and $\bar{B}=[0, \infty)$ so $\bar{A} \cap B=A \cap \bar{B}=\emptyset$.
6) Let $A=(2,3)$, and $B=\bigcup_{n \geq 2}(2 n, 2 n+1)$. Then check all the details.
7) Say our set is $\{x\}$. We prove by contradiction: assume that $\{x\}$ is disconnected, so we have $\{x\}=A \cup B$ where A and B are nonempty and $\bar{A} \cap B=A \cap \bar{B}=\emptyset$. But if A and B are nonempty with $A \cup B=\{x\}$, then we must have $A=B=\{x\}$. And this would mean $\bar{A} \cap B \neq \emptyset$ which is a contradiction.
8) The empty set is connected. We will prove this by contradiction. Assume that \emptyset is disconnected, so $\emptyset=A \cup B$ where A and B are nonempty and \ldots. This immediately is a contradiction, since \emptyset cannot be a unioin of nonempty sets.
9) Using the limit rules is easy.

Using the definition: Let $\varepsilon>0$ be given, we will find $\delta>0$ such that:

$$
0<|x-3|<\delta \Longrightarrow\left|\frac{x+1}{x-2}-4\right|<\varepsilon
$$

We simplify:

$$
\left|\frac{x+1}{x-2}-4\right|=\left|\frac{-3 x+9}{x-2}\right|=3|x-3| \cdot \frac{1}{|x-2|}
$$

Now if $\delta<1 / 2$ we have $2.5<x<4.5$, so $x-2>1 / 2$ so $\frac{1}{|x-2|}<2$. Thus the above becomes

$$
\left|\frac{x+1}{x-2}-4\right|=3|x-3| \cdot \frac{1}{|x-2|}<3|x-3| \cdot 2=6|x-3| .
$$

Let $\delta<\min (1 / 2, \varepsilon / 6)$. Then when $|x-3|<\delta$ we have:

$$
\left|\frac{x+1}{x-2}-4\right|<6|x-3|<6 \cdot \frac{\varepsilon}{6}=\varepsilon
$$

as desired.
10) By simplifying a bit we can notice that this is the same as $\frac{1}{x-2}$, so the discontinuity will be at $x=2$.

Let $x_{n}=2+1 / n$, then we have $x_{n} \rightarrow 2$, but:

$$
f\left(x_{n}\right)=\frac{1}{(2+1 / n)-2}=n
$$

and this does not converge to $f(2)$, so $f(x)$ is not continuous.
11) First we'll show $\lim _{x \rightarrow 0} f(x)=0$. Let $\varepsilon>0$ be given, we will find $\delta>0$ such that:

$$
0<|x|<\delta \Longrightarrow|f(x)|<\varepsilon
$$

Since $f(x)$ is always either x or 0 , we will always have $|f(x)| \leq|x|$. Thus we can take any $\delta<\varepsilon$, and when $|x|<\delta$ we have

$$
|f(x)| \leq|x|<\delta=\varepsilon
$$

as desired.
Now we'll show $\lim _{x \rightarrow 1} f(x)$ does not exist. Let x_{n} be a sequence of rationals converging to 1 , and let y_{n} be a sequence of irrationals converging to 1 . Then x_{n} and y_{n} have the same limit, but $f\left(x_{n}\right)=x_{n} \rightarrow 1$, while $f\left(y_{n}\right)=0 \rightarrow 0$. Since $f\left(x_{n}\right)$ and $f\left(y_{n}\right)$ have different limits, f is not continuous.
12) We'll show it's continuous at 0 . I'll just write out the red part:

$$
\left|\frac{x+1}{x-2}+\frac{1}{2}\right|=\left|\frac{2(x+1)+(x-2)}{2(x-2)}\right|=\frac{3}{4}|x| \cdot \frac{1}{|x-2|}
$$

Now if $\delta<1$, then $|x|<1$ means $|x-2|>1$ so $\frac{1}{|x-2|}<1$. Then the above becomes

$$
\left|\frac{x+1}{x-2}+\frac{1}{2}\right|<\frac{3}{4}|x| \cdot 1 .
$$

Then we let $\delta<\min \left(1, \frac{4}{3} \varepsilon\right)$.
13) It is discontinuous at $x=2$. Let $x_{n}=2+1 / n$ and $y_{n}=2-1 / n$. Then x_{n} and y_{n} have the same limit. We'll show $f\left(x_{n}\right)$ and $f\left(y_{n}\right)$ have different limits. We have $f\left(x_{n}\right)=f(2+1 / n)=(2+1 / n)^{2} \rightarrow 2^{2}=4$ and $\left.f\left(y_{n}\right)=f(2-1 / n)=3(2-1 / n)+5\right) \rightarrow 3(2)+5=11$ as desired.
14) First we'll show it's discontinuous at $c \in \mathbb{Z}$. Do this using sequences $x_{n}=c+1 / n$ and $y_{n}=c-1 / n$. I'll leave the details to you.
Now we'll show it's continuous when $c \notin \mathbb{Z}$. Let $\varepsilon>0$ be given, we will find $\delta>0$ such that:

$$
0<|x-c|<\delta \Longrightarrow|[[x]]-[[c]]|<\varepsilon
$$

We need to choose δ so small that when x is within δ of c, we will have $[[x]]=[[c]]$. It will suffice to choose $\delta<\min (c-[[c]],[[c]]+1-c)$. (Look on a picture- this makes δ smaller than the distance from c to the nearest integer.) Now if $|x-c|<\delta$ we'll have $[[x]]=[[c]]$ and so:

$$
|[[x]]-[[c]]|=0<\varepsilon
$$

as desired.
15) $f(x)=x^{2}$ is continuous on \mathbb{R} but not uniformly continuous on \mathbb{R}. It's continuous because it's a polynomial. (We proved any polynomial is continuous. Otherwise you can show directly using the Es.) To show it's not uniformly continuous, let $x_{n}=n$ and $y_{n}=n+\frac{1}{n}$. Then we can check that $\left|x_{n}-y_{n}\right| \rightarrow 0$, but:

$$
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\left|n^{2}-\left(n-\frac{1}{n}\right)^{2}\right|=\left|2-\frac{1}{n^{2}}\right| \rightarrow 2 \neq 0
$$

so f is not uniformly continuous on \mathbb{R}.
16) Let $x_{n}=2+1 / n$ and $y_{n}=2-1 / n$. Then $\left|x_{n}-y_{n}\right| \rightarrow 0$, but we have

$$
\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|=\left|\frac{2+1 / n+1}{2+1 / n-2}-\frac{2-1 / n+1}{2-1 / n-2}\right|=|3 n+1+(3 n-1)|=|6 n| \nrightarrow 0
$$

17) Let $\varepsilon>0$ be given, we will find $\delta>0$ such that for all $x, y \in[-5,-1]$ we have:

$$
0<|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\varepsilon
$$

We simplify:

$$
\begin{aligned}
|f(x)-f(y)| & =\left|x^{2}-6 x+3-\left(y^{2}-6 y+3\right)\right|=\left|x^{2}-y^{2}-6 x+6 y\right| \leq\left|x^{2}-y^{2}\right|+|-6 x-6 y| \\
& =|x-y||x+y|+6|x-y|=|x-y|(|x+y|+6)
\end{aligned}
$$

and $|x+y| \leq|-5+-5|=10$ since $x, y \in[-5,-1]$, so we have $|f(x)-f(y)|<16|x-y|$.
Let $\delta=\frac{\varepsilon}{16}$. Then when $|x-y|<\delta$ we have:

$$
|f(x)-f(y)|=\left|x^{2}-6 x+3-\left(y^{2}-6 y+3\right)\right| \leq 16|x-y|<16 \cdot \frac{\varepsilon}{16}=\varepsilon
$$

as desired.

