
Math 3371 final exam topics & practice

Old topics

• Bounded sets, Axiom of Completeness, sup & inf

• Nested intervals property, Archimedean property

• Cardinality

• Sequences & convergence

• Monotone convergence theorem, Bolzano-Weierstrauss theorem

• Open & closed sets

• Compact sets

• Connected sets

• Limits of functions

• Continuity

• Uniform continuity

New topics (at least half of the exam)

Intermediate value theorem

1) Use the IVT to show that
√

2 exists. (i.e. show that x2 − 2 = 0 has a solution.)

2) Let f, g : [0, 1]→ R be two continuous functions with f(0) < g(0) and f(1) > g(1). Show that there is
some c ∈ [0, 1] with f(c) = g(c).

3) Consider 3 functions in the above scenario with f(0) < g(0) < h(0) and f(1) > g(1) > h(1). Must
there be some point c with f(c) = g(c) = h(c)? Either prove it or show a counterexample. (You can
just draw a graph for an example if you like.)

The derivative

4) Show in detail that f(x) = |x| is differentiable whenever x 6= 0 and is not differentiable when x = 0.

5) Show that this is differentiable at x = 0:

f(x) =

{
x2 sin(1/x) if x 6= 0,

0 if x = 0.

Show that it is not differentiable at x = 0 if x2 is changed to x. What about x3/2?



6) For a differentiable function f , we say f is uniformly differentiable on a set A when: for all ε > 0 there
exists δ > 0 such that, for every x, y ∈ A we have:

0 < |x− y| < δ =⇒
∣∣∣∣f(x)− f(y)

x− y
− f ′(x)

∣∣∣∣ < ε.

Show that f(x) = x2 is uniformly differentiable on R. What about x3? (prove it either way)

Mean value theorem

7) Use MVT to prove Rolle’s theorem: if f : [a, b] → R is differentiable and f(a) = f(b), then there is
some c ∈ (a, b) with f ′(c) = 0.

8) If f, g are as in problem b) from IVT above, must there be some point where f ′(c) = g′(c)? Prove it
or give a counterexample.

9) Say f is continuous and f ′ is continuous, and we know these values:

f(0) = 1, f(3) = 5, f(4) = 1

For which d ∈ R will we be guaranteed to find c ∈ (0, 4) with f ′(c) = d? Is it possible that f ′(c) = 10
for some c ∈ (0, 4)?

Sequences of functions

10) Let fn(x) = x2 + x
n . Find f such that fn → f pointwise on R.

11) Let gn(x) = 1
x−1/n . Find g such that gn → g, and prove that it converges uniformly on (2, 5).

12) Be able to tell based on a picture of functions whether or not fn converges uniformly. For example, on
each of these pictures, is the convergence uniform on (2, 5)?



Answers!

1) Let f(x) = x2−2, which is continuous, so we can use MVT. We can check that f(0) = −2 and f(2) = 2,
so we have f(0) < 0 < f(2). Thus by MVT there is some c ∈ (0, 2) with f(c) = 0 as desired.

2) Let h(x) = f(x) − g(x), so h : [0, 1] → R is continuous. Then h(0) = f(0) − g(0) < 0, and h(1) =
f(1) − g(1) > 0. So h(0) < 0 < h(1), so there is some point c ∈ (0, 1) with h(c) = 0, which means
f(c) = g(c).

3) No- there need not be such a point. For example consider 3 functions that look like this:

The lines cross over one another, but there is no single point where all 3 meet.

4) When x 6= 0: Let c 6= 0, we’ll show f(x) is differentiable at c. We have:

lim
x→c

f(x)− f(c)

x− c
= lim
x→c

|x| − |c|
x− c

We’ll prove that this is either 1 or −1 using the epsilons.

Assuming that c > 0, we’ll show the limit above is +1. The same argument will show it’s −1 when
c < 0. Let ε > 0 be given, we’ll find δ > 0 such that

0 < |x− c| < δ =⇒
∣∣∣∣ |x| − |c|x− c

− 1

∣∣∣∣ < ε.

Choose δ so small that |x − c| < δ implies x and c have the same sign. (We can use δ = |c| to make
this happen.) Then since x and c have the same sign and c is positive, they are both positive and so
we’ll have |x| − |c| = x− c. Then we get:∣∣∣∣ |x| − |c|x− c

− 1

∣∣∣∣ =

∣∣∣∣x− cx− c
− 1

∣∣∣∣ = 0 < ε

as desired.

Now when x = 0: We must show f(x) is not differentiable at 0, that is, we’ll show

lim
x→0

f(x)− f(0)

x− 0

does not exist. That is, we must show that lim
x→0

|x|
x

does not exist. We do this with sequences: consider

xn = 1/n and yn = −1/n. Then xn and yn both converge to 0, but

|xn|
xn

=
1/n

1/n
= 1

and
|yn|
yn

=
1/n

−1/n
= −1

so xn and yn have the same limit, but when plugged in they give different limits. Thus lim
x→0

|x|
x

does

not exist.



5) We will show that f ′(0) = 0. That is, we must show that

lim
x→0

f(x)− f(0)

x− 0
= 0

Plugging in the function and simplifying, this means we must show:

lim
x→0

x2 sin(1/x)

x
= lim
x→0

x sin(1/x) = 0

We do this with the epsilons. Let ε > 0 be given, we’ll find δ > 0 such that:

0 < |x| < δ =⇒ |x sin(1/x)| < ε.

|x sin(1/x)| = |x|| sin(1/x)| ≤ |x|
Let δ = ε. Then if 0 < |x| < δ, we have:

|x sin(1/x)| ≤ |x| < ε

as desired.

What about when x2 is changed to x? Same stuff as above, but now the limit becomes just

lim
x→0

sin(1/x)

instead of x sin(1/x). This limit does not exist- we can show this with sequences. Let xn = 1
2πn , and

yn = 1
2πn+π/2 . Then both these sequences converge to 0, but when we plug them in we get:

sin(1/xn) = sin(2πn) = 0

and
sin(1/yn) = sin(2πn+ π/2) = 1

so the limit above does not exist.

For x3/2, it is differentiable at x = 0. The appropriate limit becomes limx→0 x
1/2 sin(1/x) = 0, and we

prove this with the epsilons just like we did when it was x2. (You should say: let δ = ε2.)

6) Let ε > 0 be given, we will find δ > 0 such that, for all x, y ∈ R, we have:

0 < |x− y| < δ =⇒
∣∣∣∣x2 − y2x− y

− 2x

∣∣∣∣ < ε.

We have: ∣∣∣∣x2 − y2x− y
− 2x

∣∣∣∣ =

∣∣∣∣ (x− y)(x+ y)

x− y
− 2x

∣∣∣∣ = |x+ y − 2x| = |y − x|

Let δ = ε. Then if |x− y| < δ, we have:∣∣∣∣x2 − y2x− y
− 2x

∣∣∣∣ = |y − x| = |x− y| < ε

as desired.

For f(x) = x3, it is not uniformly differentiable on R. We do this with two sequences similarly to
showing that something is not uniformly continuous. Let xn = n and yn = n+ 1

n , so that |xn−yn| → 0.
Then we must show that: ∣∣∣∣f(xn)− f(yn)

xn − yn
− f ′(xn)

∣∣∣∣ 6→ 0.



After lots and lots of simplifying (I hope I did it right), we get:∣∣∣∣f(xn)− f(yn)

xn − yn
− f ′(xn)

∣∣∣∣ = |3 + n−2| → 3 6= 0

as desired.

7) Applying MVT to f(x) on the interval [a, b] shows that there is some c ∈ (a, b) with:

f ′(c) =
f(b)− f(a)

b− a
=

0

b− a
= 0

as desired.

8) No! For example f and g can be two straight lines of opposite slope. There is no need for them to
have matching derivatives at any point.

9) It is helpful to plot these points and look at them. The greatest slope among these points occurs
between f(0) = 1 and f(3) = 5. Thus MVT will give a point with a slope of 5−1

3−0 = 4/3. The smallest
slope among these points occurs between f(3) = 5 and f(4) = 1. Then MVT will give a point with a
slope of 1−5

4−3 = −4. By the intermediate value theorem (applied to f ′) we can also achieve any slope
in between these two extremes. So the possible slopes we are guaranteed to find for c ∈ (0, 4) will be:

−4 ≤ f ′(c) ≤ 4/3.

It is certainly possible that f ′(c) = 10 (if there is a random spike in between the given points), but
there is no guarantee that there is such a point.

10) The function f is f(x) = x2. First we show fn → f pointwise on R. Take some specific x ∈ R, and let
ε > 0 be given. We’ll find N ∈ N such that

n > N =⇒ |fn(x)− f(x)| < ε.

We have:
|fn(x)− f(x)| = |x2 + x/n− x2| = |x/n| = |x|/n.

We want this to be less than ε, so we need n > ε/|x|. (If |x| = 0, then the stuff above equals zero, so
there is nothing to prove in that case.)

Let N > ε/|x|. Then if n > N , we have:

|fn(x)− f(x)| = |x|/n < |x|/(ε/|x|) = ε

as desired.

The convergence is not uniform. Given any n, the distance from x2 + x/n to x2 is |x|/n, and this is
not bounded. So for any ε, it is impossible for |fn(x)− f(x)| < ε for all x ∈ R.

11) gn → g where g(x) = 1/x. We’ll show gn → g uniformly on (2, 5). Let ε > 0 be given, and we will find
N ∈ N such that, for all x ∈ (2, 5), we have:

n > N =⇒ |gn(x)− g(x)| < ε.

We have

|gn(x)− g(x)| =
∣∣∣∣ 1

x− 1/n
− 1

x

∣∣∣∣ =

∣∣∣∣ x

x(x− 1/n)
− x− 1/n

x(x− 1/n

∣∣∣∣ =

∣∣∣∣ −1/n

x(x− 1/n)

∣∣∣∣ ≤ 1/n

2(2− 1/n)



where the last step is because x ∈ (2, 5). Continuing simplifying gives:

|gn(x)− g(x)| ≤ 1

4n− 2

Let N > 1
4 ( 1

ε + 2). Then if n > N we have:

|gn(x)− g(x)| ≤ 1

4n− 2
< ε

as desired.


