Math 3385: Homework \#5 answers

\#2

Proof. First we assume f is continuous, and show that $f^{-1}(C)$ is closed whenever $C \subset Y$ is closed. Since C is closed, $Y-C$ is open, and since f is continuous, we have $f^{-1}(Y-C)$ is open. But $f^{-1}(Y-C)=X-f^{-1}(C)$ (this is a basic fact about the complement of any preimage). So $X-f^{-1}(C)$ is open, so $f^{-1}(C)$ is closed as desired.

Now for the other direction, assume $f^{-1}(C)$ is closed whenever $C \subset Y$ is closed, and we'll show f is continuous. Let $U \subset Y$ be open, and we must show $f^{-1}(U)$ is open. Since U is open, $Y-U$ is closed, and so by our assumption about closed sets we have $f^{-1}(Y-U)$ closed. But this set equals $X-f^{-1}(U)$, so $X-f^{-1}(U)$ is closed so $f^{-1}(U)$ is open as desired.

$\# 4 \mathrm{a}$

It is continuous.
Take some basis open set $(a, b) \subset \mathbb{R}$, and we must show that $f^{-1}(a, b)$ is open in \mathbb{R}_{l}. Since f has the graph of a line, the pullback of an open interval is another open interval. So $f^{-1}(a, b)=(c, d)$ for some c and d. (It's not hard to find equations for c and d, but not necessary.)

And an open interval (c, d) is open in \mathbb{R}_{l}, so f is continuous.

\#7

Proof. First assume id : $\left(X, \mathcal{T}_{1}\right) \rightarrow\left(X, \mathcal{T}_{2}\right)$ is continuous, and we'll show \mathcal{T}_{1} is finer than \mathcal{T}_{2}. That is, we'll show $\mathcal{T}_{2} \subseteq \mathcal{T}_{1}$. Take any set $U \in \mathcal{T}_{2}$, and we'll show $U \in \mathcal{T}_{1}$. Since id: $\left(X, \mathcal{T}_{1}\right) \rightarrow\left(X, \mathcal{T}_{2}\right)$ is continuous, U being open in \mathcal{T}_{2} means that $\mathrm{id}^{-1}(U)=U$ is open in \mathcal{T}_{1}, so $U \in \mathcal{T}_{1}$ as desired.

Now assume that $\mathcal{T}_{2} \subseteq \mathcal{T}_{1}$, and we'll show that id: $\left(X, \mathcal{T}_{1}\right) \rightarrow\left(X, \mathcal{T}_{2}\right)$ is continuous. Take U open in \mathcal{T}_{2},
 $U \in \mathcal{T}_{1}$ as desired.

\#11

Proof. We must show $\left.f\right|_{A}: A \rightarrow Y$ is continuous, so take an open set $U \subset Y$, and we'll show $\left.f\right|_{A} ^{-1}(U)$ is open in A. We have $\left.f\right|_{A} ^{-1}(U)=f^{-1}(U) \cap A$, and since f is continuous, $f^{-1}(U)$ is open in X. Thus $\left.f\right|_{A} ^{-1}(U)=f^{-1}(U) \cap A$ is open in A (using the subspace topology) as desired.

