Math 3385: Homework \#7 answers

\#5.25a

In \mathbb{R}, let $A=(0,1)$. Then we have $d(\{0\}, A)=0$ even though $0 \notin A$.

\#5.30

Remember that the definition of injective is: f is injective when $f(a)=f(b)$ implies $a=b$.
So assume for some $a, b \in X$ that $f(a)=f(b)$, and we will show that $a=b$. Since $f(a)=f(b)$ we have $d_{Y}(f(a), f(b))=0$, and by our assumption this means that $d_{X}(a, b)=d_{Y}(f(a), f(b))=0$. And since $d_{X}(a, b)=0$ this means that $a=b$ as desired.

\#6.3

We'll prove the contrapositive, which would be: " X is disconnected if and only if there is some nonempty proper subset of X with empty boundary."
\Rightarrow : Assume that X is disconnected, and we'll find a nonempty proper subset with empty boundary. Let $X=U \cup V$ be a separation, and we'll show that U is the set we're looking form. Since U and V make a separation, U is a proper nonempty clopen subset. This means that U equals its closure (since it's closed), and also equals its interior (since it's open). Thus $\partial U=\bar{U}-\stackrel{\circ}{U}=\emptyset$ as desired.
\Leftarrow : Assume there is a nonempty proper subset $A \subset X$ with empty boundary. Then $\partial A=\bar{A}-\AA=\emptyset$, so $\bar{A} \subseteq \AA$. But $\AA \subseteq A \subseteq \bar{A}$ for any set, so this means that $\bar{A}=\AA=A$, which means that A is clopen.

Then $X=A \cup(X-A)$ is a separation of X, so X is disconnected.

\#6.6

We'll do the $P P X_{p}$ part. We want to show that every subset containing p is connected, so to obtain a contradiction assume we have some $A \subset X$ containing p with a separation $A \subseteq U \cup V$. This means that U and V are both open in $P P X_{p}$, which means that they both contain the special point p. The separation also means that $A \cap U \cap V=\emptyset$, and since U and V both contain p, this means that $p \notin A$, which contradicts our assumption that A contains p.

