Math 3385: Homework \#8 answers

\#6.9a

Assume A is connected in X, and to get a contradiction also assume that A is not a subset of some component. That means there is a component $C \subseteq X$ such that some points of A are in C, and some points from A are not in C. That is, $A \cap C \neq \emptyset$ and $A \cap(X-C) \neq \emptyset$. And clearly $A \cap C \cap(X-C)=\emptyset$. All this together means that C and $(X-C)$ make a separation of A, and so A is disconnected which contradicts our original assumption.

\#6.18

(a) Something like this, where A and B are the two semicircular arcs:

Then $A \cap B$ is two disconnected points.
(b) Use the same example as above. In this case $A-B$ is one of the arcs but with two points deleted, and this will be disconnected.
(c) In \mathbb{R}, let $A=[0,1]$ and $B=[0,1] \cup[2,3]$.
(d) In \mathbb{R}, let $A=[0,1] \cup[2,3]$, and $B=[-1,0] \cup[1,2]$.
(e) In \mathbb{R}, let $A=(0,1)$ and $B=(1,2)$. Then $\bar{A} \cap \bar{B}=\{1\}$ which is not empty, but $A \cup B$ is disconnected.

\#6.38a

Let $g(x)=f(x)-f(A(x))$, and we will show that $g(x)=0$ for some x. Note that $g(A(x))=f(A(x))-f(x)=$ $-(f(x)-f(A(x)))=-g(x)$, so if $g(x)>0$ then $g(A(x))<0$. Thus g attains some positive values, and some negative values, and since it is continuous, this means that g attains the value 0 .

\#6.46

Assume that A_{1} and A_{2} are path connected, and $A_{1} \cap A_{2} \neq \emptyset$. We need to show that $A_{1} \cup A_{2}$ is path connected, so take $a, b \in A_{1} \cup A_{2}$, and we'll show there is a path from a to b.

Let $c \in A_{1} \cap A_{2}$. Then since A_{1} and A_{2} are each path connected, there are paths from a to c and also from c to b. Thus we can stitch those paths together and we get a path from a to b as desired.

