Math 3385: Exam \#2 review problems

Quotients

1. For each of these quotients, draw a picture or describe in words what it would look like. The quotient of \mathbb{R}^{2} after identifying a circle to a point. The quotient of \mathbb{R} after identifying all of \mathbb{Z} to a point. The quotient of a disc after identifying its boundary circle to a point. The quotient of a disc in \mathbb{R}^{2} after identifying any points on its boundary circle which have equal y-coordinate.
2. Let $X=\mathbb{R}$ with the standard topology, and let X^{*} be the quotient space obtained by identifying $[0,1]$ to a point. Draw or describe what X^{*} looks like. Describe what a small neighborhood of -1 looks like in X^{*}. Describe what a small neighborhood of 0 looks like in X^{*}. Describe what a small neighborhood of $1 / 2$ looks like in X^{*}.
3. As above let $X=\mathbb{R}$ but this time let X^{*} be the quotient space obtained by identifying $(0,1)$ to a single point. Show that X^{*} is not Hausdorff. (That is, find two points $x, y \in X^{*}$ such that any two neighborhoods of x and y must intersect each other.)

Continuous functions

4. Let \mathcal{T}_{1} and \mathcal{T}_{2} be topologies on X with \mathcal{T}_{2} finer than \mathcal{T}_{1} (so $\mathcal{T}_{1} \subset \mathcal{T}_{2}$). Show that if $f:\left(X, \mathcal{T}_{1}\right) \rightarrow\left(X, \mathcal{T}_{1}\right)$ is continuous, then $f:\left(X, \mathcal{T}_{2}\right) \rightarrow\left(X, T_{1}\right)$ is continuous (this is the same function, but the continuity is considered with respect to different topologies).
5. Let X and Y be topological spaces. Fill in the blanks in two different ways to make two different theorems, and prove them: "If ??? has the ??? topology, then every map from X to Y is continuous." where the first ??? can be either X or Y, and the second ??? can be either "discrete" or "trivial".
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by:

$$
f(x)= \begin{cases}x^{2} & \text { if } x \neq 3 \\ 0 & \text { if } x=3\end{cases}
$$

Show using the open-set definition of continuity that f is not continuous.
7. Let X and Y be any topological spaces with some value $c \in Y$, and let f be a constant function $f(x)=c$. Show using the open-set definition of continuity that f is continuous.

Homeomorphisms

8. Let $f(x)=x+1$. Is this a homeomorphism of \mathbb{R} to \mathbb{R} ? Please explain why or why not.
9. Explain why $f(x)=x^{2}$ is not a homeomorphism of \mathbb{R} to \mathbb{R}.
10. Let $f:[0,1) \rightarrow S^{1}$ be the function which wraps the interval around and makes it into a circle by identifying the points 0 and 1. In a parametric formula, this is $f(t)=(\cos (2 \pi t), \sin (2 \pi t)$, so that $f(0)=(0,0)$. Explain why f is not a homeomorphism.

Metric spaces

11. Let d be a metric on some set X, and let $e(x, y)=2 \cdot d(x, y)$. Show that e is also a metric on X.
12. For $x, y \in S^{1}$, let $d(x, y)$ be the distance from x to y as measured along the circumpherence, going the shortest way around the circle. Is d a metric? Explain generally why or why not. (You can use words since writing formulas for d is a pain.)
13. Let $d(x, y)$ be the distance from x to y as measured along the circumpherence, going counter-clockwise. Is d a metric? Explain generally why or why not. (You can use words since writing formulas for d is a pain.)
14. Let $d(x, y)=\left|x^{2}-y^{2}\right|$. Is this a metric on \mathbb{R} ? Explain why or why not.
15. Let $d(x, y)=|x y|$. Show that this is not a metric. (Hint: take 3 numbers with one less than 1 , and the other two greater than 1.)

Answers

1. The quotient of \mathbb{R}^{2} after identifying a circle to a point: This is something that looks like \mathbb{R}^{2} again, but with a balloon sitting on the floor.

The quotient of \mathbb{R} after identifying all of \mathbb{Z} to a point: This looks like infinitely many loops all joined at a single point.
The quotient of a disc after identifying its boundary circle to a point: This looks like a sphere.
The quotient of a disc in \mathbb{R}^{2} after identifying any points on its boundary circle which have equal y coordinate: This also looks like a sphere: like an old-timey hinged coin purse. When it is open lying flat, it looks like a topological disc, but then you close the two circular sides up and you get a topological sphere. (I mean like one of these: https://www.amazon.com/Marshal-Womens-Leather-Kiss-Purse/ dp/B07BJ7CFV6)
2. X^{*} is like the entire line, but we crunched the interval $[0,1]$ into a point. Topologically this doesn't really change anything, so it still looks like a line. A small neighborhood of -1 in X^{*} will still look like an ordinary neighborhood of -1 , like an open interval $(-1-\epsilon,-1+\epsilon)$.
For a small neighborhood of 0 , remember that 0 has been identified with all other points of $[0,1]$, so a neighborhood of 0 in X^{*} must additionally include all of $[0,1]$. So it will look something like $(-\epsilon, 1+\epsilon)$.
In $X^{*}, 1 / 2$ and 0 are the same point. So a small neighborhood of $1 / 2$ will also look something like $(-\epsilon, 1+\epsilon)$.
3. This time 0 and 1 are not the same point, though there is only 1 point in between (the point obtained by collapsing $(0,1)$), which is weird enough to make it non-Hausdorff. Specifically, any neighborhood of 0 will look like $(-\epsilon, 1+\epsilon)$, and any neighborhood of 1 will also have the same form. So there are no neighborhoods U and V with $0 \in U$ and $1 \in V$ and $U \cap V=\emptyset$.
4. We need to show that if U is open in \mathcal{T}_{1}, then $f^{-1}(U)$ is open in \mathcal{T}_{2}. So let U be open in \mathcal{T}_{1}, and we already know f is continuous from \mathcal{T}_{1} to \mathcal{T}_{1}, so $f^{-1}(U)$ is open in \mathcal{T}_{1}. Since $\mathcal{T}_{1} \subset \mathcal{T}_{2}$ this means U is open in \mathcal{T}_{2} as desired.
5. First: If X has the discrete topology, then every map from X to Y is continuous. Proof: We need to show that $f^{-1}(U)$ is open in X whenever U is open in Y. But if X has the discrete topology then $f^{-1}(U)$ is open no matter what, so f is continuous automatically.
Second: If Y has the trivial topology, then every map from X to Y is continuous. Proof: We need to show that $f^{-1}(U)$ is open in X whenever U is open in Y. But there are only 2 open sets in Y, so we can just check them both. If $U=\emptyset$, then $f^{-1}(U)=\emptyset$ which is open. And if $U=Y$ then $f^{-1}(Y)=X$ which is open. So $f^{-1}(U)$ is open in either case, so f is continuous.
6. Let $U=(-1,1)$, which is open. Then $f^{-1}(U)=(-1,1) \cup\{3\}$, which is not open. So f is not continuous.
7. Let $U \subset Y$ be open. We consider two cases: if $c \in U$, then $f^{-1}(U)=X$, since all points of x map to c. Thus in this case $f^{-1}(U)$ is open. In the other case, say $c \notin U$, and then $f^{-1}(U)=\emptyset$ which is open. So in either case, $f^{-1}(U)$ is open as desired.
8. Yes it is a homeomorphism: it is a bijection because it has an inverse $f^{-1}(x)=x-1$. And clearly both f and f^{-1} are continuous.
9. It is not a bijection. It's not 1-1 because $f(-1)=f(1)$, and also it's not onto because there is no x with $f(x)=-1$. (You really only need to mention one or the other of these.)
10. Intuitively, it cannot be a homeomorphism because $[0,1)$ is not topologically the same as a circle (but that's not a proof). Specifically, it is not a homeomorphism because f^{-1} is not continuous. To see this, we will find an open set $U \subseteq[0,1)$ with $f(U) \subset S^{1}$ not open. (Since we are showing f^{-1} is not continuous, we need to look at preimages under f^{-1}, that is, things like $f^{-1-1}(U)$, which is $f(U)$.)
Let $U=[0,1 / 2)$, which is open in $[0,1)$ because we are using the subspace topology on $[0,1) \subset \mathbb{R}$. Then $f(U)$ is the top half of the circle, including the endpoint on the right, but not the endpoint on the left. This is not an open set in S^{1} with the subspace topology from \mathbb{R}^{2}.
11. We need to verify the 3 properties. In all cases, the property for e is proved by using the same property for d.

Positive definite: We have $e(x, y)=2 d(x, y) \geq 2 \cdot 0=0$ so $e(x, y) \geq 0$. And also $e(x, y)=0$ means that $2 d(x, y)=0$ and so $d(x, y)=0$, so $e(x, y)=0$ if and only if $d(x, y)=0$, which happens only when $x=y$.
Symmetric: We have $e(x, y)=2 d(x, y)=2 d(y, x)=e(y, x)$ as desired.
Triangle inequality: We have:

$$
e(x, y)+e(y, z)=2 d(x, y)+2 d(y, z)=2(d(x, y)+d(y, z)) \geq 2 d(x, z)=e(x, z)
$$

as desired.
12. Yes this is a metric. Let's discuss the three properties.

Positive definite: measuring the distance along the circumpherence is positive definite because $d(x, y)$ is the distance along the circumpherence is always positive, and it can only be zero when the two points are the same.

Symmetry: the distance from x to y along the circumpherence going the shortest way is the same as the distance from y to x going the shortest way.
Triangle inequality: this is also true in this case. The distance from x to z going the shortest way is always less than or equal to the distance from x to y plus the distance from y to z going the shortest way.
13. This is not symmetric. For example if $x=(1,0)$ and $y=(0,1)$, then the distance from x to y along the circle going counter clockwise is not the same as the distance from y to x along the circle going counter clockwise.
14. This is not positive definite, since $d(1,-1)=0$.
15. This does not satisfy the triangle inequality: Let $x=2, y=1 / 2$, and $z=3$. Then:

$$
d(x, y)+d(y, z)=1+3 / 2=5 / 2
$$

and $d(x, z)=6$. So the triangle inequality is violated.

