Math 1121 Exam \#1

No calculators! You do not need to simplify numerical answers.
Submit your answers to gradescope in the usual way.

Question 1.

Above is a graph of $f(x)$. Please find the following limits and values, or say if they do not exist: (you must at least 7 right to get credit)
a) $f(1)$
3
e) $f(5)$
2
b) $\lim _{x \rightarrow 1} f(x)$
f) $\lim _{x \rightarrow 5^{+}} f(x)$
c) $\lim _{x \rightarrow 1^{+}} f(x)$
g) $\lim _{x \rightarrow 5^{-}} f(x)$
2
d) $\lim _{x \rightarrow 3} f(x)$
h) $\lim _{x \rightarrow 5} f(x)$
DNE

Question 2. Please find the limit:
$\lim _{x \rightarrow-3} \frac{x^{2}+4 x+3}{x^{2}-5 x-24}$

$$
\begin{aligned}
& \lim _{x \rightarrow-3} \frac{(x+5)(x+1)}{(x-8)(x+5)} \\
= & \lim _{x \rightarrow-3} \frac{x+1}{x-8}=\frac{-2}{-11}=\frac{2}{11}
\end{aligned}
$$

Question 3. Please find the following limits: (you must get them all right to get credit)
a) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-4}{7 x+x^{3}}$
b) $\lim _{x \rightarrow-\infty} \frac{4 x}{1-9 x}$ $4 /-9$
c) $\lim _{x \rightarrow \infty} \frac{x^{3}+2 x^{2}}{7 x^{2}-3 x+1}$ DIVE
d) $\lim _{x \rightarrow \infty} \frac{4 x+1}{4 x+7 x^{2}}$

Question 4. For this function:

$$
f(x)=\frac{x-3}{x^{2}-2 x-3}
$$

a) Please find any discontinuity points.

$$
\begin{array}{ll}
x^{2}-2 x-3=0 \\
(x-3) \mid x+1)=0 \\
x-3=0 & x+1=0 \\
x=3 & x=-1
\end{array}
$$

b) For each discontinuity point that you found in the first part, find the limit of $f(x)$ as x approaches

$$
\begin{aligned}
& \text { that point. } \\
& \lim _{x \rightarrow 3} \frac{x-3}{(x-3)(x-1)}=\lim _{x \rightarrow 3} \frac{1}{x+1}=\frac{1}{4} \\
& \lim _{x \rightarrow-1} \frac{x-3}{(x-3)(x+1)}=\lim _{x \rightarrow-1} \frac{1}{x+1}=\frac{1}{0} \text { DUE }
\end{aligned}
$$

Question 5. For this function:

$$
f(x)= \begin{cases}x^{2}+1 & \text { if } x \leq-1 \\ 4 x+6 & \text { if }-1<x \leq 3 \\ 2 x-10 & \text { if } x>3\end{cases}
$$

a) Please find any discontinuity points.

$$
\text { plug } x=-1: \quad \begin{aligned}
(-1)^{2}+1 & =2 \\
4(-1)+6 & =2
\end{aligned} \quad \text { so it is continuous at } x=-1
$$

$$
x=3: \quad 4 \cdot 3+6=18 \quad x=3 \text { is a discortincily }
$$

$$
2 \cdot 3-10=-4
$$

b) For each discontinuity point that you found in the first part, find the two one-sided limits of $f(x)$ as x approaches that point.

$$
\lim _{x \rightarrow 3^{-}} f(x)=18
$$

$$
\lim _{x \rightarrow 3^{+}} f(x)=-4
$$

Question 6. For this function:

$$
f(x)=1-x^{2}
$$

please find the average rate of change from $x=-1$ to $x=2$.

$$
\begin{aligned}
\frac{f(2)-f(-1)}{2--1} & =\frac{1-2^{2}-\left(1-(-1)^{2}\right)}{3} \\
& =\frac{1-4-0}{3}=\frac{-3}{3}=-1
\end{aligned}
$$

Question 7. Please use the definition of the derivative to find the instantaneous rate of change of this function

$$
f(x)=x^{2}-2 x+1
$$

at the point $x=2$.

$$
\begin{aligned}
& f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{(2+h)^{2}-2(2+h)+1-\left(2^{2}-2 \cdot 2+1\right)}{h} \\
&=\lim _{h \rightarrow 0} \frac{4+4 h+h^{2}-4-2 h+1-(h)}{h}=\lim _{h \rightarrow 0} \\
&=\lim _{h \rightarrow 0} \frac{4 h+h^{2}-2 h}{h} \\
& h
\end{aligned}
$$

Question 8. This is a graph of $f(x)$. Please sketch a graph of $f^{\prime}(x)$.

Question 9. I have a side-hobby as a Z-list YouTuber (true story). My number of subscribers over time in thousands obeys this formula (made-up formula):

$$
s(t)=t^{2}+2 t
$$

where t is the time in years since I started posting.
Please find $s^{\prime}(5)$, and write a sentence explaining what this answer means. Be sure to include an explanation of what the number 5 refers to.

$$
\begin{aligned}
& s^{\prime}(t)=2 t+2 \quad \text { (the derivative) } \\
& s^{\prime}(5)=2 \cdot 5+2=12
\end{aligned}
$$

This means: At year 5, my $\#$ of subscribers is increasing at a rate of $12 k$ per year.

Question 10. For each of the following, find the derivative: (you must get all 3 right to get credit)
a) $3 x^{2}+8 x-1$

$$
6 x+8
$$

b) $6 x^{3}-x^{-4}+7 x$

$$
18 x+4 x^{-5}+7
$$

c) $3 x-2-x^{1 / 2}$

$$
3-\frac{1}{2} x^{-1 / 2}
$$

