Math 1121 Exam \#2 (new ones)

No calculators! You do not need to simplify numerical answers.
Submit your answers to gradescope in the usual way.
Question 11. Please find the derivative:

$$
\begin{gathered}
\left(8 x^{4}-7 x\right)\left(3-5 x+x^{2}\right) \\
\left(8 x^{1}-7 x\right)(-5+2 x)+\left(3-5 x+x^{2}\right)\left(32 x^{3}-7\right)
\end{gathered}
$$

Question 12. Please find the derivative:

$$
\frac{\left(x^{2}+5 x\right) \cdot 3-(3 x-2) \cdot(2 x+5)}{\left(x^{2}+5 x\right)^{2}}
$$

Question 13. Please find the derivative:

$$
\begin{gathered}
g(t)=\sqrt{4 t^{2}+3 t} \\
\frac{1}{2}\left(4 t^{2}+3 t\right)^{-1 / 2} \cdot(8 t+3)
\end{gathered}
$$

Question 14. Please find the derivative:

$$
2 x \cdot 4\left(5 x^{2}+18 x\right)^{3}(10 x+18)+\left(5 x^{2}+18 x\right)^{4} \cdot 2
$$

Question 15. Please find the derivative each time (do all 3, and you'll get credit if you get at least 2 right):
a) $e^{4 x+1}$

$$
e^{4 x+1} \cdot 4
$$

b) $3 \cdot 8^{x}$

$$
3 \cdot 8^{x} \ln 8
$$

c) $2^{x^{2}+1}$

$$
2^{x^{2}+1} \cdot \ln 2 \cdot 2 x
$$

Question 16. Please solve for x. If necessary, you can leave your answer uncomputed in terms of \ln.

$$
2 \cdot 5^{x}+1=21
$$

$$
\begin{aligned}
2 \cdot 5^{x} & =20 \\
5^{x} & =10 \\
x \ln 5 & =\ln 10 \\
x & =\frac{\ln 10}{\ln 5}
\end{aligned}
$$

Question 17. Please find the derivative each time (do all 3 , and you'll get credit if you get at least 2 right):
a) $\log _{4}(x)$

$$
\frac{1}{x \ln 4}
$$

b) $\ln (3 x+1)$

$$
\frac{1}{(3 x+1)} \cdot 3
$$

c) $\log _{3}(3-5 x)$

$$
\frac{1}{(3-5 x) \ln 3} \cdot-5
$$

Question 18. Please find the derivative:

$$
5^{x} \cdot \frac{1}{\left(x^{2}+5 x\right) \ln 3} \cdot(2 x+5)+5^{x} \log _{3}\left(x^{2}+5 x\right) \quad \log _{3}\left(x^{2}+5 x\right) \cdot 5^{x} \ln 5
$$

Question 19. Please give intervals where this function is increasing and decreasing:

$$
\begin{aligned}
& f(x)=\frac{1}{3} x^{3}-3 x^{2}+7 x+2 \\
& f^{\prime}(x)=x^{2}-6 x+7 \\
& f^{\prime}(x)=(x-7)(x+1) \quad f^{\prime}=0: \begin{array}{ll}
x-7=0 & x+1=0 \\
& x=7
\end{array} \\
& f \text { is inc on }(-\infty,-1) \&(7, \infty) \\
& \text { dee on }(-1,7) \\
& \begin{array}{c}
f^{\prime}(8)=(8-7 \backslash(8+1) \\
+\quad+
\end{array}
\end{aligned}
$$

Question 20. Please give intervals where this function is increasing and decreasing:

$$
\begin{aligned}
& f(x)=\frac{x-3}{4 x-20} \\
& f^{\prime}(x)=\frac{(4 x-20) \cdot 1-(x-3) \cdot 4}{(4 x-20)^{2}}=\frac{4 x-20-4 x+12}{(4 x-20)^{2}} \\
& f^{\prime}(x)=\frac{-8}{(4 x-20)^{2}}
\end{aligned}
$$

$$
\begin{array}{lll}
f^{\prime}=0: & \frac{-8}{(4 x-20)^{2}}=0 & f^{\prime} \text { ONE: }
\end{array} \begin{array}{ll}
& (4 x-20)^{2}=0 \\
-8=0 \cdot(4 x-20)^{2} & 4 x=20 \\
&
\end{array}
$$

$x:$

$$
5
$$

$$
\begin{aligned}
& f^{\prime} \\
& f^{\prime}(0)=\frac{-8}{(m)^{2}}=\frac{-}{+}=- \\
& f^{\prime}(6)=\frac{-8}{(-)^{2}}=\frac{-}{+}=-
\end{aligned}
$$

$$
f(x) \text { is dec on }(-\infty, 5) \text { \& }(5, \infty) \text {, }
$$ never inc.

