Exam 2 old ones
\# 1.
a) 3
e) -1
b) 3
f) $D N E$
c) 1
g) DNE
d) -1
h) $D N E$
$\# 2$.

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{x^{2}-x-6}{2 x^{2}-6 x} \quad \text { plog in: } \frac{3^{2}-3-6}{2 \cdot 3^{2}-6 \cdot 3}=\frac{9-3-6}{2 \cdot 9-18}=\frac{0}{0} \\
& \Leftrightarrow \lim _{x \rightarrow 3} \frac{(x-3)(x+2)}{2 x(x-3)}=\lim _{x \rightarrow 3} \frac{x+2}{2 x}=\frac{3+2}{2 \cdot 3}=\frac{5}{6}
\end{aligned}
$$

$\# 3$.
a) DNE
b) $-8 / 2=-4$
C) 0
d) $7 / 1=7$
\#4. $f(x)=\frac{x^{2}-7 x+10}{x^{2}-5 x}=\frac{(x-5)(x-2)}{x(x-5)}$
a) denom=0 when $x=0$ \& $x=5$
b)

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{(x-5)(x-2)}{x(x-5)}=\lim _{x \rightarrow 0} \frac{x-2}{x}=\frac{-2}{0} \text { DNE } \\
\lim _{x \rightarrow 5} f(x)= & \ldots
\end{array}
$$

± 5
plug in 0 :

$$
\begin{aligned}
& 3 \cdot 0+1=1 \\
& 1-0+0^{2}=1
\end{aligned}
$$

So it is continuous at $x=0$
play in 2: $1-2+2^{2}=3$ so it's net continuous

$$
3 \cdot 2=6
$$

a) $x=2$ is a discontinuity
b) $\lim _{x \rightarrow 2^{-}} f(x)=3 \quad \lim _{x \rightarrow 2^{+}} f(x)=6$
$+16$

$$
\begin{aligned}
& \frac{g(1)-g(-1)}{1-(-1)}=\frac{3 \cdot 1^{2}-2 \cdot 1-\left(3 \cdot(-1)^{2}-2 \cdot(-1)\right)}{2} \\
& =\frac{3-2-(3+2)}{2}=\frac{1-5}{2}=\frac{-4}{2}=-2
\end{aligned}
$$

\#1 $\quad f(x)=x^{2}+3 x$, find $f^{\prime}(2)$

$$
\begin{aligned}
f^{\prime}(2) & =\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{(2+h)^{2}+3(2+h)-\left(2^{2}+3 \cdot 2\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(2+h)(2+h)+6+3 h-(4+6)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{\prime}+4 h+h^{2}+6+3 h-10}{h}=\lim _{h \rightarrow 0} \frac{7 h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{K(7+h)}{h} \\
& =\lim _{h \rightarrow 0} 7+h=7
\end{aligned}
$$

$\# 8$

\#9
a)

$$
\begin{aligned}
V(2) & =500+.5 \cdot 2+2^{2} \\
& =500+1+4=505 .
\end{aligned}
$$

At year 2, my investment value is $\$ 505$.
b)

$$
\begin{aligned}
& v^{\prime}(t)=.5+2 t \\
& v^{\prime}(2)=.5+2.2=4.5
\end{aligned}
$$

At year 2 , my investment is growing at a rate of 4.5 \$/year
\# 10
a) $8 x-24 x^{2}$
b) $3 \cdot \frac{1}{2} x^{-1 / 2}+3 x^{2}$
c) $-10 x^{-3}+7$

