Math 1121 exam 2 practice problems

1 Limits on graphs

1. Find some limit by looking at a graph (like book problems $3.1 \# 5-12$)

2 Limits algebraically

2. Compute: $\lim _{x \rightarrow 1} \frac{x^{2}+2 x+1}{x^{2}-1}$

3 Limits at ∞
3. Compute: $\lim _{x \rightarrow \infty} \frac{7 x^{2}+2 x+1}{1-x^{2}}$
4. Compute: $\lim _{x \rightarrow-\infty} \frac{x}{x^{2}-1}$

4 Continuity

5. Find any discontinuities of $\frac{x+1}{x^{2}-4}$, and find the limit of $f(x)$ as it approaches each discontinuity.

5 Piecewise functions

6. Find any discontinuities of

$$
f(x)= \begin{cases}x^{2}-3 & \text { if } x<1 \\ x+3 & \text { if } 1 \leq x<5 \\ 8 & \text { if } x \geq 5\end{cases}
$$

For each discontinuity, find the left and right one-sided limits as you approach that point.
7. When I pay my taxes, I have to pay 15% of any income below $\$ 100,000$, and 25% of any further income. (These are made up numbers.) Write a piecewise function that describes how much taxes I would owe if my income is x dollars.

6 Average rate of change

8. Find the average rate of change of $2 x^{2}-4 x$ from $x=3$ to $x=6$
9. Find the average rate of change from $x=-1$ to $x=4$ of the piecewise function called $f(x)$ above.

$7 \quad$ Definition of the derivative

10. Use the definition of the derivative to find the instantaneous rate of change of $f(x)=2 x^{2}-x$ at $x=3$.
11. Use the definition of the derivative to find $f^{\prime}(0)$, for $f(x)=4 x^{3}+2 x-3$.
12. Use the definition of the derivative to find the derivative of either of these.

8 Derivatives on graphs

13. Look at a graph of $f(x)$, and you draw $f^{\prime}(x)$. (like book problems 11 th ed. $3.5 \# 7$ and 8 , or 12 th ed $3.5 \# 15$ and 16)

9 Derivatives in word problems

14. My blood pressure is going up! From day to day, my blood pressure is given by the formula $p(t)=$ $72+.1 t+.02 t^{2}$, where t is the time in days. Find $p(10)$ and $p^{\prime}(10)$, and explain in a few words what each one means. (The numbers for this one are slightly weird- you can use a calculator if you like. Test questions will have less weird numbers.)

10 Derivatives of polynomials (power rule)

15. Find the derivative of $5 \sqrt{x}-6 / x^{5}+x^{2} / 3$
16. Find x where the slope of $f(x)=x^{3}+15 x^{2}+73 x-10$ is 1 .

11 Product rule

17. Find the derivative of $f(x)=\left(4 x^{7}-2 x^{3}+4\right)\left(3 x^{2}-1\right)$

12 Quotient rule

18. Find the derivative of $f(x)=\frac{4 x^{7}-2 x^{3}+4}{3 x^{2}-1}$

13 Chain rule

19. For $f(x)=\left(4 x^{2}-3\right)^{4}$, find $f^{\prime}(1)$
20. Find the derivative of $\sqrt{x^{5}-2 x}$

14 Derivatives misc (rational functions)

("Rational functions" means some combination of polynomials.)
21. Find the derivative of $f(x)=4 x\left(x^{2}-4 x+3\right)^{2}$
22. Find the derivative of $f(x)=\frac{(2 x+3)(3 x+2)}{8 x-7 x^{2}}$
23. Find the derivative of $p(y)=\left(\left(5 x^{2}-7 x\right)\left(8 x^{10}+1\right)\right)^{4}$

15 Exponential functions and their derivatives

24. Find the derivative of $e^{4 x^{2}}$
25. Find the derivative of $7^{x^{2}-3}$

16 Logarithms basics

26. Compute by hand: $\log _{4} 16, \log _{3} \frac{1}{27}, \log \sqrt{10}, \ln 1$
27. Solve for x in $3^{x}+2=35$ (on the test, leave your answer unsimplified as something in terms of \ln)

17 Derivatives of logs

28. Find the derivative of $5^{x}+\log _{4} x-x^{2}$
29. Find the derivative of $6 \log _{4}(5-4 x)$

18 Derivatives misc (exp \& logs)

30. Find the derivative of $\left(\ln \left(4 x^{2}-3\right)\right)^{6}$
31. Find the derivative of $4^{x^{2}-x} \log _{3} x$
32. Find the derivative of $\frac{2^{x}}{\left(\log _{7} x\right)^{3}}$

19 Increasing \& decreasing (polynomials)

33. Give intervals where $x^{3}-9 x^{2}-21 x-10$ is increasing and decreasing.

20 Increasing \& decreasing (harder)

34. Give intervals where $\frac{x+2}{x-3}$ is increasing and decreasing.
35. Give intervals where $x e^{2 x+3}$ is increasing and decreasing.

Things to memorize

- Trick for doing $\lim _{x \rightarrow \infty}$ of a fraction of polynomials
- Average rate of change formula
- Definition of the derivative
- Product, quotient, chain rules
- Derivative of exponentials
- Derivative of logs

Answers!

2. This limit does not exist.
3. -7
4. 0
5. $x=2$ and $x=-2$ are discontinuities. The limits $\lim _{x \rightarrow 2} f(x)$ and $\lim _{x \rightarrow-2} f(x)$ both do not exist.
6. $x=1$ is a discontinuity. $\lim _{x \rightarrow 1^{-}} f(x)=-2$, and $\lim _{x \rightarrow 1^{+}} f(x)=4$.
7. $f(x)= \begin{cases}0.15 x & \text { if } x<100,000 \\ 15,000+0.25(x-100,000) & \text { if } x \geq 100,000\end{cases}$
8. $\frac{2 \cdot 6^{2}-4 \cdot 6-\left(2 \cdot 3^{2}-4 \cdot 3\right)}{6-3}=14$
9. $\frac{4+3-\left((-1)^{2}-3\right)}{4-(-1)}=\frac{9}{5}$
10. 11
11. 2
12. They are $4 x-1$ and $12 x^{2}+2$. (Using the definition of the derivative, these are each difficult to do. The second is probably too hard to put on the test.)
13. $p(10)=73.2$ (just plug in $t=10$). This means that my blood pressure on day 10 is 73.2 . For $p^{\prime}(10)$, take the derivative and then plug in $t=10$. You get $p^{\prime}(10)=0.5$. This means that on day 10 , my blood pressure is increasing at a rate of 0.5 per day.
14. $2.5 x^{-1 / 2}+30 x^{-6}+\frac{2}{3} x$
15. $x=-4$ and $x=-6$
16. $\left(4 x^{7}-2 x^{3}+4\right)(6 x)+\left(3 x^{2}-1\right)\left(28 x^{6}-6 x^{2}\right)$
17. $\frac{\left(3 x^{2}-1\right)\left(28 x^{6}-6 x^{2}\right)-\left(4 x^{7}-2 x^{3}+4\right)(6 x)}{\left(3 x^{2}-1\right)^{2}}$
18. $f^{\prime}(x)=4\left(4 x^{2}-3\right)^{3}(8 x)$, so $f^{\prime}(1)=32$.
19. $\frac{1}{2}\left(x^{5}-2 x\right)^{-1 / 2}\left(5 x^{4}-2\right)$
20. $4 x \cdot 2\left(x^{2}-4 x+3\right)(2 x-4)+\left(x^{2}-4 x+3\right)^{2} \cdot 4$
21. $\frac{\left(8 x-7 x^{2}\right)((2 x+3)(3)-(3 x+2)(2))-(2 x+3)(3 x+2)(8-14 x)}{\left(8 x-7 x^{2}\right)^{2}}$
22. $4\left(\left(5 x^{2}-7 x\right)\left(8 x^{10}+1\right)\right)^{3}\left(\left(5 x^{2}-7 x\right)\left(80 x^{9}\right)+\left(8 x^{10}+1\right)(10 x-7)\right)$
23. $e^{4 x^{2}}(8 x)$
24. $7^{x^{2}-3}(\ln 7)(2 x)$
25. $2,-3,1 / 2,0$
26. $\frac{\ln 33}{\ln 3}$
27. $5^{x} \ln 5+\frac{1}{x \ln 4}-2 x$
28. $6 \frac{1}{(5-4 x) \ln 4}(-4)$
29. $6\left(\ln \left(4 x^{2}-3\right)\right)^{5} \frac{1}{4 x^{2}-3}(8 x)$
30. $4^{x^{2}-x} \frac{1}{x \ln 3}+\log _{3} x \cdot 4^{x^{2}-x} \ln 4 \cdot(2 x-1)$
31. $\frac{\left(\log _{7} x\right)^{3} 2^{x} \ln 2-2^{x} \cdot 3\left(\log _{7} x\right)^{2} \frac{1}{x \ln 7}}{\left(\log _{7} x\right)^{6}}$
32. Increasing on $(-\infty,-1)$ and $(7, \infty)$, decreasing on $(-1,7)$.
33. Decreasing on $(-\infty, 3)$ and $(3, \infty)$, never increasing.
34. Decreasing on $(-\infty,-1 / 2)$, increasing on $(-1 / 2, \infty)$.
