Name: _____

Math 3342 Exam #1

Question 1. (4 points each) In each part, please give a regular expression which generates the language described. In all parts, you should assume the alphabet is $\Sigma = \{a, b\}$.

a) All strings which start and end with a, and use only b in between.

b) All strings in which every b is followed immediately by an a.

$$(ba + a)^*$$

c) All strings which start and end with the same letter.

$$a(a+b)^*a + b(a+b)^*b$$

d) All strings with even length.

$$((a+b)(a+b))^*$$
 or $(aa+ab+ba+bb)^*$

Question 2. This whole page is about this NFA:

a) (5 points) Please give the formal description of this N.

$$N = (\{ \{ \{ A, B, C, D\}, \{ E^{a}, b^{b}\}, \{ A, \{ D\} \} \})$$

where:

$$S(A, a) = \{ B \} \quad S(B, a) = \emptyset \quad S(C, a) = \{ D \} \quad S(D, a) = \emptyset$$

$$S(A, b) = \{ C \} \quad S(B, b) = \{ D \} \quad S(C, b) = \emptyset \quad S(D, b) = \emptyset$$

$$S(A, b) = \{ C \} \quad S(B, b) = \{ D \} \quad S(C, b) = \emptyset \quad S(D, b) = \{ A \}$$

b) (5 points) Please write in ordinary words what it means to say $B \in \delta^*(C, aaba)$. Is this statement true?

c) (5 points) Please describe L(N), either in words or using set theory notation.

d) (4 points) Is L(N) a regular language? Please say briefly why or why not.

Question 3. (15 points) For the same NFA N, please use the subset construction to make an equivalent DFA.

Here is the NFA again:

Question 4. (15 points) Please give a NFA for the set of all strings on $\Sigma = \{a, b\}$ which include either *aab* or *baa* (or both) as a substring.

Question 5. (15 points) Please give a DFA for the set of all binary strings which use an odd number of the digit 1.

Question 6. This whole page is about these two DFAs:

a) (5 points) Please describe $L(M_1)$ and $L(M_2)$ is ordinary words or using set theory notation.

$$L(M_1) = \{ x \mid | euglh of |x| is a multiple of 33 \}$$

 $L(M_2) = \{ x \mid x uses no as \}$

b) (5 points) Please give a DFA for $\overline{L(M_1)}$, where the bar means complement.

c) (10 points) Please give a DFA for $L(M_1) \cup L(M_2)$.

