\qquad

Math 3342 Exam \#1

Question 1. (4 points each) In each part, please give a regular expression which generates the language described. In all parts, you should assume the alphabet is $\Sigma=\{a, b\}$.
a) All strings which start and end with a, and use only b in between.

$$
a b * a
$$

b) All strings in which every b is followed immediately by an a.

$$
(b a+a)^{x}
$$

c) All strings which start and end with the same letter.

$$
a(a+b)^{*} a+b(a+b)^{x} b
$$

d) All strings with even length.

$$
((a+b)(a+b))^{*} \text { or }(a+a b+b a+b b)^{*}
$$

Question 2. This whole page is about this NFA:

a) (5 points) Please give the formal description of this N.

$$
N=(\{A, B, C, D\},\{a, b\}, S, A,\{D\})
$$

where:

$$
\begin{array}{llll}
\delta(A, a)=\{B\} & \delta(B, a)=\varnothing & \delta(C, a)=\{D\} & \delta(D, a)=\varnothing \\
\delta(A, b)=\{C\} & \delta(B, b)=\{D\} & \delta(C, b)=\varnothing & \delta(D, b)=\varnothing \\
\delta(A, \varepsilon)=\varnothing & \delta(B, \varepsilon)=\varnothing & \delta(C, \varepsilon)=\varnothing & \delta(D, \varepsilon)=\{A\}
\end{array}
$$

b) (5 points) Please write in ordinary words what it means to say $B \in \delta^{*}(C, a a b a)$. Is this statement true?

It means if we start in state C, and do aba,
we can end up in state B. This is true.
c) (5 points) Please describe $L(N)$, either in words or using set theory notation.

All strings made up of t or more blocks of the form (ab) or (ba). (No tall blocks need to be the same)
d) (4 points) Is $L(N)$ a regular language? Please say briefly why or why not.

Yes - "regular language" means its the language of an NFA or DFA, which it is.

Question 3. (15 points) For the same NFA N, please use the subset construction to make an equivalent DEA.

Here is the NFA again:

Question 4. (15 points) Please give a NFA for the set of all strings on $\Sigma=\{a, b\}$ which include either $a a b$ or baa (or both) as a substring.

Question 5. (15 points) Please give a DFA for the set of all binary strings which use an odd number of the digit 1.

Question 6. This whole page is about these two DFAs:

a) (5 points) Please describe $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$ is ordinary words or using set theory notation.

$$
\begin{aligned}
& L\left(M_{1}\right)=\{x \mid \text { leuth } \&|x| \text { is multiple of } 3\} \\
& L\left(M_{2}\right)=\left\{x \mid x \text { uses no } a^{\prime s}\right\}
\end{aligned}
$$

b) (5 points) Please give a DFA for $\overline{L\left(M_{1}\right)}$, where the bar means complement.

$$
\text { Same as } M_{1,} \text { but swap accepting/rejectiy states }
$$

c) (10 points) Please give a DFA for $L\left(M_{1}\right) \cup L\left(M_{2}\right)$.

