\qquad

Math 3342 Exam \#2

Question 1. This whole page is about this stack machine:

read	pop	push
a	S	$S X X$
b	X	ε
ε	S	ε

a) Please find some nonempty string that is accepted by the stack machine, and write a derivation on the stack machine showing that it is accepted.

$$
\begin{aligned}
(a b b, s) \mapsto & (b b, S \times X) \mapsto(b b, x \times) \\
& \mapsto(b, x) \mapsto(\varepsilon, \varepsilon) \text { arcopted! }
\end{aligned}
$$

b) Please find some nonempty string that is rejected by the stack machine, and write a derivation on the stack machine showing that it is rejected.

$$
(b, s) \mapsto(b, \varepsilon) \quad \text { stack!. }
$$

c) What is the language of this stack machine? You can describe the language in words, or using set-theory notation.

$$
\left\{a^{n} b^{2 n}\right\}
$$

Question 2. Both parts are about this NFA:

a) Please give a regular expression which is equivalent to this NFA.

$$
b^{*} a\left((a+\varepsilon) b b^{*} a\right)^{*} \quad \text { or } \quad\left(b^{*} a(a+\varepsilon) b\right)^{*} a
$$

b) Please give a grammar which is equivalent to this NFA.

$$
\begin{aligned}
& S \rightarrow b S \mid a T \\
& T \rightarrow a R|R| \varepsilon \\
& R \rightarrow b S
\end{aligned}
$$

c) Choose a string of length more than 1 that is accepted on the NFA, and show a grammar derivation for that string.

$$
\begin{aligned}
& \text { aba: } \\
& S \rightarrow a T \rightarrow a a R \rightarrow a a b S \rightarrow a a b a T \rightarrow a a b a
\end{aligned}
$$

d) Is your grammar above context-free? Say briefly why. (Say enough so that I know that you know what context-free means.)

YLS! Context free just means the 18 sike of each arrow is a single nontermind letters, which is true in this case.

Question 3. Make an NFA that is equivalent to this regular expression:

$$
a b\left(a b^{*} a+b a\right)^{*} b
$$

Question 4. Please show that this language is nonregular:

$$
L=\left\{a^{n} x b^{n} \mid n \in \mathbb{N}, x \in\{a, b\}^{*}\right\}
$$

$$
\begin{aligned}
& \text { Let } D_{i}=\frac{d}{d a} L=\left\{a^{n \cdot i} \times b^{n}\right\} \\
& \text { These ore doll diffenil, so } L \text { is nonregular. }
\end{aligned}
$$

Question 5. In these 4 parts, please make a grammar for the given language, or say that it's impossible.
a) $\left\{a^{n} b c^{m}\right\}$

$$
\begin{aligned}
& S \rightarrow A b C \\
& A \rightarrow a A \mid \varepsilon \\
& C \rightarrow C C \mid \varepsilon
\end{aligned}
$$

b) $\left\{a^{n} b c^{n}\right\}$

$$
S \rightarrow a S c \mid b
$$

c) $\left\{x c a^{n} b^{m} \mid x \in\{a, b, c\}^{*}\right\}$

$$
\begin{aligned}
& S \rightarrow X c A B \\
& X \rightarrow a X|b X| c X \mid \varepsilon \\
& A \rightarrow a A \mid \varepsilon \\
& B \rightarrow b B \mid \varepsilon
\end{aligned}
$$

d) Please choose one of the grammars that you made above, and write an equivalent stack machine.

read	pop	push
ε	S	$a S c$
ε	S	b
a	a	ε
b	b	ε
c	c	ε

Question 6. Please make a grammar for all strings which look like whole numbers using commas to separate blocks of 3 digits. So your grammar should be able to generate things like:

$$
\begin{array}{llll}
10,000 & 125 & 2 & 42,003,190
\end{array}
$$

but NOT things like

$$
4021 \quad 42,32 \quad 5,32,8 \quad 4,
$$

(For simplicity, let's allow things with 0 as the leftmost digit, so it's OK if your grammar can generate something like " 000,000 ".)

$$
\begin{aligned}
& S \rightarrow T \mid S, D D D \\
& T \rightarrow D|D D| D D D \\
& D \rightarrow 0|1| 2|\ldots| q
\end{aligned}
$$

Question 7. Here is a wrong proof that $L=\left\{a^{n} b^{m}\right\}$ is not a regular language:
Proof: Let $D_{i}=\frac{d}{d a^{i}} L=\left\{a^{n-i} b^{m}\right\}$. These are all different for different i, since for example a^{n-1} is different from a^{n-2}. Thus L has infinitely many different derivatives, so it is not regular.

What exactly is the error in the wrong proof above? Explain using perhaps a couple sentences.
n is a variable which could be any number.
So $n-1$ also could just be any number,
So $n-2$ also could just be any number. S. these aren't different.
S. $\left\{a^{n-i} b^{m}\right\}$ are actually all the

Same for various i.

