Math 3342 Exam \#3 practice

These are sample questions, but this is not meant to be exhaustive of everything that might be on the final exam.

Question 1. Please make a Turing machine that accepts any string of the form $a x a$ for $x \in\{a, b\}^{*}$, and runs forever when the input is not of this form.

Question 2. Let M and N be these machines using the alphabet $\Sigma=\{a, b\}$:

(These each are machines of a single starting state with no transition arrows.)
a) Is M legal when interpreted as a DFA? If so, say what $L(M)$ is. If not, say why not.
b) Is N legal when interpreted as a DFA? If so, say what $L(N)$ is. If not, say why not.
c) Is M legal when interpreted as a NFA? If so, say what $L(M)$ is. If not, say why not.
d) Is N legal when interpreted as a NFA? If so, say what $L(N)$ is. If not, say why not.
e) Is M legal when interpreted as a Turing Machine? If so, say what $L(M)$ is. If not, say why not.
f) Is N legal when interpreted as a Turing Machine? If so, say what $L(N)$ is. If not, say why not.

Question 3. For this problem, let G be this grammar:

$$
\begin{aligned}
& S \rightarrow a T X \\
& T \rightarrow b R \\
& R \rightarrow S \mid \varepsilon \\
& X \rightarrow a X \mid \varepsilon
\end{aligned}
$$

a) Please give a grammar derivation for some nonempty string in $L(G)$.
b) Please describe in words or set theory notation the set $L(G)$.
c) Please give a regular expression equivalent to G, or explain why this is not possible.
d) Please give a stack machine equivalent to G, and show a stack derivation of some specific nonempty string.

Question 4. Please make a Turing machine with language $\left\{a^{2 n} c b^{n}\right\}$.
Question 5. Please make a Turing machine that computes this function: $f\left(a^{n}\right)=a^{n} \bmod 2$. (The answer left on the tape should be either a or ε, depending if n is even or odd.)

Question 6. Please give an NFA for this regular expression: $(a+b)^{*} a b+a^{*} b$

Question 7. In each part, either show that the language is not regular, or show that it is regular.
a) $\left\{a^{n} b x a b^{n} \mid x \in\{a, b\}^{*}\right\}$
b) $\left\{a^{n} x b^{m} \mid x \in\{a, b\}^{*}\right\}$

Question 8. In each part, please give a grammar for each language:
a) $\left\{a b^{n} a\right\}$
b) $\left\{a^{n} b^{m} c^{2 m}\right\}$
c) $\left\{a^{n} x(a b)^{n} \mid x \in\{a, b\}^{*}\right\}$

Question 9. Please convert this NFA to an equivalent DFA:

Answers!

1.

2. a) M is not a legal DFA, since it would need outgoing arrows for each letter in the alphabet.
b) N is not a legal DFA for the same reason.
c) M is a legal NFA. Its language is $L(M)=\emptyset$.
d) N is a legal NFA. Its language is $L(N)=\{\varepsilon\}$.
e) M is a legal Turing Machine, with $L(M)=\emptyset$.
f) N is a legal Turing Machine, with $L(N)=\{a, b\}^{*}$.
3. a) I'll derive $a b: S \Rightarrow a T X \Rightarrow a b R X \Rightarrow a b X \Rightarrow a b$
b) $L(G)=\left\{(a b)^{n} a^{m} \mid n \geq 1, m \geq 0\right\}$
c) $a b(a b)^{*} a^{*}$
d) My stack machine:

read	pop	push
ϵ	S	$a T X$
ϵ	T	$b R$
ϵ	R	S
ϵ	R	ϵ
ϵ	X	$a X$
ϵ	X	ϵ
a	a	ϵ
b	b	ϵ

A derivation of $a b$:

$$
(a b, S) \mapsto(a b, a T X) \mapsto(b, T X) \mapsto(b, b R X) \mapsto(\epsilon, R X) \mapsto(\epsilon, X) \mapsto(\epsilon, \epsilon)
$$

4. My strategy is to mark $2 a \mathrm{~s}$, then go right and mark one b. Make sure not to loop on c / c, since this would allow for any number of c 's. We want to require just one.

5. This one is a bit tricky. My strategy is: we see an a first, then move R and look for another a. If there isn't one, then we had only one a left, so the string is odd, so leave the a and stop. If we see a second a, then back up and blank both a 's. Then repeat.
This ends up blanking $2 a$ at a time, so we end up with either empty, or one leftover a, depending if n was even or odd.

Here's another solution which is cute but a bit cryptic:

6.

7. a) This one is not regular: let $D_{i}=\frac{d}{d a^{i}} L=\left\{a^{n-i} b x a b^{n} \mid x \in\{a, b\}^{*}\right\}$. Then these are all different, so L has infinitely many derivatives, so L is not regular.
b) This one is regular. Here is a regular expression: $a^{*}(a+b)^{*} b^{*}$.
8. a)

$$
\begin{aligned}
& S \rightarrow a T a \\
& T \rightarrow b T \mid \epsilon
\end{aligned}
$$

b)

$$
\begin{aligned}
& S \rightarrow A T \\
& A \rightarrow a A \mid \epsilon \\
& T \rightarrow b T c c \mid \epsilon
\end{aligned}
$$

c)

$$
\begin{aligned}
& S \rightarrow a S a b \mid T \\
& T \rightarrow a T|b T| \epsilon
\end{aligned}
$$

9.

