#19 regex: (146)* aaa (a+6)*

#5

a o o regex: (abtab)*

#4 $L = \{a^n cb^n c\}$ is nonregular.

PF Let $D_i = \{a^n cb^n c\}$ $\{a^n cb^n c\}$ These are all different, so L is nonregular.

#76 $L = \{ xax^{R} \mid x \in \Sigma^{*} \}$ is nonregular when \sum has more than 1 latter.

Pt let $D_i = \frac{d}{da^i} \left\{ x \alpha x^R \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b_i^{n} \right\}$ $= \left\{ y \alpha y^R \alpha^i \mid y \in \sum_{i=1}^{n} b$

as long as a Brit the only letter, these are all different.

(If a is the only letter, these are all just & and)