Homework \#10

Each problem describes a function. Show that the function is Turing computable by demonstrating a Turing machine that computes it.

Question 1. The "head" function, which takes a nonempty string on the alphabet $\{a, b\}^{*}$ and returns just its first letter.

Question 2. The "tail" function, which takes a nonempty string on the alphabet $\{a, b\}^{*}$ and returns the whole thing except the first letter.

Question 3. For $x \in\{a, b\}^{*}$, the function $f(x)=a^{|x|}$.
Question 4. Consider only strings using the letter a, and let $f\left(a^{n}\right)=a^{2 n}$. (One possible strategy you could use: first turn the string a^{n} into something like $\bar{a}^{n} b^{n}$ by marking each a and writing b at the end to match it. Then run across the whole string and turn everything into an a, resulting in $a^{2 n}$.)

Question 5. Consider only even-length strings using the letter a, and let $f\left(a^{2 n}\right)=a^{n}$. (You can use a similar strategy: mark an a at the begining, and then blank one out at the end. Then when you're done, change every \bar{a} back to an a.)

Question 6. For binary numbers, $f(x)=4 x$.
Question 7. For binary numbers, $f(x)=x+4$. (You can assume that x is large enough so that it already uses at least 3 digits.)

Question 8. For binary numbers, $f(x)=x+5$. (Again assume that x uses at least 3 digits. Hint: First add 1 , then add 4.)

Question 9. For binary numbers, $f(x)=x \div 4$. (Give only the quotient as the answer, ignoring any remainders.)

Question 10. For binary numbers, $f(x)=x \bmod 4$.

