Math 3342 Exam #1

Question 1. (15 points) For the following DFA, please find a formula for all strings which are accepted, and then prove that they are accepted.

This whole page is about this NFA which I'll call M:

Question 2. (8 points) Please find L(M). You can describe it in words, or write a set-theory formula for it.

$$L(M) = \{a^{2n}b\} \cup \{a^{2n}\}$$

Question 3. (5 points) Please give the formal description of M.

$$M = (\xi S, T, u \}, \{-i, b\}, 5, 5, \xi u \}$$
where:

$$S(S, a) = \xi T \} \qquad S(T, a) = \xi S \\ S(U, a) = \phi$$

$$S(S, b) = \{u\} \qquad S(T, b) = \phi$$

$$S(U, b) = \phi$$

$$S(S, z) = \phi$$

$$S(T, z) = \{u\} \qquad S(U, z) = \phi$$

Question 4. (12 points) Please use the subset construction to create a DFA equivalent to M.

Question 5. (12 points each) In each part, draw a DFA or NFA (your choice) for the given language. Use a DFA for at least one of your answers, and use an NFA for at least one of your answers. Each time, the alphabet should be $\{a, b\}$.

a) $\{x \in \{a, b\}^* \mid \text{the number of } a$'s in x is divisible by 3}

b) $\{x \in \{a, b\}^* \mid x \text{ never uses } 2 \text{ consecutive } as\}$

c) $\{x \in \{a, b\}^* \mid x \text{ has no } a \text{ after any } b\}$

This whole page is about these two DFAs:

Question 6. (12 points) Please give a DFA for $L(M_1) \cap L(M_2)$ using one of the constructions that we discussed in class.

Question 7. (12 points) Please give a NFA for $L(M_1) \cap L(M_2)$ by first describing $L(M_1) \cap L(M_2)$ as a set (in words, or with formulas), and then making an NFA for that set.

