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Abstract

We present a general mathematical framework for constructing deterministic
models of simple chemical reactions. In such a model, an underlying dynamical sys-
tem drives a process in which a particle undergoes a reaction (changes color) when
it enters a certain subset (the catalytic site) of the phase space and (possibly) some
other conditions are satisfied. The framework we suggest allows us to define the
entropy of reaction precisely and does not rely, as was the case in previous studies,
on a stochastic mechanism to generate additional entropy. Thus our approach pro-
vides a natural setting in which to derive macroscopic chemical reaction laws from
microscopic deterministic dynamics without invoking any random mechanisms.

1 Introduction

The derivation of macroscopic chemical rate laws from microscopic deterministic dynam-
ics is one of the central problems of statistical mechanics. To date there have been
several attempts to establish this link by modeling chemically reacting processes using
low-dimensional dynamical systems. In one dimension, Elskens, Frisch and Nicolis [EFN]
studied non-interacting particles of two colors which change color when their trajectories
cross. In [E] this model of isomerization kinetics was modified to allow for interacting
particles. In two dimensions, coloring processes driven by the dynamics of triadic baker
maps on chains of squares ([EK], [GK]) have been studied and reaction-diffusion equations
derived for the color densities.

Recently, the more realistic model of a two-dimensional Lorentz gas has been used
to drive the underlying dynamics of the coloring system. In this model, a subset of the
scatterers is chosen to be the reactive catalytic site. A particle, initially colored one of two
colors, say red or green, is subject to the usual dynamics induced by elastic collisions with
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the fixed scatterers until it reaches the catalytic site. The particle changes color upon
impact with the catalyst and continues to reflect elastically. In this setting, Nielsen and
Kapral [NK] defined a colored entropy for the system which they related numerically to a
colored rate of escape. Using their definition of colored entropy, the authors obtained what
they described as surprising and counterintuitive results which we address in this paper.
Lemma 2.1 and the example of Section 3.2 include the case considered in their paper
and we reinterpret the entropy of such a system in the exact mathematical framework
presented in Section 2.

Gaspard and Claus ([CG1], [CG2]) studied the reactive eigenmodes which govern
the rate of relaxation of the color densities and derived the related reaction-diffusion
equations. In order to obtain an increase in entropy due to the coloring process, however,
they introduced a purely random mechanism which allowed the change in color to take
place with probability p each time the particle collided with the catalytic site.

The purpose of this paper is to present a general and purely deterministic mathematical
setting for chemical reactions in dynamical systems. The corresponding mathematical
model can be expressed as a skew product of measurable mappings. From this point of
view, questions of deterministic chemical reactions in dynamical systems and especially of
the entropy of such reactions are addressed rigorously and in a purely dynamical setting
without invoking any probabilistic mechanisms. The coloring entropy of a general system
is exactly defined and several basic examples are presented which demonstrate the different
types of behavior of coloring systems. Although the examples we present in Section 3 use
the Lorentz gas as the underlying dynamical system driving the motion of the colored
particle, our approach, which we formulate in Section 2, is general and can be used for
any underlying dynamical system. In an effort to make the paper self-contained, we
include all necessary definitions and results.

2 The Coloring System as a Skew Product

Suppose we have a dynamical system in a space X generated by a finite dimensional
system of differential equations or a map. We place a particle at a point in X and attach
to that particle a color, red or green. We choose a subset C of X which we refer to as the
catalytic site for the coloring reaction. We then consider the orbit of the particle under
the dynamics in X. The color of the particle changes from red to green or vice versa only
when the particle enters the catalytic site C; however, we may also consider additional
conditions which must be met in order for the color change to take place. We model these
via a function acting on a space Y representing variables which influence the chemical
reaction.

The additional condition expressed by the parameter y ∈ Y can be interpreted in a
number of ways depending on the specific model under consideration. In the example of
Section 3.2 we consider it as a threshold which must be exceeded in order to trigger the
chemical reaction at the catalytic site. In Section 3.3, y represents the velocity of the
particle and in Section 3.4 it represents the (unknown) dynamics of a second particle in
the system. In general, y will represent a component of the system (possibly depending
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on the dynamics in X) which affects the coloring process.
We formulate our approach as follows. We assume that (X,A) and (Y,B) are Lebesgue

spaces with probability measures µX and µY and that T : X → X is a measure-preserving
transformation of X. Let {Sx}x∈X be a measurable family of transformations of Y which
preserve the measure µY . We call X the base of the skew product and refer to the copy
of Y above each x ∈ X as a fiber.

The catalytic site C is a measurable subset of X. We denote the color of the particle
by α = ±1 and assume for simplicity that the additional condition introduced above can
be expressed in terms of a (possibly vector) parameter y belonging to a measurable set
D ⊂ Y . The coloring system can be expressed simply as the skew product

U(x, y, α) = (Tx, Sxy, Rx,yα) (1)

where Rx,yα = α′ is different from α if and only if Tx ∈ C and Sxy ∈ D. We define
Z = {−1, 1} and note that Rx,y : Z 	 is a measurable family of maps on X × Y .

2.1 Rate of Reaction

Reaction rates for models of chemical reactions can be defined in several ways. In this
paper, we are concerned with models in which a single particle changes color over time,
so it is natural to consider an average rate of reaction rather than an instantaneous one.
In this section, we define the asymptotic rate of reaction in order to discuss its relation to
the coloring entropy defined in Section 2.3. This relation will be discussed in the examples
of Section 3.

The asymptotic rate of reaction ρ of the coloring system (1) can be expressed as the
average of the asymptotic rates along orbits. Letting χA denote the characteristic function
of a set A ⊂ X × Y , we define

ρ := lim
n→∞

1

n

∫
X

∫
Y

n∑
i=1

χC×D(T ix, Si
xy) dµY dµX (2)

where Si
x denotes the iterates of Sx along the orbit of x, i.e., Si

xy = ST i−1x · · ·STxSxy.
When the skew product (T, Sx) is ergodic, the averages 1

n

∑n
i=1 χC×D(T ix, Si

xy) converge
to a constant so that ρ takes on an especially simple form,

ρ = µX(C)µY (D). (3)

We will use these descriptions of the reaction rate in discussing the examples of Section 3,
two of which are ergodic and one of which is not. In general, reaction rates for non-ergodic
systems behave in a complex manner and the usual statistical arguments do not hold. See
for example, [DB].

2.2 Abramov-Rokhlin Formula

We recall the Abramov-Rokhlin formula for the entropy of a skew product [AR]. Given
Lebesgue spaces (X,A) and (Y,B) with probability measures µX and µY , define W =
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X × Y and λ = µX

⊗
µY . Let T and {Sx}x∈X be defined as above. The skew product

U(x, y) = (Tx, Sxy) is a measurable transformation on X × Y and the measure-theoretic
entropy of U with respect to λ is given by

h(U) = h(T ) + hT (S) (4)

where h(T ) is the entropy of T with respect to µX and hT (S) is defined as follows. For
any partition η of Y with finite entropy H(η), define ηn

x =
∨n−1

k=0 S−1
x S−1

Tx · · ·S
−1
T k−1x

η. Then

hT (S, η) = inf
n

1

n

∫
X

H(ηn
x)dµX(x) and hT (S) = supη hT (S, η).

When U = U(x, y, α) = (Tx, Sxy, Rx,yα) as in the case of system (1), the formula
generalizes to h(U) = h(T ) + hT (S) + hS,T (R). In our case, however, hS,T (R) = 0 since Z
is a discrete space with only two points.

2.3 Coloring Entropy

Let T , S, R and U be as defined in the description of the coloring system (1). Let
ξ = {D, Y \D} be the partition of Y defined by the coloring condition Rx,yα = −α if and
only if (Tx, Sxy) ∈ C ×D. Following (4), we define the coloring entropy of such a system
to be

hc(U) = hT (S, ξ). (5)

This definition of coloring entropy is motivated by considering the sequence of maps
Rn

x,yα = RT n−1x,Sn−1
x y · · ·Rx,yα which either change or do not change the color of the

particle as the system evolves. The entropy that we have defined measures the uncertainty
inherent in predicting the color αn of the particle at time n, knowing only the orbit of
the coordinate x and its coloring history α0, . . . , αn−1. This is precisely the information
contained in the map T and the partition ξ.

At first glance, one might be tempted to define the coloring entropy simply as hT (S)
since that is the difference between the entropy of the underlying dynamical system h(T )
and that of the skew product h(U). However, hT (S) does not reflect any information
about D, which clearly affects the rate (and entropy) of the coloring process. In fact, if
D is the empty set, no coloring occurs and there should be no coloring entropy.

Our first observation is along these lines and is fairly straightforward.

Lemma 2.1 If U = U(x, α), i.e. U does not depend on an additional parameter y, then
the coloring entropy is zero.

This lemma says that if we take the case in which the particle changes color if and only
if it enters a certain subset C of X, then there is no increase in entropy due to the coloring
process. In fact, this is precisely the setting of [NK] in which the authors attempted to
compute a kind of colored entropy. Given the mathematical framework presented here, it
is clear that there can be no increase in entropy due to the coloring process without the
introduction of an additional parameter to control the reaction.
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Proof of Lemma. If U = U(x, α), we can put the system into the form of (1) by artificially
introducing y. Simply let S be any measure-preserving map of a Lebesgue space Y and
set D = Y or ∅. In either case, ξ is the trivial partition so that hT (S, ξ) = 0. 2

It is possible to construct a coloring condition so that D = Dx varies according to
x (see the second and third examples of Section 3). Now ξ = ξx depends on x and we
need to return to the motivation provided by the coloring sequence α0, . . . , αn−1 in order
to interpret (5) in this case. Knowing αn given α0, . . . , αn−1 means knowing whether
ST n−1x · · ·STxSxy ∈ DT nx or not. This is the information contained in the partition
S−1

x S−1
Tx · · ·S

−1
T n−1xξT nx. Putting this together with the definitions of Section 2.2, we see

that

H(ξn
x ) = H

(
n−1∨
k=0

S−1
x S−1

Tx · · ·S
−1
T k−1x

ξT kx

)
is the information known at the nth step so that

hT (S, ξ) = lim
n→∞

1

n

∫
X

H

(
n−1∨
k=0

S−1
x S−1

Tx · · ·S
−1
T k−1x

ξT kx

)
dµX . (6)

With this interpretation of H(ξn
x ), the definition (5) remains the same.

It is a standard result of ergodic theory that the limit in (6) exists as long as the
family of partitions {ξx} depends measurably on x and

∫
X

H(ξx) dµX < ∞. Indeed,

letting fn(x) = H
(∨n−1

k=0 S−1
x S−1

Tx · · ·S
−1
T k−1x

ξT kx

)
, it is easy to show that fn+m(x) ≤

fn(x) + fm(T nx) for each n, m ≥ 0 so that limn→∞
1
n
fn(x) exists for almost every x

by the subadditive ergodic theorem (see for instance [W, §10.2]).
The definition of the reaction rate ρ is also modified in the obvious way so that

equation 2 becomes

ρ = lim
n→∞

1

n

∫
X

∫
Y

n∑
i=1

χC×DTix
(T ix, Si

xy) dµY dµX .

In this case, when (T, Sx) is ergodic, although the simple expression (3) is no longer valid,
the ergodic averages do converge to a constant,

ρ =

∫
X

∫
Y

χC×Dx dµY dµX .

3 Deterministic Dynamical Coloring Models

In this section, we present three examples of coloring models in order to give some intuition
for how the mathematical framework of the previous section applies to coloring systems.
The examples presented below capture three typical possibilities for a general coloring
system: zero coloring entropy, positive coloring entropy with a known mechanism, and
a particle in a thermostat in which the unknown dynamics of other particles affect the
coloring process.
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3.1 Setting

For simplicity, in each of the following examples our underlying dynamical system is
a Lorentz gas on a torus reflecting elastically off three convex scatterers of equal size
arranged symmetrically. The flow moves with constant speed and we let τmin be the
minimum time required between collisions. We assume the system has finite horizon and
denote this maximum time between collisions by τmax.

The billiard map induced by the flow is given in canonical coordinates as T (i, s, ϕ) =
(i′, s′, ϕ′) where i is the scatterer, s is the position on the scatterer, 0 ≤ s ≤ 2π, and ϕ is
the angle made with the normal vector on the scatterer after reflection, −π/2 ≤ ϕ ≤ π/2.
Set x = (i, s, ϕ) and let X denote the domain of T . We refer to the angular coordinate of
a point x ∈ X by ϕ(x). Let µ be the usual absolutely continuous invariant measure for
the billiard map given by dµ = c cos ϕdϕds where c is the normalizing constant.

We choose one of the three scatterers to be the catalytic site where our reaction will
take place. For definiteness, let us say the catalytic scatterer C is i = 1.

3.2 A Simple Example with Positive Coloring Entropy

We build the skew-product U by introducing the parameter space Y = [0, 1] and the
doubling map f(y) = 2y (mod 1). Let Sx = f if Tx ∈ C and |ϕ(Tx)| ≤ a; Sx = Id
otherwise. The choice of 0 ≤ a ≤ π

2
is arbitrary, but the added condition on x models a

reaction which requires a sufficiently direct collision of the particle with the coloring site.
A collision too close to tangential does not permit a color change to take place. (This
is reminiscent of enzyme docking and the steric effect in the study of protein bonding
[HMWN]). Let C ′ = {x ∈ C : |ϕ| ≤ a}.

We choose L between 0 and 1 and define D = [L, 1]. Then the coloring map Rx,y is
defined as

Rx,yα =

{
−α , if Tx ∈ C ′ and f(y) ∈ D
α , otherwise

where as before α = ±1 represents the color of the particle. The number L which defines
the condition on y for the color to change is suggestive of a threshold which must be
exceeded in order for the reaction to take place.

Using the notation of Section 2 for this example, µX = µ and µY is Lebesgue measure
on [0, 1] since both f and Id preserve Lebesgue measure. Given x ∈ X, let jn(x) = #{0 ≤
i < n : T i(x) ∈ C ′}. Then

1

n
H(ξn

x ) =
1

n
H

(
n−1∨
k=0

S−1
x S−1

Tx · · ·S
−1
T k−1x

ξ

)

=
1

n
H

jn(x)∨
k=0

f−kξ


=

jn(x)

n

1

jn(x)
H

jn(x)∨
k=0

f−kξ

 .
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For µ-almost-every x, jn(x)
n

→ µ(C ′) since T is ergodic and 1
jn(x)

H
(∨jn(x)

k=0 f−kξ
)
→ h(f, ξ)

as n →∞. Now µ(C ′) = 1
3
sin a so that

hc = hT (S, ξ) =
sin a

3
h(f, ξ). (7)

The entropy is maximized when L = 1
2

and in this case h(f, ξ) = log 2. In general,
h(f, ξ) ≤ H(ξ) = L log L + (1 − L) log(1 − L) which shows that the coloring entropy
vanishes as it should when the level L approaches 0 (a reaction always occurs when
x ∈ C ′) or 1 (no coloring reaction can occur). The same is true when the angle with the
normal required for a sufficiently direct collision is decreased to zero.

This simple example also illuminates the relationship between the coloring entropy
and the asymptotic rate of reaction defined earlier. Since (T, Sx) is ergodic, we may use
equation (3) together with (7) to write

hc = µX(C ′)h(f, ξ) =
ρ

µY (D)
h(f, ξ).

The process obviously needs a positive asymptotic reaction rate to generate coloring en-
tropy, but it needs something stronger: positive entropy generated by the map on the
fiber. This illustrates the fact that reaction rates are concerned with ergodicity while col-
oring entropy requires stronger chaotic properties (e.g. nonvanishing Lyapunov exponents
on fibers).

3.3 An Example with Zero Coloring Entropy

We now introduce an example of a coloring process based on the Lorentz gas that has
an element of uncertainty, but for which the coloring entropy is zero. We will later
modify the example to obtain a related system with positive coloring entropy. We color
a particle in the Lorentz gas red or green. In this example we do not assume that the
particle moves with unit speed. When the particle collides with the catalyst, its color
changes if and only if the particle has collided with the catalyst at least k times in a
given time interval of length τ∗ before the present collision. We think of this condition of
color change as requiring the catalyst to be “sufficiently excited” before it reacts with the
particle. Although the reaction needs information inherited from the flow, not just the
billiard map, the coloring process yields no increase in entropy.

Let τ(x) denote the time until the next collision for a particle starting at x and moving
under the flow at constant speed. Set t0 = 0 and let tn =

∑n−1
i=0 τ(T ix) denote the time

of the nth collision starting at x for n ≥ 1.
A point in the coloring system is given by (x, α) where x is as before and α = ±1

denotes the color of the particle. We allow the system to flow for at least n > τ∗/τmin

iterates so that we may take sufficiently many preimages of a given point in the catalytic
site. The dynamics of the system are given by the coloring billiard map U ,

U(x, α) = (Tx, Rxα),
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where Rx is defined by

Rxα =


−α , if Tx ∈ C and the catalyst has been hit at least

k times in the preceding time interval of length τ∗
α , otherwise

.

We are free to choose k and τ∗ according to how often we want the reaction to occur.
In order to codify this condition more precisely, define r(x) = max{j : tj(T

−jx) ≤ τ∗}.
The function r(x) represents the number of collisions undergone by the trajectory ending
at x in the preceding interval of time τ∗ under the flow. Note that τ∗/τmax ≤ r ≤ τ∗/τmin

once the system has run for at least time τ∗. Let m(x) = #{−r(x) ≤ i ≤ 0 : T ix ∈ C}
and define C ′

v = {x ∈ C : m(x) ≥ k}. Then the condition for coloring becomes

Rxα = −α if and only if Tx ∈ C ′
v.

The only uncertainty here is given by the magnitude v of the velocity of the particle which
is not known and which clearly affects the set C ′

v.
We can formalize this from the point of view of the skew product in the following way.

Let Y be the space of permissible speeds and let µY be any probability measure on Y . If
x ∈ C, we let Dx = {y ∈ Y : x ∈ C ′

y}, i.e. Dx is the set of speeds for which the orbit of
x would have collided with the catalyst sufficiently often to trigger a reaction. Then the
full coloring system becomes

U(x, y, α) = (Tx, y, Rx,yα)

where Rx,yα = −α if and only if (Tx, y) ∈ C×DTx. Note that Sx = IdY since the velocity
remains constant. Using (6), we see that hc = hT (Id, ξ) = 0.

Although the direct product (T, IdY ) is not ergodic, we can still write down an ex-
pression for the asymptotic rate of reaction which depends on the measure µY we choose
for the velocities.

ρ = lim
n→∞

∫
X

∫
Y

1

n

n∑
i=1

χC×DTix
(T ix, y) dµY dµX

= lim
n→∞

∫
Y

∫
X

1

n

n∑
i=1

χC′
y
(T ix) dµXdµY

For fixed y, the sum converges by the ergodic theorem to µX(C ′
y) since (T, µX) is ergodic.

This yields two equivalent expressions for the reaction rate,

ρ =

∫
Y

µX(C ′
y)dµY =

∫
X

µY (Dx)dµX .

If one wishes to consider the velocity of the particle fixed at a certain speed y with no
uncertainty, then the rate becomes simply ρ = µX(C ′

y).
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3.4 The Modified System with Positive Coloring Entropy

It is possible to modify the preceding example so that it does yield positive coloring
entropy. The idea is to consider a tagged particle in a Lorentz gas of noninteracting
particles. Only the position and velocity of the tagged particle are known. For simplicity,
we assume here only the existence of a second particle which must help to excite the
catalyst. We take T , X and µ as before. In order to synchronize time, it is convenient to
let (St, Y ) be the billiard flow (rather than another billiard map) on the torus with the
same configuration of scatterers which induces the billiard map T . We fix the speed of
both particles and form the standard skew product V (x, y) = (Tx, Sτ(x)y), recalling that
τ(x) represents the free flight time from x to Tx under the flow. The state space X × Y
describes the Lorentz gas with two non-interacting particles and we keep track of only
the particle x and its coloring history. The trajectory of the other particle y is unknown.

We let C̃ ⊂ Y be the catalytic scatterer i = 1 for the particle y; this corresponds to
the catalytic site C ⊂ X for x. Define q(y) = #{−τ∗ ≤ t ≤ 0 : Sty ∈ C̃}. The coloring
system then becomes U(x, y, α) = (Tx, Sτ(x)y, Rx,yα) where the coloring map is given by

Rx,yα =

{
−α , if Tx ∈ C and m(Tx) + q(Sτ(x)y) ≥ k
α , otherwise

.

For x ∈ C, set Dx = {y ∈ Y : q(y) ≥ k − m(x)} while for x /∈ C, Dx = ∅. This defines
the family of partitions ξx so that coloring occurs after one iterate if and only if Tx ∈ C
and Sτ(x)y ∈ DTx. This yields

ξn
x =

n−1∨
i=0

S−1
τ(x)S

−1
τ(Tx) · · ·S

−1
τ(T i−1x)

ξT ix =
n−1∨
i=0

S−ti(x)ξT ix

where as before ti(x) =
∑i−1

j=0 τ(T jx). Note that ξx is the trivial partition when x /∈ C so
that

ξn
x =

jn(x)∨
`=0

S−ti` (x)ξT i` (x)

where i` are the integers i when T ix ∈ C and jn(x) = #{0 ≤ i < n : T ix ∈ C}. As in the
first example, this yields

hc = lim
n→∞

∫
X

1

n
H(ξn

x ) dµ(x) = lim
n→∞

∫
X

jn(x)

n

1

jn(x)
H

jn(x)∨
`=0

S−ti` (x)ξT i` (x)

 dµ(x)

→ µ(C) lim
n→∞

∫
X

1

jn(x)
H

jn(x)∨
`=0

S−ti` (x)ξT i` (x)

 dµ(x).

Note that if k equals 0 or 1, then ξx is the trivial partition for all x, the coloring process
is independent of the second particle y, and hc = 0. The same is true if the given time
threshold τ∗ is too short, namely if τ∗ < kτmin; then no coloring can occur, ξx is again the
trivial partition for all x, and hc = 0.
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However, with a suitable choice of k and τ∗, the coloring entropy is positive. To see
this, note that the family of sets Dx is really only a finite collection D0, . . . , Dk, where
Dx = Di if k − m(x) = i for 1 ≤ i ≤ k and Dx = D0 = Y if m(x) ≥ k. This
means there are at most k + 1 partitions being permuted in the expression for coloring
entropy, ξ0, . . . , ξk. A suitable choice of k and τ∗ means that a positive measure set of
x and y satisfy m(x) + q(y) ≥ k. Without loss of generality, let us assume that the set
C1 = {x ∈ C : m(x) = k − 1} has positive measure. For x ∈ C1, Dx = D1 and ξ1 is not
the trivial partition. So we can write

H

jn(x)∨
`=0

S−ti` (x)ξT i` (x)

 = H

j1
n(x)∨
`=0

S−t
i1
`
(x)ξ1 ∨ · · · ∨

jk
n(x)∨
`=0

S−t
ik
`
(x)ξk


≥ H

j1
n(x)∨
`=0

S−t
i1
`
(x)ξ1

 . (8)

In the first step we have grouped the partitions according to whether Dx = Di and in
the second step, we choose to focus on the entropy associated with one of these, namely
ξ1. The index j1

n(x) represents the number of times T ix ∈ C1, 0 ≤ i ≤ n, and i1` ,
` = 0, . . . , j1

n(x), are the times when T ix ∈ C1.
The expression (8) represents the entropy associated with a skew product of the form

(Px, Sf(x)y). In this example, P is the first return map to C1 and f(x) = ti(x) where i
is the smallest positive integer i such that T ix returns to C1. This type of skew product
has been studied in some detail in the case when f(x) : C1 → Z+ satisfies f ≥ β > 0
and

∫
C1

f dµC1 < ∞ (see [N]). It was shown that such maps have conditional entropy

hP (S1) = h(S1)
∫

C1
f dµC1 . In our case, h(S1) > 0 since St is the billiard flow, f ≥ τmin >

0, and
∫

C1
f dµC1 = (µC1)

−1
∫

X
τ dµ < ∞ so that hP (S1) > 0. Since St is a K-system ([S])

and ξ1 is not the trivial partition, hP (S1, ξ1) > 0 as well, so that the coloring entropy is
positive.

Observe that although the coloring entropy is produced by the second particle, it
does not equal the entropy of a one-particle Lorentz gas. This would be the case if we
considered two independently moving particles, i.e., a direct product of the corresponding
dynamical systems. But there is a kind of interaction between particles in our model
because the collisions of both particles with the catalytic site are counted and because
the partitions ξn

x of Y are determined by the time between collisions of x, not y.
Since (T, Sx) is ergodic, we easily calculate the asymptotic rate of reaction as

ρ =

∫
X

∫
Y

χC×Dx dµY dµX =

∫
C

µY (Dx) dµX .

This is the same as the expression for the rate in the previous example, although in that
example the skew product is not ergodic and the system has zero coloring entropy.
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4 Concluding Remarks

In the above examples based on the Lorentz gas, we chose a configuration of three sym-
metrically arranged scatterers for simplicity. It is clear that the mathematical setting is
valid for any configuration of convex scatterers on a torus with a bounded free path. The
catalytic site C need not be one of the scatterers, but may be taken to be a subset of
one or several of them. In general of course, the base of the skew product need not be
a Lorentz gas at all: the mathematical setting presented in Section 2 is general enough
to include any dynamical system which is chosen to model the motion of the reacting
particle.

The examples of Section 3 point out an important difference between reaction rates
and coloring entropy. The former relies on the ergodicity of the skew product (T, Sx) and
the associated statistical properties of the system along orbits; the latter, on the other
hand, requires that the dynamics on fibers of the skew product be chaotic in addition to
the usual ergodicity in order to generate positive entropy. In fact, this is precisely why
Lemma 2.1 holds. The space Z = {−1, 1} which represents the set of possible colors
of the particle contains only two elements and so cannot generate any entropy. This is
what necessitates the introduction of the additional parameter y (the internal “chemical”
variable) to control the color change and create the additional uncertainty necessary for
positive coloring entropy.

In this paper we have given a general framework for constructing deterministic mod-
els of chemical reactions. Our approach is quite broad and allows us to construct more
complicated models of concrete chemical reactions than have previously been available.
Indeed the parameter y could be a vector with any (finite) number of components. Al-
ternatively, one can consider a skew product generated by any (finite) number of maps,
i.e. U(x, y1, y2, . . . , ym, α) = (T (x), Sx(y1), Sx,y1(y2), Sx,y1,...,ym−1(ym), Rx,y1,...,ym(α)) where
all yi, 1 ≤ i ≤ m, as well as α, are vectors.

Moreover, our approach is consistently deterministic and does not require a stochastic
mechanism (a random trial) to decide whether or not a reaction in fact occurs. There-
fore, it provides a natural and consistently deterministic framework for the derivation of
macroscopic chemical rate laws from microscopic deterministic dynamics.
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