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Abstract

We introduce functional norms for hyperbolic Young towers which allow us to di-
rectly study the transfer operator on the full tower. By eliminating the need for
secondary expanding towers commonly employed in this context, this approach sim-
plifies and expands the analysis of this class of Markov extensions and the underlying
systems for which they are constructed. As an example, we prove large deviation esti-
mates with a uniform rate function for a large class of noninvariant measures and show
how to translate these to the underlying system.

Young towers were introduced in [Y1] as a unified framework in which to view the statis-
tical properties of both uniformly and nonuniformly hyperbolic dynamical systems. Briefly,
given a dynamical system f : M 	, a Young tower is a type of Markov extension F : ∆ 	
with the following representation. Given a reference measure µ, one chooses a reference set
Λ ⊂ M of positive measure with a hyperbolic product structure and constructs a return
time function R : Λ → Z+ with certain (Markov) properties. The Young tower is an ex-
tension of ∪`≥0f

`Λ where the `th level of the tower corresponds to those x ∈ f `Λ for which
R(x) > `. In essence, the Young tower represents Λ as a horseshoe with countably many
branches and variable return times. The rate of decay in the measure of the levels of the
tower, µ(R(x) > `), gives information about the statistical properties of f ; for example, it
reflects the exponential or polynomial decay of correlations (see [CY] for a survey).

Young towers have been constructed for many systems: billiards with convex scatterers,
including those subject to external forces [Y1, C3, C2], piecewise hyperbolic attractors [Y1,
C1], Hénon maps [Y1, BY], nonuniformly expanding maps in one dimension [Y1, WY], and
Lorentz attractors [HM].

The strategy in all these papers is the same. One first constructs a Young tower F : ∆ 	
satisfying certain properties (see (P1)-(P5) of Section 1.1). One then defines a quotient
tower ∆ = ∆/∼ where x ∼ y whenever x and y lie on the same stable leaf. There are thus
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3 objects involved in the study of such systems. Letting π and π represent the canonical
projections from (F,∆) to (f,M) and (F ,∆) respectively, we represent them as follows:

f : M 	

F : ∆ 	

F : ∆ 	
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The reason for introducing the reduced tower ∆ is that since F : ∆ 	 is expanding, one can
bring to bear the classical methods of analysis of the transfer operator for expanding maps.
This functional analytic approach establishes the quasi-compactness of the transfer operator
acting on certain spaces of functions and then links its peripheral spectrum to the statistical
properties of the system [DF, IM, N, LY, K, B, HH]. In the case of Young towers, one must
then pass these statistical properties from ∆ back up to ∆ before projecting them down to
M .

The problem is that in general one cannot lift measures from ∆ to ∆ so that the usual
procedure is to first prove the existence of an invariant measure on ∆ separately (see [Y1])
and then pass from ∆ to ∆ the desired properties related to the invariant measure such
as central limit theorems, decay of correlations or large deviation estimates (cf. [RY, MN]).
From ∆, these project easily onto M .

The purpose of this paper is to simplify the application of Young towers by directly
studying the transfer operator L associated with (F,∆), thus eliminating the need for the
reduced tower (F ,∆) entirely. We introduce Banach spaces on which L is quasi-compact
and obtain its spectral decomposition, following the recent extensions of this method to the
hyperbolic setting [R, BKL, GL, BT, DL]. In doing so, we recover the statistical properties
which have been proven for f : M 	 previously. In addition, we are able to obtain much
more information about the evolution of non-invariant measures under the dynamics of f .
We include as an example a large deviation principle for a large class of initial distributions
which is entirely new in the nonuniformly hyperbolic setting (Theorems 4 and 5) and include
an explicit application to dispersing billiards (Theorem 6). We show that the rate function
governing the large deviations is independent of the initial distribution.

It may be of some independent interest that when no contracting directions are present,
i.e., when f itself is expanding, the norms we define for hyperbolic towers reduce to norms for
expanding towers which yield analogous results: i.e., the quasi-compactness of the transfer
operator and a spectral gap. This is a characteristic of our norms which has not been present
previously in the hyperbolic setting and which yields a unified treatment of hyperbolic and
expanding Young towers (see Remark 1.2 for more details).

The rest of this paper is organized as follows. In Section 1, we define Young towers
precisely, define the relevant norms and state our results. In Section 2, we explore some
properties of the Banach spaces while Sections 3 and 4 contain the required Lasota-Yorke
type estimates and spectral results. Large deviation estimates and applications are proved
in Sections 5 and 6.
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1 Setting and Statement of Results

1.1 Definition of the tower

We recall the definition of a Young tower (F,∆) as described in [Y1]. We begin with a
piecewise smooth map on a finite-dimensional Riemannian manifold, f : M 	, and let µ
(resp. µγ) denote Riemannian volume on M (resp. γ where γ ⊂ M is a submanifold). We
say that f admits a generalized horseshoe if there exists a compact subset Λ of M satisfying
properties (P1)-(P5) below. (We recall the only the main properties; see [Y1] for more
details.)

(P1) Hyperbolic product structure. Λ =
⋃J
j=1 Λ(j) and each of the Λ(j) has the following

product structure:1 Λ(j) = (
⋃
γu∈Γuj

γu)∩ (
⋃
γs∈Γsj

γs) where Γu =
⋃
j Γuj and Γs =

⋃
j Γsj

are continuous families of local stable and unstable manifolds such that, for every j,
each γu ∈ Γuj intersects every γs ∈ Γsj in a unique point. Moreover, µγ(γ ∩ Λ) > 0 for
each γ ∈ Γu.

A set A is an s-subset (resp. u-subset) of Λ if γ ∩ A 6= ∅ implies γ ⊆ A for any γ ∈ Γs(u).

(P2) Return time function. Each Λ(j) is partitioned into countably many s-subsets Λ
(j)
i with

µγ(Λ
(j)\

⋃
i Λ

(j)
i ) = 0 for all γ ∈ Γuj . There exists a function, R : Λ→ Z+, constant on

each Λ
(j)
i , such that fR(Λ

(j)
i )(Λ

(j)
i ) is a u-subset of one of the Λ(k). Moreover, for each

n, the number of (i, j) such that R
(j)
i = n is finite.

We refer to elements of Γu(s) by γu(s) and Juf denotes the unstable Jacobian of f with respect
to µγu . Denote by γs(x) and γu(x) the stable and unstable leaves through x, respectively. For
x, y ∈ Λ, there exists a separation time s0(x, y), depending only on the unstable coordinate,
and numbers C0 ≥ 1, α < 1 independent of x, y, such that the following hold.

(P3) Contraction on Γs. For y ∈ γs(x), d(fnx, fny) ≤ C0α
nd(x, y) for all n ≥ 0.2

(P4) Backward contraction and distortion on Γu. Let y ∈ γu(x) and 0 ≤ k ≤ n < s0(x, y).

(a) d(fnx, fny) ≤ C0α
s0(x,y)−n

(b) log
∏n

i=k
Juf(f ix)
Juf(f iy)

≤ C0α
s0(x,y)−n

(P5) Convergence of Jufn and absolute continuity of Γs.

(a) For y ∈ γs(x) and all n ≥ 0, log
∏∞

i=n
Juf(f ix)
Juf(f iy)

≤ C0α
n.

(b) Given γ, γ′ ∈ Γu, define Φ : γ → γ′ by Φ(x) = γs(x) ∩ γ′. Then Φ is absolutely

continuous and
d(Φ−1
∗ µγ′ )

dµγ
=
∏∞

i=0
Juf(f ix)
Juf(f iΦx)

.

1In [Y1], the tower has a single base Λ and all returns are full returns to the base. In the present paper
we treat the generalized case of towers with multiple bases. These are the Λ(j).

2As an abstract requirement, (P3) is slightly stronger than the inequality d(fnx, fny) ≤ C0α
n stated

in [Y1]. In practice, however, the stronger version holds for all systems for which Young towers have been
constructed to date.
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The structure of the generalized horseshoe immediately yields the existence the Young tower,

∆ = {(x, n) ∈ Λ× N : n < R(x)}.

The tower map F is defined by F (x, `) = (x, ` + 1) for ` < R(x) − 1 and F (x,R(x) − 1) =
(fR(x)x, 0). We refer to ∆` := ∆|n=` as the `th level of the tower and to a point (x, `) as
simply x where the level ` will be made clear by context.

F admits a Markov partition {∆`,j} which has finitely many elements on each level `.
We identify ∆0,j with Λ(j) for j = 1, . . . , J . We define a separation time s(x, y) ≤ s0(x, y)
by s(x, y) = inf{n > 0 : F nx, F ny lie in different ∆`,j}. There is a canonical projection
π : ∆ → M which conjugates the dynamics, π ◦ F = f ◦ π. π is not necessarily one-to-one
or onto, but if f is injective, then so is π|∆`

for each `.
We call F transitive if for all j, j′, there exists n ≥ 0 such that F n(∆0,j) ∩∆0,j′ 6= ∅. We

say F is mixing if for all j, j′, there exists N ≥ 0 such that F n(∆0,j)∩∆0,j′ 6= ∅ for all n ≥ N .
Similarly, we call T ⊂ ∆ a transitive component if T is a union of elements ∆`,j such that
F |T is transitive.

The base of the tower, ∆0, is identified with Λ and inherits the structure of Γs and Γu

as well as the measures µ and µγ. The measure µ is extended to ∆`, ` > 0, by defining
µ(A) = µ(F−`A) for all measurable A ⊂ ∆`. Thus JF , the Jacobian of F with respect to µ,
satisfies JF ≡ 1 except at return times. F enjoys properties (P3)-(P5) at return times due
to the identity Jπ(F )JF = Jf(π)Jπ and the fact that Jπ ≡ 1 on ∆0.

Since F : ∆` → ∆`+1 is rigid translation, the foliations Γs and Γu extend naturally to the
entire tower, i.e. ∆`,j has a product structure given by F `(S) where S is an s-subrectangle
in ∆0, and hence in Λ. We call these defining foliations Γs(∆) and Γu(∆).3

We say the tower has exponential return times if:

There exist constants c0 > 0 and θ < 1 such that µ(R > n) = µ(∪`≥n∆`) ≤ c0θ
n. (1)

Exponential return times are essential to our approach since we will prove the existence of a
spectral gap which in turn implies exponential decay of correlations. Towers with polynomial
return times have been shown to admit polynomial decay of correlations [Y2]. Accordingly,
we will assume that (1) holds throughout this paper.

1.1.1 A reference measure on ∆

In each ∆`,j we choose a representative leaf γ̂ ∈ Γu(∆`,j). For any γ ∈ Γu(∆`,j), let Φγ,γ̂ :
γ → γ̂ denote the holonomy map along Γs-leaves and let JuF denote the unstable Jacobian

of F with respect to µγ. Then define mγ by dmγ = φdµγ where φ(x) =
∏∞

i=0
JuF (F ix)

JuF (F i(Φγ,γ̂x))
.

Given γ′ ∈ Γu(∆0), if γ ∈ Γu(∆`,j) satisfies F (γ ∩ S) = γ′ for some s-subset S, then for

x ∈ γ ∩ S, define JγF (x) =
d(mγ′◦F )

dmγ
. Elsewhere on ∆, JγF ≡ 1. Similarly, one defines

JγF
R(x) whenever FR(γ ∩S) = γ′ for some s-subset S. For convenience, we restate Lemma

1 from [Y1], which summarizes the important properties of mγ.

3For maps with singularities, the elements of Γs(∆) and Γu(∆) are actually positive measure Cantor sets
in real stable and unstable manifolds for f , as described in [Y1]. For simplicity, we shall refer to these Cantor
sets as stable and unstable leaves throughout.
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Lemma 1.1. [Y1] Let γ, γ′ ∈ Γu(∆`,j).

(1) Let Φγ,γ′ : γ → γ′ be the holonomy map along Γs-leaves as above. Then Φ∗mγ = mγ′.

(2) JγF (x) = Jγ′F (y), ∀x ∈ γ, y ∈ γs(x) ∩ γ′.

(3) ∃C1 > 0 such that for all x, y ∈ γ with s0(x, y) ≥ R(x),
∣∣∣JγFR(x)

JγFR(y)
− 1
∣∣∣ ≤ C1α

s(FRx,FRy)/2

.
Moreover by (P5)(a), e−C0 ≤ φ ≤ eC0 .

On each ∆`,j, we define the measure µs on Γu(∆`,j) to be the factor measure of µ|∆`,j
on

unstable leaves normalized so that µs(Γu(∆`,j)) = 1. We define m to be the measure with
factor measure µs and measuresmγ on unstable leaves. Notice that in any ∆`,j, Lemma 1.1(1)
implies that mγ(S) = m(S) for any s-subset S ⊆ ∆`,j and γ ∈ Γu(∆`,j). This feature of mγ

implies that m is a product measure on each ∆`,j. When disintegrating m, we maintain the
convention that µs is normalized, but mγ is not.

1.1.2 Transfer operator

The primary object of interest in this paper is the transfer operator L associated with F .
Before defining it, we introduce a class of functions.

We define a metric along stable leaves which makes the distance between unstable leaves
uniform. Fix x ∈ ∆0 and let y ∈ γs(x). Let Φ : γu(x) → γu(y) be the sliding map along
stable leaves. Define ds(x, y) := supz∈γu(x) d(z,Φz). We extend this metric to ∆`, ` > 1, by

setting ds(F
`x, F `y) = α`ds(x, y) for all ` < R(x) and y ∈ γs(x). By (P3),

ds(F
nx, F ny) ≤ C0α

nds(x, y) for all n ≥ 0 whenever y ∈ γs(x). (2)

The class of test functions we use are required to be smooth along stable leaves only. Let
Fb denote the set of bounded measurable functions on ∆. For ϕ ∈ Fb and 0 < r ≤ 1, define

Hr
s (ϕ) = sup

γs∈Γs(∆)

Hr(ϕ|γs) where Hr(ϕ|γs) = sup
x,y∈γs

|ϕ(x)− ϕ(y)| ds(x, y)−r.

If A is an s-subset of ∆, we define |ϕ|Crs (A) = supγs⊂A |ϕ|C0(γs) + Hr(ϕ|γs) and let Crs(A) =
{ϕ ∈ Fb : |ϕ|Crs (A) <∞}.

For h ∈ (Crs(∆))′ an element of the dual of Crs(∆), the transfer operator L : (Crs(∆))′ →
(Crs(∆))′ is defined by

Lh(ϕ) = h(ϕ ◦ F ) for each ϕ ∈ Crs(∆).

When h is a measure absolutely continuous with respect to the reference measure m, we
shall call its L1(m) density h as well. Hence h(ϕ) =

´
∆
hϕ dm. With this convention,

L1(m) ⊂ (Crs(∆))′ and one can restrict L to L1(m). In this case,

Lnh(x) =
∑

y∈F−nx

h(y)(JmF
n(y))−1

for each n ≥ 0 where JmF
n is the Jacobian of F n with respect to m.

Along unstable leaves, we define the metric du(x, y) = β
s(x,y)
0 for y ∈ γu(x) and some

β0 < 1 to be chosen later. Let Lipu(ϕ|γ) denote the Lipschitz constant of a function ϕ
along γ ∈ Γu with respect to du and define Lipu(ϕ) = supγ∈Γu(∆) Lipu(ϕ|γ). We define
Lipu(∆) = {ϕ ∈ Fb : Lipu(ϕ) <∞}.
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1.2 Definition of norms

Let P = {∆`,j} denote the Markov partition for F . For each k ≥ 0, define Pk =
∨k
i=0 F

−iP
and let Pk`,j = Pk|∆`,j. The elements E ∈ Pk`,j are k-cylinders which are s-subsets of ∆`,j.

For ψ ∈ L1(m) and E ∈ Pk, define 
E

ψ dm =
1

m(E)

ˆ
E

ψ dm.

Now choose 0 < q < p ≤ 1 and fix 1 > β0 > max{θ,
√
α} where θ is given by (1) and α is

from (P3). Next, choose 1 > β ≥ max{β(p−q)/p
0 , αq}.

For h ∈ Lipu(∆), define the weak norm of h by |h|w = sup`,j,k |h|w(Pk`,j)
where

|h|w(Pk`,j)
= β`0 sup

E∈Pk`,j

sup
|ϕ|Cps (E)

≤1

 
E

hϕdm. (3)

Define the strong stable norm of h by ‖h‖s = sup`,j,k ‖h‖s(Pk`,j) where

‖h‖s(Pk`,j) = β` sup
E∈Pk`,j

sup
|ϕ|Cqs (E)

≤1

 
E

hϕdm. (4)

For ϕ ∈ Cps (∆), define ϕE on E ∈ Pk`,j by ϕE(x) = m(E)−1
´
γu(x)∩E ϕdmγ, for x ∈ E. Let

ϕ̃E(x) = ϕE(γu(x)) for x ∈ ∆`,j be the extension of ϕE to ∆`,j. Note that ϕ̃E is well-defined
since ϕE is constant on unstable leaves. In what follows, let Ek ∈ Pk`,j, Er ∈ Pr`,j for r ≥ k.

We define the strong unstable norm of h by ‖h‖u = sup`,j,k ‖h‖u(Pk`,j)
where

‖h‖u(Pk`,j)
= sup

Ek∈Pk`,j

sup
Er⊂Ek

sup
|ϕ|Cps (Er)

≤1

β`−k
∣∣∣∣ 
Er

hϕdm−
 
Ek

h ϕ̃Er dm

∣∣∣∣ . (5)

The strong norm of h is defined as ‖h‖ = ‖h‖s+ b‖h‖u, for some b > 0 to be chosen later.
We denote by B the completion of Lipu(∆) in the ‖ · ‖-norm and by Bw the completion

of Lipu(∆) in the | · |w norm.

Remark 1.2. If there is no stable direction, on each ∆`,j the weak norm, | · |w, reduces to
the C0 norm of h weighted by β`0. Similarly, the strong stable and unstable norms reduce to
the C0 norm and Lipschitz constant of h respectively, each weighted by β`. The Lasota-Yorke
estimates (Proposition 1.3) and the compactness argument (Lemma 2.6) both hold in this
setting so that one immediately obtains the results of Theorem 1.

1.3 Statement of Results on the Tower

The standing assumptions throughout this paper are that (F,∆) satisfies (P1)-(P5) and (1).

Proposition 1.3. There exists C > 0 such that for each h ∈ B and n ≥ 0,

|Lnh|w ≤ C|h|w (6)

‖Lnh‖s ≤ Cβn‖h‖s + C|h|w (7)

‖Lnh‖u ≤ Cβn‖h‖u + C‖h‖s (8)
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For any 1 > τ > β, there exists N ≥ 0 such that 2CβN < τN . Choose b = βN . Then,

‖LNh‖ = ‖LNh‖s + b‖LNh‖u ≤ CβN(‖h‖s + b‖h‖u) + bC‖h‖s + C|h|w ≤ τN‖h‖+ C|h|w.

The above represents the traditional Lasota-Yorke inequality. Since by Lemma 2.6, the
unit ball of B is relatively compact in Bw, it follows from standard arguments [DF, B] that
the essential spectral radius of L on B is bounded by β. Our first theorem presents the
decomposition of the peripheral spectrum.

Theorem 1. The operator L : B 	 is quasi-compact with essential spectral radius β and
spectral radius 1. In addition,

(i) If F is mixing, then 1 is a simple eigenvalue and all other eigenvalues have modulus
strictly less than 1.

(ii) If F is transitive and periodic with period p, then the set of eigenvalues of modulus 1
consists of simple eigenvalues {e2πik/p}p−1

k=0.

(iii) In general, F has finitely many transitive components, each with largest eigenvalue 1.
On each component, (ii) applies.

Let Vφ be the eigenspace of L corresponding to the eigenvalue eiφ and set V := ⊕φVφ.
Our next results characterize the set of invariant measures in B and some of the statistical
properties of F . Let C0

b (∆) denote the set of bounded functions on ∆ which are continuous
on each ∆`,j. Recall that an invariant probability measure ν is called a physical measure if
there exists a positive Lebesgue measure invariant set Bν , with ν(Bν) = 1, such that, for
each ψ ∈ C0

b ,

lim
n→∞

1

n

n−1∑
i=0

ψ(F ix) = ν(ψ) ∀x ∈ Bν .

Theorem 2. (i) Each ν ∈ V is a signed measure absolutely continuous with respect to
the probability measure ν := limn→∞

1
n

∑n−1
i=0 Li1. The conditional measures of ν on

γ ∈ Γu are absolutely continuous with respect to µγ.

(ii) F admits only finitely many physical measures and they are precisely the ergodic ele-
ments of V0. The supports of the physical measures correspond to the ergodic decom-
position with respect to Lebesgue and ν(E) = m(E) for each ergodic component E.

(iii) For all ψ ∈ C0
b (∆) and every γ ∈ Γu(∆), the limit ψ+(x) := limn→∞

1
n

∑n−1
i=0 ψ ◦F i(x)

exists for µγ-almost-every x ∈ γ and takes on only finitely many different values in ∆.
If ν is ergodic, then ψ+(x) =

´
ψdν for µγ-almost-every x.

(iv) If F is mixing, then F exhibits exponential decay of correlations for Hölder observables,
and the Central Limit Theorem holds. In particular, there exist constants C1 > 0,
σ < 1, such that for any ψ ∈ Lipu(∆) and ϕ ∈ Cps (∆),∣∣∣ ˆ ψ ϕ ◦ F n dν − ν(ψ)ν(ϕ)

∣∣∣ ≤ C1σ
n|ϕ|Cps (∆)(|ψ|∞ + Lipu(ψ)).
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1.3.1 Large deviation estimates

An immediate application of the spectral decomposition of L is the derivation of large devi-
ation estimates for smooth observables g : ∆→ R.

Let f : X 	 be a measurable map. Letting Sng =
∑n−1

k=0 g◦fk, if ν is an ergodic invariant
measure, then 1

n
Sn(g) converges to ν(g) by the Birkhoff ergodic theorem. Large deviation

estimates provide exponential bounds on the rate of convergence of Sng to the mean ν(g).
These typically take the form

lim
ε→0

lim
n→∞

ν
(
x ∈ ∆ :

1

n
Sn(g)(x) ∈ [t− ε, t+ ε]

)
= −I(t) (9)

where I(t) ≥ 0 is called the rate function.
Large deviation estimates of this type have been proved for systems admitting Young

towers [RY, MN]. When f is (nonuniformly) expanding and ν is has strictly positive density
with respect to Lebesgue, the measure on the left hand side of (9) can be replaced by
Lebesgue [KN]. This is also true when f is Axiom A [OP]. For more general nonuniformly
hyperbolic systems, (9) is not known to be true when ν is not an invariant measure.

In the setting of the present paper, we prove as a direct corollary of our operator approach
that (9) holds for all probability measures in B with the same rate function I. Let σ2 denote
the limit as n → ∞ of the variance of 1√

n
Sng with respect to the unique invariant measure

for F .

Theorem 3. Let (F,∆) be mixing and let g ∈ Lipu(∆) ∩ Cps (∆). There exist constants
τmax, ωmax > 0 such that for all probability measures η ∈ B, the logarithmic moment gener-
ating function

q(z) = lim
n→∞

1

n
log η(ezSng)

exists, is independent of η and is analytic in the rectangle {z ∈ C : |Re z| < τmax, |Im z| <
ωmax}. Moreover, q′(0) = ν(g), q′′(0) = σ2 and q(z) is strictly convex for real z whenever
σ2 > 0.

An immediate consequence of this theorem is a large deviation result for probability
measures in B.

Theorem 4. Let η ∈ B be a probability measure and let I(u) be the Legendre transform of
q(z). Then for any interval [a, b] ⊂ [q′(−τmax), q′(τmax)],

lim
n→∞

1

n
log η

(
x ∈ ∆ :

1

n
Sng(x) ∈ [a, b]

)
= − inf

u∈[a,b]
I(u).

1.4 Discussion of Applications

Throughout this section, f : M 	 is a map which admits a Young tower F : ∆ 	 as
described in Section 1.1 with exponential return times. Let Γs(u)(M) denote the set of local
stable (unstable) manifolds on M . For ζ ≥ 0, Cζ(Γu(M)) denotes the set of functions ϕ on
M which satisfy supγ∈Γu(M) |ϕ|Cζ(γ) <∞, and similarly for Cζ(Γs(M)).
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Theorem 5. (i) f has at least one and at most finitely many physical measures which lift
to ∆. Each of these physical measures has absolutely continuous conditional measures
on unstable leaves.

For (ii)-(iv), we assume f is mixing and that ξ ∈ π∗B is a probability measure.

(ii) The map f has a unique physical measure ν̃ = π∗ν. ν̃ satisfies the Central Limit
Theorem and enjoys exponential decay of correlations, i.e. there exists C2 > 0 such
that ∣∣∣ˆ ψ ϕ ◦ fn dν̃ − ν̃(ψ)ν̃(φ)

∣∣∣ ≤ C2σ
n|ψ|Cζ(Γu(M))|ϕ|Cζ(Γs(M))

for all ψ ∈ Cζ(Γu(M)), ϕ ∈ Cζ(Γs(M)), with σ as in Theorem 2(iv).

(iii) limn→∞ f
n
∗ ξ = ν̃ weakly.

(iv) Suppose g̃ ∈ Cζ(M) for some ζ > 0 and let Sng̃ =
∑n−1

i=0 g̃ ◦ f i. Then the logarithmic
moment generating function q(z) = limn→∞

1
n

log ξ(eSng̃) exists and satisfies the con-
clusions of Theorem 3. As a consequence, all probability measures ξ ∈ π∗B satisfy the
large deviation principle given by Theorem 4 with the same rate function I.

The discussion of which measures on M lift to ∆, i.e., are in π∗B, depends on the
properties of the underlying system (f,M). For nonuniformly expanding systems, one can
show that Lebesgue measure µ ∈ π∗B and indeed Cζ(M) ⊂ π∗B under fairly mild assumptions
(cf. [BDM]). For hyperbolic systems, the question is more subtle. One can easily see that
measures supported on π(∆`,j) for finitely many ∆`,j with smooth conditional densities on
Γu(M) lift to measures in B. One may also allow singular measures supported on a single
local unstable leaf. For more general measures the story is not so simple and in general
one cannot even guarantee that Lebesgue measure lifts to ∆. One class of measures which
always lift to ∆ are those measures which satisfy ξ = ψν̃ for some ψ ∈ Cζ(Γu(M)), for then
defining η := (ψ ◦ π)ν, one has η ∈ B and π∗η = ξ (see for example, [DWY, Lemma 6.3]).

For systems whose invariant measure is smooth with respect to Lebesgue, such as dis-
persing billiards, we obtain convergence results for a class of measures which do not lift to
∆, but can be approximated by elements of π∗B.

Theorem 6. Let (f,M) be the billiard map corresponding to a dispersing billiard which
admits a mixing Young tower with exponential tail bounds as in [Y1, C3]. Let µ be Lebesgue
measure and let ν be the smooth invariant measure for f . Let G̃ denote the set of probability
measures ξ on M such that dξ

dµ
∈ Cζ(Γu(M)) for some ζ > 0. Let ξ ∈ G̃ ∪π∗B be a probability

measure. Then,

(i) (Convergence to ν.) fn∗ ξ converges weakly to ν as n→∞.

(ii) (Large deviations.) For any g ∈ Cζ(M), ξ satisfies the large deviation estimate of
Theorem 4 with rate function I independent of ξ.
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2 Properties of the Spaces B and Bw
Before exploring the generalized function spaces we have defined, we record the following
lemma for future use.

Lemma 2.1. (Regularity of ϕE) Let 0 < r ≤ 1 and k ≥ 0. For E ∈ Pk`,j and ϕ ∈ Crs(E),
let ϕE be defined as in Section 1.2. Then ϕE ∈ Crs(E) and |ϕE|Crs (E) ≤ |ϕ|Crs (E).

Proof. Choose E ∈ Pk`,j and ϕ ∈ Crs(E). By definition, ϕE(x) = m(E)−1
´
γu(x)∩E ϕdmγ.

This immediately implies |ϕE|∞ ≤ |ϕ|∞.
Take x, y ∈ γs ⊂ E and let Φ : γu(x) → γu(y) denote the holonomy map along stable

leaves. Note that JΦ ≡ 1 by Lemma 1.1(1). Then

|ϕE(x)− ϕE(y)| ≤ m(E)−1

∣∣∣∣ˆ
γu(x)∩E

(ϕ− ϕ ◦ Φ) dmγ

∣∣∣∣ ≤ Hr
s (ϕ)ds(x, y)r,

using the fact that mγ(E) = m(E) and ds(z,Φz) = ds(x, y) for all z ∈ γu(x).

2.1 Embeddings

Lemma 2.2. There exists C > 0 such that for all h ∈ Bw and ϕ ∈ Cps (∆), we have

|h(ϕ)| ≤ C|h|w(|ϕ|∞ +Hp
s (ϕ)).

Proof. Let h ∈ Lipu(∆) and ϕ ∈ Cps (∆). Then

ˆ
∆

hϕdm =
∑
`,j

ˆ
∆`,j

hϕdm ≤
∑
`,j

m(∆`,j)β
−`
0 |h|w|ϕ|Cps (∆`,j) ≤ C|h|w(|ϕ|∞ +Hp

s (ϕ)),

since β0 > θ and m(∆`,j) ≤ eC0µ(∆`,j) by Lemma 1.1.

It is clear from the definition of ‖ · ‖u that measures h ∈ B necessarily have absolutely
continuous conditional measures on h-a.e. γ ∈ Γu(∆). Lemma 2.3 provides some examples
of what types of measures are found in B.

Given a measure η with absolutely continuous conditional measures on unstable leaves,
we define a measure ηs on Γu(∆), i.e. a measure transverse to unstable leaves, as follows:
Set ηs(Γu(∆`,j)) = 0 if η|∆`,j

≡ 0. If η|∆`,j
6= 0, then ηs|Γu(∆`,j) is the factor measure of η|∆`,j

normalized, and {ργdmγ, γ ∈ Γu(∆`,j)} is the disintegration of η into measures on unstable
leaves. We will use the convention that ηs(∆`,j) = 1, and that the densities ργ are not
normalized.

We define G to be the set of such measures η 6= 0 whose (unnormalized) densities satisfy
supγ∈Γu(∆) |ργ|C0(γ) + Lipu(ργ) <∞.

Lemma 2.3. (i) G ⊂ B and in particular Lipu(∆) ⊂ B.

(ii) If h ∈ Lipu(∆) ∩ Cps (∆) and g ∈ B, then hg ∈ B,

‖hg‖s ≤ ‖g‖s|h|Cqs (∆) and ‖hg‖u ≤ ‖g‖s(Lipu(h) +Hp
s (h)) + ‖g‖u|h|Cps (∆).
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Proof. (i) We first show Lipu(∆) ⊂ B and then use these functions to approximate singular
measures η in the ‖ · ‖-norm. Let h ∈ Lipu(∆). It follows immediately that ‖h‖s ≤ |h|∞.

Now let Ek ∈ Pk`,j and take Er ∈ Pr`,j with Er ⊆ Ek. For ϕ ∈ Cps (Er), define ϕ̃Er as in
Section 1.2. Choose γs0 ∈ Γs(Ek) and let h0(x) = h(γu(x) ∩ γs0) for x ∈ ∆`,j. Then
 
Er

hϕdm−
 
Ek

hϕ̃Er dm =

 
Er

(h−h0)ϕdm+

 
Er

h0ϕdm−
 
Ek

h0ϕ̃Er dm+

 
Ek

(h0−h)ϕ̃Er dm.

(10)
The first term of (10) is ≤ Lipu(h)βk|ϕ|Cqs (Er). The fourth term has the same bound since
|ϕ̃Er |Cqs (Ek) ≤ |ϕ|Cqs (Er) by Lemma 2.1. Note that by Lemma 1.1(1), mγ(γ ∩ Ek) = m(Ek) for
each γ ∈ Γu(∆`,j) since µs is a probability measure. Since h0 and ϕ̃Er are both constant on
unstable leaves, 

Ek

h0ϕ̃Er dm = m(Ek)
−1

ˆ
Γu(∆`,j)

dµs(γ)h0ϕ̃Ermγ(Ek) =

 
Er

h0ϕdm,

so that the second and third terms of (10) cancel. Thus ‖h‖u ≤ 2Lipu(h) and h ∈ B.
To prove the result for more general η ∈ G, it suffices to prove it for measures supported

on a single unstable leaf. More general measures follow by approximation.
Fix γ0 ∈ Γu(∆`,j) and let ρ be a Lipschitz function on γ0. Let η = ρmγ0 . We take a

sequence of smooth functions ψn, depending only on the stable coordinate, which converge
in distribution to δγ0 . Extend ρ to ∆`,j by making it constant on stable leaves and define
hn = ψnρ. Note that hn ∈ Lipu(∆) ∩ Cps (∆) and hn clearly converges to η in distribution. It
remains to show that {hn} is a Cauchy sequence in the ‖ · ‖-norm.

For E ∈ Pk`,j and ϕ ∈ Cqs(E),

 
E

(hn − hm)ϕdm =
1

m(E)

ˆ
Γu(∆`,j)

dµs(γ)(ψn(γ)− ψm(γ))

ˆ
γ∩E

ρϕ dmγ.

Since m(E)−1
´
γ∩E ρϕ dmγ is a Hölder continuous function of γ with Cq norm bounded by

|ρ|∞|ϕ|Cqs (E), the integral above converges to 0 as n,m → ∞. Moreover, since the Cq norms
are uniformly bounded for |ϕ|Cqs (E) ≤ 1, we may take the supremum and conclude convergence
in the ‖ · ‖s-norm.

To estimate ‖hn − hm‖u, let Er ⊆ Ek ⊆ ∆`,j and for ϕ ∈ Cps (∆`,j), define ϕ̃Er as in
Section 1.2. Choose γs ∈ Γs(Er) and let ρ(x) = ρ(γu(x) ∩ γs) for x ∈ ∆`,j. Now set
gn,m = hn − hm and gn,m = (ψn − ψm)ρ. Then following (10), since gn,m is constant along
unstable leaves, we have 

Er

gn,mϕdm−
 
Ek

gn,mϕ̃Er dm =

 
Er

(gn,m − gn,m)ϕdm+

 
Ek

(gn,m − gn,m)ϕ̃Er dm. (11)

The first term above is equal to m(Er)
−1

´
dµs(γ)(ψn − ψm)

´
γ∩Er(ρ− ρ)ϕdmγ. Dividing by

βk and using the fact that β−k(ρ − ρ) is bounded on Er since ρ ∈ Lipu(∆`,j), we see that
the integral of interest has the form

´
dµs(γ)(ψn − ψm)Ψ, where Ψ is a Hölder continuous

function of γ with Hölder norm bounded by Lipu(ρ)|ϕ|Cps (∆`,j). We conclude that the integral
converges to 0 as n,m → ∞, uniformly for |ϕ|Cps (∆`,j) ≤ 1. A similar estimate holds for the
second term of (11) so that ‖hn − hm‖u → 0 as n,m→∞.
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(ii) By density of Lipu(∆) ⊂ B, it suffices to prove the claim for h ∈ Lipu(∆) ∩ Cps (∆) and
g ∈ Lipu(∆). That ‖hg‖s ≤ ‖g‖s|h|Cqs (∆) is immediate.

Let Er ⊆ Ek, ϕ ∈ Cps (∆) and ϕ̃Er be as above. We define h0 as in (i) and follow (10),

 
Er

hgϕ dm−
 
Ek

ghϕ̃Er dm =

 
Er

(h− h0)gϕ dm+

 
Er

h0gϕ dm−
 
Ek

h0gϕ̃Er dm

+

 
Ek

(h0 − h)gϕ̃Er dm.

(12)

To estimate the second and third terms of (12), we use the fact that h0 ∈ Cps (∆`,j) and
(h0ϕ)Er = h0ϕEr since h0 is already constant on unstable leaves, where (h0ϕ)Er denotes the
average of h0ϕ on unstable leaves in Er. Then

 
Er

gh0ϕdm−
 
Ek

gh0ϕ̃Er dm ≤ βk−`‖g‖u|h|Cps (∆`,j)|ϕ|Cps (∆`,j).

The first term of (12) is ≤ β−`‖g‖s|h−h0|Cqs (Ek)|ϕ|Cqs (Ek) and similarly for the fourth term.
We must show |h− h0|Cqs (∆) has order βk.

Clearly, |h − h0|∞ ≤ Lipu(h)βk0 since the separation time in Ek is ≥ k. To estimate the
Hölder norm, let x, y ∈ γs. Then

|h(x)− h0(x)− h(y)− h0(y)| ≤ 2Lipu(h)βk0 ,

estimating the x and y differences separately. On the other hand, since h ∈ Cps (∆),

|h(x)− h0(x)− h(y)− h0(y)| ≤ 2Hp
s (h)ds(x, y)p.

The Hölder constant is bounded by the minimum of the two estimates 2Lipu(h)βk0ds(x, y)−q

and 2Hp
s (ϕ)ds(x, y)p−q. This minimum is largest when the two estimates are equal, i.e. when

βk0 = ds(x, y)p. Thus Hq
s (h− h0) ≤ Cβ

k(p−q)/p
0 ≤ Cβk since β was chosen ≥ β

(p−q)/p
0 .

Remark 2.4. Since | · |w ≤ ‖ · ‖s, there exists a natural embedding of B into Bw. Moreover,
Lemmas 2.2 and 2.3 imply that Lipu(∆) ↪→ B ↪→ Bw ↪→ Cps (∆)′. In fact, the inclusions are
injective up to modification of h ∈ Lipu(∆) on sets of m-measure zero. This can be proven
as in [GL, Proposition 4.1]. Accordingly, we will consider B as a subset of Bw and Lipu(∆)
as a subset of B by identifying h ∈ Lipu(∆) with the measure hm.

2.2 Compactness

Lemma 2.5. On a fixed E ∈ Pk0`,j, the unit ball of ‖ · ‖ is compactly embedded in | · |w.

Proof. Let ε > 0 be fixed. We will show that there are finitely many ψi ∈ Cps (E) such that,
for any h ∈ Lipu(∆) and any ϕ ∈ Cps (E) with |ϕ|Cps (E) ≤ 1, there exists an i such that

β`0

∣∣∣∣ 
E

hϕdm−
 
E

hψi dm

∣∣∣∣ ≤ b−1‖h‖ε.
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Now let ϕ ∈ Cps (E) be such that |ϕ|Cps (E) ≤ 1. For k ≥ k0, let Ek
i denote the finitely many

k-cylinders in E. For ϕ ∈ Crs(E) and x ∈ Ek
i , define

ϕk,i(x) = m(Ek
i )−1

ˆ
γu(x)∩Eki

ϕdmγ,

and note that ϕk,i ∈ Crs(Ek
i ) by Lemma 2.1. Let Hr

E(k, i) be the space of such averaged
Hölder functions generated by ϕ ∈ Crs(E). Since p > q, it is a standard consequence of the
Arzela-Ascoli theorem that the unit ball of Hp

E(k, i) is compactly embedded in Hq
E(k, i) for

each i ≥ 0, k ≥ k0. Thus we may choose finitely many functions {ψk,i,n}Nn=1 ⊂ H
p
E(k, i)

which form an ε-covering in the Cqs -norm of the unit ball of Cps (Ek
i ).

Choose k such that βk < ε and let ϕk =
∑

i ϕk,i1Eki . On each Ek
i , choose 1 ≤ n ≤ N such

that |ψk,i,n − ϕk,i|Cqs (Eki ) ≤ ε and let ψk =
∑

i ψk,i,n1Eki . Then ϕk, ψk ∈ Cps (E) by Lemma 2.1
and |ψk − ϕk|Cqs (E) ≤ ε. Now,∣∣∣∣ˆ

E

hϕdm−
ˆ
E

hψk dm

∣∣∣∣ ≤ ∣∣∣∣ˆ
E

h(ϕ− ϕk)dm
∣∣∣∣+

∣∣∣∣ˆ
E

h(ϕk − ψk)dm
∣∣∣∣ . (13)

We estimate the first term of (13) using the strong unstable norm,∣∣∣∣ˆ
E

h(ϕ− ϕk) dm
∣∣∣∣ =

∑
i

m(Ek
i )

∣∣∣∣∣
 
Eki

hϕdm−
 
Eki

hϕk,i dm

∣∣∣∣∣ ≤ m(E)βk−`‖h‖u.

We estimate the second term of (13) using the strong stable norm,∣∣∣∣ˆ
E

h(ϕk − ψk)dm
∣∣∣∣ ≤ m(E)β−`‖h‖s|ϕk − ψk|Cqs (E) ≤ m(E)β−`ε‖h‖s.

Then since β0 < β and βk < ε, we have

β`0

∣∣∣∣ 
E

hϕdm−
 
E

hψk dm

∣∣∣∣ ≤ β`0β
k−`‖h‖u + β`0β

−`ε‖h‖s ≤ b−1‖h‖ε.

Lemma 2.6. The unit ball of B is compactly embedded in Bw.

Proof. In light of Lemma 2.5, it suffices to show that the weak norm of h ∈ B can be
approximated by considering its norm on only finitely many k-cylinders E ∈ Pk`,j. This will
follow from the fact that β0 < β and the averaging property of the strong unstable norm.

Notice that for h ∈ Lipu(∆), E ∈ Pk`,j and ϕ ∈ Cps (E), |
´
E
hϕ dm| ≤ m(E)β−`‖h‖s|ϕ|Cqs (E)

so that |h|w(Pk`,j)
≤ β`0β

−`‖h‖s.
Now fix ε > 0 and choose L large enough that (β0β

−1)L < ε. Then

|h|w = sup
`<L

sup
j,k≥0
|h|w(Pk`,j)

+ ε‖h‖s.

Since there are only finitely many ∆`,j per level `, it remains to show that the weak norm of
h on k-cylinders can be made small for large k.
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Choose K so that βK < ε. Then any cylinder set Er ∈ Pr`,j with r ≥ K is contained in
some K-cylinder EK . For ϕ ∈ Cps (Er), let ϕEr be as in Section 1.2 and let ϕ̃Er denote the
extension of ϕEr to EK . Then

β`0

∣∣∣∣ 
Er

hϕdm−
 
EK

h ϕ̃Er dm

∣∣∣∣ ≤ β`0β
K−`‖h‖u|ϕ|Cps (Er).

With this choice of K and L and letting J` denote the number of ∆`,j on level `, we have
|h|w = sup

`<L
sup
j≤J`

sup
k≤K
|h|w(Pk`,j)

+ b−1‖h‖ε, which implies the desired compactness.

3 Lasota-Yorke-Type Estimates

In this section we prove Proposition 1.3. By density of Lipu(∆) in B and Bw, it suffices to
derive these inequalities for h ∈ Lipu(∆) once we show L is continuous on (B, ‖ ·‖). To avoid
repeating estimates, we postpone the proof of this fact to Section 3.4.

3.1 Weak norm estimate

Let h ∈ Lipu(∆) and k ≥ 0 be fixed. Choose E ∈ Pk`,j and ϕ ∈ Cps (E) with |ϕ|Cps (E) ≤ 1.

Case 1. n ≤ `. Notice that E ′ = F−nE is an n+ k cylinder in ∆`−n,j′ , i.e., E ′ ∈ Pk+n
`−n,j′ .ˆ

E

Lnhϕdm =

ˆ
F−nE

hϕ ◦ F n dm ≤ m(E ′)βn−`0 |h|w(Pk+n
`−n,j′ )

|ϕ ◦ F n|Cps (E′) (14)

Since JmF
n|E′ ≡ 1 and ds(F

nx, F ny) = αnds(x, y) for all x, y ∈ E ′, we have m(E ′) = m(E)
and |ϕ ◦F n|Cps (E′) ≤ |ϕ|Cps (E). Putting this together with (14) and taking the supremum over
ϕ ∈ Cps (E) and E ∈ Pk`,j, yields

|Lnh|w(Pk`,j)
≤ βn0 |h|w(Pk+n

`−n,j′ )
. (15)

Case 2. n > `. First consider the case ` = 0 and E ∈ Pk0,j. Note that F−nE is comprised of

a countable union of (n+ k)-cylinders, F−nE =
⋃
E ′, E ′ ∈ Pn+k

`′,j′ . Then by (14),

ˆ
E

Lnhϕdm ≤
∑

E′⊂F−nE

m(E ′)β−`
′

0 |h|w(Pk+n
`′,j′ )
|ϕ ◦ F n|Cps (E′) (16)

where E ′ ⊆ ∆`′,j′ . To estimate |ϕ ◦ F n|Cps (E′), take x, y ∈ γs ⊂ E ′ and write

|ϕ ◦ F n(x)− ϕ ◦ F n(y)| ≤ Hp
s (ϕ)ds(F

nx, F ny)p ≤ Hp
s (ϕ)C0α

pnds(x, y)p (17)

by (2). Since |ϕ ◦ F n|∞ = |ϕ|∞, we conclude |ϕ ◦ F n|Cps (E′) ≤ C0|ϕ|Cps (E).

Due to bounded distortion given by Property (P4)(b) and Lemma 1.1, we have m(E′)
m(E)

≤
C m(E′n)
m(∆0,j)

where E ′n is the n-cylinder containing E ′. Using the fact that there are only finitely

many ∆0,j, we record the following estimate for future use. There exists C > 0 such that,

m(E ′) ≤ Cm(E ′n)m(E). (18)
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Now (16) becomes,ˆ
E

Lnhϕdm ≤
∑

E′⊂F−nE

CC0β
−`′
0 |h|wm(E ′n)m(E) ≤ C ′|h|wm(E)

∑
`′,j′

β−`
′

0 m(∆`′,j′)

where the sum is finite since θ < β0. Dividing by m(E) and taking the supremum over
ϕ ∈ Cps (E) and E ∈ Pk`,j, we have

|Lnh|w(Pk0,j) ≤ C ′|h|w. (19)

Now for n > `, we use (15) and (19) to prove (6),

|Lnh|w(Pk`,j)
≤ β`0|Ln−`h|w(Pk+`

0,j′ )
≤ C ′β`0|h|w.

3.2 Strong stable norm estimate

Fix h ∈ Lipu(∆) and k ≥ 0. Choose E ∈ Pk`,j and ϕ ∈ Cqs(E) with |ϕ|Cqs (E) ≤ 1.

Case 1. n ≤ `. Following (14) with Cqs(∆) in place of Cps (∆), we obtain

‖Lnh‖s(Pk`,j) ≤ βn‖h‖s(Pk+n
`−n,j′ )

. (20)

Case 2. n > `. As in Section 3.1, we first let ` = 0 and fix E ∈ Pk0,j.ˆ
E

Lnhϕdm =

ˆ
F−nE

h(ϕ ◦ F n − ϕ)dm+

ˆ
F−nE

hϕ dm (21)

where ϕ(x) =
´
γs(x)

ϕ ◦ F n dµs is constant on each γs ⊂ F−nE. Denoting by E ′ the compo-

nents of F−nE, E ′ ∈ Pk+n
`′,j′ , we estimate the first term of (21) byˆ

F−nE

h(ϕ ◦ F n − ϕ)dm ≤
∑

E′⊂F−nE

β−`
′‖h‖s|ϕ ◦ F n − ϕ|Cqs (E′)m(E ′). (22)

Since ϕ◦F n is continuous on γs ∈ Γs(E ′) and µs is a probability measure, we have ϕ◦F n(z1) ≤
ϕ ≤ ϕ ◦ F n(z2) for some z1, z2 ∈ γs. Thus using (17) we estimate, |ϕ ◦ F n − ϕ|Cqs (E′) ≤
Cαqn|ϕ|Cqs (E). Putting this together with (18) and (22), we obtainˆ

F−nE

h(ϕ ◦ F n − ϕ) dm ≤ C
∑
`′,j′

β−`
′
m(E ′n)m(E)‖h‖sαqn ≤ C ′αqn‖h‖sm(E). (23)

To estimate the second term of (21), we note that |ϕ|Cps (E′) ≤ |ϕ|∞ ≤ 1 since ϕ is constant
along stable leaves. Then again using (18) and the fact that θ < β0,ˆ

F−nE

hϕ dm ≤
∑

E′⊂F−nE

m(E ′)β−`
′

0 |h|w|ϕ|Cps (E′) ≤ C|h|wm(E)
∑
`′,j′

β−`
′

0 m(∆`′,j′). (24)

Combining (23) and (24), dividing by m(E) and taking the appropriate suprema yields

‖Lnh‖s(Pk0,j) ≤ Cαqn‖h‖s + C|h|w. (25)

Now for n > `, we combine (20), (25) and the fact that αq < β to obtain (7),

‖Lnh‖s(Pk`,j) ≤ β`‖Ln−`h‖s(Pk+`
0,j′ )
≤ β`(Cαq(n−`)‖h‖s + C|h|w).
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3.3 Strong unstable norm estimate

Fix h ∈ Lipu(∆) and Ek ∈ Pk`,j. For r ≥ k, let Er ∈ Pr`,j be such that Er ⊆ Ek. For
ϕ ∈ Cps (Er), let ϕEr(x) = m(Er)

−1
´
γu(x)∩Er ϕdmγ be defined as in Section 1.2 and let

ϕ̃Er(x) = ϕEr(γ
u(x)) be the extension of ϕEr to Ek.

Case 1. n ≤ `. Since m(Er) = m(F−nEr) and similarly for Ek, we have 
Er

Lnhϕdm−
 
Ek

Lnh ϕ̃Er dm =

 
F−nEr

hϕ ◦ F n dm−
 
F−nEk

h ϕ̃Er ◦ F n dm.

As before, |ϕ ◦F n|Cps (F−nEr) ≤ |ϕ|Cps (Er). Let (ϕ ◦F n)Enr be the average of ϕ ◦F n on unstable
leaves in the (r+n)-cylinder En

r := F−nEr. Since (ϕ ◦F n)Enr is constant on unstable leaves,
we may extend it to F−nEk ∈ Pk+n

`−n,j′ . It follows that ϕ̃Er ◦ F n = (ϕ ◦ F n)Enr since JγF
n ≡ 1

on F−nEk.∣∣∣  
F−nEr

hϕ ◦ F n dm−
 
F−nEk

h (ϕ ◦ F n)Enr dm
∣∣∣ ≤ ‖h‖u(Pk+n

`−n,j′ )
βk+n−`|ϕ|Cps (E)

Dividing by βk−` and taking the supremum over ϕ ∈ Cps (Er) and r ≥ k, we conclude,

‖Lnh‖u(Pk`,j)
≤ βn‖h‖u(Pk+n

`−n,j′ )
. (26)

Case 2. n > `. As before, we first consider the case ` = 0 and fix Er ⊆ Ek ⊆ ∆0,j. Let En
k

denote an (n+ k)-cylinder in F−nEk and similarly for En
r ⊂ En

k . As usual, define (ϕ ◦F n)Enr
to be the average of ϕ ◦ F n on unstable leaves in En

r , extended to En
k . Now, 

Er

Lnhϕdm−
 
Ek

Lnh ϕ̃Er dm

=
∑

Enk⊂F−nEk

m(En
r )

m(Er)

[ 
Enr

hϕ ◦ F n dm−
 
Enk

h (ϕ ◦ F n)Enr dm

]

+
∑

Enk⊂F−nEk

[
m(En

r )

m(Er)
− m(En

k )

m(Ek)

] 
Enk

h (ϕ ◦ F n)Enr dm

+
∑

Enk⊂F−nEk

m(En
k )

m(Ek)

 
Enk

h[(ϕ ◦ F n)Enr − ϕ̃Er ◦ F
n] dm

(27)

Label the three sums of (27) by 1©, 2© and 3© respectively. To estimate 1©, recall that by
(17), |ϕ ◦ F n|Cps (Enr ) ≤ C0|ϕ|Cps (Er). Let En denote the n-cylinder containing En

r (and En
k ) on

level `′(En). We use (18) to estimate

1© ≤
∑

Enr ⊂F−nEr

Cm(En)βn+k−`′(En)‖h‖u|ϕ ◦ F n|Cps (Enr ) ≤ C ′βn+k‖h‖u. (28)

To estimate 2©, note that m(A) = mγ(γ ∩ A) for any s-subset A by Lemma 1.1(1). By
Lemma 1.1(3) and (18), there exist x, y ∈ En

k such that∣∣∣∣m(En
r )

m(Er)
− m(En

k )

m(Ek)

∣∣∣∣ ≤ ∣∣∣∣JγF n(y)

JγF n(x)
− 1

∣∣∣∣ m(En
k )

m(Ek)
≤ Cαk/2m(En) (29)
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since s(x, y) ≥ n + k. Recall that |(ϕ ◦ F n)Enr |Cqs (Enr ) ≤ |ϕ ◦ F n|Cqs (Enr ) ≤ C0|ϕ|Cqs (Er) by
Lemma 2.1 and (17). Using this estimate and (29),

2© ≤
∑

Enk⊂F−nEk

Cαk/2m(En)‖h‖sβ−`
′
C0|ϕ|Cqs (Er) ≤ C ′‖h‖sαk/2. (30)

In order to estimate 3©, we need the following preliminary lemma.

Lemma 3.1. For En
k ⊂ ∆`′,j′, let (ϕ ◦ F n)Enr and ϕ̃Er be as above. There exists C > 0

depending only on the distortion of F such that

|(ϕ ◦ F n)Enr − ϕ̃Er ◦ F
n|Cqs (Enk ) ≤ Cαr(p−q)/2p |ϕ|Cps (Er).

Proof. For x ∈ En
k ,

ϕ̃Er ◦ F n(x) = m(Er)
−1

ˆ
γu(Fnx)∩Er

ϕdmγ = m(Er)
−1

ˆ
γu(x)∩Enr

ϕ ◦ F n JγF
n dmγ.

Thus

|(ϕ ◦ F n)Enr (x)− ϕ̃Er ◦ F n(x)| = 1

m(En
r )

∣∣∣ˆ
γu(x)∩Enr

ϕ ◦ F n
(

1− m(En
r )JγF

n

m(Er)

)
dmγ

∣∣∣. (31)

Now m(Er)
m(Enr )

is the average value of JγF
n on γu(x) ∩ En

r since m(En
r ) = mγ(γ

u(x) ∩ En
r )

and m(Er) = mγ(γ
u(F nx)∩Er) by Lemma 1.1(1). Lemma 1.1(3) implies

∣∣∣1− m(Enr )JγFn

m(Er)

∣∣∣ ≤
C1α

r/2 since the separation time for any two points in En
r is at least n+r. Thus (31) becomes

|(ϕ ◦ F n)Enr (x)− ϕ̃Er ◦ F n(x)| ≤ |ϕ|∞C1α
r/2. (32)

It remains to estimate the Hölder constant of the difference along stable leaves. Let
y ∈ γs(x) ⊂ En

k . On the one hand,

|ϕ̃Er ◦ F n(x)− (ϕ ◦ F n)Enr (x)− ϕ̃Er ◦ F n(y) + (ϕ ◦ F n)Enr (y)| ≤ 2|ϕ|∞C1α
r/2

using (32) for the x and y differences separately. On the other hand, using (17), (2) and
Lemma 2.1, we have

|ϕ̃Er ◦ F n(x)− (ϕ ◦ F n)Enr (x)− ϕ̃Er ◦ F n(y) + (ϕ ◦ F n)Enr (y)|
≤ Hp(ϕ̃Er |Fn(γs))ds(F

nx, F ny)p +Hp((ϕ ◦ F n)Enr |γs)ds(x, y)p

≤ Hp
s (ϕ)C0α

pnds(x, y)p +Hp
s (ϕ ◦ F n)ds(x, y)p ≤ 2C0H

p
s (ϕ)αpnds(x, y)p.

The Hölder constant is bounded by the minimum of the two estimates, 2C1α
r/2ds(x, y)−q

and 2C0α
pnds(x, y)p−q. This minimum is largest when the two quantities are equal, i.e., when

ds(x, y)p = α−npαr/2C1/C0. Thus

Hq
s (ϕ̃r ◦ F n − (ϕ ◦ F n)n+r) ≤ CHp

s (ϕ)αqnαr(p−q)/2p

which, together with (32), completes the proof of the lemma.
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We are now ready to estimate 3© using the strong stable norm.

3© ≤
∑
`′,j′

C‖h‖sβ−`
′
m(∆`′,j′)|(ϕ ◦ F n)Enr − ϕ̃Er ◦ F

n|Cqs (Enk ) ≤ C‖h‖sαr(p−q)/2p (33)

by Lemma 3.1. Combining (28), (30) and (33) in (27), using the fact that α(p−q)/2p ≤ β, and
taking the appropriate suprema, we have

‖Lnh‖u(Pk0,j) ≤ Cβn‖h‖u + C‖h‖s. (34)

Now for n > `, we combine (26) and (34) to prove (8),

‖Lnh‖u(Pk`,j)
≤ β`‖Ln−`h‖u(Pk+`

0,j′ )
≤ β`(Cβn−`‖h‖u + C‖h‖s).

3.4 Continuity of L
Since L is linear, it suffices to show L is bounded on B. Note that for h ∈ B, we can express
the strong stable norm given by (4) as

‖h‖s(Pk`,j) = β` sup
E∈Pk`,j

sup
|ϕ|Cqs (E)

≤1

m(E)−1h(ϕχE). (35)

where χE is the indicator function of the set E. Similarly, defining ϕEr and ϕ̃Er as in
Section 1.2, we can express the strong unstable norm given by (5) as

‖h‖u(Pk`,j)
= sup

Ek∈Pk`,j

sup
Er⊂Ek

sup
|ϕ|Cps (Er)

≤1

β`−k
∣∣m(Er)

−1h(ϕχEr)−m(Ek)
−1h(ϕ̃ErχEk)

∣∣ . (36)

Now following the estimates of Section 3.1, we have for E ∈ Pk`,j and ϕ ∈ Cqs(E),

Lh(ϕχE) =
∑

E′⊂F−1E

h(ϕ ◦ F · χE′) ≤
∑

E′⊂F−1E

m(E ′)β−`
′(E′)‖h‖s|ϕ ◦ F |Cqs (E′). (37)

By (17), |ϕ ◦ F |Cqs (E′) ≤ C0|ϕ|Cqs (E). Now if ` > 0, then there is only one E ′ = F−1E,
`′(E ′) = `− 1, and m(E ′) = m(E) so we conclude that

‖Lh‖s(Pk`,j) ≤ C0β‖h‖s.

On the other hand, if ` = 0, then by (18), m(E ′) ≤ Cm(E ′1)m(E) where E ′1 is the 1-cylinder
containing E ′. So (37) becomes

Lh(ϕχE) ≤ CC0m(E)‖h‖s
∑

E′⊂F−1E

β−`
′
m(∆`′,j′)

and the sum is finite since β > θ. Thus ‖Lh‖s ≤ C ′‖h‖s as required.
Similarly, using (36) and following the estimates of Section 3.3, one sees that ‖Lh‖u ≤

C(‖h‖s + ‖h‖u).
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4 Spectral Picture

Proposition 1.3 and Lemma 2.6 imply that L : B 	 is quasi-compact with essential spectral
radius bounded by β. In this section we study the peripheral spectrum of L on B and prove
Theorems 1 and 2.

4.1 Proof of Theorem 1

Lemma 4.1. The spectral radius of L on B is 1. Its peripheral spectrum is comprised of
measures and contains no Jordan blocks.

Proof. It is a direct consequence of (6) that the spectral radius of L is at most one. If it
were strictly less than one, Lemma 2.2 would yield the contradiction

|m(1)| = |Lnm(1)| = lim
n→∞

|Lnm(1)| ≤ lim
n→∞

C‖Lnm‖ = 0.

Now let z be in the spectrum of L with |z| = 1. Suppose there exist h0, h1 ∈ B, h0 6= 0
such that Lh0 = zh0 and Lh1 = zh1 + h0. Then Lnh1 = znh1 + nzn−1h0. Now (17) implies
that Hp

s (ϕ ◦ F n) ≤ C0α
pnHp

s (ϕ) for ϕ ∈ Cps (∆). So

n|h0(ϕ)| ≤ |h1(ϕ)|+ |Lnh1(ϕ)| = |h1(ϕ)|+ |h1(ϕ ◦ F n)| ≤ 2C|h1|w(|ϕ|∞ + C0H
p
s (ϕ))

for each n by Lemma 2.2. Dividing by n and taking the limit as n→∞ implies that h0 ≡ 0,
contrary to our assumption.

It remains to show that the peripheral spectrum is comprised of measures. Suppose h ∈ B
satisfies Lh = zh for some |z| = 1. By Lemma 2.2 and (17),

|h(ϕ)| = |Lnh(ϕ)| = |h(ϕ ◦ F n)| ≤ C|h|w
(
|ϕ|∞ + C0α

pnHp
s (ϕ)

)
.

Letting n → ∞ yields |h(ϕ)| ≤ C|h|w|ϕ|∞ for all ϕ ∈ Cps (∆), which implies h is a measure.

Let Vφ denote the eigenspace in B corresponding to the eigenvalue eiφ. The absence of
Jordan blocks in the peripheral spectrum implies that the spectral projectors Πφ : B → Vφ
are well-defined and satisfy

Πφh = lim
n→∞

1

n

n−1∑
k=0

e−ikφLkh (38)

where convergence is in the ‖ · ‖-norm so the limit holds with h applied to any ϕ ∈ Cps (∆).
By density, ΠφLipu(∆) = Vφ so that for each η ∈ Vφ there is an h ∈ Lipu(∆) such that
Πφh = η.

Lemma 4.2. Let η ∈ Vφ. Then η is absolutely continuous with respect to ν where ν :=
Π01. Moreover, η has absolutely continuous conditional measures with respect to Riemannian
volume on unstable curves γ ∈ Γu(∆) and η ∈ G.
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Proof. Let hη ∈ Lipu(∆) be such that Πφhη = η. Then for ϕ ∈ Cps (∆),

|η(ϕ)| ≤ lim
n→∞

1

n

n−1∑
k=0

|e−ikφLkhη(ϕ)| ≤ lim
n→∞

|hη|∞
1

n

n−1∑
k=0

Lk1(|ϕ|) = |hη|∞ν(|ϕ|).

So η = ψν for some ψ with |ψ|L∞(ν) ≤ |hη|∞.

Since η can be written as the limit of ηn = 1
n

∑n−1
k=0 e

−ikφLkhη and the conditional measures
of ηn on unstable leaves in Γu have uniformly bounded and Lipschitz densities, the Markov
structure of ∆ and the regularity of JuF guarantee that this property passes to η (this can
be proved as in [Y1, Sect. 2]).

Lemma 4.3. The peripheral spectrum of L on B forms a group on the unit circle.

Proof. Let UFϕ = ϕ ◦ F define the composition operator of F on L2(ν) and let Lν be its
dual, i.e. the transfer operator of F with respect to ν. It is a standard fact of ergodic
theory that the eigenvalues of UF form a subgroup on the unit circle [W, Section 3.1]. It is
then straightforward to show that the the peripheral eigenvalues of Lν equal those of UF .
In what follows, we will show that the eigenvalues on the unit circle of Lν acting on L2(ν)
are precisely the peripheral spectrum of L on B. We denote these sets by %(Lν) and %(L)
respectively.

Suppose η ∈ Vφ and let ψ ∈ L∞(ν) satisfy η = ψν by Lemma 4.2. For ϕ ∈ C0
b (∆),

eiφ
ˆ
ϕψ dν = eiφη(ϕ) = Lη(ϕ) = η(ϕ ◦ F ) =

ˆ
ϕ ◦ F · ψ dν =

ˆ
ϕ · Lνψ dν

so that Lνψ = eiφψ. Since ψ ∈ L∞(ν) ⊂ L2(ν), we conclude that %(L) ⊂ %(Lν).
To show inclusion in the other direction, suppose ψ ∈ L2(ν) satisfies Lνψ = eiφψ. For

j ≥ 0, choose hj ∈ Lipu(∆) ∩ Cps (∆) such that |ψ − hj|L1(ν) ≤ 1/j. By Lemma 2.3(ii),
hjν ∈ B. Thus,

Πφ(hjν) = lim
n→∞

1

n

n−1∑
k=0

e−ikφLk(hjν) =: ηj =: ψjν ∈ Vφ, (39)

by (38) and Lemma 4.2. On the other hand, for ϕ ∈ C0
b (∆),

1

n

n−1∑
k=0

e−ikφLk(hjν)(ϕ) =
1

n

n−1∑
k=0

e−ikφ
ˆ
ϕ ◦ F k · (hj − ψ) dν +

ˆ
ϕψ dν (40)

The first term in (40) is bounded by 1
n

∑n−1
k=0 |ϕ|∞|ψ − hj|L1(ν) ≤ |ϕ|∞/j.

Combining (39) and (40), we have |
´
ϕψ dν −

´
ϕψj dν| ≤ |ϕ|∞/j for all ϕ ∈ C0

b (∆) and
each j. Since Vφ is finite dimensional and ψν is approximated by elements of Vφ, it must be
that ψν ∈ Vφ. Thus %(Lν) ⊂ %(L).

We call ∆0,j a recurrent base if µ-a.e. x ∈ ∆0,j satisfies: F n(x) ∈ ∆0,j for infinitely many
n > 0. We call ∆0,j transient if it is not recurrent.
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Lemma 4.4. Let ∆(j) be the tower above a recurrent base ∆0,j. Then the full Lebesgue
measure of ∆(j) belongs to a single ergodic component.

Proof. Choose ν ∈ V0 ergodic and fix a density point x0 which is not on the boundary of any
cylinder E ∈ Pk`,j, k ≥ 0. Without loss of generality, take x0 ∈ ∆0,j, a recurrent base. Let γ0

be the unstable leaf containing x0 and let ρ0 be the conditional density of ν on γ0 which is
Lipschitz by Lemma 4.2. Thus ρ0 > 0 on an open subset U in γ0 containing x0. Since ∆0,j

is recurrent, there exists E ∈ Pk`,j with E ∩ γ0 ⊂ U such that F n(E) is a u-subset of ∆0,j for
some n > 0. Thus the density of F n

∗ ν|Fn(E∩γ0) is strictly positive.
Since each stable leaf γs ∈ Γs(∆) belongs to a single ergodic component, the full Lebesgue

measure of ∆0,j must belong to a single ergodic component. Thus the ergodic component of
ν includes the full measure of each recurrent base (and hence of the entire tower above each
such base) which contains a density point of ν.

Proof of Theorem 1. Lemma 4.4 allows us to assign each of the recurrent bases to a single
ergodic component: two bases ∆0,j and ∆0,j′ are in the same ergodic component if and only
if there exists n, n′ such that F n(∆0,j) ∩∆0,j′ 6= ∅ and F n′(∆0,j′) ∩∆0,j 6= ∅.
Step 1. Mixing case. By transitivity the full Lebesgue measure of each base belongs to a
single ergodic component by Lemma 4.4; therefore there can be only one invariant probability
measure ν ∈ V0. Now suppose there exists η ∈ Vφ where φ = 2πp/q for some p, q ∈ Z+.
Thus ν and η are both invariant densities for Lq. Since F is mixing, F q is also transitive on
∆ so Lq can have at most one invariant probability measure. Thus η = ν. This proves item
(i) of the theorem.

Step 2. Nonmixing case. First assume F is transitive and periodic with period p. Then ∆
decomposes under F p into p transitive components, on each of which F p is mixing. By Step
1, 1 is an eigenvalue of Lp with multiplicity p and there are no other eigenvalues on the unit
circle. The corresponding eigenvalues for L lie at the pth roots of unity and it follows from
transitivity that all the pth roots are realized as simple eigenvalues. This proves (ii).

If F is not transitive, we simply restrict to a single transitive component and apply (ii).
Since quasi-compactness implies there are only finitely many components, (iii) follows.

4.2 Proof of Theorem 2

(i) Item (i) is proven by Lemma 4.2.

(ii) Let ν be a physical measure. There exists Bν with µ(Bν) > 0 such that for every ϕ ∈ C0
b ,

lim
n→∞

1

n

n−1∑
i=0

ϕ(F ix) = ν(ϕ) ∀x ∈ Bν . (41)

Let x0 ∈ ∆`,j be a density point of Bν . Given ε > 0, let hε ∈ Lipu(∆) be a probability
density with respect to m supported on ∆`,j such that hε(Bν) ≥ 1 − ε. For ϕ ∈ C0

b (∆),
choose a set Bν,ε ⊂ Bν on which (41) converges uniformly and hε(Bν\Bν,ε) ≥ 1− 2ε. Then,

Π0hε(ϕ) = lim
n→∞

1

n

n−1∑
i=0

hε(ϕ ◦ F i) = lim
n→∞

1

n

n−1∑
i=0

hε(ϕ ◦ F i · 1Bν,ε) + hε(ϕ ◦ F i · 1∆`,j\Bν,ε)

= hε(1Bν,ε)ν(ϕ) +O(|ϕ|∞ε) = ν(ϕ) +O(|ϕ|∞ε).

21



Since Π0hε ∈ V0, this means ν can be approximated by elements of V0 and so ν ∈ V0. The
fact that ν is ergodic follows from its definition as a physical measure.

Next we show that all ergodic elements of V0 are physical measures. By Lemma 4.4, if
ν ∈ V0 is an ergodic measure, its support is contained in a finite set of towers ∆(j) above
recurrent bases ∆0,j and no other ergodic measure in V0 can be supported on this set. Denote
this set by Eν and note that ν(Eν) = 1. Thus (41) converges to ν(ϕ) for ν-a.e. x ∈ Eν .
Since the ergodic average is constant along stable leaves and ν has absolutely continuous
conditional measures on γ ∈ Γu(∆), we must have (41) converging for µγ-a.e. x ∈ γ on every
γ ∈ Γu(∆`,j), ∆`,j ⊂ Eν .

On the other hand, if ∆0,j is transient, every point in ∆(j) belongs to a cylinder set of
finite length n which maps to a recurrent base ∆0,k at time n. Let Ck denote the collection of
such cylinder sets in ∆(j) which map to the recurrent base ∆0,k. It is clear that Ck belongs to
the basin of attraction of the unique element of V0 supported on ∆0,k and that the forward
ergodic averages beginning in Ck converge to the same constant.

Thus to each ergodic element ν ∈ V0, we associate a basin Bν comprised of a maximal
set of recurrent towers Eν plus a collection of cylinder sets from transient towers. Since (41)
converges for µ-a.e. x ∈ Bν and ν(Bν) = ν(Eν) = 1, ν is necessarily a physical measure.

It remains to show that the ergodic decomposition with respect to ν corresponds to that
with respect to m. Let ν be an ergodic element of V0. Since F−1Bν = Bν and Bν is a union
of cylinder sets, 1Bν ∈ Cps (∆) and 1Bν ◦ F = 1Bν , so

ν(Bν) = lim
n→∞

1

n

n−1∑
i=0

Lim(Bν) = lim
n→∞

1

n

n−1∑
i=0

m(Bν) = m(Bν).

(iii) This is implied by the argument in (ii).

(iv) This is a standard corollary of the existence of a spectral gap given by Theorem 1(i).
To obtain the slightly stronger result for ψ ∈ Lipu(∆) and ϕ ∈ Cps (∆), note that ψν ∈ G and
thus ψν ∈ B by Lemmas 4.2 and 2.3(i). Thus there exists σ < 1 such that

ˆ
ψ ϕ ◦ F n dν = Ln(ψν)(ϕ) = ν(ψ)ν(ϕ) +O(σn‖ψν‖B|ϕ|Cps (∆)).

5 Large Deviation Estimates

We connect the moment generating function q(z) defined in Section 1.3.1 to the spectral
properties of a generalized transfer operator as follows.

For g ∈ Lipu(∆) ∩ Cps (∆), define the generalized transfer operator for h ∈ B by

Lgh(ϕ) = h(ϕ ◦ F · eg) for all ϕ ∈ Cps (∆).

It is then a simple calculation that Lngh(ϕ) = h(ϕ ◦ F n · eSng). Now fix g and for z ∈ C
suppose that Lz = Lzg is quasi-compact with a simple eigenvalue λz of maximum modulus.
Then for h ∈ B such that Πλzh(1) 6= 0,

q(z) = lim
n→∞

1

n
log h(ezSng) = lim

n→∞

1

n
logLnzh(1) = log λz. (42)
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So q(z) is well-defined if Lz has a spectral decomposition similar to that for L0 = L given
by Theorem 1. With this in mind, we prove in Section 5.2:

Proposition 5.1. For g ∈ Lipu(∆)∩Cps (∆), let g0 := |g|∞ <∞. Then for h ∈ B and n ≥ 0,

|Lngh|w ≤ Ceng0 |g|Cps (∆)|h|w (43)

‖Lngh‖s ≤ Ceng0 |g|Cps (∆)(β
n‖h‖s + |h|w) (44)

‖Lngh‖u ≤ Ceng0(βn‖h‖u|g|Cps (∆) + ‖h‖s(Lipu(g) + |g|Cqs (∆))). (45)

This implies a Lasota-Yorke type inequality for Lz if |z| < (− ln β)/g0. In order to
ensure that the spectral gap for Lz persists for small |z|, we introduce the following norm
for operators from B to Bw,

|||Lz||| = sup{|Lzh|w : h ∈ B, ‖h‖ ≤ 1}.

In Section 5.3, we prove the following.

Lemma 5.2. There exists C > 0, independent of z ∈ C and g ∈ Lipu(∆)∩Cps (∆), such that

|||Lz − L0||| ≤ Ce|z|g0 |z||g|Cqs (∆).

With this result, the perturbation results of [KL] imply that for small |z|, both the spectra
and the spectral projectors of Lz vary continuously with z so that if L = L0 has a spectral
gap, this gap persists for all z ∈ C with |z| sufficiently small. Moreover, the eigenvalue of
maximum modulus, λz, is real whenever z is real.

5.1 Proof of Theorems 3 and 4

Proof of Theorem 3. We follow [RY] in our proof of Theorem 3, modifying the proof as
necessary to generalize to non-invariant measures η.

Throughout this section, we assume F is mixing and fix g ∈ Cps (∆)∩Lipu(∆). We assume
|z| is sufficiently small so that Lz = Lzg has a simple eigenvalue of maximum modulus λz,
with corresponding eigenvector νz ∈ B.

Sublemma 5.3. The map z → Lz is analytic for all z ∈ C. Consequently, if F is mixing,
the map z → λz is analytic for z in a complex neighborhood of 0.

Proof. This follows directly from [RY, Lemma 4.1] and analytic perturbation theory [K].

Now let η ∈ B be a probability measure. Since Πλ0η(1) = 1, we have Πλzη(1) 6= 0 for |z|
sufficiently small [KL]. Thus by (42),

q(z) = lim
n→∞

1

n
log η(ezSng) = log λz,

proving the first statement of the theorem.
Since q(z) is independent of η, we may write q(z) := limn→∞

1
n

log ν0(ezSng). Now the
computation of the derivatives of q follows exactly as in the proof of [RY, Theorem 4.3].

Proof of Theorem 4. This follows directly from the Gartner-Ellis Theorem [DZ] since q(z) is
a smooth function of z for z real and sufficiently small.
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5.2 Proof of Proposition 5.1

Proof. The estimates parallel those of Section 3. In order to avoid repetition, we indicate
only where changes are necessary.

Weak norm. For h ∈ Lipu(∆), E ∈ Pk`,j and ϕ ∈ Cps (E), if n ≤ `, we follow (14),

ˆ
E

Lnghϕ dm =

ˆ
F−nE

heSngϕ ◦ F n dm ≤ m(F−nE)|h|w(Pk+n
`−n,j′ )

|eSng|Cps (F−nE)|ϕ ◦ F n|Cps (F−nE).

Since m(E) = m(F−nE), |ϕ ◦ F n|Cps (F−nE) ≤ |ϕ|Cps (E) and |eSng|Cps (F−nE) ≤ Ceng0 |g|Cps (∆), we
have

|Lngh|w(Pk`,j)
≤ Cβn0 |h|w(Pk+n

`−n,j′ )
eng0 |g|Cps (∆). (46)

On the other hand, if ` = 0, then following (16) we estimate

ˆ
E

Lnghϕdm =
∑

E′⊂F−nE

ˆ
E′
h eSng ϕ◦F n dm ≤

∑
E′

m(E ′)β−`
′

0 |h|w(Pk+n
`′,j′ )
|eSng|Cps (E′)|ϕ◦F n|Cps (E′)

(47)
where E ′ ∈ Pk+n

`′,j′ as in Section 3.1. Now (43) follows from (46) and (47) using (18).

Strong stable norm. Similarly following the estimates of Section 3.2, for ϕ ∈ Cqs(E) we
define ϕ as in (21). Then

ˆ
E

Lnghϕdm =
∑

E′⊂F−nE

ˆ
E′
h eSng(ϕ ◦ F n − ϕ)dm+

ˆ
E′
h eSng ϕdm.

Now (44) follows from (20), (23) and (24).

Strong unstable norm. Taking Er ⊂ Ek ∈ Pk`,j and ϕ ∈ Cps (∆`,j), we define ϕ̃Er as in
Section 3.3.
Case 1. n ≤ `. Since m(Er) = m(F−nEr) and similarly for Ek, the estimate before (26)
yields,∣∣∣  

F−nEr

h eSng ϕ ◦ F n dm−
 
F−nEk

h eSng (ϕ ◦ F n)Enr dm
∣∣∣ ≤ ‖h eSng‖u(F−nEk)β

k+n−`|ϕ|Cps (E).

Since eSng ∈ Lipu(F−nEk), by Lemma 2.3, ‖h eSng‖u(F−nEk) ≤ ‖h‖s(Lipu(eSng|F−nEk) +
Hp
s (eSng)) + ‖h‖u|eSng|Cps (∆). Then since Lipu(eSng|F−nEk) ≤ eng0Lipu(g)/(1− β), we have

‖Lngh‖u(Pk`,j)
≤ Cβn‖h‖u(Pk+n

`−n,j′ )
eng0|g|Cps (∆) + ‖h‖s(Ceng0|g|Cqs (∆) + eng0Lipu(g)/(1−β)). (48)

Case 2. n > `. Following Section 3.3, we first consider the case ` = 0 and fix Er ⊆ Ek ⊆ ∆0,j.
We estimate the analogous terms of (27) one at a time.

The expression corresponding to (28) is ≤ C ′βn+k‖h eSng‖u(Pn+k
`′,j′ )

; the term corresponding

to (30) is ≤ C ′‖eSngh‖sαk/2; and the term corresponding to (33) is ≤ C‖eSngh‖sαr(p−q)/2p.
Putting these estimates together with (48) and using Lemma 2.3(ii) yields (45).
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5.3 Proof of Lemma 5.2

Proof. Let h ∈ Lipu(∆) and E ∈ Pk`,j with ` ≥ 1. Notice that F−1E = E ′ ∈ Pk+1
`−1,j′ . For any

ϕ ∈ Cps (E), we have

ˆ
E

(Lz − L0)hϕdm =

ˆ
E′
hϕ ◦ F (ezg − 1) dm ≤ m(E ′)β1−`‖h‖s|ϕ ◦ F |Cqs (E′)|ezg − 1|Cqs (E′).

Since F is rigid translation on E ′, |ϕ ◦ F |Cqs (E′) ≤ |ϕ|Cqs (E) and m(E ′) = m(E). It is straight-

forward to estimate |ezg − 1|Cqs (E′) ≤ e|z|g0|z||g|Cqs (E′). Taking the appropriate suprema,

|(Lz − L0)h|w(Pk`,j)
≤ ‖h‖se|z|g0|z||g|Cqs (∆) for ` ≥ 1. (49)

It remains to consider the case ` = 0. In this case, F−1E is the countable union of
cylinders E ′ ∈ Pk+1

`′,j′ . Let `′ denote the level of E ′.

ˆ
E

(Lz − L0)hϕdm ≤
∑

E′⊂F−1E

m(E ′)β−`
′‖h‖s|ϕ ◦ F |Cqs (E′)|ezg − 1|Cqs (E′)

By (17), |ϕ ◦ F |Cqs (E′) ≤ C0|ϕ|Cqs (E) and by (18), m(E ′) ≤ Cm(E ′1)m(E) where E ′1 is the
1-cylinder containing E ′. Thus

|(Lz − L0)h|w(Pk0,j) ≤ ‖h‖sC0e
|z|g0|z||g|Cqs (∆)

∑
`′,j′

β−`
′
m(∆`′,j′).

This, together with (49), proves the lemma.

6 Proof of Theorems 5 and 6

Proof of Theorem 5. For any measure η ∈ B, we may define its projection η̃ on M by
η̃(A) = η(π−1A) for all Borel A ⊂ M . In particular, if ν ∈ B is an invariant measure for F ,
then π∗ν = ν̃ is an invariant measure for f due to the relation π ◦ F = f ◦ π. Statement (i)
now follows from Theorem 2(i),(ii).

That statement (ii) follows from Theorem 2(iv) is by now standard, although we follow
a different route than the one used in [Y1] since we only require our test functions to be
Hölder continuous along stable or unstable leaves separately. The crucial points are: (A) if
ψ ∈ Cζ(Γu(M)) and we choose β0 ≥ αζ/2, then its lift ψ◦π ∈ Lipu(∆); (B) if ϕ ∈ Cζ(Γs(M))
and we choose p ≤ ζ, then ϕ ◦ π ∈ Cps (∆).

To prove (A), take x, y ∈ γu ∈ Γu(∆`,j) and let x0 = F−`x, y0 = F−`y. Then

|ψ(πx)− ψ(πy)| ≤ Hζ
u(ψ)d(πx, πy)ζ ≤ Hζ

u(ψ)d(f `(πx0), f `(πy0))ζ . (50)

Now d(f `(πx0), f `(πy0)) ≤ C0α
s0(πx0,πy0)−` ≤ C0α

s(x,y) by Property (P4)(a). So ψ ◦ π ∈
Lipu(∆) if β0 ≥ αζ .

To prove (B), we take x, y ∈ γs ∈ Γs(∆`,j) and follow (50),

|ϕ(πx)− ϕ(πy)| ≤ Hζ
s (ϕ)d(f `(πx0), f `(πy0))ζ ≤ Hζ

s (ϕ)C0α
ζ`ds(x0, y0)ζ
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using property (P3). But α`ds(x0, y0) = ds(x, y) so that ϕ ◦ π ∈ Cps (∆) for all p ≤ ζ.
Statement (iii) follows from Theorem 1. Since ξ ∈ π∗B is a probability measure, we can

find η ∈ B with Π0η(1) = 1 such that π∗η = ξ. Then fn∗ ξ = fn∗ (π∗η) = π∗(F
n
∗ η) guarantees

the required convergence.
To prove statement (iv), let η ∈ B be such that π∗η = ξ. For g̃ ∈ Cζ(M), define its lift to

∆ by g = g̃◦π. Choosing β0 ≥ αζ/2 and p = ζ as in (ii) guarantees that g ∈ Lipu(∆)∩Cps (∆).
Since eSng̃(πx) = eSng(x) for all x ∈ ∆, Theorem 3 implies,

lim
n→∞

1

n
log ξ(eSng̃) = lim

n→∞

1

n
log η(eSng) = q(z).

Also, {x ∈ ∆ : 1
n
Sng(x) ∈ [a, b]} = π−1{x ∈M : 1

n
Sng̃(x) ∈ [a, b]} so by Theorem 4,

lim
n→∞

1

n
log ξ

(
1

n
Sng̃(x) ∈ [a, b]

)
= lim

n→∞

1

n
log η

(
1

n
Sng(x) ∈ [a, b]

)
= − inf

u∈[a,b]
I(u)

for [a, b] ⊂ [q′(−τmax), q′(τmax)] where I(u) is the Legendre transform of q(z).

Proof of Theorem 6. Let µ denote Lebesgue measure on M and let ν denote the smooth
invariant measure of the dispersing billiard map f . If ξ = ψν for some ψ ∈ Cζ(Γu(M)), then
ψ ◦ π ∈ Lipu(∆) and so η := ψ ◦ π · ν ∈ G by Lemma 4.2. Since π∗η = ξ, we have ξ ∈ π∗B so
that the convergence result and large deviation estimates follow from Theorem 5. It remains
to prove the theorem for measures of the form ξ = ψµ for ψ ∈ Cζ(Γu(M)). This will follow
immediately once we prove the theorem for µ.

Recall that the canonical coordinates used in dispersing billiards are (r, φ) where r in-
dicates position along the boundary of a scatterer (oriented clockwise) and φ is the angle
an outgoing trajectory makes with the unit normal on the boundary. In these coordinates,
µ = k

cosφ
ν where k is a normalizing constant. Since ψ = k

cosφ
is not bounded, µ /∈ π∗G;

however, by approximating µ by measures in π∗G, we can obtain the stated results.

Proof of (i). Let Nε be an ε-neighborhood of φ = ±π
2

in the phase space of the billiard map.

Note that µ(Nε) = O(ε). Let ψε = min{ψ, k
cos(π

2
−ε)} and note that ψε is Lipschitz on M . Let

µε = ψεν. Then since µε ∈ π∗G, for ϕ ∈ C0(M),

lim
n→∞

fn∗ µ(ϕ) = lim
n→∞

fn∗ µε(ϕ) + (µ− µε)(ϕ ◦ fn) = ν(ϕ) + |ϕ|∞O(ε)

by Theorem 5(iii). Sending ε→ 0 proves (i).

Proof of (ii). Let An(a, b) = {x ∈M : 1
n
Sng(x) ∈ [a, b]}. Then,

lim
n→∞

µ(An(a, b)) = lim
n→∞

µε(An(a, b)) + (µ− µε)(An(a, b)) = inf
u∈[a,b]

−I(u) +O(ε),

by Theorem 5(iv). The large deviation result follows by letting ε→ 0.
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[BT] V. Baladi, M. Tsujii, Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms,
Ann. Inst. Fourier 57 (2007), 127-154.

[BY] M. Benedicks and L.-S. Young, Markov extensions and decay of correlations for certain
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65 (1937), 132-148.
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