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Abstract

We study the statistical properties of the infinite horizon Lorentz gas after the introduction
of small holes. Our basic approach is to prove the persistence of a spectral gap for the transfer
operator associated with the billiard map in the presence of such holes. The new feature here
is the interaction between the holes and the infinite horizon corridors, which causes previous
approaches to fail. In order to overcome this difficulty, we redefine the Banach spaces on which
we consider the action of the transfer operator. In this modified setting, we recover a complete
set of results for the open system: Existence of a unified exponential rate of escape and limiting
conditionally invariant measure for a large class of initial distributions, the convergence of the
physical conditionally invariant measure to the smooth invariant measure for the billiard as the
size of the hole tends to zero, and the characterization of the escape rate via a notion of pressure
on the survivor set.

1 Introduction

Dynamical systems with holes are examples of systems whose domains are not invariant under the
dynamics. They arise quite naturally in the study of metastability and in extended particle systems
in which mass or energy leaks between adjacent cells of a long chain. Central questions involve
the rate of escape of mass through the hole and the existence of physically relevant conditionally
invariant measures which describe the (normalized) distribution of mass before it escapes (see [DY]
for a survey of the topic and detailed references).

Despite the popularity of open systems and the successful study of a wide range of specific
systems [PY, C, CMS1, CMS2, CM1, CM2, CMT1, CMT2, LiM, CV, D1, D2, DL, BDM] to name a
few, the mathematical analysis of billiards with holes has been relatively recent, [DWY1, D3] (with
the exception of the earlier paper [LM] which treated a very special case). The paper [DWY1]
considers the billiard map associated with the finite horizon Lorentz gas via Markov extensions
constructed after the introduction of the hole. The reference [D3] establishes a spectral gap for
the transfer operator for the map with holes and generalizes previous results in two ways: by
considering more general holes and by allowing a wider class of dispersing billiards (including those
with corner points).

Although [D3] formally includes the infinite horizon Lorentz gas, the abstract assumptions on
the holes considered there effectively imply that the holes cannot interact with the infinite horizon
corridors in a meaningful way. A single hole placed in an infinite horizon corridor of the billiard
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flow can induce a hole in the phase space of the billiard map with countably many connected
components that do not satisfy the assumptions of [D3]. Indeed, the characteristic function of the
induced hole has infinite norm with respect to the norms used in [D3] and so a new approach is
needed.

The purpose of the present paper is to study the behavior of the infinite horizon Lorentz gas
in the presence of holes which may interact with infinite horizon corridors. We describe specific
examples of such holes in Section 2.2. The geometry of these holes in the phase space of the billiard
map forces us to redefine the required Banach spaces for the infinite horizon billiard so that this
type of hole can be viewed as a small perturbation with respect to these modified norms. To do
this, we will use stable curves and much narrower stable cones that respect the countably many
singularity curves of the map which comprise the set S1. As a consequence, previous arguments
regarding the compactness and embeddings of the Banach spaces used in [DZ1, DZ2, D3] no longer
hold and must be reformulated taking into account this additional partitioning of the phase space.
We show here that one can balance these competing interests in such a way that permits the
analysis of this type of open system.

Once the functional analytic framework has been established in this infinite horizon setting,
we recover the full set of results proved in [DWY1, D3] in the finite horizon case: Existence of a
unified exponential rate of escape and limiting conditionally invariant measure for a large class of
initial distributions; the convergence of the physical conditionally invariant measure to the smooth
invariant measure for the billiard as the size of the hole tends to zero; a characterization of the
escape rate via a notion of pressure on the survivor set and the construction of an invariant measure
which achieves the supremum in the associated variational principle.

The paper is organized as follows. In Section 1.1, we recall the fundamental objects associated
with open systems and establish notation we shall use throughout the paper. In Section 2, we
formulate precisely our setting of an infinite horizon Lorentz gas and our formal assumptions on
the types of holes we admit, and state our main results. Section 3 defines the functional analytic
framework in which we study the transfer operator associated with the billiard map; in particular
we define the modified Banach spaces and establish the key properties which allow us to prove
a spectral gap for the map before the introduction of the hole. In Section 4, we show that this
spectral gap persists for the map with a hole and prove our main theorems regarding the open
system.

1.1 Basic Definitions Regarding Open Systems

We begin by defining the essential concepts that appear throughout this paper. Given a self-map
T of a metric space M and an open set H ⊂M , which we shall call the hole, we define M̊ =M \H
and M̊n = ∩ni=0T

−i(M \H) to be the set of points in M that have not escaped by time n, n ≥ 0.
Note that M̊0 = M̊ .

We let T̊ n = T n|M̊n, for n ≥ 1, denote the map with holes. We will refer to T̊ n as the iterates
of T̊ despite the fact that the domain of T̊ is not invariant: Once a point enters H, it is not allowed
to return.

Rates of escape. Let µ be a Borel probability measure on M (not necessarily invariant with
respect to T ). We define the exponential rate of escape with respect to µ to be −ρ(µ) where

ρ(µ) = lim
n→∞

1

n
log µ(M̊n), (1.1)

when the limit exists.
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Conditionally invariant measures. Define T̊∗µ(A) = µ(T−1A∩ M̊1) for any Borel A ⊂M . We
say µ is conditionally invariant with respect to T̊ if

T̊∗µ(A)

T̊∗µ(M)
= µ(A) for all Borel A ⊆M.

We will refer to the normalizing constant λ = µ(M̊1) as the eigenvalue of µ since iterating the
above equation yields T̊ n∗ µ(A) = λnµ(A) for n ∈ N. In particular, µ(M̊n) = T̊ n∗ (M) = λn so that
− log λ is the escape rate with respect to µ according to (1.1).

Pressure on the survivor set. The survivor set M̊∞ := ∩∞
i=−∞T

i(M \ H) is a T̊ -invariant
(and also T -invariant) set which necessarily supports all the invariant measures that persist after
the introduction of the hole.1 We define the pressure on M̊∞ with respect to a class of invariant
measures C to be

PC = sup
ν∈C

Pν where Pν = hν(T )−

∫

χ+(T ) dν.

Here hν(T ) denotes the Kolmogorov-Sinai entropy of T with respect to ν and χ+(T ) represents the
sum of positive Lyapunov exponents, counted with multiplicity.

We say the open system satisfies a variational principal if ρ(µ) = PC for some physically relevant
reference measure µ and a class of invariant measures C. If there is an invariant measure ν ∈ C
such that ρ(µ) = Pν , we say that ν satisfies an escape rate formula.

2 Setting and Results

In this section, we define our setting of a periodic Lorentz gas, introduce our class of admissible
holes and state our main results.

2.1 Specific Setting: Periodic Lorentz Gas

Let Γi, i = 1, . . . d, denote open convex regions in the 2-torus T
2 such that ∂Γi is C

3 with strictly
positive curvature. The Γi are assumed to be pairwise disjoint and the set Q = T

2 \∪iΓi is referred
to as the billiard table. The billiard flow is defined by a point particle traveling at unit speed in Q
and reflecting elastically at the boundary. The phase space for the billiard flow is Q× S

1/ ∼ with
conventional identifications at the boundaries.

Define M = ∪di=1(∂Γi × [−π/2, π/2]). The collision-to-collision map T :M →M is the billiard
map associated with the flow. We will use the canonical coordinates (r, ϕ) in M , where r is the
arclength parameter in ∂Γi (oriented clockwise) and ϕ is the angle that the post-collision velocity
vector at position r makes with the normal to ∂Γi pointing into Q. It is well known that T preserves
the smooth invariant measure dµSRB = c cosϕdrdϕ, where c = 1/2|∂Q| is the normalizing constant
and |∂Q| denotes the arclength of ∂Q (see for example, [CM, Section 2.12]).

For x = (r, ϕ) ∈ M , define τ(x) to be the time of the first collision of the trajectory starting
at x under the billiard flow. The billiard table is said to have finite horizon if τ has a uniform
upper bound on M . Otherwise, the table is said to have infinite horizon. In this paper, we will be
concerned exclusively with tables having infinite horizon. In addition, we assume that the scatterers
Γi are a positive distance apart. Thus there is some τmin > 0 such that τ(x) ≥ τmin for all x ∈M .

Define S0 = {ϕ = ±π/2}. Then for n ≥ 1, S±n = ∪ni=0T
∓iS0 are the singularity sets for T±n

and T : M \ S1 → M \ S−1 is a piecewise C2 diffeomorphism. In the infinite horizon case, S±1

1In the non-invertible case, we define M̊∞ := ∩∞

i=0T
−i(M \H).
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consist of countably many curves which accumulate on a finite number of infinite horizon points.
See [CM, Section 4.10] for a detailed description of the singularity sets.

The assumption of strictly positive curvature and the existence of τmin > 0 guarantee the
uniform hyperbolicity of T : There are families of stable and unstable cones (defined in Section 3.1)
which are strictly invariant under DT−1 and DT respectively.

Near S1, the norm of DT blows up. In order to control distortion, we introduce homogeneity
strips, following [BSC1]. Fix k0 > 0 to be determined later and for k ≥ k0 define

Hk = {(r, ϕ) ∈M : (k + 1)−2 ≤ π/2− ϕ ≤ k−2}

H−k is defined similarly near ϕ = −π/2.
We call a curve W ⊂ M stable if the tangent vector to W lies in the stable cone at x for each

x ∈ W . Moreover, a stable curve is called homogeneous if it lies in a single homogeneity strip. In
Section 3.1 we will define a set of homogeneous stable curves Ws which are invariant under T−1

and a set of homogeneous unstable curves Wu which are invariant under T .
In fact, we shall need finer control of stable curves than the set Ws and so also in Section 3.1,

we define a set Ws
1 ⊂ Ws of homogeneous stable curves each contained in one component ofM \S1.

This is the set of curves on which we shall build our function spaces and it effectively repartitions
M into a countable number of components, in addition to those already created by the homogeneity
strips, Hk.

2.2 Introduction of Holes

We introduce abstract assumptions on the type of holes allowed in the phase space M and then
give some examples of holes with physical motivation. Let Nε(A) denote the ε-neighborhood of a
set A in M .

A hole H ⊂ M is an open set with countably many connected components. Each component
of H has a boundary comprised of finitely many compact smooth curves. In addition, we require
that H satisfy the following three conditions.

(H1) (Complexity bound) There exists B0 > 0 such that any stable curve W ∈ Ws
1 can be cut into

at most B0 connected components by ∂H.

(H2) (Weak transversality) There exist B1, t0 > 0 such that for any W ∈ Ws
1 , mW (Nε(∂H)∩W ) ≤

B1ε
t0 for all ε > 0 sufficiently small, where mW denotes unnormalized arclength measure on

W .

(H3) (Finite partitioning of Hk) For each k ∈ N, there exists Nk such that H ∩ Hk consists of at
most Nk connected components.

We define H(B0, B1) to be the set of all holes satisfying (H1)–(H3) with uniform constants B0

and B1. Note that we do not need uniformity in the sequence Nk. The constants B0 and B1 will
ensure uniform control of our norms along a sequence of holes in H(B0, B1), which guarantees the
persistence of a spectral gap for sufficiently small holes.

Although we prove our theorems for holes in M that satisfy these abstract assumptions, we are
especially interested in holes ω which are first made in the billiard table Q for the flow and in turn
induce holes Hω in M . Such holes have greater interest since they have a physical interpretation on
the level of the billiard flow. Examples of such holes presented in [D3] include: (1) holes consisting
of arcs in ∂Q; (2) holes which are open, convex, connected sets in the interior of Q; (3) generalized
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holes which depend on both the angle and position of a particle to allow escape. The first two
types listed above were introduced in [DWY1].

Below, we give two examples of holes in Q which induce holes in M satisfying (H1)–(H3). For
each example, we verify that Hω satisfies (H1)–(H3) and then explain why Hω does not fit into the
framework used in [D3].

Example 1: An open hole in an infinite horizon corridor.
Let ω be an open, convex connected set in Q disjoint from the scatterers. Since ω is disjoint

from M , we have a choice as to how to define the induced hole Hω. We define Hω ⊂ M to be the
set of points (r, ϕ) ∈ M whose trajectories under the flow will enter ω × S

1 before making their
next collision. This is equivalent to the set of first collisions of ω × S

1 under the reverse billiard
flow (running the flow backwards). Such holes are called holes of Type II in [DWY1], although
for technical reasons, our Hω here is in fact T−1Hω in [DWY1]. Essentially, we define Hω to be
the ‘backward shadow’ of the hole ω under the flow, while [DWY1] considers it to be the ‘forward
shadow.’

The geometry of ∂H for holes of this type can be understood by considering ω as a small
scatterer in Q. Then ∂H comprises two types of curves: the backward images of ∂ω × {±π/2}
under the flow and curves in S1. The first type are curves in M which have the same properties as
curves in S1 \ S0, i.e. they are decreasing curves which terminate on other curves in S1. Thus ∂H
comprises curves with negative slopes and parts of S0, which are horizontal lines. Although ∂H is
not uniformly transverse to Cs(x), it does satisfy (H2). We postpone the proof of this fact until
Section 4.5.

Now suppose ω lies in an infinite horizon corridor as shown in Figure 1, top. Then the induced
hole Hω intersects a sequence of components of M \ S1 which accumulate on one of the finitely
many infinite horizon points. Note that for singularity curves of high index, there can be at most
two connected components of Hω per connected component of M \S1. Moreover, there is an index
Nω past which Hω will contain all components ofM \S1 accumulating on the infinite horizon point.
See Figure 1, bottom left.

Figure 1, bottom right, shows the image THω near an infinite horizon point. Since THω is
comprised of increasing curves and is uniformly transverse to the stable cones, by the injectivity of
T , we have (H1) satisfied with B0 = 3.

In Section 4.5, we also prove that this type of hole satisfies (H3) with Nk = O(k4). This is
because in a homogeneity strip Hk in a neighborhood of one of the infinite horizon points, there
are O(k4) components of M \ S1 that intersect Hk.

We remark that if we formulate (H1) for curves in Ws rather than Ws
1 , a single hole of this

type will satisfy (H1) with B0 = B0(Nω). However, we cannot choose holes of this type sufficiently
small and belonging to H(B0, B1) for fixed B0 because as we shrink ω, Nω and therefore B0(Nω)
increases without bound. Indeed, B0 increases like k4, where k is the least index of homogeneity
strips intersected by those components of M \ S1 with index greater than Nω. Thus this type of
hole cannot be analyzed in the framework of [D3].

Example 2: A slit in an infinite horizon corridor.
A more extreme example is a hole in the form of a slit in the billiard table. If the slit is oriented

parallel to the infinite horizon corridor (ω would be a horizontal line segment in Figure 1, top), the
induced hole Hω will have countably many components accumulating on one of the infinite horizon
points. In this case, there is no index Nω as in Example 1; rather the structure of components of
Hω in each component of M \ S1 is the same as that of Example 1 and simply continues without
end as it accumulates on the infinite horizon point.
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2
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T (∂Γ2 × {π
2
})

Figure 1: Top: A hole ω of Type II in an infinite horizon corridor. Unfolding the billiard table, we
number the scatterers Γi, i ≥ 1. Sample trajectories are shown which induce the hole Hω in ∂Γℓ
and its forward shadow THω in ∂Γ1. Bottom left: The induced hole Hω in the component of the
phase space M corresponding to Γℓ in a neighborhood of the infinite horizon point xj′ . Singularity
curves belonging to S1 are also shown; these curves typically pass through Hω until the index is
high enough that Hω contains all curves in S1 accumulating on xj′ . Bottom right: The forward
shadow THω in the component of the phase space M corresponding to Γ1 in a neighborhood of the
infinite horizon point xj. Singularity curves in S−1 are also shown.

As before, (H1) is satisfied with B0 = 3, the proof of (H2) is postponed until Section 4.5 and
(H3) is satisfied with Nk = O(k4).

This hole would fail assumption (H1) if (H1) were formulated for curves in Ws rather than
Ws

1 . As explained above, in a neighborhood of an infinite horizon point, a homogeneity strip Hk

intersects O(k4) curves in S1. Thus a homogeneous stable curve could be cut into O(k4) pieces in
Hk by ∂Hω, and taking the supremum over k, we would violate (H1). Thus this type of hole also
does not satisfy the assumptions used in [D3].

Holes of Type II which lie entirely outside of infinite horizon corridors also satisfy (H1)–(H3),
but the results of [D3] apply to these holes so we do not elaborate on them here. If we take ω to be
an arc in ∂Q (called a hole of Type I in [DWY1]), this induces a hole Hω which is a single vertical
rectangle in M . All holes of Type I satisfy (H1)–(H3) above and also fit the framework of [D3].
We leave the interested reader to generate more examples of holes ω in Q which satisfy (H1)–(H3)
(see [DWY1, D3] for some ideas).
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2.3 Transfer operator

Since the Banach spaces B and Bw that we shall work with are spaces of distributions, we begin by
defining the transfer operator L associated with T in a general setting. For a smooth test function
ψ, ψ ◦ T is no longer smooth; in order to bypass this problem, we first define L acting on scales of
spaces defined using the set of stable curves Ws

1 , defined in Section 3.1. We will then embed B and
Bw into these spaces.

Define T−nWs
1 to be the set of homogeneous stable curves W such that T n is smooth on W

and T iW ∈ Ws
1 for 0 ≤ i ≤ n. It follows from the invariance of Ws

1 that T−nWs
1 ⊂ Ws

1 . We define
T−nWs similarly.

Let Fb denote the set of bounded, measurable complex-valued functions on M . For W ∈
T−nWs

1 , ψ ∈ Fb and 0 < p ≤ 1 define Hp
W (ψ) to be the Hölder constant with exponent p of ψ on

W measured according to arclength. Define Hp
n(ψ) = supW∈T−nWs

1
Hp
W (ψ) and let C̃p(T−nWs) =

{ψ ∈ Fb : H
p
n(ψ) < ∞}, denote the set of complex-valued functions which are Hölder continuous

on elements of T−nWs
1 . The set C̃

p(T−nWs
1) equipped with the norm |ψ|Cp(T−nWs

1
) = |ψ|∞+Hp

n(ψ)

is a Banach space. Recalling that Sn denotes the singularity set for T n, we define Cp(T−nWs
1) to

be the closure of C1(M \ Sn) in C̃p(T−nWs
1 ,C).

2

It follows from uniform hyperbolicity (3.1) that if ψ ∈ C̃p(T−(n−1)Ws
1), then ψ◦T ∈ C̃p(T−nWs

1).
Similarly, if ξ ∈ C1(M \ Sn−1), then ξ ◦ T ∈ C1(T−nWs

1). These two facts together imply that for
p < 1, if ψ ∈ Cp(T−(n−1)Ws

1), then ψ ◦ T ∈ Cp(T−nWs
1).

If f ∈ (Cp(T−nWs
1))

′, is an element of the dual of Cp(T−nWs
1), then L : (Cp(T−nWs

1))
′ →

(Cp(T−(n−1)Ws
1))

′ acts on f by

Lf(ψ) = f(ψ ◦ T ) ∀ψ ∈ Cp(T−(n−1)Ws
1).

We denote (normalized) Lebesgue measure on M by m. If f ∈ L1(M,m), then f is canonically
identified with a signed measure absolutely continuous with respect to Lebesgue, which we shall
also call f , i.e.,

f(ψ) =

∫

M
ψf dm.

With the above identification, we write L1(M,m) ⊂ (Cp(T−nWs
1))

′ for each n ∈ N. Then restricted
to L1(M,m), L acts according to the familiar expression

Lnf = f ◦ T−n |DT n(T−n)|−1

for any n ≥ 0 and any f ∈ L1(M,m), where |DT n| denotes |detDT n| to simplify notation. When
we wish to be explicit about the dependence of L on a map T , we will use the notation LT .

After the introduction of a hole H ⊂ M , we define the transfer operator L̊ corresponding to
T̊ = T |M̊1 by

L̊ = 1M̊L1M̊ = L1M̊1 , (2.1)

where 1A denotes the indicator function of the set A. For any test function ψ ∈ Cp(Ws
1) and

f ∈ (Cp(T−1Ws
1)

′, we have

L̊f(ψ) = 1M̊L(1M̊f)(ψ) = L(1M̊f)(ψ1M̊ ) = f(ψ ◦ T · 1M̊1),

using the fact that 1M̊1M̊ ◦ T = 1M̊1 . Iterating this expression, we have for each n ∈ N,

L̊nf(ψ) = f(ψ ◦ T n · 1M̊n).

When we wish to be explicit about the dependence of L̊ on H, we use the notation L̊H .

2Here by C̃1, we mean C̃p with p = 1.
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2.4 Statement of Results

In Section 3.4 we shall define Banach spaces (B, ‖ · ‖B) and (Bw, | · |w) similar to those used in
[DZ1, DZ2], but using the smaller set of stable curves Ws

1 . We will prove that LT has a spectral
gap on (B, ‖ · ‖B) using these norms and use this to prove a spectral gap for L̊H . We postpone the
definition of these norms and first state our main results.

For all our results, we assume our map T is the billiard map of an infinite horizon Lorentz gas
with the properties described in Section 2.1. Our first result establishes that the usual characteri-
zation of our Banach spaces still holds despite the countable partition of the phase space that we
have adopted.

Theorem 2.1. Let β, p > 0 be from the definition of the norms, Section 3.4. For s > β/(1 − β)
and each n ≥ 0, there is a sequence of continuous, injective embeddings, Cs(M) →֒ B →֒ Bw →֒
(Cp(T−nWs)′. Moreover, the unit ball of (B, ‖ · ‖B) is compactly embedded in (Bw, | · |w).

L is well-defined as a continuous operator on both B and Bw. In addition, L has a spectral gap
on B, i.e. 1 is a simple eigenvalue (whose normalized eigenvector is µSRB) and all other eigenvalues
have modulus bounded by σ0 for some σ0 < 1.

In order to obtain information about the spectrum of L̊ from the spectrum of L, we will use
the perturbative framework of Keller and Liverani [KL]. This framework requires two ingredients:
(1) uniform Lasota-Yorke inequalities along a sequence of holes; (2) smallness of the perturbation
in the following norm:

|||L||| := {|Lf |w : ‖f‖B ≤ 1}. (2.2)

The following two propositions establish these ingredients.

Proposition 2.2. Fix B0, B1 > 0 and let H(B0, B1) denote the corresponding family of holes
satisfying (H1)–(H3). Then there exist constants C > 0, σ < 1 depending only on T , B0 and B1

such that for all H ∈ H(B0, B1) and n ∈ N,

‖L̊nHf‖B ≤ Cσn‖f‖B + C|f |w for all f ∈ B; (2.3)

‖Lnf‖B ≤ Cσn‖f‖B + C|f |w for all f ∈ B; (2.4)

|L̊nHf |w ≤ C|f |w for all f ∈ Bw; (2.5)

|Lnf |w ≤ C|f |w for all f ∈ Bw. (2.6)

Let |W | denote the arclength of a curve W ⊂ M . For a hole H ⊂ M , we define diams(H) =
supW∈Ws

1
|W ∩H| and refer to this quantity as the stable diameter of H. We define the unstable

diameter diamu(H) similarly using curves in Wu.

Proposition 2.3. Suppose H is a hole satisfying (H1)–(H3) and let h = diams(H). Then there
exists C > 0, depending only on B0, B1 and T , such that

|||L − L̊H ||| ≤ Chα−γ ,

where 0 < γ < α are from the norms, Section 3.4.

Theorem 2.4. Fix B0, B1 > 0. Then for all H ∈ H(B0, B1) with diams(H) sufficiently small,
L̊H has a spectral gap on B. Its eigenvalue of maximum modulus λH < 1 is real and its associated
eigenvector µH ∈ B is a conditionally invariant measure for T̊ that is singular with respect to
Lebesgue measure.

Moreover, for any probability measure µ ∈ B such that limn→∞ λ−nH L̊nHµ 6= 0, we have,
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(a) ρ(µ) = log λH ;

(b)

∥

∥

∥

∥

∥

L̊nHµ

|L̊nHµ|
− µH

∥

∥

∥

∥

∥

B

≤ Cσn1 , for some C > 0, σ1 < 1.

In particular, both Lebesgue measure and the smooth invariant measure µSRB for T have the same
escape rate and converge to µH under the normalized action of T̊ .

We remark that the characterization of µH via the limit in (b) above is very important in open
systems. Infinitely many conditionally invariant measures have been shown to exist under quite
general conditions for any 0 ≤ λ < 1 [DY] so that we are not interested in existence results for such
measures. Rather, we are interested in conditionally invariant measures with physical properties:
Measures that can be realized as the limit of (renormalized) Lebesgue measure or other physically
relevant initial distributions (as in (b) above) or that describe the rate of escape with respect to a
large class of reference measures (as in (a)).

Theorem 2.5. Let Hε be a sequence of holes in H(B0, B1) such that diams(Hε) ≤ ε. Let µε denote
the conditionally invariant measures corresponding to λε from Theorem 2.4. Then

lim
ε→0

|µε − µSRB|w = 0,

and λε → 1 as ε→ 0.

Note that convergence in the weak norm | · |w implies the weak convergence of measures.
Next we proceed to study the connection between escape rate and pressure on the survivor set.

Let MT̊ denote the set of ergodic, T̊ -invariant probability measures supported on M̊∞. Following
[DWY2], we define a class of invariant measures by

GH = {ν ∈ MT̊ : ∃C, r > 0 such that ∀ε > 0, ν(Nε(S0 ∪ ∂H)) ≤ Cεr}. (2.7)

If H = ∅, the condition on Nε(S0) is the same as that used in [KS] to ensure the existence of
Lyapunov exponents and stable and unstable manifolds for ν-a.e. point. Thus this restriction, or
something like it, on the class of invariant measures is necessary for maps with singularities.

Theorem 2.6. Suppose H ∈ H(B0, B1) satisfies the assumptions of Theorem 2.4. If diamu(H) is
sufficiently small, then

ρ(m) = log λH = sup
ν∈GH

{hν(T )− χ+
ν (T )}.

Moreover, we may define a measure νH via the limit,

νH(ψ) = lim
n→∞

λ−nH µH(ψ · 1M̊n) for all ψ ∈ C0(M),

and νH is an invariant probability measure for T̊ belonging to GH that achieves the supremum in
the variational principle above, i.e. ρ(m) = hνH (T )− χ+

νH
(T ).

Escape rate formulas have been proved in several of the references mentioned in the introduction;
for such systems, variational principles are often formulated in terms of the associated symbolic
dynamics. Here, we follow the general strategy of [DWY2], which contains variational principles
and inequalities for nonuniformly hyperbolic systems without appealing to symbolic dynamics.
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3 Functional Analytic Framework

In this section, we define the Banach spaces on which the transfer operators L and L̊H have a
spectral gap. We focus on establishing some fundamental properties of those spaces in order to
prove Theorem 2.1. We leave the analysis of the map with holes to Section 4. We begin by recalling
some important properties of T and defining the families of stable and unstable curves we shall use.

3.1 Hyperbolicity and Singularities

Let Kmin > 0 and Kmax < ∞ denote the minimum and maximum curvatures of ∂Bi. Following
[CM], we may define global stable and unstable cones in the tangent spaces TxM by

C̃s(x) = {(dr, dϕ) ∈ TxM : −Kmax − τ−1
min ≤ dϕ/dr ≤ −Kmin},

Cu(x) = {(dr, dϕ) ∈ TxM : Kmin ≤ dϕ/dr ≤ Kmax + τ−1
min},

so that DT (Cu(x)) ⊂ Cu(Tx) and DT−1C̃s(x) ⊂ C̃s(T−1x) wherever DT and DT−1 are defined.
Moreover, there exist constants Ce > 0, Λ > 1 such that

‖DT n(x)v‖ ≥ CeΛ
n‖v‖ ∀v ∈ Cu(x), ; and ‖DT−n(x)v‖ ≥ CeΛ

n‖v‖ ∀v ∈ C̃s(x), (3.1)

where ‖ · ‖ denotes the Euclidean norm.
In order to better control the set of stable curves for our norms, we will define and use a set of

narrower stable cones
Cs(x) := DT−1

Tx (C̃
s(Tx)) ⊂ C̃s(x).

Note that the family Cs(x) is continuous on each connected component of M \ S1.
We define Ws

1 to be those homogeneous stable curves contained in a single component of M \S1

whose tangent vectors at each point lie inside the narrower cones Cs(x) and whose curvature is
bounded by a uniform constant Bc > 0. It is shown in [CM, Section 5.10] that by choosing Bc
sufficiently large, we can ensure that the connected components of T−1W are again in Ws

1 for each
W ∈ Ws

1 . Finally, we require that curves in Ws
1 have length no greater than δ0, where δ0 is chosen

in (3.3).
Since we do not need as precise control on unstable curves, we define Wu to be the set of

homogeneous unstable curves whose tangent vectors lie in the global unstable cones Cu(x).
Next we recall the structure of singularity sets of T near infinite horizon points as described

in [CM, Section 4.10]. Let xj denote one of the finitely many infinite horizon points on S0 in
one component Mi of M . There is one curve in S1, which we denote by Sj,0, containing xj as
an endpoint and running the full height of Mi to the other boundary in S0. Sj,0 corresponds to
tangential collisions with a scatterer adjacent to Γi. There are countably many curves Sj,ℓ ⊂ S1

which accumulate on xj. These curves have one endpoint on Sj,0 and the other on S0. The distance
from Sj,ℓ to xj is of order ℓ

−1 along S0 and of order ℓ−1/2 along Sj,0. The region bounded by Sj,0,
Sj,ℓ, Sj,ℓ+1 and S0 is called an ℓ-cell and denoted by D+

j,ℓ. The flight time τ(x) ∼ ℓ for x ∈ D+
j,ℓ.

Similarly, one can define ℓ-cells D−
j,ℓ whose boundaries consist of curves in S−1. It is shown

in [CM] that T−1D−
j,ℓ = D+

j′,ℓ. If we ignore the hole in Figure 1, then we can see that Figure 1,

bottom left, shows singularity curves in S1 forming the D+
j′,ℓ cells and Figure 1, bottom right, shows

singularity curves in S−1 forming the D−
j,ℓ cells.
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3.2 Uniform Properties of T

In this section we recall the uniform properties (A1)–(A5) for a hyperbolic map T used in [DZ2]
to prove the required Lasota-Yorke inequalities for LT . The following properties refer to a map
without a hole. The importance of the estimates in [DZ2] for us is that the constants appearing in
the Lasota-Yorke inequalities depend only on the quantities appearing in (A1)–(A5) and the choices
of parameters in the norms. The properties as written in [DZ2] are formulated in an abstract setting.
Rather than reformulate this abstract setting, we translate (A1)–(A5) into the concrete setting of
the infinite horizon Lorentz gas which we have adopted here. This will make the properties easier
to verify and will avoid cumbersome additional notation which serves no purpose. Translated into
this setting, the abstract assumptions read as well-known facts about dispersing billiards.

(A1) Jacobian. |DT (x)| := |detDT (x)| = cosϕ(x)/ cos ϕ(Tx) wherever DT (x) exists.

(A2) Hyperbolicity. The set S0 consists of finitely many curves, although S±n, n ≥ 1, may be
finite or countable. There exist families of stable and unstable cones, C̃s(x) and Cu(x), continuous
on the closure of each component of M \ S0, such that the angle between C̃s(x) and Cu(x) is
uniformly bounded away from 0 on M . Furthermore, there exist constants C > 0, Λ > 1 such that
the following hold.

1. DT (Cu(x)) ⊂ Cu(Tx) and DT−1(C̃s(x)) ⊂ C̃s(T−1x) whenever DT and DT−1 exist.

2. ‖DT (x)v‖∗ ≥ Λ‖v‖∗,∀v ∈ Cu(x) and ‖DT−1(x)v‖∗ ≥ Λ‖v‖∗,∀v ∈ C̃s(x), where ‖ · ‖∗ is an
adapted norm, uniformly equivalent to the Euclidean norm, ‖ · ‖.

(A3) Structure of Singularities.

1. There exists C1 > 0 such that for all x ∈M ,

C1
τ(T−1x)

cosϕ(T−1x)
≤

‖DT−1(x)v‖

‖v‖
≤ C−1

1

τ(T−1x)

cosϕ(T−1x)
, ∀v ∈ C̃s(x).

Let expx denote the exponential map from the tangent space TxM to M . Then,

‖D2T−1(x)v‖ ≤ C−1
1 τ2(T−1x)(cosϕ(T−1x))−3,

for all v ∈ TxM such that T−1(expx(v)) and T
−1x lie in the same homogeneity strip.

Let x∞ denote one of the finitely many infinite horizon points and let {Sℓ} ⊂ S−1 denote the
sequence of curves in S−1 converging to x∞. Let Mℓ,k denote the set of points between Sℓ
and Sℓ+1 and whose image under T−1 lies in Hk. Then there exists a constant cs > 0 such
that k ≥ csℓ

1/4.

2. There exists C2, t0 > 0 such that for any stable curveW ∈ Ws
1 and any smooth curve S ⊂ S−n,

we have mW (Nε(S) ∩W ) ≤ C2ε
t0 for all ε > 0 sufficiently small.

3. ∂Hk are uniformly transverse to the stable cones.

4. There exists C3 > 0 such that for all W ∈ Ws
1 , W ⊂ Hk, we have |W | ≤ C3k

−3.

5. For k ≥ k0, choose Wk ⊂ Hk, Wk ∈ Ws
1 . Define cosWk to be the average value of cosϕ on

Wk integrated according to arclength. Then for any such choice of Wk,
∑

k≥k0
cosWk <∞.

11



(A4) Invariant families of stable and unstable curves. There are invariant families of curves
Ws

1 andWu with the properties described in Sect. 3.1. Moreover, we require the following distortion
bounds along stable curves.

There exists Cd > 0 such that for any W ∈ Ws
1 with T iW ∈ Ws for i = 0, 1, . . . , n, and any

x, y ∈W ,

∣

∣

∣

∣

JWT
n(x)

JWT n(y)
− 1

∣

∣

∣

∣

≤ CddW (x, y)1/3 and

∣

∣

∣

∣

|DT n(x)|

|DT n(y)|
− 1

∣

∣

∣

∣

≤ CddW (x, y)1/3,

where JWT (x) denotes the Jacobian of T along W .
We also require an analogous distortion bound along unstable curves. If T iW ∈ Wu for 0 ≤

i ≤ n, then for any x, y ∈W ,

∣

∣

∣

∣

|DT n(x)|

|DT n(y)|
− 1

∣

∣

∣

∣

≤ CddW (T nx, T ny)1/3.

(A5) One-step expansion. Let W ∈ Ws
1 and partition the connected components of T−1W

into maximal pieces Vi such that each Vi is a homogeneous stable curve. Let |JViT |∗ denote the
minimum contraction on Vi under T in the metric induced by the adapted norm from (A2)(2).
There exists a choice of k0 for the homogeneity strips such that

lim
δ→0

sup
W∈Ws

1

|W |<δ

∑

i

|JViT |∗ < 1. (3.2)

We remark that in the context of the infinite horizon Lorentz gas, (A3)(3) and (A3)(4) follow
immediately from the definition of C̃s(x) and Hk. Also, cosWk ∼ k−2 so that (A3)(5) holds easily
as well.

3.3 Representation of Admissible Stable Curves

In light of (A5), we may fix δ0 > 0 and θ∗ < 1 such that

sup
W∈Ws

1

|W |<δ0

∑

i

|JViT |∗ = θ∗. (3.3)

Note that this also fixes the choice of k0 for the remainder of the paper.
Since the stable cone Cs(x) is bounded away from the vertical direction, any curveW ∈ Ws

1 can
be viewed as the graph of a function ϕW (r) of the arclength coordinate r with derivative uniformly
bounded above. For each homogeneous stable curve W , let IW denote the r-interval on which ϕW
is defined and define GW (r) = (r, ϕW (r)) so that W = {GW (r) : r ∈ IW}.3

With this view of stable curves, we may redefine Ws
1 to be the set of homogeneous stable curves

satisfying |W | ≤ δ0 and |d
2ϕW

dr2 | ≤ Bc for some Bc > 0. From this point forward, we fix a choice of
Bc > 0 such that Ws

1 is invariant under T−1 in the sense described in Section 3.1.

3Our treatment of stable curves here differs from that in [DZ2]. In that abstract setting, stable curves are defined
via graphs in charts of the given manifold. In the present more concrete setting, we dispense with charts and use the
global (r, ϕ) coordinates.
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We define a distance in Ws
1 as follows. Let Wi = GWi(Ii), i = 1, 2 be two curves in Ws

1

with defining functions ϕWi . We denote by ℓ(I1△I2) the length of the symmetric difference of the
r-intervals on which they are defined. Then the distance between W1 and W2 is defined as

dWs
1
(W1,W2) = η(W1,W2) + ℓ(I1△I2) + |ϕW1

− ϕW2
|C1(I1∩I2),

where η(W1,W2) = 0 if W1 and W2 lie in the same homogeneity strip in the same component of
M \ S1 and η = ∞ otherwise.

For two functions ψi ∈ Cp(Wi), we define the distance between them to be,

dq(ψ1, ψ2) = |ψ1 ◦GW1
− ψ2 ◦GW2

|Cq(I1∩I2),

where q < 1 is from the definition of the strong stable norm in Section 3.4.

3.4 Definition of the Norms

Given a curve W ∈ Ws
1 and 0 ≤ p ≤ 1, we define C̃p(W ) to be the set of complex valued Hölder

continuous functions on W with exponent p, with distance measured in the Euclidean metric along
W . We set Cp(W ) to be the closure of C̃1(W ) in the C̃p-norm: |ψ|Cp(W ) = |ψ|C0(W )+H

p
W (ψ), where

Hp
W (ψ) denotes the Hölder constant of ψ on W as in Sect. 2.3. C̃p(M) and Cp(M) are defined

similarly.
For α, p ≥ 0, define the following norms for test functions,

|ψ|W,α,p := |W |α · cosW · |ψ|Cp(W ),

where cosW denotes the average value of cosϕ along W integrated with respect to arclength.
We choose constants to define our norms as follows. Choose α, γ > 0 such that γ < α < 1

3 .
Next choose p, q > 0 such that q < p < γ and note that p < 1

3 necessarily by the restriction on γ.

Finally, choose β > 0 such that β < min
{ t0(α−γ)

3 , p− q, 13 − α
}

.
Given a function f ∈ C1(M), define the weak norm of f by

|f |w := sup
W∈Ws

1

sup
ψ∈Cp(W )
|ψ|W,γ,p≤1

∫

W
fψ dmW .

We define the strong stable norm of f by

‖f‖s := sup
W∈Ws

1

sup
ψ∈Cq(W )
|ψ|W,α,q≤1

∫

W
fψ dmW ,

and the strong unstable norm of f by

‖h‖u := sup
ε≤ε0

sup
W1,W2∈Ws

1

dWs
1
(W1,W2)<ε

sup
ψi∈Cp(Wi)
|ψi|Wi,γ,p

≤1

dq(ψ1,ψ2)<ε

ε−β
∣

∣

∣

∣

∫

W1

fψ1 dmW −

∫

W2

fψ2 dmW

∣

∣

∣

∣

,

where ε0 > 0 is chosen less than δ0, the maximum length of W ∈ Ws
1 . We then define the strong

norm of f by
‖f‖B = ‖f‖s + z‖f‖u,

where z is a small constant chosen in (3.13).
We define B to be the completion of C1(M) in the strong norm and Bw to be the completion of

C1(M) in the weak norm.
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3.5 Properties of the Banach spaces

We review the essential properties of the Banach spaces proved in [DZ1, DZ2]. Most we will not
have to reprove, but several will require separate proofs since our Banach spaces are defined using
the smaller set of curves Ws

1 so that we have partitioned the space into a countable number of
components according to M \ S1.

We first recall two lemmas from [DZ2] which we shall not have to reprove, but whose explicit
statements we shall need to invoke later.

Lemma 3.1. ([DZ2, Lemma 3.5]) Let P be a (mod 0) countable partition of M into open, simply
connected sets such that (1) for each k ∈ N, there is an Nk < ∞ such that at most Nk elements
P ∈ P intersect Hk; (2) there are constants K,C3, t0 > 0 such that for each P ∈ P and W ∈ Ws

1 ,
P ∩W comprises at most K connected components and for any ε > 0, mW (Nε(∂P )∩W ) ≤ C3ε

t0 .
Let s > β/(1 − β). If f ∈ Cs(P ) for each P ∈ P and supP∈P |f |Cs(P ) < ∞, then f ∈ B. In

particular, Cs(M) ⊂ B and both Lebesgue measure and the smooth SRB measure for T are in B.

The lemma above is proved in [DZ2] with Ws in place of Ws
1 , but this change is not essential

to the approximation argument given there so we do not repeat its proof.

Lemma 3.2. ([DZ2, Lemma 5.3]) If f ∈ B and ψ ∈ Cs(M), s > max{β/(1− β), p}, then ψf ∈ B.
Moreover, ‖ψf‖B ≤ C‖f‖B|ψ|Cp(M) for some C > 0 independent of ψ and f .

Our next lemma, which is key to establishing the spectral decomposition of L on B, goes through
with only minor modifications.

Lemma 3.3. The unit ball of B is compactly embedded in Bw.

Proof. Although our set of curves Ws
1 is much more refined than the set Ws used in [DZ2], the

compactness argument remains essentially unchanged due to the fact that although M \ S1 has
countably many components, for any ε > 0, only finitely many of these components have stable
curves with length greater than ε.

First notice that on a fixed W ∈ Ws
1 , | · |W,γ,p is equivalent to | · |Cp(W ) and | · |W,α,q is equivalent

to | · |Cq(W ) so that p > q implies that the unit ball of | · |W,γ,p is compactly embedded in | · |W,α,q.
Since ‖ · ‖s is the dual of | · |W,α,q and | · |w is the dual of | · |W,γ,p on each curve W ∈ Ws

1 , the
unit ball of ‖ · ‖s is compactly embedded in | · |w on W . It remains to compare the weak norm on
different curves.

Let 0 < ε ≤ ε0 be fixed. LettingM1(x) denote the homogeneous component ofM \S1 containing
x, we split M into two parts:

A = {x ∈M :M1(x) has at least one stable curve W with |W | ≥ ε}

and B = Ac. Note that A contains only finitely many homogeneous components of M \ S1 due to
the structure of the singularity sets described in Section 3.1. In particular, there exists kε ∈ N such
that ∪k>kεHk ⊂ B, due to (A3)(4).

Let h ∈ C1(M) with ‖h‖B ≤ 1. First we estimate the weak norm of h on curves W in B. If
W ⊂ B, and |ψ|W,γ,p ≤ 1, then

∫

W
hψ dmW ≤ ‖h‖s|ψ|W,α,q ≤ ‖h‖s|W |αf(W )|ψ|Cq(W ) ≤ C‖h‖sε

α−γ . (3.4)

Now on A, we can use the same approximation argument used in [DZ2, Lemma 3.9] since there
are only finitely many homogeneous connected components of M \ S1 in A.
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Thus we can find finitely many curves Wi ∈ Ws
1 , i = 1, . . . Nε, and finitely many functions

ψi,j ∈ Cp(Wi), j = 1, . . . Lε, such that for any W ∈ Ws
1 , W ⊂ A, and ψ ∈ Cp(W ) with |ψ|W,γ,p ≤ 1,

we have
∣

∣

∣

∣

∫

W
hψ dmW −

∫

Wi

hψi,j dmW

∣

∣

∣

∣

≤ Cεβ‖h‖u,

for some uniform constant C > 0 and some choice of i, j. Putting this together with (3.4), we
conclude that for each 0 < ε ≤ ε0, there exist finitely many bounded linear functionals ℓi,j,
ℓi,j(h) =

∫

Wi
hψi,jdmW , such that

|h|w ≤ max
i≤Nε,j≤Lε

ℓi,j(h) + εβC‖h‖u + εα−γC‖h‖s ≤ max
i≤Nε,j≤Lε

ℓi,j(h) + εβCz−1‖h‖B,

which implies the required compactness.

3.6 Dynamical Estimates and Proof of Theorem 2.1

In order to prove Theorem 2.1, we first need to describe the action of T on stable curves and recall
some growth lemmas proved in [DZ2].

Let W ∈ Ws and let Vi denote the maximal connected components of T−1W after cutting due
to singularities and the boundaries of the homogeneity strips. To ensure that each component of
T−1W is in Ws

1 , we subdivide any of the long pieces Vi whose length is > δ0, where δ0 was chosen
in (3.3). This process is then iterated so that given W ∈ Ws, we construct the components of
T−nW , which we call the nth generation Gn(W ), inductively as follows. Let G0(W ) = {W} and
suppose we have defined Gn−1(W ) ⊂ Ws. First, for any W ′ ∈ Gn−1(W ), we partition T−1W ′ into
at most countably many pieces W ′

i so that T is smooth on each W ′
i and each W ′

i is a homogeneous
stable curve. If any W ′

i have length greater than δ0, we subdivide those pieces into pieces of length
between δ0/2 and δ0. We define Gn(W ) to be the collection of all pieces W n

i ⊂ T−nW obtained in
this way. Note that even if W ∈ Ws \ Ws

1 , it is still the case that each W n
i is in Ws

1 for n ≥ 1.
We recall the results of [DZ1, Section 3.2] in the following growth lemma, which is proved by

iterating the one-step expansion (A5) using mainly combinatorial arguments. It does not need to
be reproved since the sets Gn(W ) are the same as those appearing in [DZ2].

Lemma 3.4. ([DZ1]) Let W ∈ Ws and for n ≥ 0, let Gn(W ) be defined as above. There exists
C4 > 0, independent of W and depending only on the constants appearing in (A1)–(A5), such that
for any n ≥ 0 and any 0 ≤ ς ≤ 1,

∑

Wn
i ∈Gn(W )

|W n
i |
ς

|W |ς
· |JWn

i
T n|C0(Wn

i ) ≤ C4.

The final lemma of this section is needed to prove the continuity of the embedding Bw →
(Cp(T−nWs

1))
′ and is also essential to showing that the peripheral spectrum of L on B is comprised

of measures. It does need to be reproved since the argument is heavily affected by the additional
cutting we have introduced according to S1.

Lemma 3.5. There exists C > 0 such that for each f ∈ C1(M), n ≥ 0, and ψ ∈ Cp(T−nWs
1), we

have
∣

∣

∣

∣

∫

M
fψ dm

∣

∣

∣

∣

≤ C|f |w(|ψ|∞ +Hp
n(ψ)).
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Proof. Define H0 = M \ (∪k≥k0Hk). We partition each component of H0 ∩ (M \ S1) into finitely
many boxes Bj whose boundary curves are elements of Ws

1 and Wu as well as the boundary of
H0 ∩ (M \ S1). We construct the boxes so that each Bj has diameter ≤ δ0 and is foliated by curves
W ∈ Ws

1 . On each Bj , we choose a smooth foliation {Wξ}ξ∈Ej
⊂ Ws

1 , each of whose elements
completely crosses Bj in the approximate stable direction. This is possible since the stable cones
Cs(x) are continuous up to the closure of each component of M \ S1.

We decompose Lebesgue measure on Bj into dm = m̂(dξ)dmξ, where mξ is the conditional
measure of m on Wξ and m̂ is the transverse measure on Ej. We normalize the measures so that
mξ(Wξ) = |Wξ|. Since the foliation is smooth, dmξ = ρξdmW where C−1 ≤ |ρξ|C1(Wξ) ≤ C for
some constant C independent of ξ. Note that m̂(Ej) ≤ Cδ0 due to the transversality of curves in
Ws and Wu.

Next in each homogeneity strip Hk, k ≥ k0, we define D
k
j,ℓ := D+

j,ℓ∩Hk, where D
+
j,ℓ is defined as

in Section 3.1. On each Dk
j,ℓ, we choose a smooth foliation {Wξ}ξ∈Ek

j,ℓ
⊂ Ws

1 whose elements fully

cross Dk
j,ℓ. We again decompose m on each Dk

j,ℓ into dm = m̂(dξ)dmξ , ξ ∈ Ekj,ℓ, and dmξ = ρξdmW

is normalized as above.
Recall that the boundary curves of D+

j,ℓ belong to S1 and so are uniformly transverse to the

horizontal boundaries of the homogeneity strips. Each D+
j,ℓ is subdivided into countably many

components Dk
j,ℓ for k ≥ csℓ

1/4 for some uniform constant cs > 0 by (A3)(1). Thus since typical

curves {Wξ}ξ∈Ek
j,ℓ

have length O(k−3), we must have m̂(Ekj,ℓ) at most Cℓ−1 due to the spacing

between boundary curves of D+
j,ℓ described in Section 3.1.

There will also be large parts of Hk that do not belong to any D+
j,ℓ. These we also foliate

with families of curves in Ws
1 which completely cross Hk completely in the stable direction. We

label these index sets Ek, note that there are only finitely many of them for each Hk and that the
transverse measure m̂(Ek) is of order 1.

Now let h ∈ C1(M) and ψ ∈ Cp(T−nWs
1). Notice that since M = T−nM (mod 0), we have

∫

M hψ dm =
∫

M Lnhψ ◦ T−n dm. We estimate the second integral on each connected component
Ms of M , s = 1, . . . d, where d is the number of scatterers.

∫

Ms

Lnhψ ◦ T−n dm =
∑

j

∫

Bj

Lnhψ ◦ T−n dm+
∑

k≥k0

∫

Hk

Lnhψ ◦ T−n dm

=
∑

j

∫

Ej

∫

Wξ

Lnhψ ◦ T−n ρξ dmWdm̂(ξ) +
∑

k≥k0

∫

Ek

∫

Wξ

Lnhψ ◦ T−n ρξ dmW dm̂(ξ)

+
∑

j,ℓ

∑

k>csℓ1/4

∫

Ek
j,ℓ

∫

Wξ

Lnhψ ◦ T−n ρξ dmW dm̂(ξ)

(3.5)

We change variables and estimate the integrals on one Wξ at a time. Letting W n
ξ,i denote the

components of Gn(Wξ) defined at the beginning of this section, we define JWn
ξ,i
T n to be the stable

Jacobian of T n along the curve W n
ξ,i, and write

∫

Wξ

Lnhψ ◦ T−n ρξ dmW =
∑

i∈Gn(Wξ)

∫

Wn
ξ,i

hψ|DT n|−1JWn
ξ,i
T n ρξ ◦ T

n dmW

≤
∑

i∈Gn(Wξ)

|h|w cos(W n
ξ,i)|W

n
ξ,i|

γ |ψ|Cp(Wn
ξ,i)

|ρξ ◦ T
n|Cp(Wn

ξ,i)
||DT n|−1JWn

ξ,i
T n|Cp(Wn

ξ,i)
.
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Since p ≤ 1/3, the distortion bounds given by (A4) imply that

||DT n|−1JWn
ξ,i
T n|Cp(Wn

ξ,i)
≤ (1 + 2Cd)||DT

n|−1JWn
i
T n|C0(Wn

ξ,i)
. (3.6)

Since cosϕ(x) has bounded distortion on each Hk, by (A1) there exists a uniform constant C > 0
such that

cos(W n
ξ,i) ||DT

n|−1|C0(Wn
ξ,i)

≤ C cos(Wξ). (3.7)

Moreover, for x, y ∈W n
ξ,i, it follows from (3.1) (or equivalently (A2)) that

|ρξ(T
nx)− ρξ(T

ny)|

dW (T nx, T ny)p
·
dW (T nx, T ny)p

dW (x, y)p
≤ |ρξ|Cp(Wξ)CeΛ

−pn (3.8)

and so |ρξ ◦ T
n|Cp(Wn

ξ,i)
≤ C|ρξ|Cp(Wξ) ≤ C for some uniform constant C. Putting these estimates

together yields,

∫

Wξ

Lnhψ ◦ T−n ρξ dmW ≤ C|h|w(|ψ|∞ +Hp
n(ψ)) cos(Wξ)|Wξ|

γ
∑

i

|W n
ξ,i|

γ

|Wξ|γ
|JWn

ξ,i
T n|C0(Wn

ξ,i)

≤ C|h|w(|ψ|∞ +Hp
n(ψ)) cos(Wξ)|Wξ|

γ ,

(3.9)

where in the last line we have used Lemma 3.4 with ς = γ for the sum .
Now we use (3.9) to estimate each of the three sums appearing in (3.5). For the first sum in

(3.5), we combine (3.9) with the fact that there are only finitely many index sets Ej to write

∑

j

∫

Ej

∫

Wξ

Lnhψ ◦ T−n ρξ dmW dm̂(ξ) ≤ C|h|w(|ψ|∞ +Hp
n(ψ))

∑

j

∫

Ej

cos(Wξ)|Wξ |
γdm̂(ξ)

≤ C|h|w(|ψ|∞ +Hp
n(ψ)),

(3.10)

since m̂(Ej) is of order 1 for each j.
For the second sum in (3.5), we use the fact that cos(Wξ) ≤ Ck−2 and |Wξ| ≤ Ck−3 forWξ ⊂ Hk

together with (3.9),

∑

k≥k0

∫

Ek

∫

Wξ

Lnhψ ◦ T−n ρξ dmW dm̂(ξ) ≤ C|h|w(|ψ|∞ +Hp
n(ψ))

∑

k≥k0

∫

Ek

cos(Wξ)|Wξ |
γdm̂(ξ)

≤ C|h|w(|ψ|∞ +Hp
n(ψ))

∑

k≥k0

k−2−3γm̂(Ek),

(3.11)

and the sum is finite since m̂(Ek) is of order 1 for each k.
Finally we estimate the third sum in (3.5), always using (3.9) and the previously recalled fact

that m̂(Ekj,ℓ) ≤ Cℓ−1.

∑

j,ℓ

∑

k>csℓ1/4

∫

Ek
j,ℓ

∫

Wξ

Lnhψ ◦ T−n ρξ dmW dm̂(ξ) ≤ C|h|w(|ψ|∞ +Hp
n(ψ))

∑

j,ℓ

∑

k>csℓ1/4

k−2−3γm̂(Ekj,ℓ)

≤ C|h|w(|ψ|∞ +Hp
n(ψ))

∑

j,ℓ

ℓ(−1−3γ)/4ℓ−1,

(3.12)
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and the last sum is finite since there are only finitely many infinite horizon points xj .
Putting together (3.10), (3.11) and (3.12) with (3.5) yields

∣

∣

∣

∫

Ms

Lnh ψ ◦ T−n dm
∣

∣

∣
≤ C|h|w(|ψ|∞ +Hp

n(ψ))

from which the lemma follows since there are only finitely many components Ms.

We are finally ready to give the proof of Theorem 2.1, which follows from the facts we have
established and several others proved in [DZ2].

Proof of Theorem 2.1. First we show that there is a sequence of continuous and injective embed-
dings Cs(M) →֒ B →֒ Bw →֒ (Cp(M))′ for all s > β/(1 − β). The continuity of the first embedding
follows from Lemma 3.1 and that of the second follows from the definition of the norms since
| · |w ≤ ‖ · ‖B. The continuity of the last embedding follows from Lemma 3.5. The injectivity of
the first embedding is obvious while the injectivity of the second relies on the fact that we use test
functions in Cq(W ) in the strong stable norm rather than C̃q(W ). Finally, the injectivity of the
third embedding follows from [DZ2, Lemma 3.8].

Now we turn to the action of L on B. Lemma 3.1 implies that Lf ∈ B whenever f ∈ C1(M)
and the proof can be taken word for word from [DZ2, Lemma 3.6]. Moreover, under assumptions
(A1)–(A5), it is proved in [DZ2] that

Lemma 3.6. [DZ2, Prop. 2.2] There exists C > 0 such that for all f ∈ B and n ≥ 0,

|Lnf |w ≤ C|f |w ,

‖Lnf‖s ≤ C(θ
n(1−α)
∗ + Λ−qn)‖f‖s + Cδγ−α0 |f |w ,

‖Lnf‖u ≤ CΛ−βn‖f‖u + Cn‖f‖s ,

where C depends only on the constants appearing in (A1)–(A5) and the choices of constants in the
norms.

Although these inequalities are proved for norms defined on the larger set of curves Ws in [DZ2],
they do not have to be reproved here. This is because Ws

1 ⊂ Ws and both sets are closed under the
action of T−1. Thus the same inequalities hold when we take the supremum over curves in Ws

1 .
The above lemma implies (2.6) immediately and the traditional Lasota-Yorke inequality (2.4)

also holds using the following standard argument. Choose 1 > σ > max{Λ−β ,Λ−q, θ
n(1−α)
∗ }. Then

there exists N > 0 large enough such that

‖LNf‖B = ‖LNf‖s + z‖LNf‖u ≤
σN

2
‖f‖s + Cδγ−α0 |f |w + zσN‖f‖u + zCN‖f‖s

≤ σN‖f‖B + Cδγ−α0 |f |w,

(3.13)

provided z is chosen small enough with respect to N . This, together with the compactness lemma,
Lemma 3.3, yields the quasi-compactness of L via the standard Hennion argument [HH].

Once quasi-compactness has been established, the peripheral spectrum of L is proved in [DZ2,
Section 5] to consist of finitely many cyclic groups whose eigenspaces consist of measures. Moreover,
all physical measures belong to B and they form a basis for the eigenspace corresponding to 1 in
B.4 These arguments are general and do not have to be repeated here.

4Recall that a physical measure for T is an ergodic, invariant probability measure µ for which there exists a positive

Lebesgue measure set Bµ, with µ(Bµ) = 1, such that lim
n→∞

1

n

n−1∑

i=0

ψ(T ix) = µ(ψ) for all x ∈ Bµ and all continuous

functions ψ.
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Finally, since µSRB is known to be a mixing invariant measure for T and µSRB has full support in
M , it follows that L has a spectral gap on B, i.e. 1 is a simple eigenvalue and all other eigenvalues
have modulus strictly less than 1.

4 Extension to Open Systems

In this section we will prove Propositions 2.2 and 2.3 and Theorems 2.4 and 2.5. As already
explained in the proof of Theorem 2.1, Lemma 3.6 yields the required inequalities for Proposition 2.2
for L. We begin by explaining how to extend those inequalities to L̊H .

In this section, we assume that we have a map T (without holes) satisfying (A1)–(A5) and then
show how to choose a higher iterate of T once we introduce the additional cuts made by ∂H so
that (A1)–(A5) are still satisfied, although some of the constants will have changed.

We fix B0, B1 > 0 and the set of holes H(B0, B1) satisfying (H1)–(H3). We choose H ∈
H(B0, B1) and define T̊ as in Section 1.1.

We want to think of ∂H as an extended singularity set for T . To this end, we define a map T̂
which is equal to T everywhere, except T̂ has the expanded singularity set induced by S0 ∪ ∂H.
Thus when iterating T̂ , we introduce artificial cuts according to ∂H. When we want to consider
the map with a hole, we simply drop the pieces that would have entered H.

Note that by (H2) and (A3)(2), ∂H has the same properties as S−1. Since T̂ and T are the
same map everywhere, properties (A1)–(A4) hold for T̂ with essentially the same constants as for T
(we may have to replace C2 by B1 in (A3)(2), but taking C ′

2 to be the larger of these two numbers,
we note that both maps satisfy (A3)(2) with respect to C ′

2).
Thus the only thing which we need to address is (A5) and in particular (3.2) which may fail for

T̂ due to the additional cuts. Note that since ∂H increases the sums in (A5) by at most a factor of
B0, both sums are still finite. This is sufficient to ruin contraction in the Lasota-Yorke inequalities
(by making θ∗ > 1), but still yields a finite bound on ‖LT̂ ‖B via Lemma 3.6 even with θ∗ > 1,

where LT̂ denotes the transfer operator corresponding to T̂ . Thus if we can establish a spectral
gap for an iterate Ln

T̂
, it will follow that LT̂ has a spectral gap as well.

4.1 Complexity Bound and Proof of Proposition 2.2

Before proving Proposition 2.2, we prove the following lemmas, which will allow us to regain (A5)
for a higher iterate of T̂ . The proofs of these lemmas are similar to those in [D3], but we include
them here to keep the exposition self-contained.

Lemma 4.1. There exists a sequence δn ↓ 0 such that

sup
W∈Ws

1

|W |≤δn

∑

i

|JV n
i
T n|∗ ≤ θn∗ , (4.1)

where V n
i denote the maximal homogeneous stable curves in T−nW on which T n is smooth.

Proof. We prove the lemma by induction on n. The case n = 1 follows from (A5) and (3.3) by
taking δ1 = δ0.

Now assume (4.1) holds for all 0 ≤ k ≤ n. In order to extend this inequality to n+ 1, we claim
that δn+1 ≤ δn can be chosen so small that |V n

i | ≤ δ0 whenever |W | ≤ δn+1. In this way, V n
i will

belong to Ws
1 and we may apply (A5) to each such curve without additional artificial subdivisions.

19



Let A(V n
i ) comprise those indices j such that TV n+1

j ⊂ V n
i . Then grouping V n+1

j according to the
sets A(V n

i ), we have

∑

j

|JV n+1
j

T n+1|∗ ≤
∑

i

∑

j∈A(V n
i )

|JV n+1
j

T |∗|JV n
i
T n|∗ ≤

∑

i

|JV n
i
T n|∗θ∗ ≤ θn+1

∗ ,

as required. It remains to prove the claim.
The claim follows from the fact that if T−1 is smooth on a stable curve W , then there exists

a uniform constant C, depending only on T , such that |T−1W | ≤ C|W |1/3 [CM, Sect. 4.9].5 Thus
the lemma follows if we inductively choose δn+1 = δ3n.

For W ∈ Ws
1 , Let V̂

n
i denote the maximal homogeneous stable curves in T̂−nW on which T̂ n is

smooth.

Lemma 4.2. For n ∈ N, let δn be from Lemma 4.1. Then

sup
W∈Ws

1

|W |≤δn

∑

i

|JV̂ n
i
T̂ n|∗ ≤ (1 + n(B0 − 1))θn∗ .

Proof. Fix W ∈ Ws
1 with |W | ≤ δn. Each V n

i comprises one or more V̂ n
j due to the expanded

singularity set for T̂ . For a fixed V n
i , we must estimate the cardinality of the curves V̂ n

j ⊂ V n
i .

Let Uni = T nV n
i and Ûnj = T nV̂ n

j for each i and j. Note that if V̂ n
j1

and V̂ n
j2

belong to the

same curve V n
i , then in fact T−kÛnj1 and T−kÛnj2 belong to the same smooth curve T−kUni for each

0 ≤ k ≤ n since the additional cuts due to T̂ are artificial and do not change the orbits of points.
Also, |T−kUni | ≤ δ0 for each k ≤ n by choice of δn from the proof of Lemma 4.1.

Applying (H2) to T−k+1Uni , the total number of new cuts in T−kUni compared to T−k+1Uni can
be no more than B0 − 1. Inductively, the total number of cuts introduced into V n

i by time n can
be no more than n(B0 − 1). Thus the cardinality of the set of j such that V̂ n

j ⊂ V n
i is at most

1 + n(B0 − 1). This, plus the fact that |JV̂ n
j
T̂ n|∗ ≤ |JV n

i
T n|∗ whenever V̂ n

j ⊂ V n
i completes the

proof of the lemma.

Proof of Proposition 2.2. Now we choose n0 such that (1 + n0(B0 − 1))θn0
∗ = θ0 < 1. Then setting

T̂0 = T̂ n0 , and choosing δn0
from Lemma 4.1 to be the maximum length scale of curves in Ws

1 ,
we have (A1)-(A5) satisfied for T̂0. Thus the results of [DZ2] imply the uniform Lasota-Yorke
inequalities for LT̂0 given by Lemma 3.6 with δn0

in place of δ0 and θ0 in place of θ∗ with the same
choices of constants in the norms.

Notice that we do not need to change the definition of the Banach spaces B and Bw. This is
because once the uniform Lasota-Yorke inequalities hold for |W | ≤ δn0

, we can extend them to
|W | ≤ δ0 by subdividing such curves into at most [δ0/δn0

]+1 pieces of length at most δn0
and then

applying the estimates on the shorter pieces. This has the effect of multiplying all the inequalities
in Lemma 3.6 by the factor [δ0/δn0

] + 1 which affects neither the essential spectral radius nor the
spectral radius of LT̂0 .

Since LT̂ is bounded as an operator on B as mentioned previously, this implies that LT̂ also
satisfies a uniform set of Lasota-Yorke inequalities with the essential spectral radius increased by
the exponent 1/n0.

5Indeed, [CM] shows only the bound |W |1/2 in the finite horizon case, but a quick calculation shows that an
exponent of 1/3 is in fact needed in the infinite horizon case.
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Now the transfer operator L̊H corresponding to the map with a hole satisfies the same Lasota-
Yorke inequalities as LT̂ with the same constants since the pieces we must sum over are fewer (we
drop the pieces that pass through H), but the estimates on each surviving piece remain the same
(the maps T , T̊ and T̂ are all the same on such pieces). The equalities of Proposition 2.2 now follow
from Lemma 3.6 with constants depending only on (A1)–(A5), B0 and B1, as required.

4.2 Proof of Proposition 2.3

First we prove two preliminary lemmas. We will use repeatedly that there exists a constant Cc > 0
such that

C−1
c ≤

cosϕ(x)

cosϕ(y)
≤ Cc (4.2)

whenever x and y lie in the same homogeneity strip. Our first lemma shows that the indicator
functions 1H and 1M̊ are bounded multipliers in both spaces B and Bw.

Lemma 4.3. Suppose f ∈ B and H ∈ H(B0, B1). There exists C > 0, depending only on B0, B1

and (A1)–(A5), such that ‖1Hf‖B ≤ C‖f‖B and |1Hf |w ≤ C|f |w. Similar bounds hold for 1M̊f .

Proof. We begin by checking that the partition P formed by the open, connected components of H
and M \H satisfies assumptions (1) and (2) of Lemma 3.1. Assumption (1) holds by (H3). Also,
assumption (2) of Lemma 3.1 is satisfied due to (H2) and (A3)(2) with C3 = max{C0, C2} and
K = B0.

By density of C1(M) in B, it suffices to prove the lemma for f ∈ C1(M). We fix f ∈ C1(M) and
note that 1Hf and 1M̊f have the type of singularity admitted in Lemma 3.1 so that 1Hf,1M̊f ∈ B.

We will estimate ‖1Hf‖B ≤ C‖f‖B. The estimate for the weak norm is similar to that for the
strong stable norm and is omitted. From these, the estimates for 1M̊f follow by linearity since
1M̊ = 1M − 1H .

To estimate ‖1Hf‖s, let W ∈ Ws
1 and ψ ∈ Cq(W ) with |ψ|W,α,q ≤ 1. Note that |ψ|Cq(W ) ≤

(cosW )−1|W |−α. Then since W ∩H comprises at most B0 curves Wi ∈ Ws
1 according to (H1), we

have
∫

W
1Hf ψ dmW =

∑

i

∫

Wi

f ψ dmW ≤ ‖f‖s
∑

i

|Wi|
α cosWi |ψ|Cq(W )

≤ ‖f‖s
∑

i

|Wi|
α

|W |α
cosWi

cosW
≤ ‖f‖sCcB0,

since cosWi/ cosW is uniformly bounded by (4.2) and |Wi| ≤ |W |. Taking the supremum over
W ∈ Ws

1 and ψ ∈ Cq(W ) yields ‖1Hf‖s ≤ CcB0‖f‖s.
Next we estimate ‖1Hf‖u. Let ε ≤ ε0 and choose W 1,W 2 ∈ Ws

1 with dWs(W 1,W 2) ≤ ε. For
ℓ = 1, 2, let ψℓ ∈W ℓ with |ψℓ|W ℓ,γ,p ≤ 1 and dq(ψ1, ψ2) ≤ ε. We must estimate

∫

W 1

1Hf ψ1 dmW −

∫

W 2

1Hf ψ2 dmW .

Recalling the notation of Section 3.3, we consider W ℓ as graphs of functions of their position
coordinates, ϕW ℓ(r), and write W ℓ = GW ℓ(IW ℓ), ℓ = 1, 2. We subdivide W 1 ∩ H and W 2 ∩ H
into matched pieces U1

j and U2
j and unmatched pieces V 1

k and V 2
k respectively using a foliation

of vertical line segments in M . Thus U1
j and U2

j are matched if both are defined over the same
r-interval Ij .
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Due to (H1), there are at most B0 matched pieces U ℓj and 2B0+2 unmatched pieces V ℓ
k created by

∂H and near the endpoints of W ℓ. Note that due to (H2) and (A3)(2) we have |V ℓ
k | ≤ C ′

2ε
t0 , where

C ′
2 = max{C0, C2}, since dWs(W1,W2) ≤ ε. We split the estimate into matched and unmatched

pieces,
∫

W 1

1Hf ψ1 dmW −

∫

W 2

1Hf ψ2 dmW =
∑

j

∫

U1
j

f ψ1 dmW −

∫

U2
j

f ψ2 dmW

+
∑

ℓ,k

∫

V ℓ
k

f ψℓ dmW .

We estimate the integrals on unmatched pieces first,
∫

V ℓ
k

f ψℓ dmW ≤ ‖f‖s|V
ℓ
k |
α cos V ℓ

k |ψℓ|Cq(W ℓ) ≤ ‖f‖s
|V ℓ
k |
α cos V ℓ

k

|W ℓ|γ cosW ℓ

≤ CcC
′
2‖f‖sε

(α−γ)t0 ,

(4.3)

where we have used (4.2) and |V ℓ
k | ≤ |W ℓ| in the last step.

To estimate the integrals on matched pieces, note that

dWs(U1
j , U

2
j ) ≤ dWs(W 1,W 2) ≤ ε.

Also,
|ψ1 ◦GU1

j
− ψ2 ◦GU2

j
|Cq(Ij) ≤ |ψ1 ◦GW 1 − ψ2 ◦GW 2 |Cq(IW1∩IW2 ) ≤ ε,

since ϕU1
j
and ϕU2

j
are simply the restrictions of ϕW 1 and ϕW 2 to Ij respectively. Thus,

∣

∣

∣

∣

∣

∫

U1
j

f ψ1 dmW −

∫

U2
j

f ψ2 dmW

∣

∣

∣

∣

∣

≤ ‖h‖uε
β .

Putting this estimate together with (4.3) and using the fact that the number of matched and
unmatched pieces are finite as mentioned earlier, we obtain,

∣

∣

∣

∣

∫

W 1

1Hf ψ1 dmW −

∫

W 2

1Hf ψ2 dmW

∣

∣

∣

∣

≤ CcC
′
2(2B0 + 2)‖h‖sε

(α−γ)t0 +B0‖h‖uε
β,

which, since β ≤ (α − γ)t0, means we may divide through by εβ to complete the estimate on the
strong unstable norm and the proof of the lemma.

Our second lemma shows that the hole is a small perturbation in the sense of the norm ||| · |||
defined by (2.2).

Lemma 4.4. If f ∈ B and H ∈ H(B0, B1), then |1Hf |w ≤ Chα−γ‖f‖s, where h = diams(H) and
C > 0 depends only on B0.

Proof. As with Lemma 4.3, by density it suffices to prove this estimate for f ∈ C1(M).
Let f ∈ C1(M) and W ∈ Ws

1 . Take ψ ∈ Cp(W ) with |ψ|W,γ,p ≤ 1. Let Wi denote the at most
B0 connected components of W ∩H. Then each Wi belongs to Ws

1 and |Wi| ≤ h by definition of
the stable diameter. We thus estimate,

∫

W
1Hf ψ dmW =

∑

i

∫

Wi

fψ dmW ≤
∑

i

‖f‖s|Wi|
α cosWi|ψ|Cq(W 1

i )

≤
∑

i

‖f‖sh
α−γ |Wi|

γ cosWi

|W |γ cosW
≤ B0Cc‖f‖sh

α−γ
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where we have used (4.2) in the last line.
Taking the supremum over W ∈ Ws

1 and ψ ∈ Cp(W ), the lemma is proved.

Now fix H ∈ H(B0, B1) with diams(H) ≤ h. We must estimate |||L− L̊|||. We do this estimate
for T directly rather than some power of T that we worked with in Section 4.1. This is because we
do not need contraction for the present estimate, but only use the smallness of the hole. For our
purposes then, T satisfies (A1)–(A5) with the sum in (A5) finite, but not contracting.

We choose f ∈ B and recalling (2.1), we estimate,

|Lf − 1M̊L(1M̊f)|w ≤ |Lf − 1M̊Lf |w + |1M̊Lf − 1M̊L(1M̊f)|w

≤ |1HLf |w + |1M̊L(1Hf)|w,
(4.4)

by linearity since H =M \ M̊ .
Let Cw = sup{|Lf |w : f ∈ Bw, |f |w ≤ 1} and CB = sup{‖Lf‖B : f ∈ B, ‖f‖B ≤ 1} denote the

norm of L in the spaces Bw and B respectively. Then using Lemmas 4.3 and 4.4 together with
(4.4), we have,

|Lf − 1M̊L(1M̊f)|w ≤ |1HLf |w + |1M̊L(1Hf)|w

≤ Chα−γ‖Lf‖B + CCw|1Hf |w

≤ CCB‖f‖Bh
α−γ + CCwh

α−γ‖f‖B.

Now taking the supremum over f ∈ B, ‖f‖B ≤ 1, completes the proof of Proposition 2.3.

4.3 Proof of Theorems 2.4 and 2.5

Proof of Theorem 2.4. Using Propositions 2.2 and 2.3, we now apply the perturbative framework
of Keller and Liverani [KL]. Fix B0, B1 > 0 and consider the family of holes H(B0, B1). Propo-
sition 2.2 guarantees uniform Lasota-Yorke inequalities for L̊H for all H ∈ H(B0, B1). Then for
H ∈ H(B0, B1) with diams(H) sufficiently small, Proposition 2.3 and [KL, Corollary 1] imply that
the spectra outside the disk of radius σ < 1 and the corresponding spectral projectors of L̊H move
Hölder continuously for H ∈ H(B0, B1). Thus for diams(H) sufficiently small, L̊H has a spectral
gap. We prove the remainder of the theorem assuming that L̊H has a spectral gap in this context.

Since L̊H is real, its eigenvalue of maximum modulus, λH , must persist in being real and
positive for small holes. To see that its corresponding eigenvector µH ∈ B is a measure, note that
the spectral decomposition of L̊H implies that for each f ∈ B, there exists a constant cf such that

lim
n→∞

λ−nH L̊nHf(ψ) = cfµH(ψ), ∀ψ ∈ Cp(M). (4.5)

The limit above defines the spectral projector ΠλH onto the eigenspace corresponding to λH for
L̊H . Letting Π1 denote the eigenprojector onto the eigenspace corresponding to eigenvalue 1 for
L, we know that these projectors vary Hölder continuously in the ||| · |||-norm from (2.2) according
to [KL, Corollary 2]. Recall that µSRB denotes the smooth invariant measure for T before the
introduction of the hole (see Sect. 2.1). Then since before the introduction of the hole, Π1m(1) =
µSRB(1) = 1, where m denotes Lebesgue measure, we must have that ΠλHm(1) = cmµH(1) > 0
holds for sufficiently small holes. Indeed, the positivity of L̊ requires both cm > 0 and µH(1) > 0.

Now (4.5) with 1 (the density of m) in place of f implies

|µH(ψ)| = c−1
m lim

n→∞
|λ−nH L̊nH1(ψ)| ≤ c−1

m |ψ|∞ lim
n→∞

λ−nH L̊nH1(1) = |ψ|∞µH(1),
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which implies that µH is a measure. Since µH(1) > 0 by the positivity of L̊H we may normalize
µH to be a probability measure, µH(1) = 1. It is now clear that µH is a conditionally invariant
measure for T̊ .

To see that µH is singular with respect to Lebesgue, note that since T is injective, it follows
from the definition of conditional invariance (see Section 1.1) that µH cannot be supported on any
of the forward images of the hole, ∪i≥0T

i(H). Since this set has full Lebesgue measure, µH must
be singular.

Now suppose that µ ∈ B is a probability measure such that cµ > 0. Then by (4.5),

cµµH(1) = lim
n→∞

λ−nH L̊nHµ(1) = lim
n→∞

λ−nH µ(M̊n),

so that the escape rates with respect to µH and µ are equal, i.e., ρ(µ) = − log λH . Moreover,

L̊nHµ

|L̊nHµ|
=

L̊nHµ

λnH

λnH
L̊nHµ(1)

= cµµH ·
1

cµµH(1)
= µH ,

and the convergence is at an exponential rate in B due to the spectral decomposition of L̊H .
We complete the proof by remarking that cm, cµSRB

> 0 by continuity of the spectral projectors
so that Lebesgue and the smooth SRB measure for T are both included in this class of measures
in B.

Proof of Theorem 2.5. With Propositions 2.2 and 2.3 established, the convergence of µH to µSRB

and λH to 1 follows immediately from the continuity of the spectral projectors corresponding to
L̊H given by [KL, Corollary 2] as long as we take a sequence of holes in H(B0, B1) with B0 and B1

fixed.

4.4 Proof of Theorem 2.6

It follows from the general variational inequalities of [DWY2] that for holes satisfying (H1)–(H3)
and maps satisfying (A1)–(A5), we have

ρ(m) ≥ sup
ν∈GH

{hν(T )− χ+
ν (T )},

where m is Lebesgue measure and GH is defined by (2.7) (see [DWY2, Theorem C]). (Indeed, the
assumptions on both H and T for this inequality are much weaker than those we are using here.)
In order to complete the proof of Theorem 2.6, we construct a measure νH ∈ GH which satisfies
ρ(m) = PνH . The following construction of νH is by now standard (see e.g. [CMS1]).

We assume that H satisfies the assumptions of Theorem 2.4 so that there is a well defined
measure µH with eigenvalue λH according to that theorem. Letting s > max{β/(1 − β), p}, we
define a linear functional on Cs(M) by

F(ψ) = lim
n→∞

λ−nH µH(1M̊nψ), ∀ψ ∈ Cs(M).

Note that ψµH ∈ B by Lemma 3.2. Since µH(1M̊nψ) = L̊nH(ψµH)(1), it follows from (4.5) that F
is well-defined. Indeed, F(ψ) = cψµH in the notation of (4.5).

Since |F(ψ)| ≤ |ψ|∞, F extends to a bounded linear functional on C0(M) and so by the Riesz
representation theorem, there is a Borel measure νH such that νH = F as a functional on C0(M).
Since F ≥ 0 and F(1) = 1, νH is a probability measure. It follows from the limit definition of F
that νH is necessarily supported on the survivor set M̊∞.
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To see that νH is invariant, note that 1M̊n−1 ◦ T̊ = 1M̊n . Then for any ψ ∈ C0(M),

νH(ψ ◦ T̊ ) = lim
n→∞

λ−nH µH(1M̊nψ ◦ T̊ ) = lim
n→∞

λ−nH L̊µH(1M̊n−1ψ)

= lim
n→∞

λ
−(n−1)
H µH(1M̊n−1ψ) = νH(ψ).

Thus νH is invariant with respect to T̊ , and also with respect to T since T̊ = T on M̊∞.
The proof that νH constructed in this way satisfies ρ(m) = PνH is contained in [D3, Section 5].

The proof has two components: (1) based on the work of Chernov [Ch], a map satisfying (A1)–(A5)
admits a Young tower (a type of Markov extension) in which the hole lifts to a countable union
of partition elements; (2) for an open system in which such a tower has been constructed and for
holes with sufficiently small unstable diameter diamu(H), νH defined as above satisfies the required
variational principle [DWY2, Theorem D]. Using these two elements, the proof given in [D3] holds
in the present setting and will not be repeated here.

4.5 Holes in infinite horizon corridors satisfy conditions (H1)–(H3)

In this section, we complete the proof that the holes described in Examples 1 and 2 of Section 2.2
satisfy conditions (H1)–(H3). We have already noted that they satisfy (H1) since each D+

j,ℓ cell
contains at most two connected components of Hω.

To see that Hω satisfies (H3), we recall the structure of S1 near an infinite horizon point as
described in Section 3.1. We need to calculate the number of D+

j′,ℓ cells that can intersect a single
homogeneity strip Hk in a neighborhood of the infinite horizon point xj′ .

First, we estimate how many curves Sj′,ℓ intersect the curve Sj′,0 in a homogeneity strip Hk

(using the notation of Section 3.1). Since the boundary of Hk is distance k−2 from S0 and the
furthest that the boundary of D+

j′,ℓ can be from S0 is on the order of ℓ−1/2 when it intersects Sj′,0
as described in Section 3.1, a simple calculation shows that between k−2 and (k + 1)−2, there are
O(k3) curves Sj′,ℓ′ that intersect Hk.

Next, we estimate the number of curves Sj′,ℓ intersecting Hk at the other end of D+
j′ℓ near S0.

From (A3)(1), it follows that if Hk∩D
+
j′,ℓ is nonempty, then k ≥ csℓ

1/4. Thus Hk intersects at most

O(k4) curves Sj′,ℓ.
Since each D+

j,ℓ cell contains at most two connected components of Hω as observed above, it

follows by combining the cases above that (H3) holds with Nk = O(k4).
For the type of hole in Example 2, this estimate holds for every k. For the type of hole in

Example 1, this is only an upper bound: For all ℓ past an index Nω, Hω contains D+
j′,ℓ so that no

further partitioning of Hk occurs.
It remains to prove the transversality condition (H2). We will prove it for the hole of Example 1.

The proof for the hole of Example 2 is similar and is omitted.
In order to estimate the angle between a curve W ∈ Ws

1 , W ⊂ D+
j,ℓ, and ∂Hω, we will use two

facts. (1) Due to the definition of Cs and C̃s, we know that TW is a stable curve with respect to
the larger cones C̃s (not necessarily lying in one homogeneity strip). (2) ∂(THω) \ S0 is comprised
of unstable curves, i.e. curves whose positive slopes are uniformly bounded away from 0 and infinity
and which are uniformly transverse to the stable cones Cs and C̃s (see Figure 1, bottom right).

Recall that DT−1x is given by [CM, Section 2.11],

DT−1(x) =
−1

cosϕ−1

[

τ−1K+ cosϕ τ−1

τ−1K(K−1 + cosϕ−1) +K−1 cosϕ τ−1K−1 + cosϕ−1

]
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where τ,K and ϕ denote the quantities at x while τ−1, K−1 and ϕ−1 denote the quantities at T−1x.
By (1) above, we can regard a tangent vector to W as the image under DT−1 of a vector with

negative slope,

[

1
−a

]

for some a > 0. By (2) we can regard a tangent vector to ∂Hω as the image

of a vector with positive slope

[

1
b

]

for some b > 0. Taking the image of these two vectors under

DT−1, we compute the angle θ between them using the cross product to obtain that

θ ≥ C
cosϕ cosϕ−1

τ2−1

,

for some uniform constant C > 0.
Now suppose W ⊂ D+

j,ℓ ∩ Hk−1
for some k−1 ≥ k0. Let s > 0 be a constant to be determined

below. For ε > 0, at a point x−1 ∈W ∩Nε(∂Hω), we have two cases to consider.

Case 1. cosϕ0 cosϕ−1

τ2
−1

≥ εs. Here ϕ0 = ϕ(T (x−1)), ϕ−1 = ϕ(x−1) and τ−1 = τ(x−1). Then the angle

between W and ∂Hω is bounded below by Cεs. Thus |W ∩Nε(∂Hω)| ≤ Cε1−s.

Case 2. cosϕ0 cosϕ−1

τ2
−1

< εs. Since W ⊂ D+
j,ℓ, we have |W | ≤ Ck−3

−1 and τ−1 ≈ ℓ, up to a uniform

constant, by the definition of D+
j,ℓ.

Although TW may cross several homogeneity strips, it is still a stable curve in the wider family
of cones C̃s(x). Thus, letting (TW )k := TW ∩ Hk denote a homogeneous component of TW , we
have

|T−1(TW )k| ≤ C|(TW )k|
τ−1

cosϕ−1
(4.6)

due to uniform expansion in the stable cone given by (A3)(1). Summing over relevant k, we obtain
|W | ≤ C|TW | τ−1

cosϕ−1
for some uniform constant C.

We now consider the point x−1 ∈ W for which cosϕ0 is largest. It follows that any smaller
cosϕ0 also satisfies the assumption of this case since cosϕ−1 and τ−1 are essentially constant on
D+
j,ℓ ∩Hk−1

. Thus |TW | ≤ C cosϕ0. Putting this together with (4.6) and following yields,

|W | ≤ C cosϕ0
τ−1

cosϕ−1
. (4.7)

Finally, we recall that k−1 ≥ csℓ
1/4 by (A3)(1) and so

|W |4 ≤ C(k−3
−1)

4 ≤ Cc−12
s τ−3

−1 . (4.8)

Putting (4.7) together with (4.8), we estimate,

εs >
cosϕ0 cosϕ−1

τ2−1

=
cosϕ0 τ−1

cosϕ−1
· cosϕ2

−1 ·
1

τ3−1

≥ C|W ||W |4/3|W |4 ≥ C|W |19/3. (4.9)

This yields |W | ≤ Cε3s/19.

The estimates from Cases 1 and 2 are maximized when the two exponents are equal, i.e. when
s = 19/22. Thus |W ∩Nε(∂Hω)| ≤ Cε3/22.

For W outside D+
j,ℓ, i.e. for W bounded away from the infinite horizon corridors, τ−1 is bounded

away from 0 and infinity and so the estimate (4.9) still holds, although we may disregard the factor
τ−3
−1 . This yields the better estimate |W | ≤ Cε3s/7, which combined with Case 1 yields s = 7/10.

Using the worst of these estimates, we have proved that in all cases |W ∩Nε(∂Hω)| ≤ Cεt0 for
some uniform constant C and t0 = 3/22.
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