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Abstract. We present a functional analytic framework based on the spectrum of the transfer
operator to study billiard maps associated with perturbations of the periodic Lorentz gas. We
show that recently constructed Banach spaces for the billiard map of the classical Lorentz gas are
flexible enough to admit a wide variety of perturbations, including: movements and deformations
of scatterers; billiards subject to external forces; nonelastic reflections with kicks and slips at the
boundaries of the scatterers; and random perturbations comprised of these and possibly other
classes of maps. The spectra and spectral projections of the transfer operators are shown to vary
continuously with such perturbations so that the spectral gap enjoyed by the classical billiard
persists and important limit theorems follow.

1. Introduction

The Lorentz gas is known to enjoy strong ergodic properties: both the continuous time dy-
namics and the billiard maps are completely hyperbolic, ergodic, K-mixing and Bernoulli (see
[S, GO, SC, CH] and the references therein). Young [Y] proved exponential decay of correlations
for billiard maps corresponding to the finite horizon periodic Lorentz gas using Markov extensions;
this technique was subsequently extended to other dispersing billiards [Ch1] and used to obtain im-
portant limit theorems such as local large deviation estimates and almost-sure invariance principles
[MN1, MN2, RY].

In this setting, it is natural to ask how the statistical properties of dispersing billiard maps vary
with the shape and position of the scatterers. Alternatively, one may change the billiard dynamics
by introducing an external force between collisions or by considering nonelastic reflections at the
boundaries. Such perturbed dynamics lead to nonequilibrium billiards whose invariant measures
are singular with respect to Lebesgue measure.

One of the first nonequilibrium physical models that was studied rigorously is the periodic Lorentz
gas with a small constant electrical field [CELS1, CELS2] and the well-known Ohm’s law was proved
for that case. More general external forces were handled in [Ch2, Ch4, CD2] and billiards with
kicks at reflections have been studied in [MPS, Z]. Recently, Chernov and Dolgopyat [CD1] used
coupling methods to study the motion of a point particle colliding with a moving scatterer. Locally
perturbed periodic rearrangements of scatterers have also been the subject of recent studies [DSV].
Despite such successes, the study of perturbations of billiards has thus far been handled on a case by
case basis, with methods adapted and developed for each specific type of perturbation considered.

In this paper, we propose a unified framework in which to study a large class of perturbations
of dispersing billiards. This framework is based on the spectral analysis of the transfer operator
associated with the billiard map and uses the recent work [DZ] which successfully constructed
Banach spaces on which the transfer operator for the classical periodic Lorentz gas has a spectral
gap.
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We first present abstract conditions under which we have uniform control of spectral data for a
given class of perturbed maps. We then prove that four broad classes of perturbations of billiards
fit within this framework, namely:

(i) Tables with shifted, rotated or deformed scatterers;
(ii) Billiards under small external forces which bend trajectories during flight;

(iii) Billiards with kicks or twists at reflections, including slips along the disk;
(iv) Random perturbations comprised of maps with uniform properties (including any of the

above classes, or a combination of them).

In particular, the results on random perturbations are a version of time-dependent billiards, in which
scatterers are allowed to change positions between collisions. The fact that our main theorems, 2.2
and 2.3, are proved in an abstract setting will facilitate the application of this framework to other
classes of perturbations as they arise in future works.

The present functional analytic approach uses the Banach spaces constructed in [DZ] as well as
the perturbative framework of Keller and Liverani [KL] to prove that the spectral data and spectral
projectors, including invariant measures, rates of decay of correlations, variance in the central limit
theorem, etc, vary Hölder continuously for the classes of perturbations mentioned above (see [B, L]
for expositions of this approach). In addition, this approach yields new results for the perturbed
billiard maps in terms of local limit theorems, in particular giving new information about the
evolution of noninvariant measures in the context of these limit theorems. For example, applying
Corollary 2.4 to billiards under external forces and kicks, we obtain a local large deviation estimate
with a rate function that is the same for all probability measures in our Banach space. This implies
in particular that Lebesgue measure and the singular SRB measure for the perturbed billiard have
the same large deviation rate function.

The paper is organized as follows. In Section 2, we describe our abstract framework, state
precisely the applications which serve as our model perturbations and formulate our main results.
In Section 3, we lay out our common approach under the general conditions (H1)-(H5) which
guarantee the required uniform Lasota-Yorke inequalities for Theorem 2.2, proved in Section 4;
we also formulate conditions (C1)-(C4) to verify that a perturbation is small in the sense of our
Banach spaces for Theorem 2.3, proved in Section 5. The investigations of the concrete models are
provided in Sections 6 and 7.

2. Setting and Results

In this section, we describe the abstract framework into which we will place our perturbations
and formulate precisely the classes of concrete deterministic perturbations to which our results
apply. We also formulate a class of random perturbations with maps drawn from any mixture of
the deterministic perturbations described below. We postpone until Section 3 a precise description
of the Banach spaces and the formal requirements on the abstract class of maps F .

2.1. Perturbative framework. We recall here the perturbative framework of Keller and Liverani
[KL]. Suppose there exist two Banach spaces (B, ‖ · ‖B) and (Bw, | · |w) with the unit ball of B
compactly embedded in Bw, | · |w ≤ ‖·‖B, and a family of bounded linear operators {Lε}ε≥0 defined
on both Bw and B such that the following holds.1 There exist constants C, η > 0 and σ < 1 such
that for all ε ≥ 0 and n ≥ 0,

|Lnεh|w ≤ Cηn|h|w for all h ∈ Bw,
‖Lnεh‖B ≤ Cσn‖h‖B + Cηn|h|w for all h ∈ B.

(2.1)

1The results of [KL] hold in a more general setting, but we only state the version we need for our purposes.
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If σ < η, the operators Lε are quasi-compact with essential spectral radius bounded by σ and
spectral radius at most η (see for example [B]). Suppose further that

(2.2) |||Lε − L0||| := sup{|Lεh− L0h|w : h ∈ B, ‖h‖B ≤ 1} ≤ ρ(ε),

where ρ(ε) is a non-increasing upper semicontinuous function satisfying limε→0 ρ(ε) = 0.
The main result of [KL] is the following. Let sp(L0) denote the spectrum of L0. For any σ1 > σ,

by quasi-compactness, sp(L0) ∩ {z ∈ C : |z| ≥ σ1} consists of finitely many eigenvalues %1, . . . , %k
of finite multiplicity. Thus there exists t∗ > 0 and we may choose σ1 such that |%i − %j | > t∗ for
i 6= j and dist(sp(L0), {|z| = σ1}) > t∗. For t < t∗ and ε ≥ 0, define the spectral projections,

Π(j)
ε :=

1

2πi

∫
|z−%j |=t

(z − Lε)−1 dz and

Π(σ1)
ε :=

1

2πi

∫
|z|=σ1

(z − Lε)−1 dz.

Theorem 2.1. ([KL]) Assume that (2.1) and (2.2) hold. Then for each t ≤ t∗ and s < 1− log σ1
log σ ,

there exist ε1, C > 0 such that for any 0 ≤ ε < ε1, the spectral projections Π
(j)
ε and Π

(σ1)
ε are well

defined and satisfy, for each j = 1, . . . k,

(1) |||Π(j)
ε −Π

(j)
0 ||| ≤ Cρ(ε)s and |||Π(σ1)

ε −Π
(σ1)
0 ||| ≤ Cρ(ε)s ;

(2) rank(Π
(j)
ε ) = rank(Π

(j)
0 );

(3) ‖LnεΠ
(σ1)
ε ‖B ≤ Cσn1 , for all n ≥ 0.

We say an operator L has a spectral gap if L has a simple eigenvalue of maximum modulus
and all other eigenvalues have strictly smaller modulus. The above theorem implies in particular
that if L0 has a spectral gap, then so does Lε for ε sufficiently small. In addition, the related
statistical properties (for instance, invariant measures, rates of decay of correlations, variance of
the Central Limit Theorem) are stable and vary Hölder continuously as a function of ρ(ε). This is
the framework into which we will place our perturbations of the Lorentz gas.

2.2. An abstract result for a class of maps with uniform properties. We begin by fixing the
phase space M of a billiard map associated with a periodic Lorentz gas. That is, we place finitely
many (disjoint) scatterers Γi, i = 1, . . . d, on T2 which have C3 boundaries with strictly positive
curvature. The classical billiard flow on the table T2 \ ∪i{interior Γi} is induced by a particle
traveling at unit speed and undergoing elastic collisions at the boundaries. In what follows, we
also consider particles whose motion between collisions follows slightly curved trajectories (due to
external forces) as well as certain types of collisions which do not obey the usual law of reflection.

In all cases, the billiard map associated with the flow is the Poincaré map corresponding to
collisions with the scatterers. Its phase space is M = ∪di=1Ii × [−π/2, π/2], where each Ii is an
interval with endpoints identified and |Ii| = |∂Γi|, i.e. the length of Ii equals the arclength of ∂Γi,
i = 1, . . . d. M is parametrized by the canonical coordinates (r, ϕ) where r represents the arclength
parameter on the boundaries of the scatterers (oriented clockwise) and ϕ represents the angle an
outgoing (postcollisional) trajectory makes with the unit normal to the boundary at the point of
collision.

The phase space M and coordinates so defined are fixed for all classes of perturbations we
consider; however, the configuration space (the billiard table on which the particles flow) and the
laws which govern the motion of the particles may vary as long as all variations give rise to the
same phase space M , i.e. the number of Γi and the arclengths of their boundaries do not change.
See Remark 2.9 for a way to relax this requirement on the arclength. For any x = (r, ϕ) ∈ M ,
we define τ(x) to be the first collision of the trajectory starting at x under the billiard flow. The
billiard map is defined wherever τ(x) < ∞. We say that the billiard has finite horizon if there is
an upper bound on the function τ . Otherwise, we say the billiard has infinite horizon. Notice that
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the function τ depends on the placement of the scatterers in T2, while M is independent of their
placement.

We assume there exists a class of maps F on M satisfying properties (H1)-(H5) of Section 3.1
with uniform constants. For each T ∈ F , in Section 3.2 we define the transfer operator LT associated
with T on an appropriate class of distributions h by

LTh(ψ) = h(ψ ◦ T ), for suitable test functions ψ.

In Section 3.3, we define Banach spaces of distributions (B, ‖ · ‖B) and (Bw, | · |w), preserved under
the action of LT , T ∈ F , such that the unit ball of B is compactly embedded in Bw.

Theorem 2.2. Fix M as above and suppose there exists a class of maps F satisfying (H1)-(H5)
of Section 3.1. Then LT is well defined as a bounded linear operator on B for each T ∈ F . In
addition, there exist C > 0, σ < 1 such that for any T ∈ F and n ≥ 0,

|LnTh|w ≤ Cηn|h|w for all h ∈ Bw,
‖LnTh‖B ≤ Cσn‖h‖B + Cηn|h|w for all h ∈ B,

(2.3)

where η ≥ 1 is from (H5). This, plus the compactness of B in Bw, implies that all the operators
LT , T ∈ F , are quasi-compact with essential spectral radius bounded by σ: i.e., outside of any
disk of radius greater than σ, their spectra contain finitely many eigenvalues of finite multiplicity.
Moreover, for each T ∈ F ,

(i) the spectral radius of LT is 1 and the elements of the peripheral spectrum are measures

absolutely continuous with respect to µ := limn→∞
1
n

∑n−1
i=0 LiT 1;

(ii) an ergodic, invariant probability measure ν for T is in B if and only if ν is a physical
measure2 for T ;

(iii) there exist a finite number of q` ∈ N such that the spectrum of L on the unit circle is

∪`{e
2πi k

q` : 0 ≤ k < q`, k ∈ N}. The peripheral spectrum contains no Jordan blocks.
(iv) Let SH±n,ε denote the ε-neighborhood of SH±n, the singularity set for T±n (with homogeneity

strips). Then for each ν in the peripheral spectrum and n ∈ N, we have ν(SH±n,ε) ≤ Cnε
α,

for some constants Cn > 0.
(v) If (Tµ) is ergodic, then 1 is a simple eigenvalue. If (Tn, µ) is ergodic for all n ∈ N, then

1 is the only eigenvalue of modulus 1, (T, µ) is mixing and enjoys exponential decay of
correlations for Hölder observables.

Theorem 2.2 is proved in Section 4. In Section 3.4, we define a distance dF (·, ·) between maps
in F . Our next result shows that this distance controls the size of perturbations in the spectra of
the associated transfer operators.

Theorem 2.3. Let β > 0 be from the definition of (B, ‖ · ‖B) in Section 3.3. There exists C > 0
such that if T1, T2 ∈ F with dF (T1, T2) ≤ ε, then

|||LT1 − LT2 ||| ≤ Cεβ/2, where ||| · ||| is from (2.2).

We prove Theorem 2.3 in Section 5. According to Theorem 2.1, an immediate consequence of
Theorems 2.2 and 2.3 is the following.

Corollary 2.4. If T0 ∈ F has a spectral gap, then all T ∈ Xε(T0) = {T ∈ F : dF (T, T0) < ε}
have a spectral gap for ε sufficiently small. In particular, the maps in Xε enjoy the following limit
theorems (among others), which follow from the existence of a spectral gap.

Fix T ∈ F with a spectral gap. Let γ = max{p, 2β + δ} for some δ > 0, where p and β are
from Sect. 3.3. Let P be a (mod 0) partition of M into countably many open, simply connected

2Recall that a physical measure for T is an ergodic, invariant probability measure ν such that
limn→∞

1
n

∑n−1
i=1 f(T ix) =

∫
f dν for a positive Lebesgue measure set of x ∈M .
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sets whose boundaries satisfy the assumptions of Lemma 5.3 and let g be a bounded function on M
such that supP∈P |g|Cγ(P ) <∞. Define Sng =

∑n−1
k=0 g ◦ T k.

(a) (Local large deviation estimate) For any (not necessarily invariant) probability measure
ν ∈ B,

lim
ε→0

lim
n→∞

1

n
log ν

(
x ∈M :

1

n
Sng(x) ∈ [t− ε, t+ ε]

)
= −I(t)

where the rate function I(t) is independent of ν ∈ B (but may depend on T ), and t is in a
neighborhood of the mean µ(g).

(b) (Almost-sure invariance principle). Suppose µ(g) = 0 and distribute (g ◦ T j)j∈N according
to a probability measure ν ∈ B. Then there exist a probability space Ω with random variables

{Xn} satisfying Sng
dist.
= Xn, and a Brownian motion W with variance ς2 ≥ 0 such that

for any λ > 1/4,

Xn = W (n) + o(nλ) as n→∞ almost-surely in Ω.

The proof of the corollary is given in Section 5.2.

Remark 2.5. When T ∈ F is a map derived from a billiard flow Φt (for example, corresponding to
any of the applications described in Section 2.4), one is often interested in observables of the type

g(x) =
∫ τ(x)

0 g̃(Φtx) dt. An important example is given by g̃ ≡ 1 so that g(x) = τ(x).
In the finite horizon case, when g̃ is smooth in the phase space of the flow, g is piecewise smooth

with singularities curves coinciding with those of T . Since these singularities satisfy the assumptions
of Lemma 5.3, the results of Corollary 2.4 apply to such observables, including the free flight function
τ .

In the infinite horizon case, g will not in general satisfy the assumptions of Corollary 2.4 even
when g̃ is smooth. In particular, the important example g = τ is unlikely to follow an exponential
law in large deviations due to the slow mixing on the level of the flow (see [BM]).

2.3. Smooth random perturbations. We follow the expositions in [GL, DL]. Suppose F is a
class of maps satisfying (H1)-(H5) and let dF (·, ·) be the distance in F defined in Section 3.4. For
T0 ∈ F , ε > 0, define

Xε(T0) = {T ∈ F : dF (T, T0) < ε},
to be the ε-neighborhood of T0 in F .

Let (Ω, ν) be a probability space and let g : Ω ×M → R+ be a measurable function satisfying:
There exist constants a,A > 0 such that

(i) g(ω, ·) ∈ C1(M,R+) and |g(ω, ·)|C1(M) ≤ A for each ω ∈ Ω;

(ii)
∫

Ω g(ω, x)dν(ω) = 1 for each x ∈M ;
(iii) g(ω, x) ≥ a for all ω ∈ Ω, x ∈M .

We define a random walk on M by assigning to each ω ∈ Ω, a map T ∈ Xε(T0). Starting at
x ∈ M , we choose Tω ∈ Xε(T0) according to the distribution g(ω, x)dν. We apply Tω to x and
repeat this process starting at Tωx. We say the process defined in this way has size ∆(ν, g) ≤ ε.

Notice that if ν is the Dirac measure centered at ω0, then this process corresponds to the
deterministic perturbation Tω0 of T0. If g ≡ 1, then the choice of Tω is independent of the position
x, while in general this formulation allows the choice of the next map to depend on the previous
step taken.

The transfer operator L(ν,g) associated with the random process is defined by

L(ν,g)h(x) =

∫
Ω
LTωh(x) g(ω, T−1

ω x) dν(ω)

for all h ∈ L1(M,m), where m is Lebesgue measure on M .
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Theorem 2.6. The transfer operator L(ν,g) satisfies the uniform Lasota-Yorke inequalities given by
Theorem 2.2. Let ε0 be given by (3.13) and let ε ≤ ε0. If ∆(ν, g) ≤ ε, then there exists a constant

C > 0 depending only on (H1)-(H5), such that |||L(ν,g) − LT0 ||| ≤ CAεβ/2.
It follows that all the operators L(ν,g) enjoy a spectral gap for ε sufficiently small if LT0 has a

spectral gap and the limit theorems of Corollary 2.4 apply to L(ν,g).

Theorem 2.6 is proved in Section 5.3.

2.4. Applications to concrete classes of deterministic perturbations. In this section we
describe precisely several types of perturbations of the Lorentz gas which fall under the abstract
framework we have outlined above. In light of Theorems 2.2 and 2.3, it suffices to check two things
for each class of perturbations we will introduce: (1) (H1)-(H5) hold uniformly in each class; (2)
the perturbations are small in the sense of the distance dF (·, ·).

A. Movements and Deformations of Scatterers.
We fix the phase space M = ∪di=1Ii × [−π

2 ,
π
2 ] associated with a billiard map corresponding to a

periodic Lorentz gas with d scatterers as described above. We assume that the billiard particle
moves along straight lines and undergoes elastic reflections at the boundaries.

For given I1, . . . , Id, we use the notation Q = Q({Γi}di=1; {Ii}di=1) to denote the configuration
of scatterers Γ1, . . . ,Γd placed on the billiard table such that |∂Γi| = `(Ii), i = 1, . . . , d. Since we
have fixed I1, . . . , Id, M remains the same for all configurations Q that we consider. For each such
configuration, we define

τmin(Q) = inf{τ(x) : τ(x) is defined for the configuration Q}.

Similarly, Kmin(Q) and Kmax(Q) denote the minimum and maximum curvatures respectively of the
Γi in the configuration Q. The constant Emax(Q) denotes the maximum C3 norm of the ∂Γi in Q.

For each fixed τ∗,K∗, E∗ > 0, define Q1(τ∗,K∗, E∗) to be the collection of all configurations Q
such that τmin(Q) ≥ τ∗, K∗ ≤ Kmin(Q) ≤ Kmax(Q) ≤ K−1

∗ , and Emax(Q) ≤ E∗. The horizon
for Q ∈ Q1(τ∗,K∗, E∗) is allowed to be finite or infinite. Let F1(τ∗,K∗, E∗) be the corresponding
set of billiard maps induced by the configurations in Q1. It follows from [DZ] that for any T ∈
F1(τ∗,K∗, E∗), LT has a spectral gap in B. We prove the following theorems in Section 6.

Theorem 2.7. Fix I1, . . . , Id and let τ∗,K∗, E∗ > 0. The family F1(τ∗,K∗, E∗) satisfies (H1)-(H5)
with uniform constants depending only on τ∗, K∗ and E∗. As a consequence of Theorem 2.2, LT is
quasi-compact as an operator on B for each T ∈ F1(τ∗,K∗, E∗) with uniform bounds on its essential
spectral radius.

We fix an initial configuration of scatterers Q0 ∈ Q1(τ∗,K∗, E∗) and consider configurations

Q which alter each ∂Γi in Q0 to a curve ∂Γ̃i having the same arclength as ∂Γi. We consider
each ∂Γi as a parametrized curve ui : Ii → M and each ∂Γ̃i as parametrized by ũi. Define

∆(Q,Q0) =
∑d

i=1 |ui − ũi|C2(Ii,M).

Theorem 2.8. Choose γ ≤ min{τ∗/2,K∗/2} and let FA(Q0, E∗; γ) be the set of all billiard maps
corresponding to configurations Q such that ∆(Q,Q0) ≤ γ and Emax(Q) ≤ E∗.

Then FA(Q0, E∗; γ) ⊂ F1(τ∗/2,K∗/2, E∗) and dF (T1, T2) ≤ C|γ|2/15 for any T1, T2 ∈ FA(Q0, E∗; γ).

If all Ti ∈ FA(Q0, E∗; γ) have uniformly bounded finite horizon, then dF (T1, T2) ≤ C|γ|1/3.
As a consequence, the eigenvalues outside a disk of radius σ < 1 and the corresponding spectral

projectors of LT vary Hölder continuously for all T ∈ FA(Q0, E∗; γ) and all γ sufficiently small.

Remark 2.9. (a) A remarkable aspect of this result is that it allows us to move configurations from
finite to infinite horizon without interrupting Hölder continuity of the statistical properties such as
the rate of decay of correlations and the variance in the CLT, among others.
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(b) The requirement that all deformations of the initial configuration Q0 maintain the same ar-
clength can be relaxed. The purpose of this requirement is to define the corresponding transfer
operators on fixed spaces B and Bw. If a scatterer Γi is deformed into Γ′i with a slight change in ar-
clength, we can reparametrize Γ′i (no longer according to arclength) using the same interval Ii as for
Γi. This will change the derivatives of maps in the class FB(Q0, E∗; γ) slightly, but since properties
(H1)-(H5) have some leeway built into the uniform constants, for small enough reparametrizations
the same properties will hold with slightly weakened constants.

B. Billiards Under Small External Forces with Kicks and Slips.
As in part A, we fix τ∗,K∗ and E∗ and choose a fixed Q0 ∈ Q1(τ∗,K∗, E∗). In this section, we
consider the dynamics of the billiard map on the table Q0, but subject to external forces both
during flight and at collisions.

Let q = (x, y) be the position of a particle in a billiard table Q0 and p be the velocity vector.
For a C2 stationary external force, F : T2 × R2 → R2, the perturbed billiard flow Φt satisfies the
following differential equation between collisions:

(2.4)
dq

dt
= p(t),

dp

dt
= F(q,p).

At collision, the trajectory experiences possibly nonelastic reflections with slipping along the bound-
ary:

(2.5) (q+(ti),p
+(ti)) = (q−(ti),Rp−(ti)) + G(q−(ti),p

−(ti))

where Rp−(ti) = p−(ti) + 2(n(q−) · p−)n(q−)) is the usual reflection operator, n(q) is the unit
normal vector to the billiard wall ∂Q0 at q pointing inside the table Q0, and q−(ti),p

−(ti), q+(ti)
and p+(ti) refer to the incoming and outgoing position and velocity vectors, respectively. G is
an external force acting on the incoming trajectories. Note that we allow G to change both the
position and velocity of the particle at the moment of collision. The change in velocity can be
thought of as a kick or twist while a change in position can model a slip along the boundary at
collision.

In [Ch2, Ch4], Chernov considered billiards under small external forces F with G = 0, and F
to be stationary. In [Z] a twist force was considered assuming F = 0 and G depending on and
affecting only the velocity, not the position. Here we consider a combination of these two cases
for systems under more general forces F and G. We make four assumptions, combining those in
[Ch2, Z].

(A1) (Invariant space) Assume the dynamics preserve a smooth function E(q,p). Its level sur-
face Ωc := E−1(c), for any c > 0, is a compact 3-d manifold such that ‖p‖ > 0 on Ωc and for each
q ∈ Q and p ∈ S1 the ray {(q, tp), t > 0} intersects the manifold Ωc in exactly one point.

Assumption (A1) specifies an additional integral of motion, so that we only consider restricted
systems on a compact phase space. In particular, (A1) implies that the speed p = ‖p‖ of the
billiard along any typical trajectory at time t satisfies

0 < pmin ≤ p(t) ≤ pmax <∞
for some constants pmin ≤ pmax. Under this assumption the particle will not become overheated,
and its speed will remain bounded. For any phase point x = (q,p) ∈ Ω for the flow, let τ(x) be
the length of the trajectory between x and its next non-tangential collision.

(A2) (Finite horizon) There exist τmax > τmin > 0 such that free paths between successive reflec-
tions are uniformly bounded, τ∗/2 ≤ τmin ≤ τ(x) ≤ τmax ≤ τ−1

∗ , ∀x ∈ Ω. Since Q0 ∈ Q1(τ∗,K∗, E∗),
the curvature K(r) of the boundary is also uniformly bounded for all r ∈ ∂Q0.
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(A3) (Smallness of the perturbation). We assume there exists ε1 > 0 small enough, such that

‖F‖C1 < ε1, ‖G‖C1 < ε1.

Let v = (cos θ, sin θ) denote the unit velocity vector with θ ∈ [0, 2π], andM be a level surface Ωc

with coordinates (q, θ), for some fixed c > 0. Denote TF,G : M →M as the billiard map associated
to the flow on M, where M is the collision space containing all post-collision vectors based at the
boundary of the billiard table Q0.

(A4) We assume both forces F and G are stationary and that G preserves tangential collisions. In
addition, we assume that the singularity set of T−1

F,G is the same as that of T−1
F,0.3

The case F = G = 0 corresponds to the classical billiard dynamics. It preserves the kinetic
energy E = 1

2‖p‖
2. We denote by FB(Q0, τ∗, ε1) the class of all perturbed billiard maps defined by

the dynamics (2.4) and (2.5) under forces F and G, satisfying assumptions (A1)-(A4).

Theorem 2.10. For any T ∈ F(Q0, τ∗, ε1), the perturbed system T satisfies (H1)-(H5) with
uniform constants depending only on ε1, τ∗, K∗ and E∗.

Theorem 2.11. Within the class FB(Q0, τ∗, ε1), the change of either the force F or G by a small

amount δ yields a perturbation of size O(|δ|1/3) in the distance dF (·, ·).
As a consequence, the spectral gap enjoyed by the classical billiard T0,0 persists for all TF,G ∈

F(Q0, τ∗, ε1) for ε1 sufficiently small so that we may apply the limit theorems of Corollary 2.4 to
any such TF,G.

The limit theorems implied by Theorem 2.11 are new even for the simplified maps TF,0 and T0,G.
We provide the proofs of Theorems 2.10 and 2.11 in Section 7.

2.5. Large perturbations: Large translations, rotations and deformations of scatterers.
If we fix τ∗,K∗ > 0 and E∗ < ∞, then Theorems 2.2 and 2.7 imply that the transfer operator LT
corresponding to any T ∈ F1(τ∗,K∗, E∗) is quasi-compact with essential spectral radius bounded
by σ < 1. In fact, [DZ, Theorem 2.5] implies that LT has a spectral gap.

Now choose a compact interval J ⊂ R and parametrize a continuous path in F1(τ∗,K∗, E∗)
according to the distance dF (·, ·). To each point s ∈ J is assigned a map Ts ∈ F1(τ∗,K∗, E∗) and a
corresponding transfer operator Ls. Fix σ1 > σ. Due to Theorem 2.3, there exists εs > 0 such that
the spectra and spectral projectors of Ls′ outside the disk of radius σ1 vary Hölder continuously
for s′ ∈ B(s, εs) := (s− εs, s+ εs).

The balls B(s, εs), s ∈ J form an open cover of J and since J is compact, there is a finite
subcover {B(si, εsi)}ni=1. Because these intervals overlap, as we move along the entire path from
one end of J to the other, the spectra and spectral projectors of Ls vary Hölder continuously in s.
We have proved the following.

Theorem 2.12. Let J ⊂ R be a compact interval and let {Ts}s∈J ⊂ F1(τ∗,K∗, E∗) be a continuously
parametrized path according to the distance dF (·, ·). Then the spectra and spectral projectors of the
associated transfer operators Ls vary Hölder continuously in the distance dF (·, ·). Moreover, the
related statistical properties of Ts, such as the rate of decay of correlations and variance in the
Central Limit Theorem, vary Hölder continuously in {Ts}.

The related dynamical properties of Ts vary Hölder continuously even across large movements
and deformations of scatterers as long as the resulting maps remain in F1(τ∗,K∗, E∗). Indeed, since
J is compact, the continuity of the spectral data implies that the spectral gap is uniform along such

3The assumption on the singularity set of T−1
F,G is not essential to our approach, but is made to simplify the proofs

in Section 7, since the paper is already quite long and we include a number of distinct applications.
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paths even when the resulting configurations are no longer close to the original. This regularity
also holds as we move scatterers in such a way that the table changes from finite to infinite horizon.

Remark 2.13. One could just as well apply the above large movements of scatterers to billiards
under external forces in the uniform families FB(Qs, τ∗, ε1) and allow the configurations Qs, s ∈ J ,
to change over a continuously parametrized path in F1(τ∗,K∗, E∗) as long as the horizon along the
path remains bounded uniformly above by τ−1

∗ . Theorem 2.12 applies to such families of maps as
well since they all possess spectral gaps by Theorem 2.11.

3. Abstract Framework

In this section, we describe the abstract framework into which we will place each class of per-
turbations that we consider. We begin by formulating general conditions (H1)-(H5) under which
the perturbations of a billiard map will satisfy the Lasota-Yorke inequalities (2.1) with uniform
constants. We also introduce general conditions (C1)-(C4) to verify that a perturbation is small
in the sense of (2.2). Theorems 2.2 and 2.3 show that these conditions are sufficient to establish
the framework of [KL]. Once this is accomplished, we only need to check that these conditions are
satisfied for each class of perturbations described above.

3.1. A class of maps with uniform properties. We fix the phase space M = ∪di=1Ii×[−π
2 ,

π
2 ] of

a billiard map associated with a periodic Lorentz gas as in Section 2.2. We will denote (normalized)

Lebesgue measure on M by m, i.e., dm = 1
πLdrdϕ, where L =

∑d
i=1 |Ii|.

We define the set S0 = {ϕ = ±π
2 } and for a fixed k0 ∈ N, we define for k ≥ k0, the homogeneity

strips,

(3.1) Hk = {(r, ϕ) : π/2− k−2 < ϕ < π/2− (k + 1)−2}.

The strips H−k are defined similarly near ϕ = −π/2. We also define H0 = {(r, ϕ) : −π/2 + k−2
0 <

ϕ < π/2 − k−2
0 }. The set S0,H = S0 ∪ (∪|k|≥k0∂H±k) is therefore fixed and will give rise to the

singularity sets for the maps that we define below, i.e. for any map T that we consider, we define
ST±n = ∪ni=0T

∓iS0,H to be the singularity sets for T±n, n ≥ 0.

Suppose there exists a class of invertible maps F such that for each T ∈ F , T : M \ST1 →M \ST−1

is a C2 diffeomorphism on each connected component of M \ ST1 . We assume that elements of F
enjoy the following uniform properties.

(H1) Hyperbolicity and singularities.

(H1.A) Hyperbolicity. There exist continuous families of stable and unstable cones Cs(x) and
Cu(x), defined on all of M , which are strictly invariant for the class F , i.e., DT (x)Cu(x) ⊂ Cu(Tx)
and DT−1(x)Cs(x) ⊂ Cs(T−1x) for all T ∈ F wherever DT and DT−1 are defined.

The cones Cs(x) and Cu(x) are uniformly transverse on M and ST−n is uniformly transverse to
Cs(x) for each n ∈ N and all T ∈ F . We assume in addition that Cs(x) is uniformly transverse to
the horizontal and vertical directions on all of M .4

Moreover, there exist constants Ce > 0 and Λ > 1 such that for all T ∈ F ,

(3.2) ‖DTn(x)v‖ ≥ C−1
e Λn‖v‖,∀v ∈ Cu(x), and ‖DT−n(x)v‖ ≥ C−1

e Λn‖v‖,∀v ∈ Cs(x),

for all n ≥ 0, where ‖ · ‖ is the Euclidean norm on the tangent space TxM .

4This is not a restrictive assumption for perturbations of the Lorentz gas since the standard cones Ĉs and Ĉu

for the billiard map satisfy this property (see for example [CM, Section 4.5]); the common cones Cs(x) and Cu(x)

shared by all maps in the class F must therefore lie inside Ĉs(x) and Ĉu(x) and therefore satisfy this property. In
any case, a weaker formulation of this assumption is necessary: we use in the compactness argument that the lengths
of stable curves in the homogeneity strips Hk, k ≥ k0, are proportional to the width of the strips. This is only true if
stable curves are transverse to the horizontal direction in such strips.
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(H1.B) Accumulation of singularities. The set of curves comprising TS0 accumulate on no
more than K points in M , where K is uniform for the class F . Moreover, there exists an indexing
scheme for the singularity curves in TS0 = {Sn}n∈N and a uniform constant N > 0 such that if
n ≥ N and Sn ∩Hk 6= ∅, then

(3.3) k ≥ csnυ0 ,
for some uniform constants cs, υ0 > 0.

(H1.C) Expansion near singularities. For any stable curve W ∈ Ŵs (see (H2) below),
let Wn denote the part of W between Sn and Sn+1, where Sn are singularity curves given by the
indexing scheme above. We assume there exists Ca > 0 such that
(3.4)

Can[cosϕ(T−1x)]−1‖v‖ ≤ ‖DT−1(x)v‖ ≤ C−1
a n[cosϕ(T−1x)]−1‖v‖, ∀x ∈Wn, ∀v ∈ Cs(x),

where ϕ(y) denotes the angle at the point y = (r, ϕ) ∈ M . Let expx denote the exponential map
from TxM to M . We require the following bound on the second derivative,

(3.5) Can
2[cosϕ(T−1x)]−3 ≤ ‖D2T−1(x)v‖ ≤ C−1

a n2[cosϕ(T−1x)]−3, ∀x ∈Wn,

for all v ∈ TxM such that T−1(expx(v)) and T−1x lie in the same homogeneity strip.

Remark: Note that by bounded distortion (H4), the expansion factors on each component of (M \
S−1) ∩Hk, k ≥ k0, satisfy (3.4) and (3.5) even when W ∩ TS0 = ∅.

(H2) Families of stable and unstable curves. We call W a stable curve for a map T ∈ F if
the tangent line to W , TxW lies in Cs(x) for all x ∈W . We call W homogeneous if W is contained
in one homogeneity strip Hk. Unstable curves are defined similarly.

Let Ŵs denote the set of C2 homogeneous stable curves in M whose curvature is bounded above

by a uniform constant B > 0. We assume there exists a choice of B such that Ŵs is invariant

under F in the following sense: For any W ∈ Ŵs and T ∈ F , the connected components of T−1W

are again elements of Ŵs. A family of unstable curves Ŵu is defined analogously, with obvious

modifications: For example, we require the connected components of TW to be elements of Ŵu for

all W ∈ Ŵu and T ∈ F .

(H3) Complexity bounds.

(H3.A) One-step expansion. We assume that there exists an adapted norm ‖ · ‖∗, uniformly

equivalent to ‖ · ‖, in which the constant Ce in (3.2) can be taken to be 1, i.e. we have expansion
and contraction in one step in the adapted norm for all maps in the class F .

Let W ∈ Ŵ s. For any T ∈ F , we partition the connected components of T−1W into maximal
pieces Vi = Vi(T ) such that each Vi is a homogeneous stable curve in some Hk, k ≥ k0, or H0. Let
|JViT |∗ denote the minimum contraction on Vi under T in the metric induced by the adapted norm
‖ · ‖∗. We assume that for some choice of k0,

(3.6) lim sup
δ→0

sup
T∈F

sup
|W |<δ

∑
i

|JViT |∗ < 1,

where |W | denotes the arclength of W .

(H3.B) One-step expansion with weakened exponent. There exists ς0 < 1 such that for

all ς > ς0, there exists Cς = Cς(ς, δ) such that for all T ∈ F and any W ∈ Ŵs with |W | < δ,

(3.7)
∑
i

|JViT |ςC0(Vi)
< Cς ,

where JViT denotes the stable Jacobian of T along the curve Vi with respect to arc length.
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Remark: Note that comparing to (H3.A), the above sum converges even when the expansion on
each piece is weakened slightly. We formulate (3.7) in terms of the usual Euclidean norm since we
do not need Cς < 1, i.e. we only need the above sum to be finite in some uniform sense.

(H4) Bounded distortion. There exists a constant Cd > 0 with the following properties. Let

W ′ ∈ Ŵs and for any T ∈ F , n ∈ N, let x, y ∈ W for some connected component W ⊂ T−nW ′

such that T iW is a homogeneous stable curve for each 0 ≤ i ≤ n. Then,

(3.8)

∣∣∣∣JµTn(x)

JµTn(y)
− 1

∣∣∣∣ ≤ CddW (x, y)1/3 and

∣∣∣∣JWTn(x)

JWTn(y)
− 1

∣∣∣∣ ≤ CddW (x, y)1/3,

where JµT
n is the Jacobian of Tn with respect to the smooth measure dµ = π

2 cosϕdm.

We assume the analogous bound along unstable leaves: If W ∈ Ŵu is an unstable curve such that
T iW is a homogeneous unstable curve for 0 ≤ i ≤ n, then for any x, y ∈W ,

(3.9)

∣∣∣∣JµTn(x)

JµTn(y)
− 1

∣∣∣∣ ≤ Cdd(Tnx, Tny)1/3.

(H5) Control of Jacobian. Let β, q < 1 be from the definition of the norms in Section 3.3 and
let θ∗ < 1 be from (3.10). Assume there exists a constant η < min{Λβ,Λq, θα−1

∗ } such that for any
T ∈ F ,

(JµT (x))−1 ≤ η, wherever JµT (x) is defined.

In what follows, we will work exclusively with maps in a class F which satisfy (H1)-(H5) with
uniform constants. This will allow us to establish our abstract framework in the remainder of
Section 3 and in Sections 4 and 5. We will then turn to our applications in Sections 6 and 7.

3.2. Transfer operator. Recall the family of stable curves Ŵs defined by (H2). We define a

subsetWs ⊂ Ŵs as follows. By (H3) we may choose δ0 > 0 for which there exists θ∗ < 1 such that

(3.10) sup
T∈F

sup
|W |≤δ0

∑
i

|JViT |∗ ≤ θ∗.

We shrink δ0 further if necessary so that the graph transform argument in Lemma 3.3(a) holds.

The set Ws comprises all those stable curves W ∈ Ŵs such that |W | ≤ δ0.
For any T ∈ F , we define scales of spaces using the set of stable curvesWs on which the transfer

operator LT associated with T will act. Define T−nWs to be the set of homogeneous stable curves
W such that Tn is smooth on W and T iW ∈ Ws for 0 ≤ i ≤ n. It follows from (H2) that
T−nWs ⊂ Ws.

For W ∈ T−nWs, a complex-valued test function ψ : M → C, and 0 < p ≤ 1 define Hp
W (ψ)

to be the Hölder constant of ψ on W with exponent p measured in the Euclidean metric. Define
Hp
n(ψ) = supW∈T−nWs H

p
W (ψ) and let C̃p(T−nWs) = {ψ : M → C | Hp

n(ψ) < ∞}, denote the
set of complex-valued functions which are Hölder continuous on elements of T−nWs. The set
C̃p(T−nWs) equipped with the norm |ψ|Cp(T−nWs) = |ψ|∞ + Hp

n(ψ) is a Banach space. Similarly,

we define C̃p(Ŵu), the set of functions which are Hölder continuous with exponent p on unstable

curves Ŵu.
It follows from (4.6) that if ψ ∈ C̃p(T−(n−1)Ws), then ψ ◦ T ∈ C̃p(T−nWs). Thus if h ∈

(C̃p(T−nWs))′, is an element of the dual of C̃p(T−nWs), then LT : (C̃p(T−nWs))′ → (C̃p(T−(n−1)Ws))′

acts on h by

LTh(ψ) = h(ψ ◦ T ) ∀ψ ∈ C̃p(T−(n−1)Ws).

Recall that dµ = π
2 cosϕdm denotes the smooth invariant measure for the unperturbed Lorentz

gas. If h ∈ L1(M,µ), then h is canonically identified with a signed measure absolutely continuous
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with respect to µ, which we shall also call h, i.e., h(ψ) =
∫
M ψhdµ. With the above identification,

we write L1(M,µ) ⊂ (C̃p(T−nWs))′ for each n ∈ N. Then restricted to L1(M,µ), LT acts according
to the familiar expression

LnTh = h ◦ T−n (JµT
n(T−n))−1 for any n ≥ 0 and h ∈ L1(M,µ).

Remark 3.1. In [DZ], we used Lebesgue measure as a reference measure to show that the functional
analytic framework developed there did not need to assume the existence of a smooth invariant
measure. Now that µ has been established in our function space B (defined in Sect. 3.3), however,
we find it more convenient to use it as a starting point in our study of the classes of perturbations
considered here. It also simplifies our norms and estimates slightly since for example, it eliminates
the need for the cosW weight in our test functions that was used in [DZ]. We do not assume that
µ is an invariant measure for T ∈ F ; indeed, the SRB measures for such T are in general singular
with respect to Lebesgue measure.

3.3. Definition of the Norms. The norms are defined via integration on the set of stable curves
Ws. Before defining the norms, we define the notion of a distance dWs(·, ·) between such curves as
well as a distance dq(·, ·) defined among functions supported on these curves.

Due to the transversality condition on the stable cones Cs(x) given by (H1), each stable curve W
can be viewed as the graph of a function ϕW (r) of the arc length parameter r. For each W ∈ Ws,
let IW denote the interval on which ϕW is defined and set GW (r) = (r, ϕW (r)) to be its graph
so that W = {GW (r) : r ∈ IW }. We let mW denote the unnormalized arclength measure on W ,
defined using the Euclidean metric.

Let W1,W2 ∈ Ws and identify them with the graphs GWi of their functions ϕWi , i = 1, 2.
Suppose W1,W2 lie in the same component of M and let IWi be the r-interval on which each curve
is defined. Denote by `(IW14IW2) the length of the symmetric difference between IW1 and IW2 .
Let Hki be the homogeneity strip containing Wi. We define the distance between W1 and W2 to
be,

dWs(W1,W2) = η(k1, k2) + `(IW14IW2) + |ϕW1 − ϕW2 |C1(IW1
∩IW2

)

where η(k1, k2) = 0 if k1 = k2 and η(k1, k2) =∞ otherwise, i.e., we only compare curves which lie
in the same homogeneity strip.

For 0 ≤ p ≤ 1, denote by C̃p(W ) the set of continuous complex-valued functions onW with Hölder
exponent p, measured in the Euclidean metric, which we denote by dW (·, ·). We then denote by

Cp(W ) the closure of C∞(W ) in the C̃p-norm5: |ψ|Cp(W ) = |ψ|C0(W ) +Hp
W (ψ), where Hp

W (ψ) is the
Hölder constant of ψ along W . Notice that with this definition, |ψ1ψ2|Cp(W ) ≤ |ψ1|Cp(W )|ψ2|Cp(W ).

We define C̃p(M) and Cp(M) similarly.
Given two functions ψi ∈ Cq(Wi,C), q > 0, we define the distance between ψ1, ψ2 as

dq(ψ1, ψ2) = |ψ1 ◦GW1 − ψ2 ◦GW2 |Cq(IW1
∩IW2

).

We will define the required Banach spaces by closing C1(M) with respect to the following set of
norms. For s, p ≥ 0, define the following norms for test functions,

|ψ|W,s,p := |W |s · |ψ|Cp(W ).

Now fix 0 < p ≤ 1
3 . Given a function h ∈ C1(M), define the weak norm of h by

(3.11) |h|w := sup
W∈Ws

sup
ψ∈Cp(W )
|ψ|W,0,p≤1

∫
W
hψ dmW .

5While Cp(W ) may not contain all of C̃p(W ), it does contain Cp
′
(W ) for all p′ > p.



A FUNCTIONAL ANALYTIC APPROACH TO PERTURBATIONS OF THE LORENTZ GAS 13

Choose6 α, β, q > 0 such that α < 1− ς0, q < p and β ≤ min{α, p− q}. We define the strong stable
norm of h as

(3.12) ‖h‖s := sup
W∈Ws

sup
ψ∈Cq(W )
|ψ|W,α,q≤1

∫
W
hψ dmW

and the strong unstable norm as

(3.13) ‖h‖u := sup
ε≤ε0

sup
W1,W2∈Ws

dWs (W1,W2)≤ε

sup
ψi∈Cp(Wi)
|ψi|Wi,0,p≤1

dq(ψ1,ψ2)≤ε

1

εβ

∣∣∣∣∫
W1

hψ1 dmW −
∫
W2

hψ2 dmW

∣∣∣∣
where ε0 > 0 is chosen less than δ0, the maximum length of W ∈ Ws which is determined by (3.10).
We then define the strong norm of h by

‖h‖B = ‖h‖s + b‖h‖u
where b is a small constant chosen in Section 4.

We define B to be the completion of C1(M) in the strong norm7 and Bw to be the completion of
C1(M) in the weak norm.

3.4. Distance in F . We define a distance in F as follows. Let ε0 be from (3.13). For T1, T2 ∈ F
and ε ≤ ε0, let Nε(Si−1) denote the ε-neighborhood in M of the singularity set Si−1 of T−1

i , i = 1, 2.
We say dF (T1, T2) ≤ ε if the maps are close away from their singularity sets in the following sense:
For x /∈ Nε(S1

−1 ∪ S2
−1),

(C1) d(T−1
1 (x), T−1

2 (x)) ≤ ε;

(C2)

∣∣∣∣JµTi(x)

JµTj(x)
− 1

∣∣∣∣ ≤ ε, i, j = 1, 2;

(C3)

∣∣∣∣JWTi(x)

JWTj(x)
− 1

∣∣∣∣ ≤ ε, for any W ∈ Ws, i, j = 1, 2, and x ∈W ;

(C4) ‖DT−1
1 (x)v −DT−1

2 (x)v‖ ≤
√
ε, for any unit vector v ∈ TxW , W ∈ Ws.

We do not assume that the sets S1
−1 and S2

−1 are close together in any sense.

3.5. Preliminary estimates. Before proving the Lasota-Yorke inequalities, we show how (H1)-
(H5) imply several other uniform properties for our class of maps F . In particular, we will be
interested in iterating the one-step expansion relations given by (H3). We recall the estimates we
need from [DZ, Section 3.2].

Let T ∈ F and W ∈ Ws. Let Vi denote the maximal connected components of T−1W after
cutting due to singularities and the boundaries of the homogeneity strips. To ensure that each
component of T−1W is in Ws, we subdivide any of the long pieces Vi whose length is > δ0,
where δ0 is chosen in (3.10). This process is then iterated so that given W ∈ Ws, we construct
the components of T−nW , which we call the nth generation Gn(W ), inductively as follows. Let
G0(W ) = {W} and suppose we have defined Gn−1(W ) ⊂ Ws. First, for any W ′ ∈ Gn−1(W ), we
partition T−1W ′ into at most countably many pieces W ′i so that T is smooth on each W ′i and
each W ′i is a homogeneous stable curve. If any W ′i have length greater than δ0, we subdivide those

6The restrictions on the constants are placed according to the dynamical properties of T . For example, p ≤ 1/3
due to the distortion bounds in (H4), while α < 1− ς0 so that Lemma 3.2(d) can be applied with ς = 1− α > ς0.

7As a measure, h ∈ C1(M) is identified with hdµ according to our earlier convention. As a consequence, Lebesgue
measure dm = (cosϕ)−1dµ is not automatically included in B since (cosϕ)−1 /∈ C1(M). We will prove in Lemma 3.5
that in fact, m ∈ B (and Bw).
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pieces into pieces of length between δ0/2 and δ0. We define Gn(W ) to be the collection of all pieces
Wn
i ⊂ T−nW obtained in this way. Note that each Wn

i is in Ws by (H2).
At each iterate of T−1, typical curves in Gn(W ) grow in size, but there exist a portion of curves

which are trapped in tiny homogeneity strips and in the infinite horizon case, stay too close to the
infinite horizon points. In Lemma 3.2, we make precise the sense in which the proportion of curves
that never grow to a fixed length decays exponentially fast.

For W ∈ Ws, n ≥ 0, and 0 ≤ k ≤ n, let Gk(W ) = {W k
i } denote the kth generation pieces in

T−kW . Let Bk(W ) = {i : |W k
i | < δ0/3} and Lk(W ) = {i : |W k

i | ≥ δ0/3} denote the index of the
short and long elements of Gk(W ), respectively. We consider {Gk}nk=0 as a tree with W as its root

and Gk as the kth level.
At level n, we group the pieces as follows. Let Wn

i0
∈ Gn(W ) and let W k

j ∈ Lk(W ) denote the

most recent long “ancestor” of Wn
i0

, i.e. k = max{0 ≤ ` ≤ n : Tn−`(Wn
i0

) ⊂ W `
j and j ∈ L`}. If no

such ancestor exists, set k = 0 and W k
j = W . Note that if Wn

i0
is long, then W k

j = Wn
i0

. Let

In(W k
j ) = {i : W k

j ∈ Lk(W ) is the most recent long ancestor of Wn
i ∈ Gn(W )}.

The set In(W ) represents those curves Wn
i that belong to short pieces in Gk(W ) at each time step

1 ≤ k ≤ n, i.e. such Wn
i are never part of a piece that has grown to length ≥ δ0/3.

We collect the results of [DZ, Section 3.2] in the following lemma.

Lemma 3.2. ([DZ]) Let W ∈ Ws, T ∈ F and for n ≥ 0, let In(W ) and Gn(W ) be defined as
above. There exist constants C1, C2, C3 > 0, independent of W and T , such that for any n ≥ 0,

(a)
∑

i∈In(W )

|JWn
i
Tn|C0(Wn

i ) ≤ C1θ
n
∗ ;

(b)
∑

Wn
i ∈Gn(W )

|JWn
i
Tn|C0(Wn

i ) ≤ C2;

(c) for any 0 ≤ ς ≤ 1,
∑

Wn
i ∈Gn(W )

|Wn
i |ς

|W |ς
|JWn

i
Tn|C0(Wn

i ) ≤ C1−ς
2 ;

(d) for ς > ς0,
∑

Wn
i ∈Gn(W )

|JWn
i
Tn|ςC0(Wn

i )
≤ Cn3 , where C3 depends on ς.

Proof. The proofs of these items are combinatorial and require no more specific information about
the maps than the uniform properties given by (H2), (H3) and (H4).

(a) This is Lemma 3.1 of [DZ]. The constant C1 depends only on the constant relating the Euclidean
norm ‖ · ‖ to the adapted norm ‖ · ‖∗. As such, C1 is independent of T ∈ F , W ∈ Ws and n ∈ N.

(b) This statement is [DZ, Lemma 3.2]. The constant C2 = C2(δ0, θ∗, C1, Cd).

(c) This is [DZ, Lemma 3.3]. It follows from (b) by an application of Jensen’s inequality.

(d) This follows from (3.7) and is proved in [DZ, Lemma 3.4]. The constant C3 = δ−1
0 Cς(1 +Cd)

2ς

is uniform for T ∈ F , but depends on ς. �

Next we prove a distortion bound for the stable Jacobian of T along different stable curves in
the following context. Let W 1,W 2 ∈ Ws and suppose there exist Uk ⊂ T−nW k, k = 1, 2, such
that for 0 ≤ i ≤ n,

(i) T iUk ∈ Ws and the curves T iU1 and T iU2 lie in the same homogeneity strip;
(ii) U1 and U2 can be put into a 1-1 correspondence by a smooth foliation {γx}x∈U1 of curves

γx ∈ Ŵu such that {Tnγx} ⊂ Ŵu creates a 1-1 correspondence between TnU1 and TnU2;
(iii) |T iγx| ≤ 2 max{|T iU1|, |T iU2|}, for all x ∈ U1.

Let JUkT
n denote the stable Jacobian of Tn along the curve Uk with respect to arclength.
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Lemma 3.3. In the setting above, for x ∈ U1, define x∗ ∈ γx∩U2. There exists C0 > 0, independent
of T ∈ F , W ∈ Ws and n ≥ 0 such that

(a) dWs(U1, U2) ≤ C0Λ−ndWs(W 1,W 2);

(b)

∣∣∣∣ JU1Tn(x)

JU2Tn(x∗)
− 1

∣∣∣∣ ≤ C0[d(Tnx, Tnx∗)1/3 + θ(Tnx, Tnx∗)],

where θ(Tnx, Tnx∗) is the angle formed by the tangent lines of TnU1 and TnU2 at Tnx and Tnx∗,
respectively.

Proof. (a) This is essentially a graph transform argument adapted for this class of maps satisfying
(H1). What we need to show here is that we do not need to cut curves lying in homogeneity strips
any further in order to get the required contraction and control on distortion.

First notice that due to the uniform expansion of γx under Tn given by (3.2) of (H1), we
have |γx| ≤ CeCtΛ

−ndWs(W 1,W 2), where Ct is a constant depending only on the minimum angle
between Cu(x) and Cs(x) and between Cu(x) and the horizontal direction. Again by the transver-
sality of γx with U1 and U2, the r-intervals on which the functions ϕU1 , ϕU2 describing the curves
U1, U2 are defined can differ by no more than CeC

2
t Λ−ndWs(W 1,W 2). Letting I denote the in-

tersection of intervals on which both functions are defined and recalling the definition of dWs(·, ·)
from Section 3.3, it remains to estimate |ϕU1 − ϕU2 |C1(I).

By the same observation as above, we have |ϕU1 − ϕU2 |C0(I) ≤ C2
t CeΛ

−ndW s(W 1,W 2). In
order to show that the slopes of these curves also contract exponentially, we make the usual graph
transform argument using charts in the adapted norm ‖ · ‖∗ from (H3).

Fix x ∈ U1 and define charts along the orbit of x so that xi := T ix, 0 ≤ i ≤ n, corresponds to
the origin in each chart with the stable direction at xi given by the horizontal axis and the unstable
direction by the vertical axis in the charts. Let ϑ < 1 denote the maximum absolute value of slopes
of stable curves in the chart. Due to property (iii) before the statement of the lemma, we may
choose the size of the charts to have stable and unstable diameters ≤ C|T iU1| for each i, for some
uniform constant C. The dynamics induced by T−1 on these charts is defined by

T̃−1
xi = χ−1

xi−1
◦ T−1 ◦ χxi

where χxi are smooth maps with |χxi |C2 , |χ−1
xi |C2 ≤ C for some uniform constant C.

Note that DT̃−1
xi and D2T̃−1

xi satisfy (H1) with possibly larger Ca and Ce = 1. In the chart

coordinates, since T̃−1
xi (0) = 0, we have

T̃−1
xi (s, t) = (Ais+ αi(s, t), Bit+ βi(s, t))

where Ai is the expansion at xi in the stable direction and Bi is the contraction at xi in the unstable
direction given by DT−1

xi (0). The nonlinear functions αi, βi satisfy αi(0, 0) = βi(0, 0) = 0 and their
Lipschitz constants are bounded by the maximum of

(3.14) ‖DT̃−1
xi (u)−DT̃−1

xi (v)‖ ≤ ‖D2T̃xi(z)‖‖u− v‖
where u, v, z range over the chart at xi.

We fix i and let ϕ1, ϕ2 denote two Lipschitz functions whose graphs lie in the stable cone of the

chart at xi and satisfy ϕj(0) = 0, j = 1, 2. Define L(ϕ1, ϕ2) = sups 6=0
|ϕ1(s)−ϕ2(s)|

|s| . Let ϕ′1 = T̃−1
∗ ϕ1

and ϕ′2 = T̃−1
∗ ϕ2 denote the graphs of the images of these two curves in the chart at xi−1. We wish

to estimate L(ϕ′1, ϕ
′
2). For s on the horizontal axis in the chart at xi, we write,

|ϕ′1(Ais+αi(s, ϕ1(s)))− ϕ′2(Ais+ αi(s, ϕ1(s)))| ≤ |ϕ′1(Ais+ αi(s, ϕ1(s)))− ϕ′2(Ais+ αi(s, ϕ2(s)))|
+ |ϕ′2(Ais+ αi(s, ϕ2(s)))− ϕ′2(Ais+ αi(s, ϕ1(s)))|

≤ |Bi||ϕ1(s)− ϕ2(s)|+ |βi(s, ϕ1(s))− βi(s, ϕ2(s))|+ ϑ|αi(s, ϕ1(s))− αi(s, ϕ2(s))|
≤ (|Bi|+ Lip(βi) + ϑLip(αi))|ϕ1(s)− ϕ2(s)|
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On the other hand, by (3.4),

|Ais+ αi(s, ϕ1(s))| ≥ (|Ai| − Lip(αi)(1 + ϑ))|s|.

Putting these together, we see that,
(3.15)

L(ϕ′1, ϕ
′
2) ≤ sup

s 6=0

(|Bi|+ Lip(βi) + ϑLip(αi))|ϕ1(s)− ϕ2(s)|
(|Ai| − Lip(αi)(1 + ϑ))|s|

≤ |Bi|+ Lip(βi) + ϑLip(αi)

|Ai| − Lip(αi)(1 + ϑ)
L(ϕ1, ϕ2).

Suppose that xi−1 lies in the homogeneity strip Hk and xi lies on a curve with index n according
to the index given by (H1). Then by (3.14) and (3.4) and (3.5) of (H1), the Lipshitz constants
of αi and βi are bounded by C−1

a n2k6(C−1
a n−1k−5) = C−2

a nk since the size of the chart is taken to
be on the order of the length of the curve T iU1 by property (iii) of the matching. Thus,

L(ϕ′1, ϕ
′
2) ≤ Λ−1 + C−2

a nk(1 + ϑ)

Cank2 − C−2
a nk(1 + ϑ)

L(ϕ1, ϕ2) ≤ 4C−3
a

k
L(ϕ1, ϕ2),

for large k, which can be made smaller than Λ−1. Note that since k ≥ csn
υ0 by (H1), this bound

is also small for large n. Thus we may choose N0,K0 > 0 such that the contraction is less than Λ−1

on all curves with index n ≥ N0 or landing in homogeneity strip Hk, k ≥ K0. On the remainder of
M , the first and second derivatives of T−1 are uniformly bounded by constants depending on N0

and K0. For curves in this part of M , we choose δ0, the maximum length of stable curves in Ws,
sufficiently small that the distortion given by (3.14) is less than 1

2(Λ−1/2 − Λ−1). Then by (3.15),

since ϑ < 1, the contraction on these pieces is less than Λ−1 as well.
If ϕ1 and ϕ2 do not pass through the origin, the exponential contraction in the C0 norm coupled

with the above argument yields the required contraction.

(b) It is equivalent to estimate the ratio log
JTnU1

T−n(Tnx)

JTnU2
T−n(Tnx∗) . We write

(3.16) log
JTnU1T

−n(Tnx)

JTnU2T
−n(Tnx∗)

≤
n∑
i=1

1

Ai
|JT iU1

T−1(T ix)− JT iU2
T−1(T ix∗)|

where Ai = min{JT iU1
T−1(T ix), JT iU2

T−1(T ix∗)}.
We estimate the differences one term at a time and assume without loss of generality that the

minimum for Ai is attained at T ix. Set xi = T ix, x∗i = T ix∗. Let ~u1(xi) denote the unit tangent
vector to T iU1 at xi and notice that JT iU1

T−1(xi) = ‖DT−1(xi)~u1‖. Define ~u2(x∗i ) similarly. Then

| ‖DT−1(xi)~u1‖ − ‖DT−1(x∗i )~u2‖ | ≤ | ‖DT−1(xi)~u1‖ − ‖DT−1(xi)~u2‖ |
+ | ‖DT−1(xi)~u2‖ − ‖DT−1(x∗i )~u2‖ |

≤ ‖DT−1(xi)‖ ‖~u1 − ~u2‖+ ‖D2T−1(zi)‖d(xi, x
∗
i ),

where zi is some point on T iγx.
Suppose T−1xi lies in the homogeneity strip Hk and xi lies on some curve Wn according to the

index given in (H1). Then ‖DT−1(xi)‖/‖DT−1(xi)~u‖ ≤ C where C is some uniform constant for
all unit vectors ~u ∈ Cs(xi). Also by (H1), we have |T iU j | ≤ Ca/nk5, j = 1, 2, so that by property
(iii) before the statement of the lemma, d(xi, x

∗
i ) ≤ 2Ca/(nk

5). Thus

‖D2T−1(zi)‖d(xi, x
∗
i )

‖DT−1(xi)~u1‖
≤ (Can

2k6)(2Ca/(nk
5))

C−1
a nk2

≤ 2C3
a

k
≤ 2C3

ad(xi−1, x
∗
i−1)1/3.

Using these estimates in (3.16), we have

log
JTnU1T

−n(Tnx)

JTnU2T−n(Tnx∗)
≤ C

n∑
i=1

‖~u1(xi)− ~u2(x∗i )‖+ d(xi−1, x
∗
i−1)1/3.
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Now ‖~u1(xi)−~u2(x∗i )‖ ≤ θ(xi, x∗i ) ≤ C0Λi−nθ(Tnx, Tnx∗) by part (a) of the lemma together with the
fact that curves in Ws have C2 norm uniformly bounded above. Finally, by (H1), d(xi−1, x

∗
i−1) ≤

CeΛ
i−n−1d(Tnx, Tnx∗), which completes the proof of the lemma. �

3.6. Properties of the Banach spaces. We first prove that the weak and strong norms dominate
distributional norms on M in the following sense.

Lemma 3.4. There exists C > 0 such that for any h ∈ Bw, T ∈ F , n ≥ 0 and ψ ∈ Cp(T−nWs),

|h(ψ)| ≤ C|h|w(|ψ|∞ +Hp
n(ψ)).

This is the analogue of Lemma 3.9 of [DZ], but it does not follow from the argument given there
since condition (H5) and the weakened Lasota-Yorke inequalities in Theorem 2.2 suggest that the
spectral radius of LT can be as much as η > 1. It is a consequence of Lemma 3.4 that the spectral
radius is in fact 1 (see Section 4, proof of Theorem 2.2).

Proof of Lemma 3.4. Define M` := I` × [−π/2, π/2]. We partition the set H0 into finitely many
boxes Bj whose boundary curves are elements ofWs andWu as well as the horizontal lines ±π/2∓
1/k2

0. We construct the boxes so that each Bj has diameter ≤ δ0 and is foliated by a smooth family
of stable curves {Wξ}ξ∈Ej ⊂ Ws, each of whose elements completely crosses Bj in the approximate
stable direction.

We decompose the smooth measure dµ = cosϕdm on Bj into dµ = µ̂(dξ)dµξ, where µξ is
the conditional measure of µ on Wξ and µ̂ is the transverse measure on Ej . We normalize the
measures so that µξ(Wξ) =

∫
Wξ

cosϕdmWξ
. Since the foliation is smooth, dµξ = ρξ cosϕdmWξ

where |ρξ|C1(Wξ) ≤ C for some constant C independent of ξ. Note that µ̂(Ej) ≤ Cδ0 due to the
transversality of curves in Ws and Wu. Next we choose on each homogeneity strip Ht, t ≥ k0,
a smooth foliation {Wξ}ξ∈Et ⊂ Ws whose elements all have endpoints lying in the two boundary
curves of Ht. We again decompose µ on Ht into dµ = µ̂(dξ)dµξ, ξ ∈ Et, and dµξ = ρξ cosϕdmWξ

is normalized as above. By construction, µ̂(Et) = O(1). Given h ∈ C1(M), ψ ∈ Cp(T−nWs), since
T−nM = M (mod 0), we have h(ψ) =

∫
M hψ dµ =

∫
M L

nhψ ◦ T−n dµ. We split M = ∪`M` and
integrate one ` at a time.∫

M`

Lnhψ ◦ T−n dµ =
∑
j

∫
Bj

Lnhψ ◦ T−n dµ+
∑
|t|≥k0

∫
Ht
Lnhψ ◦ T−n dµ

=
∑
j

∫
Ej

∫
Wξ

Lnhψ ◦ T−n ρξ dµWdµ̂(ξ) +
∑
|t|≥k0

∫
Et

∫
Wξ

Lnhψ ◦ T−n ρξ dµWdµ̂(ξ)

We change variables and estimate the integrals on one Wξ at a time. Letting Wn
ξ,i denote the

components of Gn(Wξ) defined in Section 3.5 and recalling that JWn
ξ,i
Tn denotes the stable Jacobian

of Tn along the curve Wn
ξ,i, we write,∫

Wξ

Lnhψ ◦ T−n ρξ dµW =
∑
i

∫
Wn
ξ,i

hψ(JµT
n)−1JWn

ξ,i
Tnρξ ◦ Tn cosϕ ◦ Tn dmW

≤
∑
i

|h|w|ψ|Cp(Wn
ξ,i)
|(JµTn)−1JWn

ξ,i
Tn|Cp(Wn

ξ,i)
|ρξ ◦ Tn|Cp(Wn

ξ,i)
| cosϕ ◦ Tn|Cp(Wn

ξ,i)
.

By (4.6), we have |ρξ ◦ Tn|Cp(Wn
ξ,i)
≤ C|ρξ|Cp(Wξ) ≤ C for some uniform constant C. The disortion

bounds given by (H4), equation (3.8), imply that

(3.17) |(JµTn)−1JWn
ξ,i
Tn|Cp(Wn

ξ,i)
≤ (1 + 2Cd)|(JµTn)−1JWn

ξ,i
Tn|C0(Wn

ξ,i)
.

For W ∈ Ws, let cosW denote the average value of cosϕ on W , i.e.

cosW := |W |−1

∫
W

cosϕdmW .
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Note that there exists Cc > 0, depending only on k0 and the uniform transversality of Cs(x) with
the horizontal direction, such that

(3.18) C−1
c cosW ≤ cosϕ(x) ≤ Cc cosW for all x ∈W .

Thus | cosϕ ◦ Tn|C0(Wn
ξ,i)
≤ Cc cosWξ. Then for x, y ∈Wn

ξ,i, we have using (3.2) of (H1),

| cosϕ ◦ Tn(x)− cosϕ ◦ Tn(y)|
dWn

ξ,i
(x, y)p

≤
dWξ

(Tnx, Tny)

dWn
ξ,i

(x, y)p
≤ CpeΛ−np|Wξ|1−p.

Thus we have Hp
Wn
ξ,i

(cosϕ ◦ Tn) ≤ Cpe |Wξ|1−p. If Wξ ⊂ Ht, then cosWξ ≥ ct−2 while |Wξ| ≤ C ′t−3

for uniform constants c, C ′ > 0, depending on the minimum angle between Cs(x) and the horizontal.
Thus since p ≤ 1/3, we have | cosϕ ◦ Tn|Cp(Wn

ξ,i)
≤ C cosWξ for some uniform constant C.

Gathering these estimates together, we have

(3.19)

∫
Wξ

Lnhψ ◦ T−n ρξ dµW ≤ C|h|w(|ψ|∞ +Hp
n(ψ)) cos(Wξ)

∑
i

|(JµTn)−1JWn
ξ,i
Tn|C0(Wn

ξ,i)
,

where C is uniform in T and n. We group the pieces Wn
ξ,i ∈ Gn(Wξ) according to most recent long

ancestor W k
ξ,j ∈ Gk(Wξ) as described in Section 3.5. Then splitting up the Jacobians according to

times k and n− k and using (H5), we have

∑
i

|(JµTn)−1JWn
ξ,i
Tn|C0(Wn

ξ,i)
≤

∑
i∈In(W )

ηn|JWn
ξ,i
Tn|C0(Wn

ξ,i)

+

n∑
k=1

∑
j∈Lk(Wξ)

|(JµT k)−1JWk
ξ,j
T k|C0(Wk

ξ,j)

 ∑
i∈In(Wk

j )

ηn−k|JWn
ξ,i
Tn−k|C0(Wn

ξ,i)


≤ C1(ηθ∗)

n +

n∑
k=1

∑
j∈Lk(Wξ)

|(JµT k)−1JWk
ξ,j
T k|C0(Wk

ξ,j)
C1(ηθ∗)

n−k

(3.20)

where we have used Lemma 3.2(a) on each of the terms involving In(W k
ξ,j) from time k to time n.

For each k, since |W k
ξ,j | ≥ δ0/3, we have by bounded distortion (H4),

∑
j∈Lk(Wξ)

|(JµT k)−1JWk
ξ,j
T k|C0(Wk

ξ,j)
≤ (1 + Cd)

23δ−1
0

∑
j∈Lk(Wξ)

∫
Wk
ξ,j

(JµT
k)−1JWk

ξ,j
T k dmW

≤ Cδ−1
0

∫
Wξ

JµT
−k dmW .

Putting this estimate together with (3.19) and (3.20) and bringing cosWξ into the integral,

∫
Wξ

Lnhψ ◦ T−n ρξ dµW ≤ C|h|w(|ψ|∞ +Hp
n(ψ))

(
cosWξ +

n∑
k=1

(ηθ∗)
n−k

∫
Wξ

JµT
−k dµW

)



A FUNCTIONAL ANALYTIC APPROACH TO PERTURBATIONS OF THE LORENTZ GAS 19

for some uniform constant C. Thus∣∣∣ ∫
M`

Lnhψ ◦ T−n dm
∣∣∣ ≤ C|h|w(|ψ|∞ +Hp

n(ψ))
(∑

j

∫
Ej

cosWξ µ̂(dξ) +
∑
|t|≥k0

∫
Et

cosWξ µ̂(dξ)

+
∑
j

n∑
k=1

(ηθ∗)
n−k

∫
Bj

JµT
−k dµ+

∑
|t|≥k0

n∑
k=1

(ηθ∗)
n−k

∫
Ht
JµT

−k dµ
)

≤ C|h|w(|ψ|∞ +Hp
n(ψ))

(∑
j

µ̂(Ej) +
∑
|t|≥k0

t−2µ̂(Et) +
n∑
k=1

(ηθ∗)
n−k

∫
M`

JµT
−kdµ

)
where in the last line we have used the fact that cosW ≤ Ct−2 for W ⊂ Ht. The first two sums
are finite since there are only finitely many Ej and µ̂(Et) is of order 1 for each t. Since there are
only finitely many M`, the first two sums remain finite when we sum over `. For the third sum, we
sum over ` and use the fact that

∫
M JµT

−k dµ = 1 for each k ≥ 1. Thus the contribution from the
third sum is uniformly bounded in n using the fact that ηθ∗ < 1 by (H5). �

Several other properties of the spaces B and Bw proved in [DZ] do not need to be reproved since
their proofs remain essentially unchanged. They are as follows.

(i) ([DZ, Lemma 3.7]) B contains piecewise Hölder continuous functions h with exponent
greater than 2β provided the discontinuities of h are uniformly transverse to the stable
cones Cs(x).

(ii) ([DZ, Lemma 2.1]) L is well-defined as a continuous linear operator on both B and Bw.
Moreover, there is a sequence of embeddings Cγ(M) ↪→ B ↪→ Bw ↪→ (Cp(M))′, for all
γ > 2β.

(iii) ([DZ, Lemma 3.10]) The unit ball of (B, ‖ · ‖B) is compactly embedded in (Bw, | · |w).

Lemma 3.4 and items (i) and (ii) characterize the spaces B and Bw as spaces of distributions
containing all Hölder continuous and certain classes of piecewise Hölder continuous functions. The
last item is necessary in order to deduce the quasi-compactness of LT from the Lasota-Yorke
inequalities given by Theorem 2.2.

There remains one final fact to establish. As mentioned earlier, since we identify h ∈ C1(M) with
the measure hµ as an element of B, a priori Lebesgue measure may not be in B. The following
Lemma shows that Lebesgue measure is in fact in B and therefore so is hdm for any h ∈ C1(M).

Lemma 3.5. The function (cosϕ)−1 is in B. Therefore, Lebesgue measure m = (cosϕ)−1 µ is also
in B and so is hm for any h ∈ C1(M). Indeed, any piecewise Hölder continuous function as in item
(i) above times Lebesgue belongs to B.

Proof. In order to show (cosϕ)−1 ∈ B, we must show that (cosϕ)−1 can be approximated by
functions h ∈ C1(M) in the ‖ · ‖B norm. Since ‖f‖B = supk ‖f |Hk‖B, our strategy will be to show

that ‖(cosϕ)−1|Hk‖B ≤ Ck−1/2 for some uniform constant C. We can then approximate (cosϕ)−1

by 0 in homogeneity strips of sufficiently high index. More precisely, given ε > 0, we choose K such
that CK−1/2 < ε. Then on the remaining strips k < K, (cosϕ)−1 has finite C1-norm and satisfies
the assumptions of [DZ, Lemma 3.7]. Thus we may find fε ∈ C1(M) as in the proof of that lemma
such that

‖(cosϕ)−1 − fε‖B ≤ sup
k≥K
‖(cosϕ)−1|Hk‖B + sup

k<K
‖((cosϕ)−1 − fε)|Hk‖B < 2ε,

proving that (cosϕ)−1 ∈ B.
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It remains to prove the claim ‖(cosϕ)−1|Hk‖B ≤ Ck−1/2. Choose W ∈ Ws, W ⊂ Hk, and let
ψ ∈ Cq(W ) with |ψ|W,α,q ≤ 1. Then,∫

W
(cosϕ)−1 ψ dmW ≤ |(cosϕ)−1|C0(W )|ψ|C0(W )|W | ≤ |(cosϕ)−1|C0(W )|W |1−α

since |ψ|Cp(W ) ≤ |W |−α. On Hk, we have |W | ≤ ck−3 and | cosϕ|−1 ≤ Ck2 for some uniform
constants c and C which depend only on the minimum angle of Cs(x) with the horizontal. Then,
since α < 1/6,

(3.21) |(cosϕ)−1|C0(W )|W |1−α ≤ cCk2k−3+3α ≤ C ′k−1/2.

Taking the suprema over W ⊂ Hk and ψ with |ψ|W,α,q ≤ 1, we have ‖(cosϕ)−1|Hk‖s ≤ C ′k−1/2,
completing the estimate on the strong stable norm.

To estimate the strong unstable norm, let ε ≤ ε0 and choose two curves in Hk, W
1,W 2 ∈ Ws,

such that dWs(W 1,W 2) ≤ ε. For i = 1, 2, let ψi ∈ Cp(W i) with |ψi|Cp(W i) ≤ 1 and dq(ψ1, ψ2) ≤ ε.
Recalling the notation of Section 3.3, denote W i = {GW i(r) = (r, ϕW i(r)) : r ∈ IW i}, i = 1, 2

and note that by definition of dWs(·, ·), W 1 and W 2 can be put into one-to-one correspondence
by a foliation of vertical line segments of length at most ε, except possibly near their endpoints.
Denote by U i the single matched connected component of W i and by V i

j the at most 2 unmatched

components of W i. We let Θ : U1 → U2 denote the holonomy map along the vertical foliation. We
estimate, ∫

W 1

(cosϕ)−1ψ1 dmW −
∫
W 2

(cosϕ)−1ψ2 dmW =
∑
i,j

∫
V ij

(cosϕ)−1ψi dmW

+

∫
U1

(cosϕ)−1ψ1 dmW −
∫
U2

(cosϕ)−1ψ2 dmW .

(3.22)

We first estimate over the unmatched pieces V i
j . Note that |V i

j | ≤ Cε where C depends only on

the minimum angle of Cs(x) with the vertical. Recalling that |ψi|C0(W i) ≤ 1 and using (3.21) since
β ≤ α, we estimate

(3.23)

∣∣∣∣∣∣
∑
i,j

∫
V ij

(cosϕ)−1ψi dmW

∣∣∣∣∣∣ ≤
∑
i,j

|V i
j |β|V i

j |1−β|(cosϕ)−1|C0(V ij ) ≤ Cε
βk−1/2.

To estimate the difference on the matched pieces U i, we change variables to U1 using Θ,∣∣∣∣∫
U1

(cosϕ)−1ψ1 dmW −
∫
U2

(cosϕ)−1ψ2 dmW

∣∣∣∣ =

∣∣∣∣∫
U1

(cosϕ)−1ψ1 − [(cosϕ)−1ψ2] ◦Θ JΘ dmW

∣∣∣∣
≤ |U1||(cosϕ)−1ψ1 − [(cosϕ)−1ψ2] ◦Θ JΘ|C0(U1).

To estimate the C0 norm of the test function, we split the difference into 3 terms and use the fact
that |ψi|C0 ≤ 1,

|(cosϕ)−1ψ1 − [(cosϕ)−1ψ2] ◦Θ JΘ|C0(U1) ≤ |(cosϕ)−1 − (cosϕ)−1 ◦Θ|C0(U1)

+ |(cosϕ)−1|C0(U2)|ψ1 − ψ2 ◦Θ|C0(U1) + |(cosϕ)−1|C0(U2)|1− JΘ|C0(U1).
(3.24)

For the first term above, note that for x ∈ U1, | cosϕ(x)−cosϕ◦Θ(x)| ≤ d(x,Θ(x)) ≤ min{ε, Ck−3}
for some uniform constant C > 0. Thus

|(cosϕ)−1(x)− (cosϕ)−1 ◦Θ(x)| ≤ d(x,Θ(x))

cosϕ(x) cosϕ ◦Θ(x)
≤ C ′ ε

βk−3(1−β)

k−4
≤ C ′εβk3/2,
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since β ≤ 1/6. To estimate the second term in (3.24), denote x ∈ U1 by x = GW 1(r) for some
r ∈ IW 1 ∩ IW 2 =: I. Then |ψ1(x) − ψ2 ◦ Θ(x)| = |ψ1 ◦GW 1(r) − ψ2 ◦GW 2(r)| ≤ ε by definition of
dq(·, ·). Thus

|(cosϕ)−1|C0(U2)|ψ1 − ψ2 ◦Θ|C0(U1) ≤ Ck2ε.

Finally, we estimate the third term of (3.24) by noting that

|1− JΘ| =

∣∣∣∣∣∣1−
√

1 + (ϕ′
W 1)2√

1 + (ϕ′
W 2)2

∣∣∣∣∣∣ ≤ |ϕ′W 1 − ϕ′W 2 | ≤ ε,

where we have used the fact that the derivative of
√

1 + t2, t√
1+t2

, is bounded by 1 for t ≥ 0.

Putting these 3 estimates together in (3.24), we estimate the norm on the matched pieces by∣∣∣∣∫
U1

(cosϕ)−1ψ1 dmW −
∫
U2

(cosϕ)−1ψ2 dmW

∣∣∣∣ ≤ |U1|C(εβk3/2 + εk2 + εk2) ≤ C ′εβk−1,

using the fact that |U1| ≤ Ck−3. This, combined with (3.23), yields the required estimate on the
strong unstable norm. �

4. Proof of Theorem 2.2

The proof of Theorem 2.2 relies on the following proposition.

Proposition 4.1. There exists C > 0, depending only on (H1)-(H5), such that for any T ∈ F ,
h ∈ B and n ≥ 0,

|LnTh|w ≤ Cηn|h|w(4.1)

‖LnTh‖s ≤ C(θ
(1−α)n
1 + Λ−qn)ηn‖h‖s + Cηnδ−α0 |h|w(4.2)

‖LnTh‖u ≤ CηnΛ−βn‖h‖u + CηnCn3 ‖h‖s(4.3)

Proof of Theorem 2.2 given Proposition 4.1. Choose 1 > σ > ηmax{θ1−α
1 ,Λ−q,Λ−β} and choose

N ≥ 0 such that

‖LNT h‖B = ‖LNT h‖s + b‖LNT h‖u ≤
σN

2
‖h‖s + Cδ−α0 ηN |h|w + bσN‖h‖u + bCηNCN3 ‖h‖s

≤ σN‖h‖B + Cδ0η
N |h|w

providing b is chosen sufficiently small with respect to N . This is the required inequality (2.3) for
Theorem 2.2 which implies the essential spectrum of LT is less than σ. Outside the disk of radius
σ, the spectrum of LT has finitely many eigenvalues, each with finite multiplicity. This follows
using the compactness of the unit ball of B in Bw [DZ, Lemma 3.10].

Despite the fact that η may be greater than 1, the spectral radius of LT equals 1. To see this,
suppose z ∈ C, |z| > 1, satisfies LTh = zh for some h ∈ B, h 6= 0. For ψ ∈ Cp(M), Lemma 3.4
implies that,

|h(ψ)| = |z−nLnTh(ψ)| = |z−nh(ψ ◦ Tn)| ≤ |z|−nC|h|w(|ψ|∞ +Hp
n(ψ ◦ Tn)) −−−→

n→∞
0

since Hp
n(ψ ◦ Tn) ≤ CeΛ−pn|ψ|Cp(M) by (4.6). Thus h = 0, contradicting the assumption on z.

The characterization of the peripheral spectrum follows from Lemmas 5.1 and 5.2 of [DZ]. �

To prove Proposition 4.1, we fix T ∈ F and prove the required Lasota-Yorke inequalities (4.1)-
(4.3). It is shown in [DZ, Section 4] that LT is a continuous operator on both B and Bw so that
it suffices to prove the inequalities for h ∈ C1(M). They extend to the completions by continuity.
Since these estimates are similar to those in [DZ], our purpose in repeating them is to show how
they depend explicitly on the uniform constants given by (H1)-(H5) and do not require additional
information.
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4.1. Estimating the weak norm. Let h ∈ C1(M), W ∈ Ws and ψ ∈ Cp(W ) such that |ψ|W,0,p ≤
1. For n ≥ 0, we write,

(4.4)

∫
W
Lnhψ dmW =

∑
Wn
i ∈Gn(W )

∫
Wn
i

h
JWn

i
Tn

JµTn
ψ ◦ TndmW

where JWn
i
Tn denotes the Jacobian of Tn along Wn

i .
Using the definition of the weak norm on each Wn

i , we estimate (4.4) by

(4.5)

∫
W
Lnhψ dmW ≤

∑
Wn
i ∈Gn

|h|w|(JµTn)−1JWn
i
Tn|Cp(Wn

i )|ψ ◦ Tn|Cp(Wn
i ).

For x, y ∈Wn
i , we use (H1) to estimate,

(4.6)
|ψ(Tnx)− ψ(Tny)|
dW (Tnx, Tny)p

· dW (Tnx, Tny)p

dW (x, y)p
≤ |ψ|Cp(W )|JWn

i
Tn|pC0(Wn

i )
≤ CeΛ−pn|ψ|Cp(W ),

so that |ψ ◦ Tn|Cp(Wn
i ) ≤ Ce|ψ|Cp(W ) ≤ Ce. We use this estimate together with (H5) and (3.17) to

bound (4.5) by∫
W
Lnhψ dmW ≤ Ce(1 + 2Cd)η

n|h|w
∑

Wn
i ∈Gn

|JWn
i
Tn|C0(Wn

i ) ≤ C ′ηn|h|w,

where C ′ = Ce(1 + 2Cd)C2 and we have used Lemma 3.2(b) for the last inequality. Taking the
supremum over all W ∈ Ws and ψ ∈ Cp(W ) with |ψ|W,0,p ≤ 1 yields (4.1) expressed with uniform
constants given by (H1)-(H5).

4.2. Estimating the strong stable norm. Let W ∈ Ws and let Wn
i denote the elements of

Gn(W ) as defined above. For ψ ∈ Cq(W ), |ψ|W,α,q ≤ 1, define ψi = |Wn
i |−1

∫
Wn
i
ψ ◦Tn dmW . Using

equation (4.4), we write

(4.7)

∫
W
Lnhψ dmW =

∑
i

∫
Wn
i

h
JWn

i
Tn

JµTn
(ψ ◦ Tn − ψi) dmW + ψi

∫
Wn
i

h
JWn

i
Tn

JµTn
dmW .

To estimate the first term of (4.7), we first estimate |ψ ◦ Tn − ψi|Cq(Wn
i ). If Hq

W (ψ) denotes the

Hölder constant of ψ along W , then equation (4.6) implies

(4.8)
|ψ(Tnx)− ψ(Tny)|

dW (x, y)q
≤ CeΛ−nqHq

W (ψ)

for any x, y ∈ Wn
i . Since ψi is constant on Wn

i , we have Hq
Wn
i

(ψ ◦ Tn − ψi) ≤ CeΛ
−qnHq

W (ψ). To

estimate the C0 norm, note that ψi = ψ ◦ Tn(yi) for some yi ∈Wn
i . Thus for each x ∈Wn

i ,

|ψ ◦ Tn(x)− ψi| = |ψ ◦ Tn(x)− ψ ◦ Tn(yi)| ≤ Hq
Wn
i

(ψ ◦ Tn)|Wn
i |q ≤ CeH

q
W (ψ)Λ−nq.

This estimate together with (4.8) and the fact that |ϕ|W,α,q ≤ 1, implies

(4.9) |ψ ◦ Tn − ψi|Cq(Wn
i ) ≤ CeΛ−nq|ψ|Cq(W ) ≤ CeΛ−qn|W |−α.

We apply (3.17), (4.9) and the definition of the strong stable norm to the first term of (4.7),∑
i

∫
Wn
i

h
JWn

i
Tn

JµTn
(ψ ◦ Tn − ψi) dmW ≤ (1 + 2Cd)Ce

∑
i

‖h‖s
|Wn

i |α

|W |α

∣∣∣∣JWn
i
Tn

JµTn

∣∣∣∣
C0(Wn

i )

Λ−qn

≤ ηn(1 + 2Cd)CeΛ
−qn‖h‖s

∑
i

|Wn
i |α

|W |α
|JWn

i
Tn|C0(Wn

i ) ≤ C4η
nΛ−qn‖h‖s,

(4.10)

where C4 = (1 + 2Cd)CeC
1−α
2 and in the second line we have used (H5) and Lemma 3.2(c) with

ς = α.
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For the second term of (4.7), we use the fact that |ψi| ≤ |W |−α since |ψ|W,α,q ≤ 1. Recall
the notation introduced before the statement of Lemma 3.2. Grouping the pieces Wn

i ∈ Gn(W )
according to most recent long ancestors W k

j ∈ Lk(W ), we have∑
i

|W |−α
∫
Wn
i

h
JWn

i
Tn

JµTn
dmW =

n∑
k=1

∑
j∈Lk(W )

∑
i∈In(Wk

j )

|W |−α
∫
Wn
i

h
JWn

i
Tn

JµTn
dmW

+
∑

i∈In(W )

|W |−α
∫
Wn
i

h
JWn

i
Tn

JµTn
dmW

where we have split up the terms involving k = 0 and k ≥ 1. We estimate the terms with k ≥ 1 by
the weak norm and the terms with k = 0 by the strong stable norm. Using again (3.17) and (H5),∑

i

|W |−α
∫
Wn
i

h
JWn

i
Tn

JµTn
dmW ≤ ηn(1 + 2Cd)

n∑
k=1

∑
j∈Lk(W )

∑
i∈In(Wk

j )

|W |−α|h|w|JWn
i
Tn|C0(Wn

i )

+ ηn(1 + 2Cd)
∑

i∈In(W )

|Wn
i |α

|W |α
‖h‖s|JWn

i
Tn|C0(Wn

i ).

In the first sum above corresponding to k ≥ 1, we write

|JWn
i
Tn|C0(Wn

i ) ≤ |JWn
i
Tn−k|C0(Wn

i )|JWk
j
T k|C0(Wk

j ).

Thus using Lemma 3.2(a) from time k to time n,

n∑
k=1

∑
j∈Lk

∑
i∈In(Wk

j )

|W |−α|JWn
i
Tn|C0(Wn

i ) ≤
n∑
k=1

∑
j∈Lk(W )

|JWk
j
T k|C0(Wk

j )|W |
−α

∑
i∈In(Wk

j )

|JWn
i
Tn−k|C0(Wn

i )

≤ 3δ−α0

n∑
k=1

∑
j∈Lk(W )

|JWk
j
T k|C0(Wk

j )

|W k
j |α

|W |α
C1θ

n−k
∗ ,

since |W k
j | ≥ δ0/3. The inner sum is bounded by C1−α

2 for each k by Lemma 3.2(c) while the outer

sum is bounded by C1/(1− θ∗) independently of n.
Finally, for the sum corresponding to k = 0, since

|JWn
i
Tn|C0(Wn

i ) ≤ (1 + Cd)|TnWn
i ||Wn

i |−1 ≤ (1 + Cd)|JWn
i
Tn|C0(Wn

i ),

we use Jensen’s inequality and Lemma 3.2(a) to estimate,

∑
i∈In(W )

|Wn
i |α

|W |α
|JWn

i
Tn|C0(Wn

i ) ≤ (1 + Cd)

 ∑
i∈In(W )

|TnWn
i |

|Wn
i |

1−α

≤ (1 + Cd)C1θ
n(1−α)
∗ .

Gathering these estimates together, we have

(4.11)
∑
i

|W |−α
∣∣∣∣∣
∫
Wn
i

h(JµT
n)−1JWn

i
Tn dmW

∣∣∣∣∣ ≤ C5η
nδ−α0 |h|w + C6‖h‖sηnθn(1−α)

∗ ,

where C5 = 3(1 + 2Cd)C1C
1−α
2 /(1− θ∗) and C6 = (1 + 2Cd)

2C1. Putting together (4.10) and (4.11)
proves (4.2),

‖Lnh‖s ≤ C ′ηn
(

Λ−qn + θ
n(1−α)
∗

)
‖h‖s + C ′ηnδ−α0 |h|w,

with C ′ = max{C4, C5, C6}, a uniform constant depending only on (H1)-(H5).
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4.3. Estimating the strong unstable norm. Fix ε ≤ ε0 and consider two curves W 1,W 2 ∈ Ws

with dWs(W 1,W 2) ≤ ε. For n ≥ 1, we describe how to partition T−nW ` into “matched” pieces
U `j and “unmatched” pieces V `

k , ` = 1, 2. In the what follows, we use Ct to denote a transversality
constant which depends only on the minimum angle between various transverse directions: the
minimum angle between Cs(x) and Cu(x), between ST−n and Cs(x), and between Cs(x) and the
vertical and horizontal directions.

Let ω be a connected component of W 1 \ ST−n such that T−nω ∈ Gn(W ). We define a smooth
local foliation {γx}x∈T−nω about T−nω such that for each x ∈ T−nω: (1) γx is centered at x, (2)

γx ∈ Ŵ u; (3) |γx| ≤ 2BCtCeΛ
−nε such that its image Tnγx, if not cut by a singularity or the

boundary of a homogeneity strip, will have a projection on the vertical direction of length 2ε. By
item (3) and the definition of dWs(W 1,W 2), it follows that any curve Tnγx that is not cut by a
singularity or the boundary of a homogeneity strip must necessarily intersect W 2, except possibly

if Tnγx lies near the endpoints of W 1. By (H2), T iγx ∈ Ŵu for each i ≥ 0.
Doing this for each connected component of W 1 \ ST−n, we subdivide W 1 \ ST−n into a countable

collection of subintervals of points for which Tnγx intersects W 2 \ ST−n and subintervals for which

this is not the case. This in turn induces a corresponding partition on W 2 \ ST−n.

We denote by V `
k the pieces in T−nW ` which are not matched up by this process and note that

the images TnV `
k occur either at the endpoints of W ` or because the curve γx has been cut by a

singularity or the boundary of a homogeneity strip. In both cases, the length of the curves TnV `
k

can be at most Ctε due to the uniform transversality of ST−n with Cs(x), of Cs(x) with Cu(x) and
of Cs(x) with the horizontal.

In the remaining pieces the foliation {Tnγx}x∈T−nW 1 provides a one to one correspondence
between points in W 1 and W 2. We partition these pieces in such a way that the lengths of their
images under T−i are less than δ0 for each 0 ≤ i ≤ n and the pieces are pairwise matched by

the foliation {γx}. We call these matched pieces Ũ `j and note that T iŨ `j ∈ Gn−i(W `) for each

i = 0, 1, . . . n. For convenience, we further trim the Ũ `j to pieces U `j so that U1
j and U2

j are both

defined on the same arclength interval Ij . The at most two components of Tn(Ũ `j \U `j ) have length

less than Ctε due to the uniform transversality of Cs(x) with the vertical direction. We attach
these trimmed pieces to the adjacent U `i or V `

k as appropriate so as not to create any additional
components in the partition.

We further relabel any pieces U `j as V `
j and consider them unmatched if for some i, 0 ≤ i ≤ n,

|T iγx| > 2|T iU `j |. i.e. we only consider pieces matched if at each intermediate step, the distance
between them is at most of the same order as their length. We do this in order to be able to
apply Lemma 3.3 to the matched pieces. Notice that since the distance between the curves at
each intermediate step is at most CtCeε and due to the uniform contraction of stable curves going
forward, we have |TnV `

k | ≤ CtC2
e ε for all such pieces considered unmatched by this last criterion.

In this way we write W ` = (∪jTnU `j )∪ (∪kTnV `
k ). Note that the images TnV `

k of the unmatched
pieces must have length ≤ Cvε for some uniform constant Cv while the images of the matched
pieces U `j may be long or short.

Recalling the notation of Section 3.3, we have arranged a pairing of the pieces U `j with the
following property:

If U1
j = GU1

j
(Ij) = {(r, ϕU1

j
(r)) : r ∈ Ij}, then U2

j = GU2
j
(Ij) = {(r, ϕU2

j
(r)) : r ∈ Ij},(4.12)

so that the point x = (r, ϕU1
j
(r)) ∈ U1

j can associated with the point x̄ = (r, ϕU2
j
(r)) ∈ U2

j by

the vertical line {(r, s)}s∈[−π/2,π/2], for each r ∈ Ij . In addition, the U `j satisfy the assumptions of
Lemma 3.3.
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Given ψ` on W ` with |ψ`|W `,0,p ≤ 1 and dq(ψ1, ψ2) ≤ ε, with the above construction we must
estimate ∣∣∣∣∫

W 1

Lnhψ1 dmW −
∫
W 2

Lnhψ2 dmW

∣∣∣∣ ≤ ∑
`,k

∣∣∣∣∣
∫
V `k

h(JµT
n)−1JV `k

Tnψ` ◦ Tn dmW

∣∣∣∣∣
+
∑
j

∣∣∣∣∣
∫
U1
j

h(JµT
n)−1JU1

j
Tnψ1 ◦ Tn dmW −

∫
U2
j

h(JµT
n)−1JU2

j
Tnψ2 ◦ Tn dmW

∣∣∣∣∣(4.13)

We do the estimate over the unmatched pieces V `
k first using the strong stable norm. Note that

by (4.6), |ψ` ◦ Tn|Cq(V `k ) ≤ Ce|ψ`|Cp(W `) ≤ Ce. We estimate as in Section 4.2, using the fact that

|TnV `
k | ≤ Cvε, as noted above,∑

`,k

∣∣∣ ∫
V `k

h(JµT
n)−1JV `k

Tnψ` ◦ Tn dmW

∣∣∣ ≤ Ce∑
`,k

‖h‖s|V `
k |α|(JµTn)−1JV `k

Tn|Cq(V `,k)

≤ Ce(1 + 2Cd)η
n‖h‖s

∑
`,k

|V `
k |α|JV `k T

n|C0(V `k )

≤ C ′εαηn‖h‖s
∑
`,k

|JV `k T
n|1−αC0(V `k )

≤ 2C ′εαηn‖h‖sCn3 ,

(4.14)

with C ′ = Ce(1 + 2Cd)
2Cαv , where we have applied Lemma 3.2(d) with ς = 1− α > ς0 since there

are at most two V `
k corresponding to each element W `,n

i ∈ Gn(W `) as defined in Section 3.5 and

|JV `k T
n|C0(V `k ) ≤ |JW `,n

i
Tn|C0(W `,n

i )
whenever V `

k ⊆W
`,n
i .

Next, we must estimate∑
j

∣∣∣∣∣
∫
U1
j

h(JµT
n)−1JU1

j
Tn ψ1 ◦ Tn dmW −

∫
U2
j

h(JµT
n)−1JU2

j
Tn ψ2 ◦ Tn dmW

∣∣∣∣∣ .
We fix j and estimate the difference. Define

φj = ((JµT
n)−1JU1

j
Tn ψ1 ◦ Tn) ◦GU1

j
◦G−1

U2
j
.

The function φj is well-defined on U2
j and we can write,∣∣∣∣∣

∫
U1
j

h(JµT
−1JU1

j
Tn ψ1 ◦ Tn −

∫
U2
j

h(JµT
n)−1JU2

j
Tn ψ2 ◦ Tn

∣∣∣∣∣
≤

∣∣∣∣∣
∫
U1
j

h(JµT
n)−1JU1

j
Tn ψ1 ◦ Tn −

∫
U2
j

hφj

∣∣∣∣∣+

∣∣∣∣∣
∫
U2
j

h(φj − (JµT
n)−1JU2

j
Tn ψ2 ◦ Tn)

∣∣∣∣∣ .
(4.15)

We estimate the first term on the right hand side of (4.15) using the strong unstable norm. Using
(H5), (3.17) and (4.6),

(4.16) |(JµTn)−1JU1
j
Tn · ψ1 ◦ Tn|Cp(U1

j ) ≤ Ce(1 + 2Cd)η
n|JU1

j
Tn|C0(U1

j ).

Notice that

(4.17) |GU1
j
◦G−1

U2
j
|C1(U2

j ) ≤ sup
r∈U2

j

√
1 + (dϕU1

j
/dr)2√

1 + (dϕU2
j
/dr)2

≤
√

1 + Γ2 =: Cg,

where Γ is the maximum slope of curves inWs given by (H1). Using this, we estimate as in (4.16),

|φj |Cp(U2
j ) ≤ CgCe(1 + 2Cd)η

n|JU1
j
Tn|C0(U1

j ).
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By the definition of φj and dq(·, ·),

dq((JµT
n)−1JU1

j
Tnψ1 ◦ Tn, φj) =

∣∣∣[(JµTn)−1JU1
j
Tnψ1 ◦ Tn

]
◦GU1

j
− φj ◦GU2

j

∣∣∣
Cq(Ij)

= 0.

By Lemma 3.3(a), we have dWs(U1
j , U

2
j ) ≤ C0Λ−nε =: ε1. In view of (4.16) and following, we

renormalize the test functions by Rj = C7η
n|JU1

j
Tn|C0(U1

j ) where C7 = CgCe(1 + 2Cd). Then we

apply the definition of the strong unstable norm with ε1 in place of ε. Thus,

(4.18)
∑
j

∣∣∣∣∣
∫
U1
j

h(JµT
n)−1JU1

j
Tn ψ1 ◦ Tn −

∫
U2
j

hφj

∣∣∣∣∣ ≤ C7C
β
0 ε

βΛ−βnηn‖h‖u
∑
j

|JU1
j
Tn|C0(U1

j )

where the sum is ≤ C2 by Lemma 3.2(b) since there is at most one matched piece U1
j corresponding

to each element W 1,n
i ∈ Gn(W 1) and |JU1

j
Tn|C0(U1

j ) ≤ |JW 1,n
i
Tn|C0(W 1,n

i )
whenever U1

j ⊆W
1,n
i .

It remains to estimate the second term in (4.15) using the strong stable norm.

(4.19)

∣∣∣∣∣
∫
U2
j

h(φj − (JµT
n)−1JU2

j
Tnψ2 ◦ Tn)

∣∣∣∣∣ ≤ ‖h‖s|U2
j |α
∣∣∣φj − (JµT

n)−1JU2
j
Tnψ2 ◦ Tn

∣∣∣
Cq(U2

j )
.

In order to estimate the Cq-norm of the function in (4.19), we split it up into two differences. Since
|GU`j |C1 ≤ Cg and |G−1

U`j
|C1 ≤ 1, ` = 1, 2, we write

|φj − ((JµT
n)−1JU2

j
Tn) · ψ2 ◦ Tn|Cq(U2

j )

≤
∣∣∣[((JµTn)−1JU1

j
Tn) · ψ1 ◦ Tn

]
◦GU1

j
−
[
((JµT

n)−1JU2
j
Tn) · ψ2 ◦ Tn

]
◦GU2

j

∣∣∣
Cq(Ij)

≤
∣∣∣((JµTn)−1JU1

j
Tn) ◦GU1

j

[
ψ1 ◦ Tn ◦GU1

j
− ψ2 ◦ Tn ◦GU2

j

]∣∣∣
Cq(Ij)

+
∣∣∣[((JµTn)−1JU1

j
Tn) ◦GU1

j
− ((JµT

n)−1JU2
j
Tn) ◦GU2

j

]
ψ2 ◦ Tn ◦GU2

j

∣∣∣
Cq(Ij)

≤ Cg(1 + 2Cd)|(JµTn)−1JU1
j
Tn|C0(U1

j )

∣∣∣ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j

∣∣∣
Cq(Ij)

+ CgCe

∣∣∣((JµTn)−1JU1
j
Tn) ◦GU1

j
− ((JµT

n)−1JU2
j
Tn) ◦GU2

j

∣∣∣
Cq(Ij)

(4.20)

To bound the two differences above, we need the following lemma.

Lemma 4.2. There exist constants C8, C9 > 0, depending only on (H1)-(H5), such that,

(a) |((JµTn)−1JU1
j
Tn)◦GU1

j
− (JµT

n)−1JU2
j
Tn)◦GU2

j
|Cq(Ij) ≤ C8|(JµTn)−1JU2

j
Tn|C0(U2

j )ε
1/3−q;

(b) |ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j
|Cq(Irj ) ≤ C9ε

p−q.

We postpone the proof of the lemma to Section 4.3.1 and show how this completes the estimate
on the strong unstable norm. It follows from Lemma 4.2(a) that

|(JµTn)−1JU1
j
Tn|C0(U1

j ) ≤ (1 + C8ε
1/3−q)|(JµTn)−1JU2

j
Tn|C0(U2

j )

which we will use to simplify (4.20). Starting from (4.19), we apply Lemma 4.2 to (4.20) to obtain,∑
j

∣∣∣ ∫
U2
j

h(φj − (JµT
n)−1JU2

j
Tnψ2 ◦ Tn) dmW

∣∣∣
≤ C̄‖h‖s

∑
j

|U2
j |α|(JµTn)−1JU2

j
Tn|C0(U2

j ) ε
p−q ≤ C̄ηn‖h‖sεp−q

∑
j

|JU2
j
Tn|C0(U2

j ),
(4.21)
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for some uniform constant C̄ where again the sum is finite as in (4.18). This completes the estimate
on the second term in (4.15). Now we use this bound, together with (4.14) and (4.18) to estimate
(4.13)∣∣∣∣∫

W 1

Lnhψ1 dmW −
∫
W 2

Lnhψ2 dmW

∣∣∣∣ ≤ CCn3 η
n‖h‖sεα + C‖h‖uΛ−βnηnεβ + Cηn‖h‖sεp−q,

where again C depends only on (H1)-(H5) through the estimates above. Since p − q ≥ β and
α ≥ β, we divide through by εβ and take the appropriate suprema to complete the proof of (4.3).

4.3.1. Proof of Lemma 4.2. First we prove the following general fact and then use it to prove
Lemma 4.2.

Lemma 4.3. Let (N, d) be a metric space and let 0 < r < s ≤ 1. Suppose g1, g2 ∈ Cs(N,R) satisfy
|g1 − g2|C0(N) ≤ D1ε

s for some constant D1 > 0. Then |g1 − g2|Cr(N) ≤ 3εs−r max{D1, H
s(g1) +

Hs(g2)}, where Hs(·) denotes the Hölder constant with exponent s on N .

Proof. Since | · |Cr(N) = | · |C0(N) +Hr(·), we must estimate Hr(g1− g2). Let x, y ∈ N . Then on the
one hand, since |g1 − g2| ≤ D1ε

s, we have

|(g1(x)− g2(x))− (g1(y)− g2(y))|
d(x, y)r

≤ 2D1ε
sd(x, y)−r

On the other hand, using the fact that g1, g2 ∈ Cs(N), we have

|(g1(x)− g2(x))− (g1(y)− g2(y))|
d(x, y)r

≤ (Hs(g1) +Hs(g2))d(x, y)s−r.

These two estimates together imply that the Hölder constant of g1 − g2 is bounded by

Hr(g1 − g2) ≤ sup
x,y∈N

min{2D1ε
sd(x, y)−r, (Hs(g1) +Hs(g2))d(x, y)s−r}.

This expression is maximized when 2D1ε
sd(x, y)−r = (Hs(g1) + Hs(g2))d(x, y)s−r, i.e., when

d(x, y) = ε
(

2D1
Hs(g1)+Hs(g2)

)1/s
. Thus the Hölder constant of g1 − g2 satisfies,

Hr(g1 − g2) ≤ εs−r(2D1)1− r
s (Hs(g1) +Hs(g2))

r
s .

�

Proof of Lemma 4.2(a). Throughout the proof, for ease of notation we write Jn` for (JµT
n)−1JU`j

Tn.

For any r ∈ Ij , x = GU1
j
(r) and x̄ = GU2

j
(r) lie on a common vertical segment. By the

construction at the beginning of Section 4.3, U1
j , U2

j lie in two homogeneous stable curves Ũ1
j and

Ũ2
j which are connected by the foliation {γx}. Thus x∗ := γx∩Ũ2

j is uniquely defined for all x ∈ U1
j .

Then Tn(x) and Tn(x∗) lie on the element Tnγx ∈ Wu which intersects W 1 and W 2 and has length
at most Ctε. By (3.9) and Lemma 3.3(b),

|Jn1 (x)− Jn2 (x∗)| ≤ CdC0|Jn2 |C0(U2
j )(dW (Tnx, Tnx∗)1/3 + θ(Tnx, Tnx∗)),

where θ(Tnx, Tnx∗) is the angle between the tangent line to W 1 at Tnx and the tangent line to W 2

at Tnx∗. Let y ∈ W 2 be the unique point in W 2 which lies on the same vertical segment as Tnx.
Since by assumption dWs(W 1,W 2) ≤ ε, we have θ(Tnx, y) ≤ ε. Due to the uniform transversality
of curves in Wu and Ws and the fact that W 2 is the graph of a C2 function with C2 norm bounded
by B from (H2), we have θ(y, Tnx∗) ≤ BCtε and so θ(Tnx, Tnx∗) ≤ (1 +BCt)ε. Thus

(4.22) |Jn1 (x)− Jn2 (x∗)| ≤ CdC0(Ct + 1 +BCt)ε
1/3|Jn2 |C0(U2

j ).
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Also, by (3.8), since x∗ and x̄ are both on Ũ2
j , we have |Jn2 (x∗)−Jn2 (x̄)| ≤ C2

d |Jn2 |C0(U2
j )dW (x∗, x̄)1/3.

Putting this together with (4.22) and using the fact that dW (x∗, x̄) ≤ Ctε by the transversality of
γx with Ws yields,

(4.23) |Jn1 (x)− Jn2 (x̄)| ≤ C ′ε1/3|Jn2 |C0(U2
j ),

where C ′ = CdC0(2Ct + 1 +BCt).
Now using the fact that |GU`j |C1(Ij) ≤ Cg from (4.17), we apply Lemma 4.3 withD1 = C1|Jn2 |C0(U2

j )

and gi = Jni ◦GU ij , i = 1, 2. By (4.23), we have

(4.24) |Jn1 |C0(U1
j ) ≤ (1 + C ′ε1/3)|Jn2 |C0(U2

j ),

and invoking (3.8), we complete the proof of (a). �

Proof of (b). Let ϕW ` be the function whose graph is W `, defined for r ∈ IW ` , and set f `j :=

G−1
W ` ◦Tn ◦GU`j , k = 1, 2. Notice that since |G−1

W ` |C1 ≤ 1 and |GU`j |C1 ≤ Cg, and due to the uniform

contraction along stable curves, we have Lip(f `j ) ≤ Cf , where Cf is independent of W `, T and j.

We may assume that f `j (Ij) ⊂ IW 1 ∩ IW 2 since if not, by the transversality of Cu(x) and Cs(x), we

must be in a neighborhood of one of the endpoints of W ` of length at most Ctε; such short pieces
may be estimated as in (4.14) using the strong stable norm. Thus

|ψ1 ◦ Tn ◦GU1
j
− ψ2 ◦ Tn ◦GU2

j
|Cq(Ij) ≤ |ψ1 ◦GW 1 ◦ f1

j − ψ2 ◦GW 2 ◦ f1
j |Cq(Ij)

+ |ψ2 ◦GW 2 ◦ f1
j − ψ2 ◦GW 2 ◦ f2

j |Cq(Ij).
(4.25)

Using the above observation about f1
j , we estimate the first term of (4.25) by

(4.26) |ψ1 ◦GW 1 ◦ f1
j − ψ2 ◦GW 2 ◦ f1

j |Cq(Ij) ≤ Cf |ψ1 ◦GW 1 − ψ2 ◦GW 2 |Cq(f1j (Ij))
≤ Cfε,

since dq(ψ1, ψ2) ≤ ε. To estimate the second term of (4.25), notice that since U1
j and U2

j are joined

by the transverse foliation {γx} ⊂ Ŵu and using the uniform contraction along stable curves under

Tn, we have |f1
j − f2

j |C0(Ij) ≤ C̃ε for a constant C̃ depending only on the uniform hyperbolicity of

(H1) and the uniform transversality conditions in (H2). Thus for r ∈ Ij ,

(4.27) |ψ2 ◦GW 2 ◦ f1
j (r)− ψ2 ◦GW 2 ◦ f2

j (r)| ≤ Cg|ψ2|Cp |f1
j (r)− f2

j (r)|p ≤ CgC̃|ψ2|Cpεp.
Now we again apply Lemma 4.3 to obtain

|ψ2 ◦GW 2 ◦ f1
j − ψ2 ◦GW 2 ◦ f2

j |Cq(Ij) ≤ C|ψ2|Cpεp−q,

for a uniform constant C. This estimate combined with (4.26) proves part (b) since |ψ2|Cp(W 2) ≤
1. �

5. Proof of Theorem 2.3

Fix ε < ε0 and suppose T1, T2 ∈ F with dF (T1, T2) ≤ ε. We denote by S`−n the singularity sets
for T`, ` = 1, 2. Let h ∈ C1(M), ‖h‖B ≤ 1, and W ∈ Ws. Let ψ ∈ Cp(W ) with |ψ|W,0,p ≤ 1. We
must estimate∫

W
(L1h− L2h)ψ dmW =

∫
W
L1hψ dmW −

∫
W
L2hψ dmW

=

∫
T−1
1 W

hψ ◦ T1(JµT1)−1JT−1
1 WT dmW −

∫
T−1
2 W

hψ ◦ T2(JµT2)−1JT−1
2 WT2 dmW .

(5.1)

Notice that the estimate required is similar to that done in Section 4.3, except that instead of
two close stable curves iterated under the same map, we have one stable curve iterated under two
different maps.
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We partition T−1
1 W and T−1

2 W into matched and unmatched pieces as in the beginning of

Section 4.3. Let G`1(W ), ` = 1, 2, denote the elements of T−1
` W as described in Section 3.5. Let

ω ∈ G1
1(W ). Due to (C1), to each point x ∈ ω, we associate a curve γx ∈ Ŵ u of length at most

Ctε which terminates on a piece of T−1
2 W that lies in the same homogeneity strip, if one exists.

We also require that γx is not cut by S1
1 ∪ S2

1 .

We denote by V `
k those components of T−1

` W not matched by this process. We also include in

the set of V `
k all images of connected components of W ∩Nε(S1

−1 ∪ S2
−1) under T−1

` . Note that the

T`V
`
k occur either at the endpoints of W or near a singularity or the boundary of Nε(S1

−1 ∪ S2
−1).

In all cases, the length of the curves T`V
`
k can be at most CtCeε due to the uniform transversality

of S`−1 with Cs and of Cs with Cu.
In the remaining pieces the foliation {γx} provides a one-to-one correspondence between points

in T−1
1 W and T−1

2 W . We further partition these pieces in such a way that their lengths are between
δ0/2 and δ0 and the pieces are pairwise matched by the foliation {γx}. We call these matched pieces

Ũ `j . As in Section 4.3, we trim the Ũ `j to pieces U `j so that U1
j and U2

j are defined on the same

arclength interval Ij . The at most two components of T`(Ũ
`
j \ U `j ) have length at most CtCeΛ

−1ε.

We adjoin these trimmed pieces to the adjacent U `i or V `
k as appropriate so as not to create more

pieces in the partition of T−1
` W .

As one final step in the construction (to be used in the proof of Lemma 5.1), we require that

T−1
2 ◦ T1(x) ∈ Ũ2

j for each x ∈ U1
j . If this is not the case, then we are once again in a Ctε

neighborhood of the endpoints of U1
j and so such points may be treated as unmatched pieces V `

k
as above.

In this way, we write T−1
` W = (∪jU `j ) ∪ (∪kV `

k ) and note that the images T`V
`
k have length at

most Cvε for some uniform constant Cv, ` = 1, 2.
Now using (5.1), we have∫

W
(L1h− L2h)ψ dmW =

∑
`,k

∫
V `k

hψ ◦ T` (JµT`)
−1JV `k

T` dmW

+
∑
j

∫
U1
j

hψ ◦ T1 (JµT1)−1JU1
j
T1 dmW −

∫
U2
j

hψ ◦ T2 (JµT2)−1JU2
j
T2 dmW .

(5.2)

We estimate the integral on short pieces V `
k first using the strong stable norm. By (4.6), we have

|ψ ◦ T`|Cq(V `k ) ≤ Ce|ψ|Cp(W ) ≤ Ce. Following the estimate in (4.14), we have

∑
`,k

∣∣∣∣∣
∫
V `k

h(JµT`)
−1JV `k

T` ψ ◦ T` dm

∣∣∣∣∣ ≤ Cεα‖h‖s∑
`,k

|JV `k T`|
1−α
C0(V `k )

.(5.3)

The sum is finite by (3.7) of (H3) with ς = 1− α since there are at most two V `
k corresponding to

each element W `,1
i ∈ G`1(W ) as defined in Section 3.5 and |JV `k T`|C0(V `k ) ≤ |JW `,1

i
T`|C0(W `,1

i )
whenever

V `
j ⊆ W `,1

i . The constant C above depends only on properties (H1)-(H5), but for brevity we do
not write out the explicit dependence since these estimates are similar to those done in Section 4.3
and the constants are the same.

Next, we must estimate∑
j

∣∣∣∣∣
∫
U1
j

h (JµT1)−1JU1
j
T1 ψ ◦ T1 dmW −

∫
U2
j

h (JµT2)−1JU2
j
T2 ψ ◦ T2 dmW

∣∣∣∣∣ .
Using notation analogous to (4.12), we fix j and estimate the difference. Define

φj = ((JµT1)−1JU1
j
T1 ψ ◦ T1) ◦GU1

j
◦G−1

U2
j
.
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The function φj is well-defined on U2
j and we can write,∣∣∣∣∣

∫
U1
j

h (JµT1)−1JU1
j
T1 ψ ◦ T1 −

∫
U2
j

h (JµT2)−1JU2
j
T2 ψ ◦ T2

∣∣∣∣∣
≤

∣∣∣∣∣
∫
U1
j

h (JµT1)−1JU1
j
T1 ψ ◦ T1 −

∫
U2
j

hφj

∣∣∣∣∣+

∣∣∣∣∣
∫
U2
j

h(φj − (JµT2)−1JU2
j
T2 ψ ◦ T2)

∣∣∣∣∣ .
(5.4)

To estimate the two terms above, we need the following adaptation of Lemma 4.2.

Lemma 5.1. There exists C̄ > 0, independent of W ∈ Ws and T1, T2 ∈ F , such that for each j,

(a) dWs(U1
j , U

2
j ) ≤ C̄ε1/2 ;

(b) |((JµT1)−1JU1
j
T1) ◦GU1

j
− ((JµT2)−1JU2

j
T2) ◦GU2

j
|Cq(Ij) ≤ C̄|(JµT2)−1JU2

j
T2|C0(U2

j )ε
1/3−q ;

(c) |ψ ◦ T1 ◦GU1
j
− ψ ◦ T2 ◦GU2

j
|Cq(Ij) ≤ C̄ε

p−q .

We estimate the first term in equation (5.4) using the strong unstable norm. The estimates
(3.17) and (4.6) and property (H5) imply that

(5.5) |(JµT1)−1JU1
j
T1 · ψ ◦ T1|U1

j ,0,p
≤ ηCe|JU1

j
T1|C0(U1

j ).

Similarly, since by (4.17), |GU1
j
◦ G−1

U2
j
|C1 ≤ Cg, we have |φj |U2

j ,0,p
≤ CgηCe|JU1

j
T1|C0(U1

j ). By the

definition of φj and dq(·, ·),

dq((JµT1)−1JU1
j
T1ψ ◦ T1, φj) =

∣∣∣[(JµT1)−1JU1
j
T1ψ ◦ T1

]
◦GU1

j
− φj ◦GU2

j

∣∣∣
Cq(Ij)

= 0.

In view of (5.5) and following, we renormalize the test functions by Rj = ηCgCe|JU1
j
T1|C0(U1

j ). Then

we apply the definition of the strong unstable norm using Lemma 5.1(a) to obtain,

(5.6)
∑
j

∣∣∣∣∣
∫
U1
j

h (JµT1)−1JU1
j
T1 ψ ◦ T1 −

∫
U2
j

hφj

∣∣∣∣∣ ≤ Cεβ/2‖h‖u∑
j

|JU1
j
T1|C0(U1

j ),

where the sum is ≤ C2 by Lemma 3.2(b) since there is at most one matched piece U1
j corresponding

to each curve W 1
i ∈ G1

1(W ).
We estimate the second term in (5.4) using the strong stable norm.

(5.7)

∣∣∣∣∣
∫
U2
j

h(φj − (JµT2)−1JU2
j
T2ψ ◦ T )

∣∣∣∣∣ ≤ C‖h‖s|U2
j |α
∣∣∣φj − (JµT2)−1JU2

j
T2ψ ◦ T2

∣∣∣
Cq(U2

j )
.

In order to estimate the Cq-norm of the function in (5.7), we split it up into two differences.
Following (4.20) line by line, we obtain

|φj − (JµT2)−1JU2
j
T2 · ψ) ◦ T2 |Cq(U2

j )

≤ C|(JµT1)−1JU1
j
T1|C0(U1

j )

∣∣∣ψ ◦ T1 ◦GU1
j
− ψ ◦ T2 ◦GU2

j

∣∣∣
Cq(Ij)

+ C
∣∣∣((JµT1)−1JU1

j
T1) ◦GU1

j
− ((JµT2)−1JU2

j
T2) ◦GU2

j

∣∣∣
Cq(Ij)

(5.8)

Notice that Lemma 5.1(b) implies that

|(JµT1)−1JU1
j
T1|C0(U1

j ) ≤
(
1 + C̄ε1/3−q) |(JµT2)−1JU2

j
T2|C0(U2

j ).

Then using Lemma 5.1(b) and (c) together with (5.8) yields by (5.7)∑
j

∣∣∣ ∫
U2
j

h(φj − (JµT2)−1JU2
j
T2ψ ◦ T2) dmW

∣∣∣ ≤ C‖h‖sεp−q∑
j

|JU2
j
T2|C0(U2

j ),
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where again the sum is finite by Lemma 3.2(b). This completes the estimate on the second term
in (5.4). Now we use this bound, together with (5.3) and (5.6) to estimate (5.2)

(5.9)

∣∣∣∣∫
W
L1hψ dmW −

∫
W
L2hψ dmW

∣∣∣∣ ≤ C‖h‖sεα + C‖h‖uεβ/2 + C‖h‖sεp−q.

Since p− q ≥ β and α ≥ β, the theorem is proved.

5.1. Proof of Lemma 5.1.

Proof of (a). Note that by construction U1
j and U2

j lie in the same homogeneity strip. Also, they are
both defined on the same interval Ij so the length of the symmetric difference of their r-intervals is
0. Recalling the definition of dWs(U1

j , U
2
j ), we see that it remains only to estimate |ϕU1

j
−ϕU2

j
|C1(Ij)

for their defining functions ϕUkj
.

For x = (r, ϕU1
j
(r)), define x̄ = (r, ϕU2

j
(r)) and xε = T−1

2 ◦ T1(x). By the construction of U1
j at

the beginning of this section, xε ∈ Ũ2
j . Since x and xε are images of the same point u ∈ W under

T−1
1 and T−1

2 respectively, it follows from (C1) that x and xε are at most ε apart. Then since all
vectors in the stable cone have slope bounded away from ±∞, it follows that x and x̄ are at most
Cε apart (and so by the triangle inequality, also x̄ and xε are at most Cε apart).

This proves that |ϕU1
j
−ϕU2

j
|C0(Ij) ≤ Cε. It remains to estimate |ϕ′

U1
j
−ϕ′

U2
j
|, where ϕ′

U`j
denotes

the derivative of ϕU`j
with respect to r.

Let ~vW (u) be the unit tangent vector to W at u := T1(x) = T2(x), as before. The tangent vector
to U `j is given by DT−1

` (u)~vW (u), ` = 1, 2. By (C4),

(5.10) ‖DT−1
1 (u)~vW (u)−DT−1

2 (u)~vW (u)‖ ≤ ε1/2.

Then since ‖DT−1
` (u)~vW (u)‖ ≥ C−1

e by (H1), we have θ(x, xε) ≤ Ceε
1/2, where θ(x, xε) is the

angle between the tangent vectors to U1
j and U2

j at x and xε respectively.

For y ∈ U `j , let φ(y) denote the angle that GU`j
makes with the positive r-axis at y. Then

|ϕ′U1
j
(x)−ϕ′U2

j
(x̄)| = | tanφ(x)− tanφ(x̄)| ≤

[
sup
z∈U`j

sec2 φ(z)
]
|φ(x)−φ(x̄)| =

[
sup
z∈U`j

sec2 φ(z)
]
θ(x, x̄).

Since the slopes of curves in Cs(x) are uniformly bounded away from ±∞, we have sec2 φ(z)
uniformly bounded above for any z ∈ Ukj . The proof of the lemma is completed by writing θ(x, x̄) ≤
θ(x, xε) + θ(xε, x̄). The first term is ≤ Cε1/2 using (5.10) and the second term is ≤ Cε since xε
and x̄ both lie on Ũ2

j and stable curves have a uniform C2 bound by (H2). �

Proof of (b). We prove that the closeness condition (C3) implies the existence of a constant C > 0,
independent of W ∈ Ws and T1, T2 ∈ F , such that

(5.11) |JU1
j
T1 ◦GU1

j
− JU2

j
T2 ◦GU2

j
|Cq(Ij) ≤ C|JU2

j
T2|C0(U2

j )ε
1/3−q.

The analogous statement concerning (JµTk)
−1 follows from condition (C2). Then since

|f1g1 − f2g2|Cq ≤ |f1|Cq |g1 − g2|Cq + |g2|Cq |f1 − f2|Cq ,
for any Cq functions f1, g1, f2, g2, part (b) of the lemma follows from these two estimates using the
fact that | · |Cq ≤ (1 + Cd)| · |C0 by bounded distortion for the functions we are estimating. We
proceed to prove (5.11).

For any r ∈ Ij , we write

|JU1
j
T1 ◦GU1

j
(r)− JU2

j
T2 ◦GU2

j
(r)| ≤ |JU1

j
T1 ◦GU1

j
(r)− JU1

j
T2 ◦GU1

j
(r)|

+ |JU1
j
T2 ◦GU1

j
(r)− JU2

j
T2 ◦GU2

j
(r)|.

(5.12)
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The first term above is ≤ |JU1
j
T2|C0(Ij)ε by (C3).

Recall that U1
j , U

2
j lie inside the longer curves Ũ1

j , Ũ
2
j which are matched by the foliation {γx}x∈Ũ1

j
⊂

Ŵu. Thus |JU1
j
T2|C0(Ij) ≤ C|JU2

j
T2|C0(Ij) by the same argument used to prove (4.24), completing

the estimate on the first term of (5.12).

The second term of (5.12) is ≤ C ′ε1/3|JU2
j
T2|C0(Ij) using (4.23) since it involves the Jacobian of a

single map in F evaluated on two stable curves that are matched by a foliation of unstable curves.
Thus

(5.13) |JU1
j
T1 ◦GU1

j
(r)− JU2

j
T2 ◦GU2

j
(r)| ≤ Cε1/3|JU2

j
T2|C0(U2

j ).

This implies in particular that |JU1
j
T1|C0(U1

j ) ≤ C|JU2
j
T2|C0(U2

j ). Now we use (3.8) and the fact that

|GU`j |C1(Ij) ≤ Cg to apply Lemma 4.3 and complete the proof of (5.11). �

Proof of (c). Let x = (r, ϕU1
j
(r)) and as above, define x̄ = (r, ϕU2

j
(r)) and xε = T−1

2 ◦T1(x). Since x̄

and xε are at most Cε apart and lie on Ũ2
j , we have dW (T2x̄, T2xε) ≤ Cε by the uniform contraction

given by (H1). Thus,

(5.14) |ψ ◦ T1 ◦GU1
j
(r)− ψ ◦ T2 ◦GU2

j
(r)| ≤ |ψ|Cp(W )dW (T1x, T2x̄)p.

Since dW (T1x, T2xε) = 0, we may use the triangle inequality to conclude that the difference above
is bounded by C|ψ|Cp(W )ε

p.
Again applying Lemma 4.3 with |ψ|Cp(W ) ≤ 1 completes the proof of part (c). �

5.2. Proof of Corollary 2.4. We follow the proof of [DZ, Theorem 2.6] and remark on the essential
differences. The strategy of the proof will be to show that for T ∈ F and a suitable observable g,
the generalized transfer operator defined for z ∈ C by

Lnzgh(ψ) = h(ezSngψ ◦ Tn), for all h ∈ B, ψ ∈ Ws,

is an analytic perturbation of L = L0 for small |z|.
We shall need the following result from [DZ].

Lemma 5.2. ([DZ, Lemma 3.7]) Let P be a (mod 0) partition of M into countably many open,
simply connected sets such that (1) there is a constant K1 such that for each P ∈ P, ∂P comprises
at most K smooth curves, each of which is transverse to Cs(x), with a minimum angle uniform for
all P ∈ P; (2) each homogeneity strip Hk intersects at most finitely many P ∈ P.

Let γ > 2β. Suppose h is a function on M such that supP∈P |h|Cγ(P ) <∞. Then h ∈ B.

We shall prove the following multiplier property for our Banach spaces which generalizes [DZ,
Lemma 6.1] to allow functions with discontinuities.

Lemma 5.3. Let P be a countable partition of M that satisfies the conditions of Lemma 5.2 and
suppose in addition that there is a uniform upper bound N1 on the number of P ∈ P that each Hk

can intersect.
Let γ = max{p, 2β+ε} for some ε > 0. Suppose f is a function on M such that supP∈P |f |Cγ(P ) <

∞ and let h ∈ B. Then hf ∈ B and ‖hf‖B ≤ C‖h‖B supP∈P |f |Cγ(P ) for some uniform constant
C.

Postponing the proof of the lemma, we show how it establishes the analyticity of Lzg for a
function g which has discontinuity curves satisfying the conditions of Lemma 5.3.

Define the operator Anh = L(gnh), for h ∈ B. Then Lemma 5.3 implies that gnh ∈ B and
moreover,

‖An(h)‖B = ‖L(gnh)‖ ≤ ‖L‖‖gnh‖B ≤ V ‖L‖‖h‖B sup
P∈P
|g|nCγ(P ).
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Thus the operator
∑∞

n=0
zn

n!An is well defined on B and equals Lzg since once we know the sum
converges,

∞∑
n=0

zn

n!
Anh(ψ) = h

( ∞∑
n=0

zn

n!
gn · ψ ◦ T

)
= h(ezgψ ◦ T ) = Lzgh(ψ), for ψ ∈ Cp(Ws).

Once the analyticity of Lzg is established, the proof of Corollary 2.4 follows precisely as in
[DZ, Theorem 2.6] and will not be repeated here. Note that the error exponent λ > 1/4 in
Corollary 2.4(b) is justified by [G, eq (1.2)] since g ∈ L∞(M). It remains to prove Lemma 5.3.

Proof of Lemma 5.3. Let P and f be as in the statement of the lemma. By density, it suffices to
prove the lemma for h ∈ C1(M). By Lemma 5.2, hf ∈ B. We proceed to estimate its norm. For
brevity, we write

|f |Cγ(P) = sup
P∈P
|f |Cγ(P ).

To estimate the strong stable norm, we fix W ∈ Ws and ψ ∈ Cq(W ) such that |ψ|W,α,q ≤ 1. For
each Pi ∈ P, set Wi = W ∩ Pi. Then∫

W
hfψ dmW =

∑
i

∫
Wi

hfψ dmW ≤
∑
i

‖h‖s|Wi|α|f |Cq(Wi)|ψ|Cq(Wi) ≤ N1K1‖h‖s|f |Cγ(P),

where we have used the assumptions on ∂Pi to bound the maximum number of Wi by N1K1.
Now to estimate the strong unstable norm of hf , we let ε ≤ ε0 and choose W 1,W 2 ∈ Ws with

dWs(W 1,W 2) < ε. For ` = 1, 2, let ψ` ∈ Cp(W `) such that |ψ`|Cp(W `) ≤ 1 and dq(ψ1, ψ2) ≤ ε.
Recalling the notation of Section 3.3, we write

W ` = GW `(IW `) = {(r, ϕW `(r)) : r ∈ IW `}.

We subdivide each curve W ` into matched and unmatched pieces, similar to those in Section 4.3.
To each point x ∈W 1, we attach a vertical line segment γx, centered at x of length 2ε. We define
U `j ⊂ W ` to be the maximal connected curves for which U `j belongs to a single element P ∈ P
and the family {γx}x∈U`j intersects W 2 but does not intersect ∂P for any P ∈ P. We label by

V `
i ⊂W ` the remaining maximal pieces for which there is no matching by the vertical segments γx.

We also require each V `
i to be contained in a single P ∈ P. Note that there are at most 2N1K1 + 2

unmatched pieces and at most N1K1 matched pieces by assumption on P. Also, due to the uniform
transversality of ∂P with Cs(x), we have |V `

i | ≤ Ctε for each `, j and a uniform constant Ct.

We define φ = (fψ1) ◦GW 1 ◦G−1
W 2 and note that φ is well defined on each matched piece U2

j . We
must estimate∫

W 1

hfψ1 dmW −
∫
W 2

hfψ2 dmW =
∑
i,`

∫
V `i

hfψ` dmW

+
∑
j

(∫
U1
j

hfψ1 dmW −
∫
U2
j

hφ dmW

)
+

∫
U2
j

h(φ− fψ2) dmW .

(5.15)

The first sum on the right hand side of (5.15) over unmatched pieces is estimated by,

(5.16)
∑
i,`

∫
V `i

hfψ` dmW ≤
∑
i,`

‖h‖s|V `
i |α|f |Cq(V `i )|ψ`|Cq(V `i ) ≤ (2N1K1 + 2)‖h‖s|f |Cγ(P)Ctε

α.

Next we estimate the difference over matched pieces in (5.15). By construction, dWs(U1
j , U

2
j ) ≤ ε

since U `j ⊂W `. Moreover, letting Ij denote the common r-interval over which U1
j and U2

j are both
defined, we have

dq(fψ1, φ) = |(fψ1) ◦GW 1 − φ ◦GW 2 |Cq(Ij) = 0.
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Also, since GW 1 ◦G−1
W 2 has bounded C1-norm, we have |fψ1|Cp(U1

j ), |φ|Cp(U2
j ) ≤ C|f |Cγ(P) for some

uniform constant C. Renormalizing the test functions, we apply the definition of the strong unstable
norm to estimate

(5.17)
∑
j

∣∣∣∣∣
∫
U1
j

hfψ1 dmW −
∫
U2
j

hφ dmW

∣∣∣∣∣ ≤ N1K1ε
β‖h‖uC|f |Cγ(P).

Finally, we estimate the third sum on the right hand side of (5.15) using the strong stable norm.∑
j

∣∣∣∣∣
∫
U2
j

h(φ− fψ2) dmW

∣∣∣∣∣ ≤∑
j

‖h‖s|φ− fψ2|Cq(U2
j )|U2

j |α.

Again using that GW 2 has bounded C1-norm, we estimate

|φ− fψ2|Cq(U2
j ) ≤ C|(fψ1) ◦GW 1 − (fψ2) ◦GW 2 |Cq(Ij).

For r ∈ Ij , we have

|(fψ1)◦GW 1(r)−(fψ2)◦GW 2(r)| ≤ |f |∞|ψ1◦GW 1(r)−ψ2◦GW 2(r)|+|ψ2|C0(W 2)|f◦GW 1(r)−f◦GW 2(r)|.
The first difference above is bounded by ε due to the assumption dq(ψ1, ψ2) ≤ ε. The second
difference is bounded by |f |Cγ(P)ε

γ . Now using Lemma 4.3, we conclude

(5.18) |φ− fψ2|Cq(U2
j ) ≤ C|f |Cγ(P)ε

p−q.

Putting together (5.16), (5.17) and (5.18) with (5.15), we have∣∣∣∣∫
W 1

hfψ1 dmW −
∫
W 2

hfψ2 dmW

∣∣∣∣ ≤ C|f |Cγ(P)(‖h‖sεα + ‖h‖uεβ + ‖h‖sεp−q),

for some uniform constant C depending on N1 and K1. This completes the estimate on the strong
unstable norm since β ≤ min{α, p− q}. �

5.3. Random Perturbations: Proof of Theorem 2.6. We fix a class of maps F for which (H1)-
(H5) hold with uniform constants and choose T0 ∈ F . Define Xε(T0) = {T ∈ F : dF (T, T0) ≤ ε}.
Recall the transfer operator L(ν,g) associated with the random process drawn from Xε(T0) as defined
in Section 2.3. Our first lemma is a generalization of Theorem 2.3 which shows that the transfer
operator L(ν,g) is close to LT0 in the norms we have defined.

Lemma 5.4. There exists C > 0 such that if ε ≤ ε0, then |||L(ν,g) − LT0 ||| ≤ CAεβ.

Proof. Let h ∈ C1(M), W ∈ Ws and ψ ∈ Cp(W ) with |ψ|W,0,p ≤ 1. Then using (5.9),∣∣∣∣∫
W
L(ν,g)hψ dmW −

∫
W
LT0hψ dmW

∣∣∣∣ =

∣∣∣∣∫
Ω

∫
W

(LTωh(x)− LT0h(x))ψ(x)g(ω, T−1
ω x) dmWdν

∣∣∣∣
≤
∫

Ω
Cb−1εβ/2‖h‖|g(ω, ·)|C1(M)dν(ω) ≤ Cb−1Aεβ/2‖h‖,

where we have interchanged order of integration since
∫
W LTw(h)ψ g(ω, ·) dmW is uniformly and

absolutely integrable for each ω ∈ Ω by Theorem 2.2. �

It remains to prove the uniform Lasota-Yorke inequalities for Lν,g. Let ωn = (ω1, . . . , ωn) ∈ Ωn

and define Tωn = Tωn ◦ · · · ◦ Tω1 . We first prove that the random compositions Tωn have the same
properties (H1)-(H5) as the maps Tω ∈ F , with possibly modified constants.

The singularity sets for Tωn are STωnn = ∪nk=1T
−1
ω1
◦ · · · ◦ T−1

ωk
S0, for n ≥ 0, and similarly for

STωn−n . Thus the transversality properties (H1) of STωn−n with respect to Cs and Cu hold due to the

uniformity of this transversality for all maps in F . The family Ws is preserved under T−1
ωn

since it
is preserved by each map in the composition.
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The uniform expansion given by (3.2) of (H1) also holds since DTωn =
∏n
k=1DTωk ◦ Tωk−1

and
in the adapted metric ‖ · ‖∗ given by (H3), the expansion holds with Ce = 1 for each map in the
composition. Translating to the Euclidean norm at the last step, we get (H1) with Ce depending
only on the uniform constant relating the adapted and Euclidean metrics. Equations (3.4) and
(3.5) also hold trivially since they concern only one iterate of a map drawn from F . (H5) follows
for the same reason.

Due to the uniform expansion along stable and unstable leaves, (3.8) and (3.9) of (H4) hold
with a possibly larger distortion constant C∗d , again using the bounded distortion of each map in
the composition Tωn .

Finally, we establish that the iteration of the one-step expansion given in (H3) holds for random
sequences of maps in the class F . As in Section 3.5, for W ∈ Ws we define the nth generation
Gωnn (W ) ⊂ Ws of smooth curves in T−1

ωn
W . The elements of Gωnn (W ) are denoted by Wn

i as before

and long and short pieces are defined similarly. Analogously, Iωnn (W k
j ) denotes the set of indices

i in generation n such that W k
j is the most recent long ancestor of Wn

i under Tωn . Thus Iωnn (W )

denotes the set of curves that are never part of a curve that has grown to length δ0/3 at each time
step 1 ≤ k ≤ n.

Lemma 5.5. Let W ∈ Ws and for n ≥ 0, let Iωnn (W ) and Gωnn (W ) be defined as above. There
exist constants C1, C2, C3 > 0, independent of W ∈ Ws and ωn ∈ Ωn, such that for any n ≥ 0,

(a)
∑

i∈Iωnn (W )

|JWn
i
Tωn |C0(Wn

i ) ≤ C1θ
n
∗ ;

(b)
∑

Wn
i ∈G

ωn
n (W )

|JWn
i
Tωn |C0(Wn

i ) ≤ C2;

(c) for any 0 ≤ ς ≤ 1,
∑

Wn
i ∈G

ωn
n (W )

|Wn
i |ς

|W |ς
|JWn

i
Tωn |C0(Wn

i ) ≤ C1−ς
2 ;

(d) for ς > ς0,
∑

Wn
i ∈G

ωn
n (W )

|JWn
i
Tωn |ςC0(Wn

i )
≤ Cn3 .

Proof. (a) Fix W ∈ Ws and for ωn ∈ Ωn, define Zn(W ) =
∑

i∈Iωnn (W )
|JWn

i
Tωn |∗, where |JWn

i
Tωn |∗

denotes the least contraction on Wn
i under Tωn measured in the metric induced by the adapted

norm. We will prove by induction on n ∈ N that Zn(W ) ≤ θn∗ . Then, since ‖ · ‖∗ is equivalent to
‖ · ‖, statement (a) follows.

Note that at each iterate between 1 and n, every piece Wn
i , i ∈ Iωnn (W ), is created by genuine

cuts due to singularities and homogeneity strips and not by any artificial subdivisions, since those
are only made when a piece has grown to length greater than δ0. Thus we may apply the one-step
expansion (3.6) to conclude,

(5.19) Z1(W ) ≤ θ∗, ∀W ∈ Ws.

Assume that Zn(W ) ≤ θn∗ is proved for some n ≥ 1 and all W ∈ Ws. We apply it to each
component W 1

i ∈ G
ω1
1 (W ) such that i ∈ Iω1

1 (W ). Then Zn(W 1
i ) ≤ θn∗ since W 1

i ∈ Ws.
Given ωn ∈ Ωn, we use the notation ω′n−k = (ωn, . . . , ωn−k+1) so that we may split up com-

positions ωn = (ω′n−k, ωk) into two pieces. Given a sequence ωn+1, we group the components

of Wn+1
i ∈ Gωn+1

n+1 (W ) with i ∈ Iωn+1

n+1 (W ) according to elements with index in Iω1
1 (W ). More

precisely, for j ∈ Iω1
1 (W ), let Aj = {i : Wn+1

i ∈ Gωn+1

n+1 (W ), Tω′nW
n+1
i ⊂ W 1

j }. Note that

|JWn+1
i

Tωn+1 |∗ ≤ |JWn+1
i

Tω′n |∗|JW 1
j
Tω1 |∗ whenever Tω′nW

n+1
i ⊆ W 1

j . Combining this and (5.19)
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with the inductive hypothesis, we get

Zn+1(W ) =
∑

j∈Iω11 (W )

∑
i∈Aj

|JWn+1
i

Tωn+1 |∗ ≤
∑

j∈Iω11 (W )

∑
i∈Aj

|JWn+1
i

Tω′n |∗

 |JW 1
j
Tω1 |∗

=
∑

j∈Iω11 (W )

Zn(W 1
j ) · |JW 1

j
(Tω1)|∗ ≤ θn+1

∗ .

(b) Fix W ∈ Ws and ωn ∈ Ωn. For any 0 ≤ k ≤ n and Wn
i ∈ Gωnn (W ), we have

(5.20) |JWn
i
Tωn |C0(Wn

i ) ≤ |JWn
i
Tω′n−k |C0(Wn

i )|JWk
j
Tωk |C0(Wk

j ),

whenever Tω′n−kW
n
i ⊆W k

j ∈ G
ωk
k (W ).

Now grouping Wn
i ∈ Gωnn (W ) by most recent long ancestor W k

j ∈ Lωkk (W ) as described in

Section 3.5 and using (5.20), we have∑
i

|JWn
i
Tωn |C0(Wn

i ) =
n∑
k=0

∑
Wk
j ∈L

ωk
k (W )

∑
i∈Iωnn (Wk

j )

|JWn
i
Tωn |C0(Wn

i )

≤
n∑
k=1

∑
Wk
j ∈L

ωk
k (W )

( ∑
i∈Iωnn (Wk

j )

|JWn
i
Tω′n−k |C0(Wn

i )

)
|JWk

j
Tωk |C0(Wk

j ) +
∑

i∈Iωnn (W )

|JWn
i
Tωn |C0(Wn

i ),

where we have split off the terms involving k = 0 that have no long ancestor. We have

|JWk
j
Tωk |C0(Wk

j ) ≤ (1 + C∗d)|TωkW
k
j ||W k

j |−1 ≤ 3δ−1
0 (1 + C∗d)|TωkW

k
j |

since |W k
j | ≥ δ0/3. Since Iωnn (W k

j ) and Iω
′
n−k

n−k (W k
j ) correspond to the same set of short pieces in

the (n− k)th generation of W k
j , we apply part (a) of this lemma to each of these sums. Thus,

∑
i

|JWn
i
Tωn |C0(Wn

i ) ≤
n−1∑
k=0

∑
Wk
j ∈L

ωk
k (W )

C1θ
n−k
∗ |JWk

j
Tωk |C0(Wk

j ) + C1θ
n
∗

≤ Cδ−1
0

n−1∑
k=0

∑
Wk
j ∈L

ωk
k (W )

θn−k∗ |TωkW
k
j |+ Cθn∗ ≤ Cδ−1

0 |W |
n−1∑
k=0

θn−k∗ + Cθn∗ ,

which is uniformly bounded in n.

(c) follows from (b) by an application of Jensen’s inequality and (d) follows from (H3) using an
inductive argument similar to the proof of (a). �

We complete the proof of Theorem 2.6 via the following proposition. The uniform Lasota-Yorke
inequalities of Theorem 2.2 then follow from the argument given at the beginning of Section 4.

Proposition 5.6. Choose ε ≤ ε0 sufficiently small that σ(1 + ε) < 1 and let ∆(ν, g) ≤ ε. There
exists a constant C, depending on a, A, and (H1)-(H5) such that for h ∈ B and n ≥ 0,

|Ln(ν,g)h|w ≤ Cηn|h|w(5.21)

‖Ln(ν,g)h‖s ≤ Cηn(θ
(1−α)n
∗ + Λ−qn)‖h‖s + Cδ−α0 ηn|h|w(5.22)

‖Ln(ν,g)h‖u ≤ CηnΛ−βn‖h‖u + CηnCn3 ‖h‖s(5.23)
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Proof. We record for future use,

Ln(ν,g)h(x) =

∫
Ωn
h ◦ T−1

ωn
(JµTωn ◦ T−1

ωn
)−1

n∏
j=1

g(ωj , T
−1
ωj ◦ · · · ◦ T

−1
ωn x)dνn(ωn).

The proofs of the inequalities are the same as in Section 4 except that we have the additional
function g(ω, x). We show how to adapt the estimates of Section 4 to the operator L(ν,g) in the
case of the strong stable norm. The other estimates are similar.

Estimating the Strong Stable Norm. Following Section 4.2, we write,

∫
W
Ln(ν,g)hψdmW =

∫
Ωn

∑
i


∫
Wn
i

h(ψ ◦ Tωn − ψi)(JµTωn)−1JWn
i
Tωn

n∏
j=1

g(ωj , Tωj−1x)dmW

+ψi

∫
Wn
i

h(JµTωn)−1JWn
i
Tωn

n∏
j=1

g(ωj , Tωj−1x)dmW

 dνn(ωn),

(5.24)

where ψi = |Wn
i |−1

∫
Wn
i
ψ ◦ Tωn dmW . Since for each ωn, Tωn satisfies properties (H1)-(H5) with

uniform constants, we may use the estimates of Section 4. Accordingly, |ψ ◦ Tωn − ψi|Cq(Wn
i ) ≤

CΛ−qn|W |−α using (4.6). Define Gωn(x) =
∏n
j=1 g(ωj , Tωj−1x). We estimate the first term of (5.24)

using (4.10)∑
i

∫
Wn
i

h(ψ ◦ Tωn − ψi) (JµTωn)−1JWn
i
TωnGωn dmW

≤
∑
i

C‖h‖s|Wi|α|(JµTωn)−1JWn
i
Tωn |Cq(Wn

i )|ψ ◦ Tωn − ψi|Cq(Wn
i )|Gωn |Cq(Wn

i )

≤ C‖h‖sΛ−qnηn
∑
i

|Wn
i |α

|W |α
|JWn

i
Tωn |C0(Wn

i )|Gωn |Cq(Wn
i ).

(5.25)

The only new term here is |Gωn |Cq(Wn
i ) which is addressed by the following lemma.

Sublemma 5.7. There exists C > 0, independent of W and ωn, such that if Wn
i ∈ Gωnn (W ), then

|Gωn |C1(Wn
i ) ≤ CGωn(x) for any x ∈Wn

i .

Proof of Sublemma. For x, y ∈Wn
i ,

log

∏n
j=1 g(ωj , Tωj−1x)∏n
j=1 g(ωj , Tωj−1y)

≤
n∑
j=1

a−1|g(ωj , ·)|C1(M)d(Tωj−1x, Tωj−1y)

≤
∞∑
j=1

a−1ACeΛ
−nd(x, y) =: c0d(x, y),

using properties (i) and (iii) of g. The distortion bound yields the lemma with C = c0e
c0 . �

We estimate (5.25) using the sublemma and Lemma 5.5(c),

(5.26)
∑
i

∫
Wn
i

h(ψ ◦ Tωn − ψi) (JµTωn)−1JWn
i
TωnGωn dmW ≤ C‖h‖sηnΛ−qnGωn(x0),

where x0 is some point in T−1
ωn
W .
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Similarly, we estimate the second term in (5.24) using (4.11). In each term, Gωn plays the role
of a test function and we replace the occurrences of |Gωn |Cp(Wn

i ) and |Gωn |Cq(Wn
i ) as appropriate

according to Sublemma 5.7. Thus following (4.11), we write,∑
i

ψi

∫
Wn
i

h(JµTωn)−1JWn
i
TωnGωndmW ≤ C(δ−α0 ηn|h|w + θ

(1−α)n
∗ ηn‖h‖s)Gωn(x0),

choosing the same x0 as in (5.26). Now combining this expression with (5.26) and (5.24), we obtain∫
W
LTωnhψ dmW ≤ Cηn(‖h‖s(Λ−qn + θ

(1−α)n
∗ ) + δ−α0 |h|w)

n∏
j=1

g(ωj , Tωj−1x0).

We integrate this expression one ωj at a time, starting with ωn. Notice that
∫

Ω g(ωn, Tωn−1x0)dν(ωn) =
1 by property (ii) of g since Tωn−1 is independent of ωn. Similarly, each factor in Gωn(x0) integrates
to 1 so that

‖Ln(ν,g)h‖s ≤ C‖h‖sη
n(Λ−qn + θ

(1−α)n
∗ ) + Cδ−α0 ηn|h|w

which is the required inequality for the strong stable norm. The inequalities for the weak norm
and the strong unstable norm follow similarly, always using Sublemma 5.7. �

6. Proofs of Applications: Movements and Deformations of Scatterers

In this section we prove Theorems 2.7 and 2.8 and leave Theorems 2.10 and 2.11 regarding
external forces and kicks to Section 7 since they require more background material.

6.1. Proof of Theorem 2.7. We fix constants τ∗,K∗ > 0 and E∗ <∞ and denote F1(τ∗,K∗, E∗)
as simply F1 for brevity. Note that every T ∈ F1 is a billiard map corresponding to a standard
Lorentz gas with convex scatterers so that we may recall known facts about such maps to establish
(H1)-(H5) with constants depending only on the three quantities τ∗, K∗ and E∗.

(H1). For x ∈M , define

Cs(x) = {(dr, dϕ) ∈ TxM : −K−1
∗ − τ−1

∗ ≤ dϕ/dr ≤ −K∗}
and Cu(x) = {(dr, dϕ) ∈ TxM : K∗ ≤ dϕ/dr ≤ K−1

∗ + τ−1
∗ }.

Then for any T ∈ F1, DTxC
u(x) ⊂ Cu(Tx) and DT−1

x Cs(u) ⊂ Cs(T−1x) whenever DTx and DT−1
x

are defined. Moreover, (3.2) is satisfied with Λ = 1 + 2K∗τ∗ and

Ce =
2τ∗K∗

Λ

√
1 +K2

∗√
1 + (K−1

∗ + τ−1
∗ )2

,

(see [CM, Section 4.4]). Notice that Cs and Cu are uniformly transverse to each other and to the
vertical and horizontal directions in M as required.

The bounds on the first and second derivatives of T required by (3.4) and (3.5) are standard for
such maps ([CM, Section 4.4]). Here, the index n corresponds to the free flight time τ(T−1x). For
finite horizon, this has a uniform upper bound, while for infinite horizon, the relation between k
and n is satisfied with υ0 = 1/4 ([CM, Section 5.10]).

(H2). We say a C2 curve W in M is stable if its tangent vectors TxW lie in Cs(x) as defined above
for each x ∈W . We call a stable curve homogeneous if it is contained in a single homogeneity strip
Hk. Since each stable curve W has slope bounded away from infinity, we may identify W with the
graph of a function of r, which we denote by ϕW (r).

By [CM, Proposition 4.29], we may choose B depending only on τ∗, K∗ and E∗ such that if
d2ϕW
dr2
≤ B, then each smooth component W ′ of T−1W satisfies

d2ϕW ′
dr2

≤ B.
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We define Ŵs to be the set of all stable homogeneous curves W such that d2ϕW
dr2

≤ B. The

invariance of the family Cs(x) as well as the choice of B guarantee that Ŵs is invariant as required.

The set of unstable curves Ŵu is defined similarly.

(H3). Following [CM, Section 5.10], we define the adapted norm in the tangent space at x ∈M by

‖v‖∗ =
K(x) + |V|√

1 + V2
‖v‖, ∀v ∈ Cs(x) ∪ Cu(x)

where, v = (dr, dϕ) is a tangent vector, V = dϕ/dr and K(x) is the curvature of the scatterer at x.
Since the slopes of vectors in Cs(x) and Cu(x) are bounded away from ±∞, we may extend ‖ · ‖∗
to all of R2 in such a way that ‖ · ‖∗ is uniformly equivalent to ‖ · ‖. It is straightforward to check
that for v ∈ Cu(x),

‖DT (x)v‖∗
‖v‖∗

≥ 1 +K∗τ∗ = Λ.

Uniform expansion in Cs(x) under DT−1(x) follows similarly. Now (3.6) follows from [CM, Lemma
5.56] and (3.7) follows from [DZ, Sublemma 3.5] with ς0 = 1/6.

The reason that the constant δ0 from (3.10) can be chosen uniformly is that all infinite horizon
points are uniformly bounded away from one another for all maps in the family F . Once we
specify a minimum curvature K∗ and the arclengths given by |Ii|, i = 1, . . . , d, then every scatterer
corresponding to an admissible configuration for F must have a minimum diameter uniformly
bounded away from 0. Thus two infinite horizon points cannot converge as we move and deform
scatterers in this fixed family F , and indeed they must maintain a minimum distance from one
another.

From this point forward, we consider k0 to be fixed.

(H4). The bounded distortion constant Cd in (3.8) and (3.9) depends only on the choice of k0 from
(H3) and the uniform hyperbolicity constants Ce and Λ ([CM, Lemma 5.27]).

(H5). For maps in F1, DT (x) ≡ 1 so we may take η = 1.

6.2. Proof of Theorem 2.8. Fix constants τ∗,K∗ > 0 and E∗ < ∞ and consider a configu-
ration Q0 ∈ Q1(τ∗,K∗, E∗) with scatterers Γ1, . . . ,Γd. Choose γ ≤ 1

2 min{τ∗,K∗} and let Q̃ ∈
FB(Q0, E∗; γ) with scatterers Γ̃1, . . . , Γ̃d. Since `(Ii) = |∂Γi| = |∂Γ̃i| we may take the correspond-

ing functions ui, ũi to be arclength parametrizations of ∂Γi and ∂Γ̃i respectively. We denote by u′i
and u′′i the first and second derivatives of ui with respect to the arclength parameter r. Then the

curvature of ∂Γi is simply given by K(r) = ‖u′′i (r)‖ at each point ui(r) ∈ ∂Γi, and similarly for ∂Γ̃i.

Thus on ∂Γ̃i, we have by assumption on Q̃ and γ,

K̃(r) = ‖ũ′′i ‖ = ‖u′′i + ũ′′i − u′′i ‖ ≥ K(r)− γ ≥ K∗/2.
Also, τmin(Q̃) ≥ τmin(Q0)−γ ≥ τ∗/2 since ‖ui− ũi‖ ≤ γ. Thus FA(Q0, E∗; γ) ⊂ F1(τ∗/2,K∗/2, E∗).

Next we must show that Q̃ ∈ FA(Q0, E∗; γ) represents a small perturbation in the distance

dF (·, ·). We do this by first fixing Γ2, . . . ,Γd and considering a deformation of Γ1 into Γ̃1 such that
|u1 − ũ1|C2 ≤ γ.

Let T0 be the map corresponding to Q0 and let T1 be the map corresponding to Q̃. We fix
x = (r, ϕ) ∈ I1 × [−π/2, π/2] and compare T−1

0 x with T−1
1 x. To do this, we let Φ0

t and Φ1
t denote

the flow on the tables Q0 and Q̃ respectively. We denote by π0(x) the projection of x onto the flow
space T2×S1 corresponding to Q0 and by πq0 and πθ0 the projections onto the position and angular
coordinates respectively. Let τ0(x) denote the free flight time of x under Φ0

t and let K0(·) denote
the curvature of the scatterers in Q0. The analogous objects, π1, π

q
1, π

θ
1, τ1(·) and K1(·) are defined

for the table Q̃.
First suppose that T−1

0 x and T−1
1 x lie on the same scatterer Γj . Notice that the trajectories

Φ0
−t(π0x) and Φ1

−t(π1x) begin from two points in T2 at most γ apart and make an angle of at most
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γ with one another. We decompose this motion into the sum of (I) two parallel trajectories starting
a distance γ apart and (II) two trajectories starting at the same point and making an angle γ.

I. Parallel trajectories. It is an elementary estimate that two parallel lines a distance γ apart will
intersect a convex scatterer at a distance at most

(6.1) dT2(πq0(T−1
0 x), πq1(T−1

1 x)) ≤
√

3γ/Kmin(Γj) ≤
√

3γ/K∗,

where dT2 denotes distance on T2.

II. Nonparallel trajectories making an angle γ 6= 0. After time t under the flow, the two trajectories
will be at most tγ apart in T2. Let τ(x−1) = max{τ0(T−1

0 x), τ1(T−1
1 x)}. Then in the case of a

finite horizon Lorentz gas, by the same estimate as in (6.1),

(6.2) dT2(πq0(T−1
0 x), πq1(T−1

1 x)) ≤
√

3γτ(x−1)/Kmin(Γj) ≤
√

3γτmax/K∗.

In the infinite horizon case, define τ̂ = γ−1/3. If τ(x−1) ≤ τ̂ , then (6.2) implies dT2(πq0(T−1
0 x), πq1(T−1

1 x)) ≤√
3/K∗γ1/3. On the other hand, suppose τ0(T−1

0 x) > τ̂ . Then x lies in a cell Dn such that

c−1n ≤ τ0(T−1
0 y) ≤ cn for some c > 0 and all y ∈ Dn, and the width of Dn in the stable direction

is at most C ′/n (see [CM, Section 4.10]). Thus

(6.3) dM (x,ST0−1) ≤ C ′n−1 ≤ C ′cτ−1
0 (T−1

0 x) ≤ C ′cτ̂−1 ≤ C ′cγ1/3.

An identical estimate holds if τ1(T−1
1 x) > τ̂ . Thus either x ∈ NCγ1/3(ST0−1 ∪ S

T1
−1) or

(6.4) dT2(πq0(T−1
0 x), πq1(T−1

1 x)) ≤
√

3/K∗γ1/3.

Concatenating these two estimates (I) and (II), we see that in terms of position coordinates, T−1
0 x

and T−1
1 x in Ij are of order γ1/2 in the finite horizon case and of order γ1/3 in the infinite horizon

case. Since the normal direction of Γj varies smoothly with the position, we have dM (T−1
0 x, T−1

1 x)
of the same order. Similar estimates hold when starting from x ∈ Γj and comparing images in Γ1

and Γ̃1.
In the case when T−1

0 x and T−1
1 x do not lie on the same scatterer Γj , we must have x ∈

NCγ1/3(ST0−1 ∪ S
T1
−1) by the preceding arguments where C = 4K−3/2

∗ is sufficient. We have thus

shown (C1) holds with ε = Cγ1/3. Indeed, (C1) holds with ε = Cγb for any 0 < b ≤ 1/3 by the
same argument.

We can consider the deformation of d scatterers as the concatenation of errors induced by de-
forming one scatterer at a time. The preceding analysis holds with C increased by a factor of
d.

Condition (C2) is trivial to check since JµTi ≡ 1 for i = 0, 1.

Next we prove (C4). By [CM, eq. (2.26)], DT−1
0 (x) = −1

cosϕ(T−1
0 x)

A0(x), where

A0(x) =
[

τ0(T−1
0 x)K0(x) + cosϕ(x) −τ0(T−1

0 x)

−K0(T−1
0 x)(τ0(T−1

0 x)K0(x) + cosϕ(x))−K0(x) cosϕ(T−1
0 x) τ0(T−1

0 x)K0(T−1
0 x) + cosϕ(T−1

0 x)

]
,

and DT−1
1 x = −1

cosϕ(T−1
1 x)

A1(x), with a similar definition for A1(x). Thus

(6.5) ‖DT−1
0 (x)−DT−1

1 x‖ ≤
∣∣∣ 1

cosϕ(T−1
0 x)

− 1

cosϕ(T−1
1 x)

∣∣∣‖A0(x)‖+ 1

cosϕ(T−1
1 x)

‖A0(x)−A1(x)‖

Note that ‖Ai(x)‖ is bounded by a uniform constant times τi(T
−1
i x). Now to estimate ‖A0(x) −

A1(x)‖, we focus on the lower left entry of the matrix since that contains all the differences to
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be estimated in the other entries as well. We estimate one difference at a time. Again letting Γj
denote the scatterer on which T−1

0 x and T−1
1 x lie, we have

|K0(T−1
0 x)−K1(T−1

1 x)| ≤ |K0(T−1
0 x)−K0(T−1

1 x)|+ |K0(T−1
1 x)−K1(T−1

1 x)|
≤ E∗dM (T−1

0 x, T−1
1 x) + ‖u′′i (T−1

1 x)− ũ′′i (T−1
1 x)‖ ≤ E∗dM (T−1

0 x, T−1
1 x) + γ,

by definition of γ. Next,

|K0(x)−K1(x)| ≤ γ and | cosϕ(T−1
0 x)− cosϕ(T−1

1 x)| ≤ dM (T−1
0 x, T−1

1 x)

follow immediately. Finally, since τi(T
−1
i x) is the length of the line segment connecting πqi (x) to

πqi (T
−1
i x), i = 1, 2, we have

|τ0(T−1
0 x)− τ1(T−1

1 x)| ≤ dT2(πq0(T−1
0 x), πq1(T−1

1 x)) + dT2(πq0(x), πq1(x)) ≤ dM (T−1
0 x, T−1

1 x) + 2γ.

Putting these estimates together, we conclude

(6.6) ‖A0(x)−A1(x)‖ ≤ Kτ(x−1)(dM (T−1
0 x, T−1

1 x) + γ)

where K is a uniform constant depending on E∗ and K∗.
Notice that if W ∈ Ws, then |T−1

i W | ≤ C|W |1/3 in the infinite horizon case and |T−1
i W | ≤

C|W |1/2 in the finite horizon case. Thus for δ < 1/k0, if T−1
i x ∈ Nδ(S0), then dM (x,STi−1) ≤

Ctδ
2 where Ct is a uniform constant depending on the transversality of Cs(x) with the horizontal

direction and of STi−1 with Cs(x).

Now choose ε = γa, where a ≤ 1/3 will be determined shortly. Suppose x /∈ Nε(ST0−1 ∪ S
T1
−1).

Then by the above observation, cosϕ(T−1
i x) ≥ Cε1/2, i = 0, 1, and also by (6.3), τ(x−1) ≤ Cε−1.

Thus recalling that dM (T−1
0 x, T−1

1 x) ≤ Cγ1/3, we estimate the first term of (6.5),

‖A0(x)‖
∣∣∣ 1

cosϕ(T−1
0 x)

− 1

cosϕ(T−1
1 x)

∣∣∣ ≤ Kτ(T−1
0 x)

cosϕ(T−1
0 x) cosϕ(T−1

1 x)
| cosϕ(T−1

1 x)− cosϕ(T−1
0 x)|

≤ Cε−2dM (T−1
0 x, T−1

1 x) ≤ C ′γ1/3−2a.

(6.7)

To estimate the second term of (6.5), we use (6.6) to estimate,

1

cosϕ(T−1
1 x)

‖A0(x)−A1(x)‖ ≤ Cε−3/2γ1/3 = Cγ1/3−3a/2.

Putting these estimates together, we have

‖DT−1
0 (x)−DT−1

1 (x)‖ ≤ C ′′γ1/3−2a.

Choosing a = 2/15 establishes (C4).
Condition (C3) follows similarly using the fact that the stable Jacobian along W ∈ Ws is simply

the norm of the tangent vector to W times DTi(x), i = 0, 1. The improved estimate in (C3) comes
from the fact that instead of estimating (6.7) as above, we must estimate instead

τ(x−1)

∣∣∣∣cosϕ(T−1
0 x)

cosϕ(T−1
1 x)

− 1

∣∣∣∣ ≤ Cε−3/2dM (T−1
0 x, T−1

1 x) ≤ C ′γ1/3−3a/2 = C ′γ2/15 = C ′ε

with our choice of a = 2/15.
If we restrict perturbations to the finite horizon case with horizons uniformly bounded by some

τmax < ∞, then our estimates above improve by omitting a factor of ε−1 and d(T−1
0 x, T−1

1 x) ≤
Cγ1/2 by (6.2). In this case, the optimal choice of a = 1/3.
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7. Proofs of Applications: External Forces with Kicks and Slips

In this section we prove Theorem 2.10 and 2.11 for the perturbed dispersing billiards under
external forces with kicks and slips. To simplify the analysis, for any fixed force F, we will consider
our system, denoted as TF,G, as a perturbation of the map TF,0. We say a constant C is uniform
if C = C(ε1, τ∗,K∗, E∗), where ε1, τ∗,K∗ and E∗ are from (A2) and (A3).

We begin by reviewing some properties of TF = TF,0 proved in [Ch2] and proving some additional
ones that we shall need.

7.1. Properties of TF. We assume the setup described in Section 2.4.B, which is the billiard flow
given by (2.4) and (2.5) with G = 0.

Let x = (q, θ) ∈ M be any phase point with position q, and V ∈ TxM a tangent vector at x.
Pick a small number δ0 > 0 and a C3 curve cs(0) = (qs, θs) ⊂ M tangent to the vector V , such

that c0 = x and dcs
ds |s=0 = V , and s ∈ [0, δ0]. Now we define cs(t) = Φtcs(0), for any t ≥ 0. Since τ

is the free path function, we have dτ = pdt. In the calculation below, we denote differentiation with
respect to s by primes and that with respect to τ by dots. In particular, ċs(t) = (q̇, θ̇) = (v, h),
where v = p/p = (cos θ, sin θ) and h = h(q, θ) is the geometric curvature of the billiard trajectory
with initial condition (q, θ) on the table.

If we assume ts to be the time that the trajectory of cs(0) hits the wall of the billiard table,
then {cs(t) | t ∈ [0, ts], s ∈ [0, δ0]} is a C3 smooth 2-d manifold in M. We introduce two quantities
u = q′ · v, and w = q′ · v⊥, where v⊥ = (− sin θ, cos θ). Clearly q′ = uv + wv⊥. Now let
κ = (θ′ − uh)/w. We consider two vectors of the surface U = (v, h) and R = (v⊥, κ). Clearly
ċs = U and c′s = uU + wR. Define pU = grad(p) · U , pR = grad(p) · R, and hU = grad(h) · U ,
hR = grad(h) ·R, respectively. Then it is straight forward to check that

(7.1) p′ = grad(p) · c′s = pUu+ pRw h′ = hUu+ hRw and θ′ = κw + hu.

In addition ṗ = pU and ḣ = hU . The derivation of these formulas can be found in [Ch2]. The
following lemma was proved in [Ch2, Lemmas 3.1, 3.2].

Lemma 7.1 ([Ch2]). The evolution of the quantities κ and w between collisions is given by the
equations

(7.2) κ̇ = −κ2 + a+ bκ and ẇ = κw,

where a = a(h), b = b(h) are smooth functions whose C0 norms are bounded by c0ε1 for some
uniform c0 > 0. Furthermore, at the moment of collision,

(7.3) u+ = u−, w+ = −w− and κ+ = κ− +
2K(r) + (h+ + h−) sinϕ

cosϕ

In addition the derivative of r and ϕ satisfies

(7.4) dr/ds = ∓w±/ cosϕ and dϕ/dr = ∓K(r) + κ± cosϕ∓ h± sinϕ.

We will calculate the differential of the map TF (which is not contained in [Ch2]). It follows from
(7.2) that

(7.5)
dẇ

dτ
=

d

dτ
(κw) = κ̇w + κẇ = κẇ − κ2w + (a+ bκ)w = aw + bẇ.

This implies that

(7.6)

{
ẇ(τ) = ẇ(0) +

∫ τ
0 aw + bẇ dγ

w(τ) = w(0) + ẇ(0)τ +
∫ τ

0

∫ ξ
0 aw + bẇ dγ dξ

At the moment of collision, (7.3) implies that

(7.7)

{
w+ = −w−

ẇ+ = −ẇ− − 2K+(h++h−) sinϕ
cosϕ w−
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In addition (7.4) implies that

(7.8)
dϕ

ds
=
K(r) + h± sinϕ

cosϕ
w± ∓ ẇ±

Lemma 7.2. For x = (r, ϕ), let τ1(x) denote the distance to the next collision under the flow.

There exist constants Ĉ1, Ĉ2 > 0 independent of x, such that |w(τ)| and |ẇ(τ)| are uniformly

bounded from above by Ĉ1|w+(0)|+ Ĉ2|ẇ+(0)| for τ ∈ [0, τ1(x)].

Proof. We fix x and abbreviate τ1(x) as τ1. We begin by adapting [Ch2, Lemma 3.4], to show that
if for some τ0 ∈ [0, τ1), κ(τ0) is bounded away from zero, then κ is bounded away from zero and
infinity on [τ0, τ1]. More precisely, (7.2) implies that if κ > 0, then

−(κ+ ε2)2 ≤ κ̇ = −κ2 + bκ+ a = −
(
κ− b

2

)2
+
b2

4
+ a ≤ −(κ− c0ε1)2 + ε2

2

where ε2
2 = 2c0ε1.

So if we assume that for some τ0 ∈ [0, τ1), κ+(τ0) > c1 for a fixed c1 > 5
√
ε0, then we may

integrate these inequalities to obtain

1

(κ+(τ0) + ε2)−1 + (τ − τ0)
− ε2 ≤ κ(τ) ≤ ε2

Ae2ε2(τ−τ0) + 1

Ae2ε2(τ−τ0) − 1
+ c0ε1,

where A = (κ+(τ0)− c0ε1 + ε2)/(κ+(τ0)− c0ε1 − ε2). Then since ε0 is small compared to κ+(τ0),
this reduces to

(7.9)
1

(κ+(τ0))−1 + (τ − τ0)
− ε3 ≤ κ(τ) ≤ 1

(κ+(τ0))−1 + (τ − τ0)
+ ε3

where ε3 = 2ε2 + 2c0ε1.
Now (7.2) implies that for any 0 ≤ τ ′ < τ ≤ τ1,

(7.10) w(τ) = w(τ ′) exp

(∫ τ

τ ′
κdγ

)
.

Also, (7.5) implies that ẇ
wd ln ẇ = (a+ bκ) dτ and since ẇ = κw, we integrate this to obtain,

(7.11) ẇ(τ) = ẇ(0) exp

(∫ τ

0
(
a

κ
+ b) dγ

)
for any τ ∈ [0, τ1].

Integrating again, it follows that

(7.12) w(τ) = w(0) + ẇ(0)

∫ τ

0
exp

(∫ ξ

0
(
a

κ
+ b) dγ

)
dξ.

This implies that both w(τ), ẇ(τ) are functions of (w+(0), ẇ+(0)).
To show that |w| and |ẇ| are uniformly bounded, we consider three cases.

Case I: κ is finite on [0, τ1) and κ(τ) < 1/τmin for all τ ∈ [0, τ1) (κ can be positive or negative).

Then by (7.10), |w(τ)| ≤ |w(0)|eτ/τmin ≤ |w(0)|eτmax/τmin for all τ ∈ [0, τ1].
Once we know |w| is bounded on [0, τ1], we may use it to bound |ẇ| as follows. We integrate

(7.5) using the integrating factor exp(−
∫ τ

0 b dγ) to obtain,

(7.13) ẇ(τ) = ẇ(0)e
∫ τ
0 b dγ + e

∫ τ
0 b dγ

∫ τ

0
aw(ξ)e−

∫ ξ
0 b dγ dξ.

Thus

(7.14) |ẇ(τ)| ≤ |ẇ+(0)|ec0ε1τmax + |w+(0)|e(2c0ε1+1/τmin)τmaxc0ε1τmax =: C1|ẇ+(0)|+ C2|w+(0)|.
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Case II: κ is finite on [0, τ1), κ(τ0) ≥ 1/τmin for some τ0 ∈ [0, τ1] and τ0 is the least τ in the interval
with this property. Then by (7.9), κ(τ) ≥ (τmin + 2τmax)−1 for all τ ∈ [τ0, τ1]. As a consequence,
by (7.12),

(7.15) |w(τ)| ≤ |w(τ0)|+ |ẇ(τ0)|τmaxe
c0ε1(τmin+2τmax+1)τmax

for each τ ∈ [τ0, τ1]. On the other hand, for τ ∈ [0, τ0], we have κ(τ) ≤ 1/τmin, so that both |w(τ)|
and |ẇ(τ)| are uniformly bounded on this interval by Case I. This together with (7.15) proves Case
II for |w|. The estimate for |ẇ| follows again from (7.13) and (7.14).

Case III: κ(τ0) = ±∞ for some τ0 ∈ (0, τ1). According to (7.2) and (7.9), the only way this case
can occur is if κ reaches −∞ in finite time and changes from −∞ to ∞ at τ0. (7.10) implies in
particular that w(τ0) = 0.

On the interval [0, τ0], κ clearly satisfies the assumption of Case I so that both |w| and |ẇ| are
uniformly bounded as in the statement of the lemma on this interval. Indeed, this is true on any
interval in which κ remains negative. Thus the only case left to consider is when κ(τ) > 0 for
τ ∈ (τ0, τ1].

In this case, (7.2) guarantees that κ initially decreases and (7.9) guarantees that κ(τ) ≥ τ−1
min

on this interval. Thus by (7.12), we estimate as in (7.15) to bound |w| by a linear combination of
|w(τ0)| and |ẇ(τ0)|. But since these two quantities are in turn bounded by |w+(0)| and |ẇ+(0)| by
the previous paragraph, the proof of Case III is complete for |w|. The estimate on |ẇ| now follows
again from (7.13) and (7.14). �

Combining the above facts, we can show the following.

Lemma 7.3. If we denote x1 = (r1, ϕ1) = TFx, then there exits C = C(K∗, τ∗) > 0 such that for
any unit vector (dr/ds, dϕ/ds),

(7.16)

{
− cosϕ1

dr1
ds = (cosϕ+ τK + a1) drds + (τ + a2)dϕds

− cosϕ1
dϕ1

ds = (τK1K +K1 cosϕ+K cosϕ1 + b1) drds + (K1τ + cosϕ1 + b2) dϕds

where ai ≤ Cε1 and bi ≤ Cε1, for i = 1, 2. In addition

(7.17) (1− Cε1)
cosϕ

cosϕ1
≤ |detDxTF| ≤ (1 + Cε1)

cosϕ

cosϕ1

Proof. Let x1 = TFx, and τ1(x) be the length of the free path of x. By (7.11) and (7.12), there
exists a linear transformation Dx such that

(7.18) Dx(w+, ẇ+)T = (w−1 , ẇ
−
1 )T

where w−1 = w−(τ1) and ẇ−1 = ẇ−(τ1). Indeed, by Lemma 7.2, there exist smooth functions ci,
i = 1, . . . 4 with |ci| ≤ Cε1 for some C = C(K∗, τ∗) > 0 such that
(7.19)

I :=

∫ τ

0
aw + bẇ dγ = c1w

+(0) + c2ẇ
+(0), II :=

∫ τ

0

∫ ξ

0
aw + bẇ dγdξ = c3w

+(0) + c4ẇ
+(0),

so that using (7.6), we may write Dx as

(7.20) Dx =

(
1 + c3 τ + c4

c1 1 + c2

)
.

Using (7.7) and (7.8), the differential of DTF satisfies

(7.21) DTF = N−1
x1 Lx1DxNx

where

Nx = −
(

cosϕ 0
K + h+ sinϕ 1

)
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is the coordinate transformation matrix on TxM , such that (w+(0), ẇ+(0))T = Nx(dr/ds, dϕ/ds)T ,
and

(7.22) Lx1 =

(
−1 0

−2K1+(h+1 +h−1 ) sinϕ1

cosϕ1
−1

)
and N−1

x1 =

(
− 1

cosϕ1
0

K1+h+1 sinϕ1

cosϕ1
−1

)
.

Now combining (7.6) with (7.19) and (7.21), we get

− cosϕ1
dr1

ds
=
(
cosϕ+ τK + τh+ sinϕ

) dr
ds

+ τ
dϕ

ds
− II

=
(
cosϕ+ τK + τh+ sinϕ

) dr
ds

+ τ
dϕ

ds
− c3w

+ − c4ẇ
+

= (cosϕ+ τK + a1)
dr

ds
+ (τ + a2)

dϕ

ds

where a1 = c3 cosϕ+ c4(K + h+ sinϕ) + τh+ sinϕ and a2 = c4. Similarly we obtain

− cosϕ1
dϕ1

ds
= −(K1 + h−1 sinϕ1)w−1 − cosϕ1ẇ

−
1

= −(K1 + h−1 sinϕ1)(w+ + ẇ+τ + II)− cosϕ1(ẇ+ + I)

=
[
(K1 + h−1 sinϕ1) cosϕ+ (τ(K1 + h−1 sinϕ1) + cosϕ1)(K + h+ sinϕ)

] dr
ds

+
(
τK1 + τh−1 sinϕ1 + cosϕ1

) dϕ
ds
− II(K1 + h−1 sinϕ1)− I cosϕ1

= (τK1K +K1 cosϕ+K cosϕ1 + b1)
dr

ds
+ (K1τ + cosϕ1 + b2)

dϕ

ds

where

b1 = (cosϕ+ τK)h−1 sinϕ1 + cosϕ1

(
c1 cosϕ+ c2K + (1 + c2)h+ sinϕ

)
+
(
c3 cosϕ+ τh+ sinϕ+ c4(K + h+ sinϕ)

)
(K1 + h−1 sinϕ1)

and b2 = (τ + c4)h−1 sinϕ1 + c4K1 + c2 cosϕ1.
Now we use the assumption that the quantities K, τ are uniformly bounded from above, and

|h±| = O(ε1), to obtain that for any unit vector (dr/ds, dϕ/ds), the quantities |ai| ≤ Cε1 and
|bi| ≤ Cε1, i = 1, 2, for some uniform C > 0.

Finally we use (7.21) to calculate the determinant of the differential DxTF,

detDxTF = detN−1
x1 · detLx1 · detDx · detNx =

cosϕ

cosϕ1
detDx

=
cosϕ

cosϕ1
((1 + c2)(1 + c3)− c1(τ + c4))

(7.23)

which implies the last inequality (7.17). �

It follows from the above lemma that the differential DxTF : TxM → Tx1M at any point x =
(r, ϕ) ∈M is the 2× 2 matrix:

(7.24) DTF(x) = − 1

cosϕ1

(
τK + cosϕ+ a1 τ + a2

K(r1)(τK + cosϕ) +K cosϕ1 + b1 τK(r1) + cosϕ1 + b2

)
where x1 = TF(x) = (r1, ϕ1).

Furthermore it was shown in [Ch01] that the map TF has two families of cones C̄u(x) (unstable)
and C̄s(x) (stable) in the tangent spaces TxM , for all x ∈ M . More precisely, the unstable cone
C̄u(x) contains all tangent vectors based at x whose images generate dispersing wave fronts:

(7.25) C̄u(x) = {(dr, dϕ) ∈ TxM : B−1
0 ≤ dϕ/dr ≤ B0}.
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The unstable cone C̄u(x) is strictly invariant under DTF. Similarly the stable cone

C̄s(x) = {(dr, dϕ) ∈ TxM : −B−1
0 ≥ dϕ/dr ≥ −B0}

is strictly invariant under DT−1
F . Here B0 = B0(ε1, τ∗,K∗) > 1 is a uniform constant. Indeed,

there exists a uniform constant C > 0 such that we can choose B0 = K−1
∗ + 2τ−1

∗ + Cε1 for all ε1

sufficiently small.
Let dx = (dr, dϕ) ∈ TxM . Following [CM, Section 5.10], we define the adapted norm ‖ · ‖∗ by

(7.26) ‖dx‖∗ =
K(x) + |V|√

1 + V2
‖dx‖, ∀dx ∈ Cs(x) ∪ Cu(x),

where ‖dx‖ =
√
dr2 + dϕ2 is the Euclidean norm. Since the slopes of vectors in Cs(x) and Cu(x)

are bounded away from ±∞, we may extend ‖ · ‖∗ to all of R2 in such a way that ‖ · ‖∗ is uniformly
equivalent to ‖ · ‖. It is straightforward to check that for dx ∈ Cu(x),

(7.27)
‖dx1‖∗
‖dx‖∗

≥ Λ̂ := 1 +Kminτmin/2.

Finally, a simple calculation using (7.24) shows that there exists a constantB1 = B1(K∗, τmin, τmax) >
0 such that

(7.28)
B−1

1

cosϕ(x1)
≤ ‖dx1‖
‖dx‖

≤ B1

cosϕ(x1)
, for all dx ∈ Cu(x).

Uniform expansion in Cs(x) under DT−1(x) follows similarly. (See also [Ch2, Sect. 3].)

7.2. Hyperbolicity of the perturbed map TF,G. We are now ready to verify conditions (H1)-
(H5) for the map TF,G. We do this fixing F, G satisfying assumptions (A1)-(A4) with |F|C1 , |G|C1 ≤
ε for some ε ≤ ε1. We then compare T = TF,G with the related map TF = TF,0.

Since G preserves tangential collisions, the discontinuity set of T is the same as that of TF,
which comprises the preimage of S0 := {ϕ = ±π/2}. Similarly, the singularity sets of T−1 and
T−1
F are the same due to (A4). But the singular sets for higher iterates are not the same. Let

ST±n = ∪ni=0T
∓iS0,H with n ∈ N. Then T±n is smooth on M \ ST±n.

For any phase point x = (r, ϕ) ∈ M , let Tx = (r̄1, ϕ̄1) and TFx = (r1, ϕ1). According to (A3)
and (A4) and since we are on a fixed integral surface, we may express G in local coordinates via
two smooth functions g1 and g2 such that gi(r,±π/2) = 0, i = 1, 2, and

(7.29) r̄1 = r1 + g1(r1, ϕ1) and ϕ̄1 = ϕ1 + g2(r1, ϕ1)

where gi is a C2 function with C1 norm uniformly bounded from above by cgε, for some uniform
constant cg > 0.

According to (7.29), the differential of T satisfies
(7.30)
dr̄1 =

(
1 + g1

1(r1, ϕ1)
)
dr1 + g1

2(r1, ϕ1)dϕ1 and dϕ̄1 = g2
1(r1, ϕ1)dr1 +

(
1 + g2

2(r1, ϕ1)
)
dϕ1

where gi1(r1, ϕ1) = ∂gi/∂r1 and gi2(r1, ϕ1) = ∂gi/∂ϕ1. This implies

DT (x) =

(
1 + g1

1(r1, ϕ1) g1
2(r1, ϕ1)

g2
1(r1, ϕ1) 1 + g2

2(r1, ϕ1)

)
DTF(x)(7.31)

Note that T is not a C1 perturbation of TF around the boundary of M . Furthermore, T no longer
preserves µF, the SRB measure for TF. However, it follows from (7.17) and (7.31) that

| detDT (x)| ≤ cosϕ(x)

cos ϕ̄1(x)

cos ϕ̄1(x)

cosϕ1(x)
(1 + Cε) ≤ cosϕ(x)

cos ϕ̄1(x)
(1 + C1ε)(7.32)
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since by (7.29),

(7.33)
cos ϕ̄1(x)

cosϕ1(x)
=

cos(ϕ1(x) + g2(x1))

cosϕ1(x)
≤ (1 + C ′ε)

since g2(r,±π/2) = 0 and |∇g2| ≤ Cε. Clearly this implies condition (H5).
The next proposition shows that although the perturbed maps do not have the same families of

stable/unstable manifolds, they do share common families of stable and unstable cones.

Proposition 7.4. There exist two families of cones Cu(x) (unstable) and Cs(x) (stable) in the
tangent spaces TxM and Λ > 1, such that for all x ∈M :

(1) DT (Cu(x)) ⊂ Cu(Tx) and DT (Cs(x)) ⊃ Cs(Tx) whenever DT exists.
(2) These families of cones are continuous on M and the angle between Cu(x) and Cs(x) is

uniformly bounded away from zero.
(3) ‖DxT (v)‖∗ ≥ Λ‖v‖∗,∀v ∈ Cu(x) and ‖DxT

−1(v)‖∗ ≥ Λ‖v‖∗, ∀v ∈ Cs(x).

Proof. For x ∈M and any unit vector dx ∈ TxM , let dx1 = DxTFdx. Then by (7.30) the slope V̄1

of the vector dx̄1 at x̄1 := Tx = (r̄1, ϕ̄1) satisfies

V̄1 =
g2

1 + (1 + g2
2)V1

1 + g1
1 + g1

2V1
= V1 +O(ε)(7.34)

So the cone C̄u(x) from (7.25) may not be invariant under DT (x). Accordingly, we define a slightly
bigger cone,

Cu(x) = {(dr, dϕ) ∈ TxM : B−1
0 (1− c1ε1)) ≤ dϕ/dr ≤ B0(1 + c2ε1)

for some constants c1, c2 > 0, and we use assumption (A2) to ensure that ciε1 < 1/2, i = 1, 2. By
(7.24), DTF maps the first and third quadrants strictly inside themselves and shrinks any cones
larger than the unstable cones. More precisely, let V be a unit vector on the upper boundary of
Cu(x), with slope V = B0(1+ c2ε1). Then by (7.24) the slope of DTFV satisfies V1 = C+DV

A+BV , where
we denote (

A B
C D

)
=

(
τK + cosϕ+ a1 τ + a2

K(r1)(τK + cosϕ) +K cosϕ1 + b1 τK(r1) + cosϕ1 + b2

)
.

It follows from the invariance of C̄u that C+DB0
A+BB0

< B0. One can easily check that

V1 =
C +DB0(1 + c2ε1)

A+BB0(1 + c2ε1)
< V = B0(1 + c2ε1)

Similarly we can check the lower boundary of the cone is also mapped inside the cone Cu. Thus
Cu is invariant under DT .

Similarly we define the stable cone Cs(x) as

Cs(x) = {(dr, dϕ) ∈ TxM : −B−1
0 (1− c1ε1)) ≥ dϕ/dr ≥ −B0(1 + c2ε1)}.

Then one can check that the stable cone Cs is strictly invariant under DT−1 whenever DT−1 exists
for any T ∈ F . From the definitions of Cs(x) and Cu(x), it is clear that the angle between them
is bounded away from 0 on M . Thus items (1) and (2) of the lemma are proved.

To prove (3), note that (7.26) implies,

‖dx̄1‖∗
‖dx‖∗

=
‖dx̄1‖∗
‖dx1‖∗

‖dx1‖∗
‖dx‖∗

=
‖dx1‖∗
‖dx‖∗

K(r̄1) + |dϕ̄1|
K(r1) + |dϕ1|

.

Using (7.29), (7.30), (7.27) and the fact that K(·) is a C1 function on M , we conclude that for
ε0 = 1 small enough,

(7.35)
‖dx̄1‖∗
‖dx‖∗

≥ Λ := 1 +Kminτmin/3.
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Similarly, one can show property (3) for stable cones, which we will not repeat here. �

Near grazing collisions, we have also using (7.28) and (7.33) along with (7.29) and (7.30),

(7.36)
B−1

1 (1− Cε1)

cos ϕ̄1
≤ ‖dx̄1‖
‖dx‖

=
‖dx̄1‖
‖dx1‖

‖dx1‖
‖dx‖

≤ B1(1 + Cε1)

cos ϕ̄1
,

which establishes (3.4) in (H1) since in the finite horizon case, there are only finitely many singu-
larity curves so we may take n in that formula to be 1.

The last formula (3.5) in (H1) (again with n = 1) follows directly from differentiating (7.31)
and using (7.24) to recover this standard estimate for the unperturbed billiard (see [KS] or [Ch2,
Sect. 9.9] for the classical result). This finishes the verification of (H1).

7.3. Regularity of stable and unstable curves. It follows from Proposition 7.4 that we may
define common families of stable and unstable cones for all perturbations T ∈ FB(Q0, τ∗, ε1). Recall
the homogeneity strips Hk defined in Section 3.1 and that a homogeneous curve in M is a curve
that lies in a single homogeneity strip. In this subsection we will show that there is a class of C2

smooth unstable homogeneous curves Ŵu in M which is invariant under any T ∈ F . Furthermore
these curves are regular in the sense that they have uniformly bounded curvature and distortion

bounds. Similarly, there is an invariant class of homogeneous stable curves, Ŵs.

7.3.1. Curvature bounds. The next lemma, proved in TF in [Ch2], states that the images of an
unstable curve are essentially flattened under the map TF.

Lemma 7.5. Let W ⊂ M be a C2-smooth unstable curve with equation ϕ0 = ϕ0(r0) such that
T iFW is a homogeneous unstable curve for each 0 ≤ i ≤ n. Then TnFW has equation ϕn = ϕn(rn)
which satisfies:

(7.37)

∣∣∣∣d2ϕn
dr2
n

∣∣∣∣ ≤ C1 + θ3n

∣∣∣∣d2ϕ0

dr2
0

∣∣∣∣ ≤ C2

where Ci = Ci(Q), i = 1, 2 is a constant and θ ∈ (0, 1). Furthermore, for any regular unstable curve
W , there exists nW ≥ 1, such that for any n > nW , every smooth curve of TnW has uniformly
bounded curvature.

One can obtain a similar bounded curvature property for the perturbed map T .

Proposition 7.6. (Curvature bounds) Let W be any C2 smooth unstable curve. Then there exists
nW ≥ 1 and Cb > 0 such that every smooth curve W ′ ⊂ TnW with equation ϕ̄n = ϕ̄n(r̄n) satisfies

(7.38) |d2ϕ̄n/dr̄
2
n| ≤ Cb, for n > nW .

Proof. We fix any phase point x̄0 := x ∈W , denote xn = (rn, ϕn) = TnFx and x̄n = (r̄n, ϕ̄n) = Tnx.
According to (7.30), the slope of the vector DT dx̄ satisfies

dϕ̄1

dr̄1
=
g2

1 + (1 + g2
2)V1

1 + g1
1 + g1

2V1
= V1 +

g2
1 + g2

2V1 − g1
1V1 − g1

2V1

1 + g1
1 + g1

2V1
,(7.39)

where V1 = dϕ1/dr1, V̄1 = dϕ̄1/dr̄1. We differentiate the above equality with respect to r1, using

the fact that by (7.30),
dr̄1

dr1
= 1 + g1

1 + g1
2V1. Now use the same notation as in Lemma 7.5 to get

for some C0 > 0 and C3 > 0

(7.40)

∣∣∣∣d2ϕ̄1

dr̄2
1

∣∣∣∣ ≤ C0 + (1 + C3ε1)θ3

∣∣∣∣d2ϕ̄0

dr̄2
0

∣∣∣∣ ,
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since d2ϕ̄0/dr̄
2
0 = d2ϕ0/dr

2
0. By choosing ε1 small one can make (1 + ε1C3)θ2 < 1. Then we have

for any n ≥ 1, ∣∣∣∣d2ϕ̄n
dr̄2
n

∣∣∣∣ ≤ C0

1− θ
+ θn

∣∣∣∣d2ϕ̄0

dr̄2
0

∣∣∣∣
Since W is C2, there exists C1 = C1(W ) > 0 such that |d

2ϕ̄0

dr̄20
| < C1. We fix a constant Cb =

Cb(Q) > 0 and define

nW =

∣∣∣∣ ln(Cb/C1)

ln θ

∣∣∣∣ .
Then for any n > nW , connected components of TnW have equation ϕ̄n = ϕ̄n(r̄n) with second
derivative bounded from above by Cb. �

We now fix the constant Cb > 0, then define Ŵu be the class of all homogeneous unstable curves
W whose curvature is uniformly bounded by Cb. It follows from Propositions 7.4 and 7.5 that the

class Ŵu is invariant under any T ∈ F . Any unstable curve W ∈ Ŵu is called a regular unstable

curve. Similarly one defines Ŵs. This verifies condition (H2).

7.3.2. Distortion bounds. In this section, we establish the distortion bounds for T required by (H4).

For any stable curve W ∈ Ŵs and x ∈W , denote by JWTF(x) (resp. JWT (x)) the Jacobian of TF
(resp. T ) along W at x ∈ W . It was shown in [Ch2] that there exists C1 > 0, such that for any
regular stable curve W for which TFW is also a regular stable curve,

(7.41) | ln JWTF(x)− ln JWTF(y)| ≤ C1dW (x, y)
1
3

where dW (x, y) is the arclength between x and y along W . We show that T has the same properties

on the set of all regular stable curves Ŵs.

Lemma 7.7. (Distortion bounds) Let T ∈ F and W ∈ Ŵs be such that T is smooth on W and

TW ∈ Ŵs. There exists CJ > 0 independent of W and T such that

| ln JWT (x)− ln JWT (y)| ≤ CJdW (x, y)
1
3 .

Proof. Fix T ∈ F and W ∈ Ws for which TW ∈ Ŵs. This implies in particular that both T and
TF are smooth on W . For any x = (r, ϕ) ∈ W , let x1 := TFx = (r1, ϕ1) and x̄1 = Tx = (r̄1, ϕ̄1).
Similarly, let dx = (dr, dϕ) ∈ TxW be a unit vector and define dx1 = DTF(x)dx = (dr1, dϕ1) and
dx̄1 = DT (x)dx = (dr̄1, dϕ̄1). Then

JWT (x)

JWTF(x)
=

√
1 + V̄2

1

1 + V2
1

|dr̄1|
|dr1|

where V1 = dϕ1/dr1 and V̄1 = dϕ̄1/dr̄1. Then it follows from (7.30) that

(7.42) lnJWT (x) = ln JWTF(x) +
1

2
ln(1 + V̄2

1 )− 1

2
ln(1 + V2

1 ) + ln |1 + g1
1 + g1

2V1|.

By the smoothness of W and the curvature bounds, there exists C > 0 such that for any x, y ∈W ,

| ln(1 + V2
1 (x1))− ln(1 + V2

1 (y1))| ≤ |V2
1 (x1)− V2

1 (y1)| ≤ CdTFW (x1, y1) ≤ C ′dW (x, y),

where y1 = TFy, and similarly for V̄1. Since G is C2, the terms involving g1
1 and g1

2 satisfy a
Lipschitz bound as well. Putting this together with (7.41) and (7.42) proves the lemma. �
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In general, for W ∈ Ŵs and n ∈ N, suppose Tn is smooth on W and that T kW ∈ Ŵs, 0 ≤ k ≤ n.
Define T kW = Wk and for x, y ∈W , let xk = T kx and yk = T ky. Then

| ln JWTn(x)− ln JWT
n(y)| ≤

n−1∑
k=0

| ln JWk
T (xk)− ln JWk

T (yk)|

≤ C
n−1∑
k=0

dWk
(xk, yk)

1/3 ≤ CdW (x, y)1/3
∞∑
k=0

Λ−k/3,

(7.43)

due to (7.35). This completes the required estimate on JWT .
Finally, we prove the required bounded distortion estimate for JµT . By (7.23) and (7.31), we

have

(7.44) detDT (x) =
cosϕ

cosϕ1

(
(1 + c2)(1 + c3)− c1(τ + c4)

)(
(1 + g1

1)(1 + g2
2)− g1

2g
2
1

)
=:

A(x)

cos ϕ̄1
,

where c1, . . . , c4 are defined by (7.19) and we have replaced cosϕ1 with cos ϕ̄1 times a smooth
function on M \ ST1 due to (7.33). Note that A(x) is a smooth function of its argument wherever
T is smooth and has bounded C1 norm on M \ ST1 . It follows that JµT is a smooth function on
M \ ST1 whose C1-norm is bounded between 1 ± Cε1 for some uniform constant C depending on
the table (recall that dµ = c cosϕdm is the smooth invariant measure for the unperturbed billiard
T0,0). The required distortion estimates (3.8) and (3.9) for JµT follow using this smoothness and
the uniform hyperbolicity of T as in (7.43). Indeed, (7.43) holds with exponent 1 rather than 1/3
for JµT . This completes the verification of (H4).

Distortion bounds for detDT with exponent 1/3 follow from the above considerations in addition
to recalling that 1/ cosϕ is of order k2 in Hk, while the width of such a strip along a stable or
unstable curve is k−3. Similarly, one may prove absolute continuity of the holonomy map between
unstable leaves as in [Ch2], but we do not do that here since we do not need this fact.

7.4. One step expansion. Since we have established the expansion factors given by (7.35) and
(7.36), the one-step expansion condition (3.6) follows from an argument similar to the unperturbed
case (see [CM, Lemma 5.56]) and fixes the choice of k0 ∈ N, the minimum index of the homogeneity
strips. We will not reprove that lemma here. Instead, we focus on the second part of (H3), given
by (3.7).

Fix δ0 > 0 and k0 satisfying (3.10) and define Ws accordingly. For W ∈ Ws, let Vi denote the
maximal homogeneous connected components of T−1W .

Lemma 7.8. For any ς > 1/2, there exists C = C(δ0, ς, ε0) > 0 such that for any W ∈ Ws, any
T ∈ FB(Q0, τ∗, ε1),

(7.45)
∑
i

|TVi|ς

|Vi|ς
< C.

Proof. According to the structure of singular curves, a stable curve of length ≤ δ0 can be cut by
at most N ≤ τmax/τmin singularity curves in ST−1 (see [CM, §5.10]). For each s ∈ ST−1 intersecting

W , W is cut further by images of the boundaries of homogeneity strips SHk , k ≥ k0. For one such
s, we relabel the components Vi of T−1W on which T is smooth by Vk, k corresponding to the
homogeneity strip Hk containing Vk. By (7.36), there exists c1 = c1(ε1) > 0 such that on TVk, the
expansion under T−1 is ≥ c1k

2. So for all ς > 1/2,

(7.46)
∑
k≥k0

|TVk|ς

|Vk|ς
≤ c1

∑
k≥k0

1

k2ς
≤ c1

k2ς−1
0

.

An upper bound for (7.45) in this case is given by N times the bound in (7.46). �
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This completes the verification of (H1)-(H5) and completes the proof of Theorem 2.10.

7.5. Smallness of the perturbation. In this section, we check that conditions (C1)-(C4) are
satisfied for ε1 sufficiently small. We will then be able to apply Theorem 2.11 to any map T ∈
FB(Q0, τ∗, ε1).

We fix ε ∈ (0, ε1) and choose any T := TF,G ∈ FB(Q0, τ∗, ε1), such that |F|C1 , |G|C1 ≤ ε. By
the triangle inequality, it suffices to estimate dF (T0, T ) where T0 = T0,0 is the unperturbed billiard
map.

Denote by Φt the flow corresponding to T and by Φt
0 the flow corresponding to T0. Let x ∈

M \ (ST−1 ∪ S
T0
−1). By the facts summarized in Section 7.1, Φt(x) and Φt

0(x) can be no further than
a uniform constant times εt on the billiard table. Thus since T has finite horizon bounded by τmax

and the scatterers have uniformly bounded curvature, T (x) and TF,0(x) can be no more than a
constant times

√
ε apart if they lie on the same scatterer. By the smallness of G and (7.29), we

have dM (TF,0(x), TF,G) < Cε and thus by the triangle inequality, dM (T (x), T0(x)) < Cf
√
ε for

some uniform Cf > 0 as long as they lie on the same scatterer. A similar bound holds for T−1x

and T−1
0 x.

Let ε = Cfε
1/3. It then follows that for any x /∈ Nε(S

T
−1 ∪ S

T0
−1), d(T−1(x), T−1

0 (x)) < ε. This is
(C1).

To establish (C2), we use the fact that JµT0 ≡ 1 while

JµT (x) =
(
(1 + c2)(1 + c3)− c1(τ + c4)

)(
(1 + g1

1)(1 + g2
2)− g1

2g
2
1

)
by (7.44). Since the functions here are all bounded by uniform constants times ε and our horizon
is bounded by τmax, (C2) is satisfied.

Next, we prove (C4). Inverting (7.31) and (7.24) and using (7.44), we have

DT−1(x) =
−1

A(T−1x) cosϕ(T−1x)

(
B + b2 C − a2

D − b1 E + a1

)(
1 + g2

2 −g1
2

−g2
1 1 + g1

1

)
,

where A is the smooth function from (7.44) and B = τ(T−1x)K(x) + cosϕ(x), C = −τ(T−1x),

D = −K(T−1x)(τ(T−1x)K(x)+cosϕ(x))−K(x) cosϕ(T−1x), and E = τ(T−1x)K(T−1x)+cosϕ(T−1x)

match the corresponding entries of DT−1
0 x with T replaced by T0.

We split the matrix product as((
B C
D E

)
+

(
b2 −a2

−b1 a1

))(
I +

(
g2

2 −g1
2

−g2
1 g1

1

))
=: F +R,

where F =

(
B C
D E

)
and R is a matrix whose entries are smooth functions, all bounded by a

uniform constant times ε. Now defining F0 to be the matrix F with T0 replacing T , we write,

‖DT−1(x)−DT−1
0 (x)‖ =

∥∥∥ F +R

A(T−1x) cosϕ(T−1x)
− 1

cosϕ(T−1
0 x)

F0

∥∥∥
≤ ‖F − F0‖
|A(T−1x) cosϕ(T−1x)|

+ ‖F0‖
∣∣∣∣ 1

A(T−1x) cosϕ(T−1x)
− 1

cosϕ(T−1
0 x)

∣∣∣∣+
‖R‖

|A(T−1x) cosϕ(T−1x)|
.

(7.47)

Notice that if x /∈ Nε(ST−1 ∪ S
T0
−1), then due to the uniform expansion given by (7.36) and the

uniform transversality of the stable cone with S0, we have dM (T−1x,S0) ≥ C
√
ε, for some uniform

constant C. Thus cosϕ(T−1x) ≥ C ′
√
ε for some uniform constant C ′ > 0. The same fact is true

for T−1
0 x.
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Using this, plus the fact that the entries of F and F0 are smooth functions of their arguments
with uniformly bounded C1 norms, we estimate the first term of (7.47) by

‖F − F0‖
|A(T−1x) cosϕ(T−1x)|

≤ Cε−1/2dM (T−1x, T−1
0 x) ≤ C ′ε−1/2ε1/2 = C ′Cf ε

since the C1 norm of A is bounded above and below by 1±Cε by (7.44). Similarly, the third term
of (7.47) is bounded by Cε.

Since ‖F0‖ is uniformly bounded, we split the middle term of (7.47) into the sum of two terms,∣∣∣∣ 1

A(T−1x) cosϕ(T−1x)
− 1

cosϕ(T−1
0 x)

∣∣∣∣ ≤ 1

cosϕ(T−1x)

∣∣∣∣ 1

A(T−1x)
− 1

∣∣∣∣+∣∣∣∣ 1

cosϕ(T−1x)
− 1

cosϕ(T−1
0 x)

∣∣∣∣ .
As noted earlier, the C1 norm of A is bounded above and below by 1±Cε so that the first difference
above is bounded by Cε−1/2ε ≤ CCf ε. The second difference is bounded by Cε−1dM (T−1x, T−1

0 x) ≤
C ′ε−1ε1/2 = C ′Cf ε

1/2, similar to the estimate (6.7).
Putting these estimates together in (7.47) proves (C4) with respect to ε. Condition (C3) follows

similarly using the fact that JWT (x) = ‖DT (x)v‖ where v ∈ TxW is a unit vector. The exponent

of ε in (C3) is better than in (C4) by a factor of ε1/2 since we must estimate
∣∣∣ cosϕ(T−1x)

cosϕ(T−1
0 x)

− 1
∣∣∣ in

place of
∣∣∣ 1

cosϕ(T−1x)
− 1

cosϕ(T−1
0 x)

∣∣∣.
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[DSV] D. Dolgopyat, D. Szász and T. Varjú, Limit Theorems for Locally Perturbed Lorentz processes, Duke Math. J.

148 (2009) 459-499.
[GO] G. Gallavotti G. and D. Ornstein, Billiards and Bernoulli schemes, Commun. Math. Phys. 38 (1974), 83–101.
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