SPECTRAL ANALYSIS OF HYPERBOLIC SYSTEMS WITH SINGULARITIES

MARK F. DEMERS AND HONG-KUN ZHANG

ABSTRACT. We study the statistical properties of a general class of two-dimensional hyperbolic
systems with singularities by constructing Banach spaces on which the associated transfer oper-
ators are quasi-compact. When the map is mixing, the transfer operator has a spectral gap and
many related statistical properties follow, such as exponential decay of correlations, the central
limit theorem, the identification of Ruelle resonances, large deviation estimates and an almost-sure
invariance principle. To demonstrate the utility of this approach, we give two applications to spe-
cific systems: dispersing billiards with corner points and the reduced maps for certain billiards with
focusing boundaries.

1. INTRODUCTION

The study of the statistical properties of hyperbolic systems with singularities is motivated in
large part by mathematical billiards, introduced in [Si] and since studied extensively by many
authors. A general class of such systems was introduced in the fundamental work by Katok and
Strelcyn [KS] in which the following assumptions were made on the singularity set S: the derivatives
of the map T can only grow mildly near S (bounded by a negative power of the distance to S)
and T preserves an invariant measure p with the property that every e-neighborhood N.(S) of S
satisfies

1(Ne(S)) = O(e?) (1.1)
for some constant a > 0. These together with several other mild assumptions are sufficient for the
construction of stable and unstable manifolds, their absolute continuity, and certain formulas for
the entropy of T' [KS].

In later studies of finer statistical properties of billiards and related models, the fact that a = 1 in
played a vital role in the work on dispersing billiards [BSCI], [Y] [Ch1], Bunimovich’s stadium
[Ma], higher-dimensional Lorentz gases [BT], systems of two hard balls of different masses [CD1],
certain abstract multidimensional models [Ch2], and others. Only recently, Chernov and Zhang
[CZ4] extended these studies to cover systems with more general singularities, i.e. with a < 1 in
(1.1), and obtained exponential decay of correlations under certain assumptions, using coupling
methods. The coupling scheme is simple and intuitive as it captures the geometrical properties of
the dynamical systems, but it can only be used under the assumption of the existence of an SRB
measure.

In this paper we present a functional analytic framework in which to study certain general
classes of hyperbolic systems with singularities in two dimensions. We drop two assumptions used
in [CZ4]: the a priori existence of an SRB measure, and the absolute continuity of the holonomy
map between unstable manifoldsﬂ For our class of maps, we construct Banach spaces on which the
associated transfer operators are quasi-compact. When the map is mixing, the transfer operator
has a spectral gap and many results follow immediately: exponential decay of correlations, the
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Iwe drop such conditions as part of our formal assumptions since they are not needed for the present approach;
however, these properties follow from our other assumptions on the hyperbolicity of the map T (see for example
[KSL [PL[S]).
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identification of Ruelle resonances, local large deviation estimates and an almost-sure invariance
principle. We remark that our large deviation estimate has a uniform rate function with respect to
any probability measure in our Banach space; this includes both Lebesgue measure and the SRB
measure for the system, even though such measures may be singular with respect to one another
(see Corollary [2.5)).

The functional analytic approach we adopt in this paper traces back to classical results of Doeblin
and Fortet regarding Markov chains [DF, IM| [N]. This approach was adapted to overcome the
problem of discontinuities for expanding maps by using the smoothing effect of the transfer operator
on functions of bounded variation [LY] K| [Sal Bu, [T1, T2, BK]. Its extension to hyperbolic
maps followed, although the required Banach spaces were no longer spaces of functions, but of
distributions: first to Anosov diffeomorphisms [R1l, [R2, R3, BKL, B2, BaTl [GL] and then to
piecewise hyperbolic maps [DL, BGI, BG2], and recently to the billiard map associated with a
periodic Lorentz gas [DZ]1].

In addition to the many limit theorems that follow from the existence of a spectral gap mentioned
above, the quasi-compactness of the transfer operator has several important applications which
serve to highlight the strengths of this approach. It can be used to determine the stability of
statistical properties under perturbations, for example using perturbation theory [Ka] or the looser
perturbative framework of [KL], as done recently for perturbations of the Lorentz gas in [DZ2]. It
can be used to study the mixing rates of flows following the approach of [L1, BL]; indeed, a version
of the norms presented here is expected to resolve the long-standing open conjecture of exponential
decay of correlations for finite horizon billiard flows. As a final example, we mention the application
to slowly mixing systems via the renewal theory developed by Sarig [Sr].

Our purpose in this paper is to formulate the approach used for the Lorentz gas in [DZ1] in as
broad a framework as possible, which we present as abstract assumptions (H1)-(H5) in Section[2.1]
To this end, we allow tangencies between the singularity curves and stable and unstable cones (see
(H3)), and weaken the one-step expansion condition used in [DZ1] to admit more general singular-
ities of the form with @ < 1 (see (H5)). We also formulate condition (H1) on the Jacobian of
the map to allow perturbations of classical billiards, such as billiards under external forces or those
subject to twists or kicks at collisions (see [DZ2]). In order to accommodate this more general set-
ting, we have adapted and generalized the Banach space norms used in [DZ1] and prove new growth
lemmas to derive the necessary Lasota-Yorke inequalities. To demonstrate the broad applicability
of these abstract results, we then apply this framework to dispersing billiards with corner points as
well as to the reduced maps for two types of billiard systems with focusing boundaries that were
studied in [CZ4]: nonsmooth stadia and Bunimovich tables. We also recover all the results from
[DZ1] for both the finite and infinite horizon Lorentz gas in this general framework.

The paper is organized as follows. In Section 2, we state our abstract conditions (H1)-(H5),
define the Banach spaces on which we will study the transfer operator and state our main results. In
Section |3] we prove the necessary estimates to control the cutting generated by singularities in the
presence of the weakened one-step expansion condition (H5) and prove preliminary properties of
our Banach spaces including embeddings and compactness. Section [4] contains the required Lasota-
Yorke inequalities and in Section [5| we characterize the peripheral spectrum and prove some related
statistical properties, including limit theorems. Section [6] contains the application to billiards with
corner points; Section [7| applies the present framework to the reduced maps corresponding to the
two types of billiards with focusing boundaries mentioned above.

2. SETTING AND STATEMENT OF RESULTS

2.1. Assumptions on the hyperbolic map 7. We begin by defining the class of hyperbolic maps
to which our results apply. Let M be a smooth two-dimensional Riemannian manifold (possibly
with boundary and not necessarily connected). We consider maps T defined on an open subset
of M which are piecewise hyperbolic in the sense described precisely below. Let d denote the
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Riemannian metric on M and for a curve W, let dy denote the metric induced by restricting d to
W. The corresponding unnormalized arclength measure on W is denoted by myy.

(H1) Smoothness of the map. Let 1 -7y < k < 1, where 79 will be specified after the statement
of Proposition in Section Assume f > 0 is a C! smooth function on M and fy > & is a
piecewise C! function such that

@ o
fray @) 21)

wherever D, T exists. We assume that 7' is nondegenerate in the sense that the level sets of f are
finite unions of smooth compact curves.

|D,T| := |det D,T| =

When fy = 1, assumption implies that the map T preserves the measure fdm on the phase
space M, where m denotes the Riemannian volume on M. This is the case for classical billiards.
The inclusion of fy allows us to apply this framework to perturbations of billiards; for example, to
dispersing billiards subject to external forces and twists or kicks at reflections as in [DZ2].

(H2) Hyperbolicity. Let Sy be a finite union of compact C? smooth curves in M such that
OM U f~1(0) C So. Denoteﬂ Si1 = S UTTLSy. We require that T : M\ S; — M \ S_1 be a C?
diffeomorphism. Note that while Sy is assumed to be a finite union of compact smooth curves, S41
may have countably many such curves.

We assume there exist two families of cones C*(x) (unstable) and C*(z) (stable) in the tangent
spaces T, M, continuous on the closure of each component of M \ Sp, such that for all z € M the
angle between C%(x) and C*(z) is uniformly bounded away from zero. In addition there exists
A > 1 with the following properties:

(1) D,T(C%(x)) C C*(Tz) and D,T-*(C%(z)) C C*(T~'x) whenever D, T and D,T~" exist.
(2) [|DTo|l« > Aljv||s, Vv € C¥(x) and ||D,T 1ol > Aljv|«, Vo € C*(x), where || - ||« is an
adapted norm, uniformly equivalent to the Euclidean norm, || - ||.

In order to control distortion when ||D, T 1v||, v € C*(x), becomes unbounded, we introduce
the concept of homogeneity regions, inspired by the study of billiards. We fix an exponent rp > 1
which will determine the spacing of the boundaries of the homogeneity regionsﬁ First, we define
these regions in a neighborhood of f~1(0). Let S = f~1(0) and SH = f~1(k~"»T1) for k > ko,
where ky is a fixed integer with value chosen from (H5). Due to (H1), S and SH are finite unions
of smooth curves. The region between S,f and S,ﬁ_l is called a homogeneity region with index k,
and denoted as Hy. It is not essential here that S,f be precisely f~!(k~"»t1); in applications, it
may be convenient to allow some flexibility, S,f ~ f~H (k1) see for example our application to
nonsmooth stadia in Section [7

It may be that ||D,T~!|| becomes unbounded even when f(T~!z) # 0. This may happen,
for example, in the area-preserving case |D,T| = 1. (See [W), BBN]| for an example of such a
map derived from a system of bouncing ballsﬁ) In this case, we may define homogeneity regions
analogous to Hj above with the same spacing exponent. Thus we may define homogeneity regions
in the image of wherever the expansion becomes unbounded, and in particular always near f~1(0).
In all cases, however, the H}; must accumulate on a finite number of smooth, compact curves in
So as defined in (H2). We call this set of curves S and allow the Hj, to accumulate at single
points. In applications, the decision whether to introduce these extra cuts will depend on whether

2 If for some set A, there exists © € A, such that T~ 'z is not well-defined, we extend our notation by T4 :=
{reM : Tx e A}

3The standard choice for dispersing billiards is 7, = 3, following [BSCI] [BSC2].

“We are not claiming this system as an application of our method at the present time, but rather that we expect
axioms (H1)-(H5) will apply, possibly with minor modifications.
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the singularities of the map already provide the required bounded distortion (see Section [7| for
an example of a map where additional cuts are not required even though the derivative becomes
unbounded). The required properties of the homogeneity regions Hy, are listed in (H3)-(H5) below.
We denote by Hy, the region in M that comprises the complement of the closures, M \ (Uk>k0ﬁk).

We say that a smooth curve W C M is a stable (unstable) curve if at every point € W the
tangent line 7, W belongs in the stable (unstable) cone C*(x) (C*(z)). We call a stable (unstable)
curve homogeneous if it lies entirely in one homogeneity region Hy. We will work with families of
homogeneous stable and unstable curves, W?* and W", defined below in (H4).

(H3) Structure of Singularities.

(1) There exist constants Cy > 0 and ¢ < 1 such that if W € W* and T~! is smooth on W
such that T7'W € W, then |T~'W| < Co|W|S.

(2) If D is a connected component of M\S_1, then D consists of finitely many smooth compact
curves. Moreover, for each £ > 0, there are at most finitely many connected components of
M \ S§_1 containing stable curves of length greater than e.

(3) There exist constants C; > 0 and 0 < tp < 1 such that for any stable curve W and any
smooth curve S C S_,, we have my (N:(S) N W) < Cie® for all ¢ > 0 sufficiently small,
where N.(-) denotes the e-neighborhood of a set in M.

(4) The homogeneity curves S,g{ , k > ko, satisfy the same weak transversality condition as in
(3) above. In addition, there exists Cy > 0 such that for all k& > ko, if W € W? with
W C Hy, then ’W‘ < Oyk™"n,

(5) On each connected component of Hy N (M \ Sp), k > ko, we choose a smooth foliation
{Weleer, € W?* whose elements completely cross that component of Hj, N (M \ Sp). This is
possible by (H3)(4) above. We decompose the Riemannian volume m on this component
into dm = \(d§)pedmy where myy is arclength on We, p¢ is a smooth function depending
on the choice of foliation, and A is the transverse measure on . We assume that

S| F(We)|[Wel"dA(§) < oo for all & > 0,
ke>ko ” Er

where f(Wy) is the average value of f on W (taken with respect to arclength)ﬂ

Since the items in (H3) are quite technical, we briefly explain the significance of each and
where it is used in our proofs. (H3)(1) is used in the Lasota-Yorke estimate in Section The
assumption on the finiteness of 9D in (H3)(2) is used in Lemma The shortness of stable curves
from (H3)(2) is used in the graph transform argument of Lemma

The weak transversality assumptions in (H3)(3) and (H3)(4) are standard assumptions to
control the interaction between hyperbolicity and singularities; they are essential throughout this
paper. The introduction of the exponent ty allows for the types of singularity sets with ‘non-
degenerate tangencies’ found in billiards with corner points. Of course, if C*¥(x) is uniformly
transverse to S_,, then one can take {3 = 1; however, without loss of generality in the arguments
that follow we will take tg < 1/2 as it simplifies the proof of Lemma which otherwise would
have to be split into two cases.

The second part of (H3)(4) is a spacing requirement for the homogeneity strips so that sta-
ble curves in strips of high index are short. This is necessary for the graph transform argument
(Lemma, approximation by smooth functions in our Banach space (Lemma and compact-
ness (Lemma [3.9). Finally, (H3)(5) is a kind of summability condition over homogeneity strips

5The assumption (H3)(5) is automatically satisfied when r, > 2 for the homogeneity strips Hj defined by

F7H(ET™n T as long as A(Ey) remains uniformly bounded. For then using (H3)(4), the series is majorized by
2 k>ko k~mht1=€Th < oo, This is the case for the billiards we consider in Sections |§| and
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used only in the proof of Lemma [3.7]in order to control the distributional norm of elements of our
Banach spaces. It is easily satisfied for the billiards considered in Sections [6] and

Remark 2.1. One can replace (H3) (1) with the following assumption on the blowup of the deriv-
ative: There exist constants Cy > 0 and 0 < a < 1 such that,

| DT~ || < Collv||d(z,S_1)"% for all v € C*(x), (2.2)

wherever D, T~ is defined.
This, together with (H3)(3), yields the bound |T~ W | < C|W |~ which is useful if a < to.

(H4) Invariant families of stable and unstable curves. Let WW*® denote the set of homogeneous
C? stable curves with length less than some positive constant dy (to be chosen in (2.6)) and with
curvature bounded above by some uniform constant B > 0. We assume there exists a choice of B
such that W* is invariant under 7! in the following sense: The connected components of T~V
belong to W?* whenever W € W?* (up to subdivision of the connected components to guarantee
length at most dg).

We require the following distortion bounds: There exist py € (0,1] and C3 > 1 such that if
W € W? is such that T-'W € W* or W € W" is such that T-'W € W, then for any =,y € W,

|D. T = DT < G| DT max{d(a, y), d(T~ 2, T~ y)}. (2.3)

We also require the analogous distortion bound for the full Jacobian of the map. If W € W? is
is such that TW € W? or if W € W*" is such that TW € W*", then for any z,y € W,

‘IDITI
1Dy T

1] = Coma{d ) i (T Ty (2.0

Our final assumption is on the complexity of the singularities of 7!, It says that the expansion
due to hyperbolicity dominates the cutting due to singularities, which is a standard assumption for
hyperbolic maps with singularities. The version we use here is the weakened form introduced in
[CZ4] as described in the introduction[f

(H5) One-step expansion. Let W € W? and partition the connected components of 7~'W into
maximal pieces V; such that each V; is a homogeneous stable curve (not necessarily of length at
most dp). Let |Jy,T|, denote the minimum contraction on V; under 7" in the metric induced by the
adapted norm || - ||+, and let |W|. denote the length of W € W? in this metric. We assume there
exists a constant vy € [0,1/rp,) and a choice of kg for the homogeneity strips such that

. Vil« \ ™
limsup sup ( Jv, T« < 1. 2.5

50 WEWSZ (W | | (2:3)
Wi<s *

In light of (H5), we fix dp > 0 in the definition of W?* sufficiently small that,

Vi* Yo
sup Z<| | > |Jy,T|s =: 6. < 1. (2.6)

wews = \[W|.

In the proof of Lemma (which is essentially a graph transform argument), the index ko from
(H5) may be increased and the maximum length scale o may be decreased, but this will not affect
0, fixed above.

6Note that our parameter o is 1 — ¢ in the notation of [CZ4].
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2.2. Transfer Operator. Notice that if ¢ is a smooth test function, then 1 o T' is only piecewise
smooth due to the singularities of 7. For this reason, we introduce scales of spaces, defined using the
invariant family of curves W# from (H4), on which to describe the action of the transfer operator
L associated with T

Define T7"W? to be the set of homogeneous stable curves W such that T is smooth on W
and T'W € W for 0 < i < n. Then T™"W?* C W* and it follows from (H4) that the connected
components of T~"W belong to W?* whenever W € W? (up to subdividing long pieces).

We denote (normalized) Lebesgue measure on M by m. For W € T-"W?*  a complex-valued
test function ¢ : M — C and 0 < p < 1, define H},(¢)) to be the Holder constant of ¢ on
W with exponent p measured in the metric dy. Define H}(¢) = supyer—nyys Hiy (¢) and let
CP(T™™W?) = {¢p : M — C : |1)|oo + HE(1)) < 00}, denote the set of bounded complex-valued
functions which are Hélder continuous on elements of T~"W?. The set CP(T~"W?*) equipped with
the norm [¢|cr(p-nyysy = [¥|oo + Hn (1)) is a Banach space. We define CP(T~"W?) to be the closure
of CH(T—"W?) in CP(T~"W*)]]

It follows from that if ¢ € ép(T_("_l)Ws), then ¢ o T € ép(T_”WS). Similarly, if
¢ € CHT~DW?), then ¢ o T € CHT™W?). These two facts together imply that for p < 1, if
Y € CP(T~"=DWS$), then ¥ o T € CP(T"W?).

If h € (CP(T~™W?#)), is an element of the dual of CP(T~"W?*), then L : (CP(T~"W?)) —
(cP(T~(=DWs3)) acts on h by

Lh(y) = h(poT), Ve CP(T~ D).

If h € L'(M,m), then h is canonically identified with a signed measure absolutely continuous
with respect to Lebesgue, which we shall also call A, i.e.,

h(y) = /M $hdm.

With the above identification, we write L*(M,m) C (CP(T~"W?))’ for each n € N. Then restricted
to LY(M,m), L acts according to the familiar expression

L'h=hoT ™™ |DT™(T~™)|~! for any n >0 and any h € L'(M,m).

2.3. Definition of the Norms. The following norms are defined via integration on the set of
admissible stable curves W? given by (H4). In Section we define precisely the notion of
a distance dyys(-,-) between such curves as well as a distance dg(-,-) defined among functions
supported on these curves.

Given a curve W € W?, set |W| = mw (W), where as before my, denotes the (unnormalized)
arclength measure on W. With a slight abuse of notation, we define f(W) to be the average value
of f(x) on W e We, ie. f(W)=|W/|™! [}, f(z)dmy, where f is defined by .

For 0 < p < 1, as in Section we denote by cP (W) the set of continuous complex-valued
functions on W with Hélder exponent p and by CP(W) the closure of C'(W) in the C~p—nor
[blerwy = [¥lcoqwy + Hyy (1), where Hiy, (1) is the Holder constant of ¢ along W. Notice that
with this definition, [¢192|crwy < [¥1|cr ey [¥2|cr ). We define CP(M) and CP(M) similarly.

For a;,p > 0, define the following norms for test functions,

[lw,ap = W[ FW) - [ler )
We now fix the following choices of parameters for our norms, based on (H1)-(H5): First choose

a,y > 0 such that 79 < v < o < 1/ry, where g is from (H5) and r;, determines the spacing of Hy;

"Here by C! (W?*) we mean to indicate C?(W?) with p = 1, i.e. functions which are Lipschitz on elements of W?*.
8Note that while C?(W) may not contain all of CP(W), it does contain CPI(W) for all p’ > p.
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next choose 0 < ¢ < p < pg such that p < -y, where pg is the Holder exponent from (H4); finally,
choose

0<5<min{p—q, ctola—n), Mo L } (2.7)

where ¢ is from (H3)(1) and ¢ty < 1/2 is from (H3)(2).
Given a function h € C'(M), we define the weak norm of h by

|h|w := sup  sup / hyp dmyy . (2.8)
Wews yecP(W) JW
|w|W,'y,p§1

We define the strong stable norm of h as

|h]ls ;== sup  sup / hip dmyy (2.9)
Wews peci(w) Jw
‘le,a,qgl

and the strong unstable norm of h as

|2lly == sup ~ sup sup
e<eo Wl,WQEWS wieCP(Wi)
dyys (W1,Wa)<e ||, 5,p<1

dq(P1,92)<e

where €9 > 0 is chosen less than g, the maximum length of W € W?* which is determined by ([2.6)).
Here dyys (W7, Wa) and dg(2)1,12) are defined in Section 3.1. We then define the strong norm of h
by

1
75 / h’lﬁl de — th dmw‘ (2.10)
€ W1 W2

1Pl = lIAlls + cullP]lu

where ¢, is a small constant chosen in (2.14]).
We define B to be the completion of C*(M) in the strong norm and B,, to be the completion of
CY(M) in the weak norm.

2.4. Statement of Results. We assume throughout that T satisfies assumptions (H1)-(H5) as
described in Section [2.I] The first result gives a more concrete description of the abstract spaces
B and B,, introduced above.

Lemma 2.2. For A\ > 3/(1 — f3) and each n > 0, CA\(M) < B < By, < (CP(T~"W?))', and each
of the embeddings is continuous and injective. Moreover, L is well defined as a continuous operator
on both B and B,,.

Proof. The continuity of the embeddings follows from the following three estimates, respectively:
[hll < Clhleaar by in the proof of Lemma | - lw < || - |l by definition of the norms,
and ()] < Clh|w|tcr(r-nyys) from Lemma

The injectivity of the first embedding is immediate while that of the second follows from the
fact that our test functions for || - ||, are in C¢(M) rather than C?(M). The injectivity of the third
embedding follows from Lemma [3.8|since (CP(T~"W?*)" C (CP(M))’ for each n > 0.

By Lemma if h € CY(M), then £h € B. Indeed, the estimates of Section 4| prove that
|Lh||s < C||h|| for h € C*(M). Now identify g € B with a Cauchy sequence {h,},>0 C C*(M).
Since £ is bounded when applied to functions in C*(M), it follows that {Lh,},>0 is a Cauchy
sequence in B. By the injectivity of the inclusion B < (CP(T~"W?))’, n > 0, we identify its limit
with L£g and so || Lg||g = limy, ||[Lhy||s < lim, C||h,||s = C|/g||s. Thus L is bounded and therefore
continuous on B. A similar argument holds for B,,. g

The following proposition is proved in Section [4]
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Proposition 2.3. Let A > 1 be the minimum expansion from (H2)(2), let k < 1 be from (H1),
and let 69 > 0, 0, < 1 be constants defined by (2.6)). There exists C > 0 such that for all h € B
and n > 0,

L7y < Ck™hlw, (2.11)
L], < COM* + A=)k "||hls + C6 KAl , (2.12)
1L e < CA™PP="|| |y + Crk~™||A|s, (2.13)
where sg = 11115’

We now state the restriction on 7y referred to in (H1). We take 19 > 0 to be sufficiently small
that 1 — 79 > max{A =", Qi/SO,A_q}.

Then since kK > 1 —1mng, we may choose 1 > gy > k1 max{A‘ﬁ, Hi/so, A~} and there exists N > 0
such that

N
o o _
1LV Rls = 1LY B]ls + cul £V Rl < %\Ihlls +C83 KN hlw + w0 [Ihllu + cl CNEN ]l

< o' |hlls + Co3 " w N hlw
(2.14)

provided ¢, is chosen small enough with respect to N. The above represents the traditional Lasota-
Yorke inequality.

The final ingredient in the strategy to prove the quasi-compactness of the operator L is the
relative compactness of the unit ball of B in B,,. This is proven in Lemma It thus follows by
standard arguments (see [BI, [HH]) that the essential spectral radius of £ on B is bounded by oy,
while the spectral radius is at most £~ 1.

Despite this, we prove in Section [5| that the spectral radius is in fact 1, along with the following
theorem which characterizes the spectral properties of £ and their consequences for the statistical
properties of T'. Let Iy denote the eigenprojector onto Vy, the eigenspace of £ in B corresponding
to the eigenvalue €27,

Theorem 2.4. The spectral radius of L on B is 1 while its essential spectral radius is bounded
by o9 < 1. The peripheral spectrum of L on B consists of finitely many cyclic groups with no
Jordan blocks. The maps {T"}nen admit only finitely many physical measures’], they form a basis
for V.= ®yVy and the cycles correspond to the cyclic groups. Moreover,

(1) Each element of V is a signed measure absolutely continuous with respect to the probability
measure [ := limy,_, % Z?:_ol L'm. In particular, all the physical measures are absolutely
continuous with respect to [.

(2) Let S§' = SoU (U, S{) and SE, = U TF(S). If p € V and S¥, _ is an e-neighborhood
of S®,, then for each ¢ > 0, M(S@La) < Cesoe=) for some uniform constant C. In
particular, pu(UpezT™(SH )) < Ceftole=") and p(Swy,) = 0.

—1,en—2/¢to(a=7)
(3) The supports of the physical measures correspond to the ergodic decomposition with respect
to Lebesgue.
4) If (T, ) is ergodic, then 1 is a simple eigenvalue.
iz 9 g
The next three items all assume that (T", ) is ergodic for allm > 1.

(5) If (T™, ;n) is ergodic for all n, then 1 is the only eigenvalue of modulus one and L enjoys a
spectral gap. For any probability measure v € B, we have lim,,_,~ ||L"v — il = 0, and the
convergence s at an exponential rate.

9An ergodic, invariant probability measure p is called a physical measure if there exists a positive Lebesgue measure
n—1

set B, with u(B,) =1, such that lim - E f(T'z) = u(f) for all z € B,, and all continuous functions f.
n— o0
i=0
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(6) Let A > max{p,3/(1 — B)}, where p and B are from Section and suppose P is a
partition of M satisfying the assumptions of Lemma [5.3. If ¢ is a function satisfying
SUppep |Pler(py < 00 and ¢ € CP(T=*W?) for some k >0, then

| [ ovorrdn— [ odn | wan] < Cot(sup dlerey) (vl + HE())
M M M peP

for some 01 <1 and alln > 0.

(7) The Fourier transform of the correlation function (sometimes called the power spectrum)
admits a meromorphic extension in the annulus {z € C ; oo < |2| < 5!} and the poles
(Ruelle resonances) correspond exactly to the eigenvalues of L, where og < 1 is from .

When T has a spectral gap, the following limit theorems (among others) follow by standard

n—1

methods. For a function g on M, define S,,g = > ;_7go Tk,

Corollary 2.5. Assume T has a spectral gap. As in Theorem[2.4), let X > max{p, /(1 — )} and
suppose P is a partition of M satisfying the assumptions of Lemma[5.3

(a) (Local large deviation estimate.) Let g satisfy suppep |gler(py < o0 For any (not necessar-
ily invariant) probability measure v € B,

1 1
lim lim —logl/<x €M:—Syg(x) € [t—s,t—l—s]) = —I(t)
n

e=+0n—oo N
where the rate function I(t) is independent of v € B, and t is in a neighborhood of the mean
a(g)-
(b) (Vector-valued almost-sure invariance principle.) Suppose g : M — R is an R%-valued
observable with i(g) = 0 and such that suppep |giler(py < 00 for each of its component
functions g;, i =1,...,d. Distribute (g oT7)jen according to a probability measure v € B.

Then there exists a probability space Q with random variables {X,} satisfying Sng dist. Xn,

and a Brownian motion W with mean 0 and covariance matriz X2 such that
X, =W(n)+o(n") for any r > 1/4 almost-surely in .
Theorem 2.4 and Corollary [2.5] are proved in Section

2.4.1. Application to Dispersing Billiards with Corner Points. We apply our abstract framework to
dispersing billiards with corner points. Let @ C R? be a compact region whose boundary consists
of finitely many C? curves positioned so that they are convex inward to @ with strictly positive
curvature. We assume the interior of @) is connected, but not necessarily simply connected. Thus
the boundary of () comprises a finite number by of connected components, I'; and each I'; consists
of a finite number of smooth curves as described above. The intersections of the smooth curves
comprising 9@ are called corner points and we assume that all such intersections are transverse,
i.e. the angle at each corner point is positive

We consider the billiard flow on the table ) induced by a particle traveling at unit speed and
undergoing elastic collisions at the boundaries. The phase space for the billiard flow is M =
Q xS! /~ with the conventional identifications at the boundaries. Define M = U?il (Tix[—m/2,7/2])
to be a union of cylinders. The billiard map F : M — M is the Poincaré map corresponding
to collisions with the scatterers. We will denote coordinates on M by (r,¢), where r € T is
parametrized by arclength (oriented according to convention so that @ is always on the left when
traversing 0@ in the positive direction) and ¢ is the angle that the velocity vector at r makes with
the normal pointing into the domain @ just after the moment of collision. F preserves a measure
usrp defined by dusrp = ccosdrdy on M, where c is the normalizing constant.

101 the presence of cusps (corner points whose angle is zero), it was proved in [CM2| [CZ3] that such billiards
have only polynomial decay of correlations.
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Chernov [Chl] proved exponential decay of correlations for billiards with corner points under an
additional complexity assumption, which now can be removed due to the recent advance contained
in [DT]. Here we apply our approach based on the spectral analysis of the transfer operator
by establishing (H1)-(H5) for an iterate of the map F. In addition to exponential decay of
correlations, the present method also implies a wide variety of other limit theorems, including
those given by Corollary Such limit theorems with respect to the smooth invariant measure
were already proved using Young towers ([MNT], MN2l [RY]) but the extension to non-invariant (and
even singular) measures is new for this class of maps. The following theorem is proved in Section @

Theorem 2.6. Under the assumptions above, there exists n1 € N such that T := F™ satisfies
properties (H1)-(H5). In terms of the quantities introduced there: in (H1), f = cosp, fo =k =1;
in (H3), £ = (3/5)™, to =1/2, and r, = 3; in (H4), po = 1/3; in (H5), v = 0.

Fizing the choice of constants in the morms according to Section defines a Banach space B
on which Lr is quasi-compact and enjoys a spectral gap. Thus all the items of Theorem and
Corollary apply to the billiard map F.

2.4.2. Application to Certain Billiards with Focusing Boundaries. Next we consider two specific
classes of billiards that were studied in [CZ4]. The first is a non-smooth stadium, which is a
convex domain ) bounded by two parallel straight segments and two minor circular arcs (i.e., arcs
smaller than a semicircle) with radii r; < rg. We assume that @ satisfies the standard Bunimovich
assumptions [Bul, i.e. the complement of each arc in 9Q to a full circle crosses both straight
segments in JQ), but does not cross the other arc. We will also need a complexity assumption,
which is easily satisfied for for certain choices of the geometric parameters for this type of stadium;
this is formulated precisely in of Section

We present the application to non-smooth stadia rather than the standard smooth stadium in
order to demonstrate the wider applicability of our weakened one-step expansion condition (H5).
It is known that (H5) is satisfied for the smooth stadium with 79 = 0 (the traditional one-step
expansion), while for non-smooth stadia, it fails. Thus we need to choose 79 > 0 in (H5) [CZ4].

Our second class of billiards corresponds to Bunimovich tables [Bu, [CM1] whose focusing bound-
aries contain major arcs (i.e. arcs greater than a semicircle). Such arcs add a new type of ‘bad spot’
where the hyperbolicity is weak due to nearly diametrical reflections, see [CZ1]. For simplicity, we
assume that the major arcs are less than 240°, to prevent even further technical complications. Also
we assume that the boundary components are either focusing or dispersing, and that they intersect
each other transversally (do not make cusps). Finally, we assume that every focusing component
I'; is an arc of a circle such that there are no points of Q) on that circle or inside it, other than
the arc I'; itself; this is known as Bunimovich’s Defocusing Condition. Finally, we formulate the
required complexity assumption on the billiard table as and of Section

For both types of billiards, we set M = U;I"; x [-7/2, /2], where I'; denote the smooth compo-
nents of 0Q), and let F : M — M denote the collision map as in Section We adopt the same
canonical coordinates (r, ) as in Section and F preserves the same smooth measure pusgrp.
Under our assumptions, in each case the billiard dynamics is hyperbolic, ergodic, and mixing.

For billiards with focusing boundary components, the hyperbolicity may be weak during long
series of successive reflections along certain trajectories. To study the mixing rates, one needs to
find and remove the spots in the phase space where expansion (contraction) slows down. Such
spots come in several types and are easy to identify, for example, see [CZ1] and [CMI1], Chapter 8].
Traditionally, the collision space can be naturally divided into focusing, dispersing and neutral
parts:

Mo={(r,p) e M : 7 €3°Q},  Mqs={(r,p) € M : recdQ},
where 9°Q) is the union of flat boundaries, 9~ Q contains focusing boundaries and 07 Q corresponds
to dispersing boundaries. Let

M={zeM_: n(zx) ey, n(Fz) €Ty, j #i} UMy, (2.15)
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where 7(x) denotes the projection onto the position coordinate. Note that M contains only the
last collisions with each focusing arc. The reduced map T : M — M is the first return map to M
and preserves the measure pusgrp conditioned on M, which we denote by o = [usrp(M)] usrB.
Furthermore, T" has uniform expansion and contraction, since we omit all collisions too close to the
‘bad spots’ in the collision space; however, T" has a larger singularity set than the original map.

We remark that in [CMTIL, [CZ1], M is defined to contain only the first collision with each focusing
arc rather the last collision that we have chosen here. We make this choice for M since we are
interested in the propagation of stable curves under 77~!. Thus by symmetry, the properties for
unstable curves mapped forward in the first entry space defined in [CMI] [CZ1] will hold for stable
curves mapped backward in the last exit space we define here. Indeed, our definition of M coincides
with that used in [BSC2|, Ma).

To characterize the mixing rates for the original billiard maps, it is essential to prove the reduced
system (T, M, uo) enjoys exponential decay of correlations. Chernov and Zhang [CZ4] proved
exponential decay of correlations for these reduced systems under the same assumptions as above.
Here we use our approach based on the spectral analysis of the transfer operator permitted by
establishing (H1)-(H5) for the map 7. As before, this method also allows us to apply the limit
theorems of Corollary to the reduced map T. Note that because the original map F has
polynomial decay of correlations, the spectral gap for L7 does not imply a spectral gap for Lr.
This is in contrast to the case of dispersing billiards with corner points described in Theorem
in which we are able to obtain a spectral gap for £Lr. The following theorem is proved in Section

Theorem 2.7. For the two types of reduced systems (T, M, jig) described above, there exists ny € N
such that the map Ty = T™ satisfies properties (H1)-(H5). In terms of the quantities introduced
there, in (H1), f = cosy, fo =k =1;in (H3), £ = (%)”1, to =1, and rp, = 3; in (H4), po = 1/3;
in (H5), vo can be taken to be any number in (0,1/3), but for definiteness we choose o = 1/4.
Fixing the choice of constants in the norms according to Section defines a Banach space B
on which L1 is quasi-compact and enjoys a spectral gap. Thus all the items of Theorem and

Corollary apply to T.

3. PRELIMINARY ESTIMATES AND PROPERTIES OF THE BANACH SPACES

3.1. Representation of Admissible Stable Curves via Charts. Recall that SOH = Sy U
(Ug>koS#T). On each connected component of M \ S&, by (H2) we may choose a finite num-
ber of coordinate charts {Xj}JK:l, whose domains R; depend on whether they contain part of a
curve in Sgﬂ.

If x; maps only to the interior of M \ Si, then R; = (—rj,7;)2. If x; maps to a part of the
boundary of S, then we take R; to be (—r;,7;)? restricted to one side of a C! curve (the preimage
of the boundary curve or singularity) which we position so that it passes through the origin in R;.
On the other hand, if the image of x; contains a point of intersection of two boundary curves, we
place this intersection point at the origin and consider R; to be (—rj,rj)2 intersected with one
of the sectors created by the intersection (we use a separate chart for each sector). Finally, in
homogeneity strips of high index, charts will have two nonintersecting smooth curves which map
to part of the boundary of Hy. In these cases, the domain of the chart will be the usual square
intersected with the region between these two curves.

Let E%(x) and E“(z) denote the stable and unstable subspaces at z respectively. We denote by
y; the centroid of R; and construct each x; to satisfy,

(a) Dy;(y;) is an isometry and the C? norms of x; and Xjfl are bounded by a constant C,. > 0
on R;.
(b) Dx;(y;) - (R x {0}) = E*(x;(y;)) and Dx;(y;) - ({0} x R) = E*(x;(y;))-
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(c) There exists a; < 1 such that the cone C¥ = {u+v € R* : u € R x {0},v € {0} x
R, ||v]| < aj||lu||} has the following property: For z € R; such that x;(z) ¢ S, Dx;(z)C5 2
C*(x;j(x)). Similarly, there exists an unstable cone in the chart, containing the vertical
direction, and enjoying the analogous property with respect to C*(z).

(d) M\ S is covered by the sets {x;(R; N (=%, 5)%)};.

Note that although this collection of charts is finite on each component of M \ Sgﬂ, it forms a
countable cover of M \ S§'. Also, these charts do not take into account cuts necessitated by S_1
since we use them only to represent curves in WW* and W" and not to iterate the dynamics. When
we do iterate the dynamics, we must use smaller charts and it is a consequence of Lemma (graph
transform argument) that for k large enough, on each component of Hj, these smaller charts can
be chosen large enough to cross Hj completely in the direction of the stable cone.

Let ro = mini<j<gr; > 0 and ap = maxi<j<xaj < 1. Fix B < oo and consider the set of
functions

E:={F € C*([~ro,r0],R) : F(0) = 0,|F|c1 < ag, |F|e2 < B}.

Assumption (H4) implies that we may realize elements of W?# as graphs of functions in E as follows.
Let I, = (=r,r), r <ro. For @ € R; N (—%,3)? such that z + (¢, F(t)) € R; for t € I,., we define
G(z,r, F)(t) = xj(x + (t, F(t))), t € I, to be a lift of the graph of F' to M. For brevity, we often
write G for G(z,r, F'). Note that Lip(Gr) < C.(1+a;) and Lip(G5') < C,, where Lip(-) denotes
the Lipschitz constant of a function on I,. Then each W € W? can be written as W = G(x,r, F)(I,)
for an appropriate choice of x, r and F'. If necessary, we shrink rg further so that supyycyys [W/| < do,
where dy is chosen in . Note that although rg is fixed on each component of M \ Sg{, it is not
uniform on M.

Let W; = Wj(X,‘j,l’j, rj, F;) € W?, j = 1,2, be two stable curves and let Hy, be the homogeneity
strip containing W;. We define the distance between W7 and W» to be,

dyys (Wh,Wa) = n(k1, ka) + n(i1, i) + |re — r1| + |21 — 22| + |F1 — F2‘61(1T101r2)7

where n(A, B) =0 if A= B and n(A, B) = oo otherwise, i.e., we only compare curves which lie in
the same homogeneity region and are mapped under the same chart.
Given two functions v; € C4(W;, C), we define the distance between 1, 19 as

dq(1,v2) = |1 0GR, — 20 GRlea(nnt)-

3.2. Distortion Bounds. In this section, we derive several distortion bounds which we shall use
throughout the paper. The statements are quite standard for hyperbolic maps and follow from
assumptions (H2) - (H4).

Lemma 3.1. There exists Cq > 0 such that for any stable curve W € W?*, with T'W € W?* for
i=0,1,...,n, and any x,y € W,

‘ JwT"(x)
JwT™(y)
where Jyw T (z) = |det(D,T|TW)| denotes the Jacobian of T along W and dw (-, ) is the arclength
distance on W.

If T'W is a homogeneous stable curve for 0 < i < n, or if T'W is a homogeneous unstable curve
for 0 < i <mn, then for any x,y € W,

- 1‘ < Coduy (0, y). (3.1)

| DT
| Dy T

_ 1‘ < Cymax{du (2, y)?, dyy (T, T"y)}. (3.2)
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Proof. First we prove (3.1)). Suppose T°W is a stable curve for i = 0,...n. It is equivalent to
estimate,

Jraw T "(T"z) _ x~ 1 —1 i —1 i
< —|Jpiy T (T'x) — Jpiy T~ (T"y)|, 3.3
T TH(Try) = ; Az' TiW (T"x) TiW (T*y)| (33)
where A; = min{Jpiy TN (T2), Jpiny T~ H(Ty)}.
We estimate the differences one term at a time and assume without loss of generality that the

minimum fqr A, is attained at T%z. Set x; = T'x, y; = T'y. Let i1(z;) denote the unit tangent
vector to T'W at z; and notice that Jpiy T~ (z;) = || Dy, T~ i ||. Define wa(y;) similarly. Then

using of (H4),
1Dz, T~ || = || Do, T i |
< 1D, 7 ]|~ D T ol + || D Tl — [0y, T |
<D T~ (@ — da|| + Cadw (i1, yi-1)").

log

Now since T°W has bounded curvature, we have | — 2| < Cdw (zs,v:) < Cdw (z;_1,vi-1),
where in the last inequality we have used the fact that T'W is expanded under T! from (H2).
Finally, note that || D,, T~ /|| D, T~ || < C where C is some uniform constant for all unit vectors
i € C%(x;). Putting these estimates together with , we obtain the required distortion bound,

log Jrew T " (T"x) < zn:Cd (zi1,yi—1)P0 < zn:CA—po(i—l)d (z, )P
Jrnw T (Ty) — = A P e
The proof of (3.2]) follows similarly from (2.4)) and is omitted. O

Next we prove a distortion bound for the stable Jacobian of T along different stable curves as
well as the exponential contraction of those curves in the following context. Let W W? e Ws and
suppose there exist U C T7"W7, j = 1,2, such that for 0 < i <n,

(i) T'U7 € W? and the curves T°U' and T°U? lie in the same homogeneity strip;
(ii) U' and U? can be put into a 1-1 correspondence by a smooth foliation {~,},cq1 of curves
Y= € W such that {T”%} C WY creates a 1-1 correspondence between T"U"' and T"U?;
(iii) |Tiv,| < 2max{|T°U*|,|T'U?|}, for all x € U*.
Let Jy;xT™ denote the stable Jacobian of 7™ along the curve U k with respect to arclength.

Lemma 3.2. Assume (i)-(iii) above, and for x € U', define x* = ~, N U?. There exists Cy > 0,
independent of W', W?2 € W$, such that for all n > 0,

(a) dyys (UL, U?) < CL A dyys (WL W?2);
JnT"(x)
b) | ———F—5% — 1| < Cyld(T"x, T"z*)P° + 6(T"x, T"z")],
0) | <1] < clare et o )
where O(T"x, T"x*) is the angle formed by the tangent lines of T"U' and T"Us at T"x and T™z*,
respectively.

Proof. (a) This is essentially a graph transform argument adapted for this class of maps satisfying
(H2) - (H4). What we need to show here is that we do not need to cut curves lying in homo-
geneity strips any further in order to get the required contraction and control on distortion. The
assumptions of the lemma imply that T°U! and T?U? can be viewed as lying in a single chart for
each iterate, 0 < ¢ < n. The purpose of this lemma is to show that locally DT is comparable along
TiU' and T'U?%. Note that by assumption (i) before the statement of the lemma, the curves we
work with always lie in the stable cones of the relevant charts.
Due to the uniform expansion of v, under 7" given by (H2), we have

|'Yz| < C’eCYtA_ndVVS (W17 W2)>
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where where C. is a uniform constant relating the Euclidean norm to the adapted norm || - ||, and
C} is a constant depending only on the maximum angular diameter of C*(x) (which must be less
than 7/2 by definition of the charts).

In the notation of Section we write U7 = Gj(xj,75, Fj)(I;), j = 1,2. By the uniform
transversality of C*(x) with C*(z) as well as the smoothness of the charts y;, there exists a constant
C such that |r1 — o] + |21 — 22| < Ol < C'A™dyys (W, W?), where for the last inequality, we
have used the previous paragraph.

Letting I = I,, N I, and recalling the definition of dyys(-,-) from Section it remains to
estimate |Fy — Fylc1(y). Using again the estimate on || together with the maximum angular
diameter of the unstable cone, we have [Fy — Fy|co(;) < CA™"dyys (W1, W?2). In order to show that
the slopes of these curves also contract exponentially, we make the usual graph transform argument
using charts in the adapted norm || - ||, from (H2).

Fix # € U' and define charts along the orbit of x so that z; := T%z, 0 < i < n, corresponds to
the origin in each chart with the stable direction at x; given by the horizontal axis and the unstable
direction by the vertical axis in the charts. Let ¥ < 1 denote the maximum absolute value of slopes
of stable curves in the chart. Due to property (iii) before the statement of the lemma, we may
choose the size of the charts to have stable and unstable diameters < C|T'U;| for each i, for some
uniform constant C. The dynamics induced by 7! on these charts is defined by

T, =x 50T ox,

where the domain of the charts y; are possibly much smaller than those defined in Section [3.1]since
these charts must avoid singularity curves S_;. Nevertheless, it holds that the charts can be chosen
such that |xa,|c2, [xz!|c2 < C for some uniform constant C.

Note that DT;Z ! satisfies (H4) with possibly larger constant C3 > 0. In the chart coordinates,
since Tgl(O) = 0, we have

Ty (s,t) = (Ais + (s, 1), Bit + Bi(s, 1)),
where A; is the expansion at z; in the stable direction and B; is the contraction at x; in the unstable
direction given by DT, 1(0). The nonlinear functions s, B; satisfy «;(0,0) = 5;(0,0) = 0 and their

Lipschitz constants Lip(:) are bounded by Lip(T;i 1_ DT;Z_ 1(0)), which we estimate using (2.3) of
(H4) as the maximum of

IDT () = DT 0)]| < ClIDTL(0) | masc{ [, 1T (u) [P, (3-4)

where u ranges over the chart at x;.
We fix ¢ and let g1, g2 denote two Lipschitz functions whose graphs lie in the stable cone of the

w- Let g1 = T, gy
and go = T*_ 1go denote the graphs of the images of these two curves in the chart at z;_; and
suppose that gi, go lie in the stable cone at z;—;. We wish to estimate L(g1,g2). For s on the
horizontal axis in the chart at x;, we write,
|91 (Aist+ai(s, g1(s))) — G2(Ais + ai(s, g1(s)))] < [91(Ais + (s, 91(5))) — g2(Ais + ai(s, g2(s)))]
+ 192(Ais + @i(s, 92(5))) — g2(Ais + ai(s, g1(s)))]
< |Billg1(s) — g2(s)| + |Bi(s, 91(5)) — Bi(s, g2(s))| + V]eui(s, g1(s)) — (s, g2(s))]
< (IBi| + Lip(8:) + 9Lip(cw))|g1(s) — g2(s)]-

On the other hand,

chart at x; and satisfy g;(0) = 0, j = 1,2. Define L(g1,92) = sup,

| Ais + (s, 91(s))] = (JAil — Lip(as) (1 +9))]s.
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Putting these together, we see that,

L (|Bi| + Lip(p;) 4+ VLip(c))]g1(s) — g2(s)]
L{g1,52) < sup (4] — Lip(a) (1 + 0))]
|B;| + Lip(5;) + YLip(cy;)
= AT Liplag(1+g) SO

(3.5)

Fix €1 > 0. Using (H3)(2), there are at most finitely many connected components D of M \ S_;
such that the stable diameter (the maximum length of a stable curve) in D is greater than &;.
Suppose the chart at x; lies in one of the countably many components with stable diameter less
than €;. Since the image of the chart under 7! lies in one homogeneity region by assumption,
using (H3)(1) the length of the images of each of these curves is at most C()Eg. By assumption (iii)
before the statement of the lemma, the unstable diameter in both charts is at most of the same
order and so we may bound both |lu| and HT;ZI(U)H in by C’oaf. Putting these estimates
together with yields,

AL 4 C|| Dy, T~ 1| CoelPe
| Dy, T=1|(1 — CCoe§™)

L(g1,92) <

L(gi 92) < (A2 + O(EP)) Ligr, ).

and the contracting factor can be made smaller than A~! for £; small enough. In particular, the
contraction is smaller than A~! on all curves landing in a homogeneity region Hj, with k sufficiently
large by (H3)(4).

Thus we may choose €1 > 0 such that the contraction is less than A~! on all curves lying in
components of M \ S_; with stable diameter less than ;. On the remainder of M, by (H4) the
norm and distortion constant of D,7~! are uniformly bounded by constants depending on e;. For
curves in this part of M, we choose §p, the maximum length of stable curves in W?, sufficiently
small that the distortion given by is less than %(Afl/2 — A1), Then by , since ¥ < 1,
the contraction on these pieces is less than A~! as well.

Applying these estimates successively along the orbit of 2 completes the proof of item (a).
JT"Ul n(T”I)

= (Tz") for z € UL. Recalling that z* = v, N U?, we

(b) It is equivalent to estimate log

write

JTnU — 0, %
log JTngflr Z A; | Jpigy, T~ T ) — Jpigy, T~ (T ")

where A; = min{Jpi;, T~ (T"2), Jpiy, T~ (T?z*)}. Following the proof of Lemma after (3.3))
and using again (2.3)), we arrive at the estimate,

JT”U T
] . “c ) e
o8 Jrpo T T”x Z ([t (i) — ta(z7)|| + d(wi, z7)P,

where as before, ; = Tz and z} = T'z*. Now |1 (z;) —tia(z})|| < 0(xi, 27) < CoAT"0(T"x, T"x*)
by part (a) of the lemma together with the fact that curves in W* have C? norm uniformly bounded
above. Also, d(x;,z}) < Ce A" "d(T"z, T"x*) by (H2)(2), which completes the proof of the lemma.

O

3.3. Growth Lemma. In order to prove the characterization of our Banach spaces B and B,
given by Lemma as well as the estimates of Proposition we need some understanding of the
properties of T~"W for W € W?. To ensure that each connected component V; of T~'W is again
in W?*, we subdivide any of the long pieces V; whose length is > &g, where Jg is from . This
process is then iterated so that given W € W?#, we construct the components of T~"W, which we
call the n'" generation G,, (W), inductively as follows.



16 MARK F. DEMERS AND HONG-KUN ZHANG

Let Go(W) = {W} and suppose we have defined G,,_1(W) C W*. First, for any W' € G,,_1(W),
we partition 771W’ into maximal components W/ so that T is smooth on each W/ and each W/
is a homogeneous stable curve. If any W/ have length greater than dp, we subdivide those pieces
into pieces of length between dy/2 and d9. We define G, (W) to be the collection of all pieces
W C T~"W obtained in this way. Note that each W is in W* by construction and (H4).

For W e W n>0,and 0 < k < n, let G,(W) = {WF} denote the k'! generation pieces in
T=*W. Let By(W) = {i : [WF| < 60/3} and Ly(W) = {i : [WF| > 69/3} denote the index of the
short and long elements of G (W), respectively. We consider {Gy,(W)}}_, as a tree with W as its
root and Gy, (W) as the k' level.

We group the pieces in G, (W) as follows. Let W € G,(W) and let Wf € Li(W) denote the
most recent long “ancestor” of W, i.e. k =max{0 <{<n: T”_Z(W”) C Wé and j € Ly(W)}. If
no such ancestor exists, set £ = 0 and Wk W. Note that it W itself is long, then Wk Wi
Let

In(Wf ) ={i: I/Vf is the most recent long ancestor of W;"}.

The set Z,, (W) represents those curves W/ that belong to short pieces in G (V) at each time step
1 <k <n, ie. such W} are never part of a piece that has grown to length > dy/3.
We prove here a growth lemma essential for controlling the iterates of L.

Lemma 3.3. Let W € W? and for n > 0, let Z,(W) and G,(W) be defined as above. For
Y <¢ <1, sets=(1—7)/(1—5). There exist constants Cy,C5 > 1, independent of W, such that
for any n > 0,

W TL S,

. |W|§
lGIn
b |W”| JynT" < Cy =0
(b) Z |W|g | Jwp T [coqwny < C5 = C5(s).
Winegn(

Proof. (a) We first prove this by induction on n for ¢ = 7 in the adapted metric with Cy = 1. The
case n = 1 follows from assumption (H5) since short pieces do not require extra subdivision in the
creation of Gi(W). Now assume (a) holds with Cy =1 for all times up to n — 1. Fix W € W?* and
for Wit € Z, (W), let AW ={i: W € Z,(W), TW C W'},

Note that at each iterate between 1 and n, every W € Z,(W) is created by cuts due to
singularities or the boundaries of homogeneity regions and not by any artificial subdivisions since
these only occur when a piece has grown to length greater than §p. Thus the indices in A(Wj"_l)

form a subset of the pieces V; of T_ll/V;.%1 referred to in (H5). So we may estimate,

’Wz’n’zo n
2 T wThs 2L D

1€ (W) JELn—1(W) i A( W" h

<6 ).

J€Ln-1(W)

‘Win‘;/o ’W]n—l‘zo
’W’ZO ’an—lﬂo

s T T T,

Wyt
W|JW;’_ITTZ_1|* S 0:}
*

The analogous estimate in the Euclidean norm then follows up to a constant C} depending on the
uniform constant relating || - || to || - [|«.

Next we extend (a) to vy < ¢ < 1 via a Holder inequality. Fix ¢ > 79 and define s = (1—)/(1—
¢) > 1. We will use repeatedly that by ,

[T*WEJIWE] < Jwp T coqwpy < (14 Ca)|[T"W|/IW. (3.7)
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Now multiplying by |W|/|W|, we have

Wyl WS |[T"Wy
Z ’ i | ‘JWZ-"Tn|CO(Wi") < (1 +Cd) Z | | | i ’

. (Wl 4 [Wp|t=s W]
i€Tn (W) i€Zn (W)
(1) 1/s 1-1/s
(W= [T W "W
<(1+C C !
< (1+Cy) Z Wr=s W] Z W]
i€Tn (W) i€Zn (W)
1/s
Wl /s
< (1+Ca) Z | I/I; ‘“/0 ’JWi"Tn‘CO(W[L) <1+ C'd)Cfﬁ*/
€L, (W) ’ ’

by (3.6]) since ZW?GQTL(W) % = 1. Part (a) follows with Cy = (1 + Cy)C}.

(b) Fix ¢ > 9, W € W? and n > 0. We group W/ € G,,(W) by most recent long ancestor Wf €
Ly (W) as described before the statement of the lemma. Then using the fact that |Jyw»T"|coyn) <

\wa " ]CO(Wf) | Jwn Tk |coqwny, We estimate

LiZEN n
> i Ty
WreGn(

o3 L LU p—
<> > W [T T |eoqwy > |Wk|g\ wp lcoqwm)
k=0 \ wkeLy(W €L, k(W)

Note that In(Wf) (with W as root) and In_k(Wf) (with I/ij as root) correspond to the same set
of short pieces in the (n — k)™ generation of W]k, so we can apply part (a) of the lemma to each of

these sums separately with s = (1 —v9)/(1 — <) as before. Since ]Wf! > 0p/3, we split off the term
for K =0 and use (3.7]) to estimate

WTL — n— S — n/s
S e <3 Y s ST £ o

S
WG, (W |W| k=1 WkeLy (W)
< 055! Z Wl e
k=1
which is uniformly bounded in n, where we have used ZW;C L (W) ITEWF < [W]. O

3.4. Properties of the Banach spaces. We begin by verifying that our Banach spaces contain
an interesting class of measures. We first record the following simple observations.

Lemma 3.4. (a) There exists a constant Cy > 0 such that for any homogeneous stable curve W
and any x € W,

7 =7 Fw) =
where f(W) is as defined in Section . In addition if two curves W, W' € W? lie in the homo-
geneity region, then f(W)/f(W') satisfies the same bounds as above.

(b) There exists Cy, > 0 such that if Wi, Way € W? with dys(W1,Wa) < e and |Wa| > €, then
[WA|/[Wa| < Clu.
(¢) There exists C > 0 such that for any W € W*,

(W f(W) ™t < Ok, (3.8)

< Cy
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where §1 1= % —a > 0 by choice of a in Section .
Proof. (a) Since f(z) is continuous on W, there exists y € W such that f(y) = f(W). The bound
is trivial if f is not close to 0. On those Hj with f close to 0, the first bound follows from the
definition of H: There exists C' > 0 such that if 2 € Hj, then Ck~™ ! < f(z) < O~ 1k~ H If W
and W' lie in the same homogeneity strip, f(W)/f(W’) satisfies the same bounds by an identical
argument.

(b) Recalling the definition of dyys(-,-) from Section there exists ¥ > 0, depending on the
maximum slope of functions F' € Z, such that ||[W1| — [Wa|| < e(1 +9) + €|lw, N Iwy,|, where Iy,
are the intervals where Gy, is defined, j = 1,2. If [W3| > €, we may divide by |W>| to obtain,

(Whl/[Wa| <1+ (1+9) + [Iw,|/[W2l,
which is uniformly bounded.
(c) Consider the expression |W |~ f(W)~L. Since W is a homogeneous curve, it lies either in Hy,

or in a homogeneity strip indexed by k > kg. In the former case, f(W) > k; "+ 50 that the above
expression is bounded. In the latter case, f(W) > Ck~"»*1 while by (H3)(4), |[W| < C2k~"». Thus

|W’1_af(W)_1 < Ckrha—l < Ck—rhél’
where §; = % — a > 0 as defined in the statement of the lemma. ]

The first main lemma of this section, Lemma shows that B contains functions with certain
types of discontinuities. The argument uses the fact that the contribution to the norm of the
function we must approximate from homogeneity strips of high index is small. The proof is similar
to [DZI) Lemma 3.7], but is modified to (a) allow tangencies between the discontinuities of the given
function and the stable cone, and (b) respect the additional constants and restrictions introduced
into the norms to exploit the weak form of the one-step expansion given by .

The subsequent lemmas and are similar to lemmas appearing in [DZI], but we
have adapted their proofs to this more general setting. In particular, the proof of Lemma is
significantly changed to accommodate (H3) and requires the summability condition (H3)(5) since
we allow additional homogeneity strips where f is not close to 0. Lemma [3.8|is new and does not
appear in [DZ1].

Lemma 3.5. Let P be a (mod 0) countable partition of M into open, simply connected sets such
that (1) for each k € N, there is an Ny < oo such that at most Ny, elements P € P intersect Hy;
(2) there are constants K,Cs > 0 such that for each P € P and W € W*, PNW comprises at
most K connected components and for any & > 0, my (Nz(OP) N W) < Czeo.

Let A > B/(1 — B). If h € CN(P) for each P € P and suppep [hleapy < oo, then h € B. In

particular, C\(M) C B for each A\ > 3/(1 — B) and Lebesgue measure is in B.

Proof. Since B is defined as the completion of C'(M), we must show that h as above can be
approximated by functions in C1(M) in the || - |5 norm.

For P € P we define Py to be a simply connected component of P N Hy. The label P, may not
be unique, but there are only finitely many such elements for each k > ko by assumption (1) of
the lemma. Let h be as in the statement of the lemma. Since ||h||g = supy, ||h|m, |5 by definition
of W? we may fix k and approximate h on one Hj at a time. We fix P, and for simplicity first
consider A = 0 off of P.

Choose n > 0 and define P}, = P\ (B, /krn (OPFy)), the part of P, which is at least n/k™ away from
the boundary of P. Let p,(z,y) be a nonnegative C** bump function such (1) fﬁk py(z,y)dm(y) =1

for each z € Py, and (2) pn(x,y) = 0 whenever d(z,y) > n/(2k™). Define

fn(x) = /P h(y)pn(z,y)dm(y), forxz e M.
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Note that f, € C>°(M) and that f,(xz) = 0 for x ¢ P;. It is also straightforward to check that
‘fn‘ck(ﬁ,ﬂ) < ‘h|cA(Pk.) and | fyloo < |Pfoc-

Now let W € W? W C Hi, and take ¢ € CI(W), |¥|wag < 1. Notice that |9 <
|[W|=2f(W)~L. Thus,

/ (h— fybdmw = [ (h— )b dmyw + / (h— fo)b dm
w w

WnNPy \ Py, (3.9)
< b= Faleoqwnpy W FW) ™1+ 2[hloo|W N (P \ B[ [W[2 f(W) 7

since the supports of h and f; lie entirely in the closure of P.
For the first term above, we estimate the difference in functions for x € W N Py by,
[h(z) — fy(z)] < , |h(@) — h(y)|py(z,y) dm(y).
k
The integrand is 0 whenever, d(z,y) > n/(2k™), thus

|h(z) = fo(@)] < Clhlerpyn k™.
Thus by Lemma (c), we obtain for the first term of (3.9)),
b= Falcowrpy W' F (W) 71 < Clhloapym k=00, (3.10)

For the second term of (3.9), note that |[W N (P \ Pp)||[W |~ < [WN (P, \ Pr)|' . By assumption
(2) of the lemma, W N (P \ P;) comprises at most K connected components, each of length at most
min{Cyk~" C(n/k™)%} due to weak transversality and (H3)(4). Recalling our convention that
to < 1/2, this minimum is largest when the two quantities are equal i.e., when n = k~"n(1—t0)/to,
Thus

[BloolW 01 (B \ BOIWI= F(W)~1 < Clhlaok™ L < Clhlort®/0=0), (3.1
where §; = % — a > 0 as before. Putting together these estimates and taking the suprema over

W C Hy, and ¢ € C4{(W), we have by (3.9),
1k = £ lls < Clhleapy (i +nre/0710)),
Notice that if we were not concerned with approximating h by f,, but only estimating ||h||s, then
(B-8) and (B-9) would imply,
| hlm, |ls < Clhlook™™%  for all bounded functions h. (3.12)

To estimate ||(h — fy)|m, ||u, fix 0 < e < gg, where ¢ is from (2.10)), and let Wy, Wo C Hy, be two
admissible stable curves such that dyys (W7, Ws) < e. In the notation of Section we identify
W; with Gw;,(t), t € I;. Let 11,12 be two test functions satisfying |¢;|w,,p, < 1,4 = 1,2, and
191 0 Gw, — 2 0 Gwylea(nr) < €. Without loss of generality, assume A = 8/(1 — 8) +d2 < 1/2,
for some 69 > 0. This is always possible since by (2.7) in the definition of the norms, § < 1/3.

First assume that ¢ > n(1102)/(=P) =(ra=1+m7)/(1=5) " Following the analogous estimate on the
stable norm given by (3.9) with « in place of « (this is possible since v < «), (3.11]) becomes,
[Bloo|W 0 (P \ P)[[W[ 77 f(W)F < Clhlack™ ™" = Clhlook™ ™) < O oo (10 o1,

where z := to(a — 7), remembering that n = k~"»(1=t0)/t0 in ([3T1]). Putting this together with the
analogue of ([3.10]), we have

e? /m(h ~ ) dmyy —

(h — fo)t2 dmw‘ < Ce Plhlerpy (i + n?/ TN R0 (3.13)
Wa

Hf t5 = 1, the minimum is Cnk~"" and the estimate in (3.11) becomes < C|h|oon'™*k*~!. One can carry this
change through to get improved estimates on the exponents in this case.
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Since & > n1+02)/A=F) = (rn=14m7)/(1-B) the exponent of k in the above expression is given by

Th — 1+ Th
Blfﬁfy — Th(51 <0
as B < &1 from the definition of the norms so that 2= ng’” < T"(l 61) < rp. Again using the fact

that 5 < 1/3 and the definition of dy, we have 1+52 < 2, so that the exponent of n is given by

n_ﬂ1+62 (771 5+52 +772/(1 to)) <77 ( ﬁ)+nq_257

and both terms have positive exponents since 8 < z/2(1 — tg) by (2.7).
It remains to estimate the case e < n(1+92)/(=B)=(n=14m7)/(=F) " For this estimate, we split
up the terms involving h and f;,

/ (h— fy ) dmwy — / (h— fy)tbs dmyy
" e (3.14)

= / hapy dmyy — haba dmy + fob2 dmyy — Jntbr dmyy .
Wi Wo Wo Wi

We first estimate the difference involving h.

We match Wi and W5 using a foliation of homogeneous unstable curves which are vertical line
segments of length at most ¢ in the chart on which Gy, is defined, ¢ = 1,2. This partitions W in
the following way: curves U? C W for which the unstable curve connecting U? to Wy lies entirely
in P;; curves Vlj C W1 which either are not matched to W5 (near the endpoints of W7) or for which
the vertical segment connecting V7' to Wa does not lie entirely in Pj. In particular if [Ws| < €, we
set Vp = Wy, £ = 1,2, and declare Wy to be unmatched. This induces a corresponding partition
on Wy into curves Uﬁ and sz We call U, Z C W, the matched pieces and Vej C Wy the unmatched
pieces and note that by assumption on P, there can be no more than K matched pieces and K + 2
unmatched pieces.

We split up the integrals on W7 and W5 on matched and unmatched pieces,

/ hprdmw — | haps dmyy ZZ/.Wl dmw—/‘h@bgde—FZ/_thmW. (3.15)
W1 W i UL U3 5 Vi

We estimate the integrals on the unmatched pieces first. Since h = 0 off of Py, and dP; and
the unstable curves are either uniformly transverse to the stable cone or have the type of tangency
allowed by assumption (2) in the statement of the lemma, we have |supp(h) N V}/| < Ce' for each

Vf . Then using (3.12), we estimate
| / iy dmy| < [Pl |lslsupp(h) N VE (V) [eleaqwyy < Clhlook™ supp(h) 1 VY| |We| 7,
Vi
where in the last inequality, [v¢|caqw,) < f (W)=Y {W,|~7 and we have used Lemma to bound
F(V7)/ f(Wy). Since (supp(h) N Vf) C Wy, remembering that z = tg(a — ) we have
[supp(h) N V{|*[We| ™ < |supp(h) N V/|*77 < Celole™) = Ce?,
Putting these estimates together, we obtain our bound on unmatched pieces,

‘/w‘ hap; dmyy| < C|h|ooe™k L, (3.16)
k

Next we estimate the diffepence on matched pieces in (3.15)). To do this, we change variables to
the intervals I; common to U} and Us;.

| /I(hwl) o Gyi JGyi — (hp2) o G J Gy dit] < L(IL)[(hipr) o Gys JGyi — (hb2) © G JGysleor,),
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where JGp;i denotes the Jacobian of GU;i . Due to the uniform upper bound on the slopes of curves
in the stable cone, there exists Cy > 0 such that

|JGU£ |CO(Ii) < Cy. (3.17)
We split the difference on matched pieces into the sum of three terms. The first term is,
A= |ho Gy — ho Gyileor,)lvr o GyiJGyileor,)
CyHAN(h) \
_7sup<dG i(t), G (t ),
s ek V00 Cut)

where H*(h) denotes the Holder constant of h with exponent \. Now d(GUli (1), Gus () = |FU1i (t)—
Fyys(t)| < € by definition of dys(-,-). Thus,

A
€
A < CyHMNh) 5 3.18
< Gy H( )f(Wl)|W1’7 (3.18)
The second term of the difference is,

B =1 0 Gyi — 2 0 Gysleorlh o Gus JGyileor,) < €|hlocCy, (3.19)

by assumption on 1 and 5. Finally, the last difference we must estimate is,

- / / |h|oo5

again by definition of dyys(-,-), where I, = dFy; /dt.
k
Putting together the estimates for A, B and E, as well as (3.16), into (3.15)), we have

H(h)e*F |h|ooe! ™8
-8 o0 2—B1.—Tp01
£ hpy dm —/h dmw| < C|W- + C|hloe® Pk
/Uf prdm — || zdm| < CIWI(Fapti s + gmpr) + o0
Wy |t
<ol hlex(py e + Clhlooe® P00 < Clhea(pye® Pk,

T fn)

(3.21)

where we have used Lemma [3.4(b) to bound |Wi|/|Ws| and f(Wh)/f(W2), and for the last

step. Also, z — 8 > 0 since 3 is chosen < tg(a — «y) in the definition of the norms. Notice that

holds without the assumption & < n(1+92)/(1=8) = (ra=14+ra7)/(1=5) which is what makes ([3.23)
possible.

A similar estimate holds for f,. Indeed the estimate is simpler since f,, is Lipschitz continuous
on all of M with H'(f,) < C|h|ook™ /n. Thus we may partition W and W5 into one matched piece
and at most two unmatched pieces near their endpoints. The unmatched pieces have length at
most Ce’® so that an estimate similar to holds for f,,. Then since f, is Lipschitz continuous
everywhere, estimates A, B and E hold on the single matched piece with A = 1 and so,

HY(f)et = |h|oce!™?
Uy SOVIWAY f(Wa)|[Wal
Following the same estimate as in (3.21)), it is clear that the only term that can cause a problem is

the first one in (3.22)) due to the size of H'(f,). We estimate using the analogue of (3.8)) with v in
place of «,

e B

Fyn dmyy — /U Jn dimyy

< O|W1|( ) + Clhlsec®. (3.22)

1—v 1-B1.rp 1402 .71
|[Wi|' =7 e =Pk < 1 n T2k < o,
fWh)  q RL=ry a4y
Putting together the estimates in (3.13)), (3.21) and (3.22), we have shown that |[(h— f,)|m, |l. <

CK(Hh) + |h|oo)n®, where d3 := min{da(1 — %),z — B, 15 — 28} > 0. This together with
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the estimate on the strong stable norm implies that ||(h — fy)|m, |8 < C‘h‘c)\(P)né, where § =

min{dq,03}. Notice that if we are not concerned with approximating h by f,, then (3.12) and

(3.21)) together imply that
17, I8 < C?é]% il eyl ™0 (3.23)

In making this approximation argument, we have assumed that h = 0 outside P,. More general
h can be expressed as h =3, > p hlp where hlp, = 0 outside of P; and so can be approximated
by a C! function ffk as above. Due to (3.23)), given € > 0, we first choose K so that ||h|g, ||z < € for
all k > K. By property (1) of P, there exists N. > 0 such that for each ky < k < K/, Hy, intersects
at most N, elements of P. We thus form the finite sum »_, ; K > P fflj * and approximate h by
0 on Ugs i Hy. Since there are at most Ne elements Py, for each k < K, J

h— Pk-’< hlp — fP H< CN.1P sup |h|erpy,
= 32 300 = g |3 (ot = 10 = o 020 g e
SR k k
and finally we choose 7 sufficiently small that 7° N, < e. O

Next we prove that £ is well-defined as an operator on B. Its proof uses the fact that ||Lh|p < 0o
for h € C*(M) from Section

Lemma 3.6. If h € C}(M), then Lh € B.

Proof. Let h € CY(M). As in the proof of Lemma we must approximate £h by C' functions
in the norm || - ||5. Note that £h has a countable number of smooth discontinuity curves given by
SH =8 1 UT (Ui, SHT) (we include the images of boundaries of the homogeneity regions). These
curves define a countable partition P of M into open simply connected sets which does not satisfy
assumption (1) of Lemma since each Hj, can intersect countably many P € P. In addition, the
C! norm of Lh blows up near the curves T(S{?).

Let {P;}jen be an enumeration of the elements of P. For J > kg, let P/ = U;~ ;P;. Given € > 0,
we claim that |[Lh|ps||p < € for J sufficiently large.

Indeed, the claim is trivial using the estimates of Section For example, we must estimate
|Lh|pslls = [[1psLh]ls. Taking W € W* and ¢ € CH(W) with [¢|w,q,q < 1, we write

/ ].PJ;ChQ,Z)de = / h|DT|_1JT—1wT’¢OTde,
w T-1(WnprP7)

and the homogeneous stable components of T~*(W N P”7) correspond precisely to the tail of the
series considered in and following and so can be made arbitrarily small by choosing J large
(notice that we do not need contraction here so that we may use the simpler estimate similar to
Section applied to the strong stable norm rather than the estimate of Section [4.2)).

Similarly, in estimating ||Lh|., one can see that the contribution from P corresponds to the
tail of the series from the estimates of Section [£.3] and so this too can be made arbitrarily small
by choosing J large.

Now fix € > 0 and choose J such that ||Lh|ps|[s < €. On the finite set of P; with j < J, the
C' norm of Lh is bounded by a constant C'; < co and can be approximated using Lemma as
follows. Since the partition P* = {P;},;<sU{P”} is finite, it satisfies assumption (1) of Lemma
To verify assumption (2) of Lemma note that by (H3)(2) we have only finitely many curves
in S]Ell comprising OP; for 7 < J. Thus there is a uniform upper bound K; < oo on the number of
connected components of P; N W for all W € W%, W C M \ P’. Finally, the weak transversality
assumption (2) of Lemma (3.5 is guaranteed by (H3)(3),(4).

Now we approximate Lh as in Lemma on the finitely many elements P;, j < J, choosing
7 in the approximating function f,, small compared to C; and K, and approximate Lh by 0 on
P7. O
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The next lemma allows us to establish a connection between our Banach spaces and the space
of distributions introduced in Section Recall that Hf,(¢) = supyyep—nyys Hiy (1).

Lemma 3.7. For each h € C'(M), n >0, and ¢ € CP(T~"W?) we have

\ / hwdm\ < Clhlu([]os + HE()).

Proof. We partition each component of Hj, N (M \ Sp) into finitely many boxes B; whose boundary
curves are elements of W* and W" as well as the boundary of Hy, N (M \ Sp). We construct the
boxes so that each B; has diameter < dp and is foliated by curves W € W?. On each Bj;, we
choose a smooth foliation {W¢}ee E; C W?, each of whose elements completely crosses Bj in the
approximate stable direction. This is possible since by (H2), M \ Sy has finitely many connected
components and the cones are continuous up to the closure of each component.

We decompose Lebesgue measure on B; into dm = A(d§)dmg, where m¢ is the conditional
measure of m on We and X is the transverse measure on F;. We normalize the measures so that
me(We) = |Wel|. Since the foliation is smooth, dmg = pedmy where C~1 < pelerowey < C for
some constant C' independent of {. Note that A(E;) < Cdy due to the transversality of curves in
W# and W*".

Next in each homogeneity region, on each connected component of Hy N (M \ Sp), k > ko, we
choose a smooth foliation {W¢}ecp, C W? whose elements all cross the component of Hy, N (M \ Sp)
in which they lie. This is possible due to (H3)(4). We again decompose m on each component of
Hy N (M \ Sp) into dm = A(d§)dme, § € Ey, and dmge = pedmyy is normalized as above.

Now let h € C'(M) and ¢ € CP(T~"WS*). Notice that since M = T~"M (mod 0), we have
fM h dm = fM L p o T~™dm. We estimate the second integral on each connected component
My of M\ So, ¢ < L, where L is finite due to (H2).

E”hon”dm:Z/ LrhpoT "dm+ Y [ L'hipoT "dm
M, 5/ B;

T,
Fho (3.24)

k>ko

:Zj:/Ej /W§£ hipoT™ pgded)\(f)-i- Z /Ek /W£L hipoT™ pgdmwd)\(f).

We change variables and estimate the integrals on one W¢ at a time. Letting Wgz denote the
components of G, (W) defined in Section we define Jwy T" to be the stable Jacobian of T™

along the curve Wéni, and write
| [ Lthypo T pe dmyy| = Z/ W[ DT [~ T T" pe o T" dimay
We i TWes ’

< S bl FOVENIWE blenawg o © T lenwg p DT~ Jawa, T lenguz -

1

The distortion bounds given by Lemma [3.1] imply that
HDT”]*lJWinT"\Cp(Win) <(1+ QCd)||DT"|’1JWinT”]CO(Win). (3.25)
Moreover, for z,y € W(,, it follows from (H2)(2) that

|pe(T"x) — pe(T"y)|  dw (T"z, T"y)P
dW (T”$, Tny)p dW (.le, y)p

< Clpeler(we) | Jwp T" gO(ng) < CA ™ peler(wy),  (3.26)
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and so |p¢ o T”|Cp(W€n_) < C| pé"Cp(Wg) < C for some uniform constant C. Putting these estimates
together yields,

| LT pe dmyw | < Clhlu([$los + HE(W)) D FIWEIWE DT~ g T leown, -
G i
(3.27)
We group pieces W¢'; € G, (W) according to most recent long ancestor VV5 ; € Lg(We) as described
in Section [3.3] Since by (H1),

n=1(,\ — f(Tre) < f(T"2) —n
DT (@) = F@Tn L e = 5@

for z € W', we have by Lemma (a),
FOVENIIDT™ ooz, < CHF(We)w™™ (3.28)

Splitting up the Jacobians according to times k and n — k and using (3.28]) on the intervals of time
n — k, we obtain,

D FVENWEIDT [T dwy T eowpy < Y CEFWe)w™ ™ W [ Jwp, T leown,)
( 1€Ln (W)
- k k1—1 k |Wn k
> D IWELPIDT Dy Tl ) | D Cr™ | ,W‘JWSZ-T”_ leoqwz,)
k=1jELy(We) ’ o ez, (wh)

1/s —1\n = — n 1/s —1\n—
< CHWIWE Ok~ + 30 3 IWEPIDTH ™ s T o\ C (0 K1),
k=1 jeLy(We) ’ ’
(3.29)

where we have used Lemma (a) on each of the terms involving In(ng ;) from time k to time n
with ¢ =~ and s = (1 — ) /(1 — 7).
For each k > 1, since ]Wf ;I = d0/3, we have by bounded distortion Lemma

> IWEPIDTH | dye T oy y < 1 +2C0)365" Y- [ DTy Trdmyy
5J »J 5J
FELK(We) jeLe(We)” Wes

<t / DT~ dmyy .
We
Putting this estimate together with (3.27)) and (3.29) yields,

' | Lhapo T pedmiy| < Ol (oot HE()) [ £ (We) [Wel 1+ (031 /W | DT dmw
3 k=1 3
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for some uniform constant C. Thus

£ o T dm| < Clllu(le + ) (X [ 1OVOIWE aNe) + 3 [ swower ane)

t>ko
LYYy [

L

DT *|dm + Y zn:(ei/%—l)"—k / \DT—’fydm)
. H,

J k=1 B t>ko k=1

< Clhlul¥lso + HEW) (Y ME) + 3 L FOWe) [ Wel? dA(€)

t>ko
+Z(9i/%1)"’f/ |DT’k|dm).
k=1 M,

The first two sums are finite since there are only finitely many F; and using (H3)(5) for ¢ > k.
Since there are only finitely many M, by assumption on Sy, the first two sums remain finite when
we sum over {. For the third sum, we sum over ¢ and use the fact that [,,|DT~*|dm =1 for each

k > 1. Thus the third sum is uniformly bounded in n using the fact that Hi/ *k~! <1 by (H1) and

the discussion after Proposition since 11__—7;’ < 11__—705’ O

The next lemma is very similar to [GL, Proposition 4.1] and is used in the proof of Lemma
to show that the relevant embeddings are in fact injective.

Lemma 3.8. The embedding By, — (CP(M))’ is injective.
Proof. For h € C*(M) and W € W?, we define

(DP(h), ) = /W b dmuy, 1 € CP(M).

Since (DY, (h), V)| < |hlw|W ] f(W)[Ylerwy, Dy (h) defines a distribution of order p on M, i.e.,
Db, (h) € (CP(M))'.
extended to B,,.

We assume |h|,, # 0 and show that A # 0 as an element of (CP(M))’. Since |h|, # 0, there
exists ¢ € CP(M) and W € W? such that (DY, (h),1) =: 6 > 0. Since the map W — (D}, (h), )
is continuous for h € C1(M), by density, it is continuous for all A € B,,. Thus we can find an open
set E foliated by curves W’ € W* close to W such that (DY}, (h),) > §/2 for each W’ C E.

We localize the support of 1) to this set as follows. We extend each stable curve W’ in E by a
length £ > 0 in either direction to form a larger set £’ D E. We call these extended curves W/. We
multiply ¢ by a smooth bump function ¢ such that ¢ =0 on M \ E’ and ¢ =1 on E. We choose
¢ so that [pY|erayry < Clbler(arye™F, for some uniform constant C. Then

(Dyy: (), o) = (Dyyr(h), 1) + (D gy (h), 1))
>6/2 = Cllerane PIWI\NW|T > 5/2 = Cllerane™ "

And since the map h — D}, (h) is continuous in the | - [, -norm, it can be

This can be made larger than d/4 by choosing ¢ sufficiently small since 7 > p by definition of the
norms.

Thus the function ¢y € CP(M) satisfies h(p1)) # 0. We conclude that h # 0 as an element of
(cr(M))'. O

We conclude this section by proving the following important fact regarding compactness.

Lemma 3.9. The unit ball of B is compactly embedded in B,,.
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Proof. Let 0 < € < ¢q be fixed. Let k. € N be the least integer k such that 1/k"™ < e. We split M
into two parts, A = Up<i Hy and B = M \ A. By (H3)(4), any W € W? such that W C B must
satisfy |[WW| < Cae.

Let h € C1(M) with ||h|]|g < 1. First we estimate the weak norm of h on curves W in B. If
W C Hy, for k > k., and [¢|w.,p < 1, then

!/W hip dmyy | < [[h|s[¢lw.aq < [[BISWI* F W)Yoy < O[] (3.30)

Now on A, notice that there exists a constant D, > 1 such that 1/f(W) < D.. Also, since A
contains only finitely many homogeneity strips, we may choose finitely many charts y; as defined
in Section In each chart, the set of functions F' € Z is compact in the C'-norm. Thus we
may choose finitely many curves W; € W# such that {V[/}}f\f;1 forms an e-covering of WW?|4 in the
distance dyys. Indeed, we choose each of the W; to satisfy |W;| > ¢ since we may approximate the
norm of h on any stable curve with length less than ¢ by 0 according to (3.30]).

For each W;, let I; be the interval on the horizontal axis in the chart on which the corresponding
function G, is defined, i.e., W; = G, (I;). Since any ball of finite radius in the CP-norm is compactly
embedded in C?, we may choose finitely many functions 1, ; € C(I;) such that {¢; J} forms an
e-covering in the C?(/;)-norm of the ball of radius CyD.c™7 in CP(I;), where Cj is from 3.17.

Now let W = Gy, (Iw) € W?|4 with |W| > ¢, and ¥ € CP(W) with |¢|w,,p < 1. We fix a chart
and choose one of the curves W; = G, (I;) such that dyys(W;, W) < e. Let ¢ = ¢ o G, be the
push down of ¢ to Iy and note that [¢[cp(s,,) < Cof (W)™ W|™7 < CyD.e™.

Next let I = I; NIy and choose t); ; € CP(I ) such that [{) =), ;|ca(y) < €. Define ¢ 5 = ¢, ;o G_
to be the lift of Q,Z)Z’] to W;. Note that

S| Wil

fw)wir =
by Lemma since W; and W lie in the same homogeneity region and |W| > €. Then normalizing
Y and ; ; by 2C,C¢Cy,, we estimate

/ h de—/ ha; dmw' < &9 h)|u2C,CCp.
w Wi

W’mh%mp = 20 < 2C CfC

We have proved that for each 0 < < &, there exist finitely many bounded linear functionals /; j,
lij(h) = [y, habijdmw , such that

_ —1
bl < _max | £i5(h) +*Cll+2CY kL < _ax | iy(h) +°Ce; s

which implies the required compactness. O
4. LASOTA-YORKE ESTIMATES
Since by Lemma L is continuous on B, it suffices to prove Proposition for h € CY(M).

4.1. Estimating the Weak Norm. Let h € C}(M), W € W? and w € CP(W) such that 9w, <
1. Let W/ denote the elements of G, (W) as defined in Section For n > 0, we write,

/L”hwdmw— > / ‘DTH on"de, (4.1)

Wiegn(
where Jy»T" denotes the Jacobian of T along W"
Using the definition of the weak norm on each W], we estimate (4.1)) by

!/Wﬁnhwdmwl < > \hlwlIDT"!_IJwyT"ICP(WmWOT"ICP(Win)f(Wi")IWZ-”I'Y- (4.2)
Wreg,
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By (3.26), we have [1) o T"|co(yyny < Cliblerwy < Cf(W)~YW|=7. Using this estimate plus (3.25)
in equation (4.2)), we obtain

|/ L'hipdmy| < Clhly Y
w

Win €gn

(Wil )
Wi (W)

|DT™ |~V T n T | eo iy -

Finally, using (3.28]) we estimate

/ Lhap dmy| < Clhlwrs™ )
w

wn Y -n
<| ) |> |Iwp T eowpy < CC5|hlwr™",
WreGn

W]

where in the last inequality we have used Lemma [3.3|(b) with ¢ = . Taking the supremum over all
W e W?* and ¢ € CP(W) with [¢|w,,,p < 1 yields |-i

4.2. Estimating the Strong Stable Norm. As before, let h € CliM), W € W? and denote by
W the elements of G,(W). For v € CY(W) with |[¢|w,aq < 1, define ¢, = |[W|1 fWin YoT™dmyy.
Following equation (4.1f), we write

JwnT"

/Enthdmw Z/ yDTn w oT" — wi)dmw+zpi/ h DT dmyy . (4.3)

To estimate the first term on the right hand side of (4.3)), we first estimate |¢)oT™ —Ei|cq(win). If
H () denotes the Holder constant of ¢ along W, then equation (3.26) implies Hj; n (YoTm—1);) <

CA~IH],(4), since 9); is constant on W;*. To estimate the C° norm, note that 1; = ¢ o T"(y;) for
some y; € W. Thus for each x € W,

[0 T (@) — | =¥ o T () — v o T"(yi)| < Hiy (¢ 0 T™)|W|T < CHy () A",
These estimates together with the fact that |¢|w,q,q < 1 imply
[ o T™ = y|eaqwny < CA™ T leayy < CA™TW|= f(W) ™. (4.4)

We apply (4.4)), the distortion estimate (3.25)) and the definition of the strong stable norm to the
first term of (4.3))

JwnT" — (Wi | (W) ‘JW-”Tn
i YoT™ —4,)dmy| < C h|s - : :
)3 . Wi | < O3 Wl e e | o

(Wi
(W«

AT
co(wn)

(4.5)

< CA_qn"{_thHSZ ’JW{LT”|CO(W¢”) < O'AT"ET A,

where in the second line we have used (3.28) and Lemma [3.3|(b) with ¢ = a.

For the second term on the right hand side of (4.3)), we use the fact that [¢;| < |VV|_O‘L)‘"(VV)_1
since ||w.a,q < 1. Recall the notation introduced before the statement of Lemma Grouping

the pieces W € G, (W) according to most recent long ancestors, we have

JwnT" JwnT"

1
ZZ.: (Wl f (W) Jw DT |DT™| dmw = Z 2 Z DT |DT"| dmy

k= 1]6Lk EI

1 / JWnTn
+ . ——
2 TWFFO7) " DT

de
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where we have split up the terms involving k£ = 0 and &k > 1. We estimate the terms with £ > 1 by
the weak norm and the terms with k£ = 0 by the strong stable norm,

L o WP W)
Zi:|W]af(W)/ |DT" ~d WS CZZ Z W[ f(W )!h\w

k=1j€eLy i€Tn( )

JwnT"
|DT"|

CO (Wzn)

Wn f mn n
e Z | 'fE ))nhn DT [ T ey
zEI"

As usual, by (3.28)), the ratio of f’s times |DT"]_1 is bounded by Cx~™.
In the first sum above corresponding to k > 1, we split the Jacobians according to times k and
n — k and use Lemma (a) in each term from time & to time n — k&,

WZ‘” v n— n—k)/s
> ’|Wk|‘v|JWfT Fleoqwy < Catt"7%,
i€In(WF)

where s = 1{_?. Using this estimate, we obtain,

ZZ Z W (WE* p(wr) | Jwa T"
W WER 7 | TDT

k=1j€Lk icT,(

co(wm)

W k
< o8 *”Z 3 [T T om0,
a (Wh)
k=1j€Ly |W’

since ]ij| > d0/3. The last two sums are bounded independently of n and W by Lemma (b)
with ¢ = a.
Finally, for the sum corresponding to k = 0, we have

(Wi
> 0 i < o
i€, (W)
. . 1 “/0
again using Lemma ( ) with so = .
Gathering these estimates together We obtain,

Z (W« f
Putting together (4.5) and ({ . in . proves ,

L7y < C(A™T + e:}/SO)ﬁ—nuhns + C6 K" bl

/ WD Jyn T diny| < O8O hur™ + C|A[6Y 5. (46)

4.3. Estimating the Strong Unstable Norm. Fix ¢ < ¢ and consider two curves W', W?2 € W*
with dyys (W', W?2) < e. For n > 1, we describe how to partition 7-"W* ¢ = 1,2, into matched
pieces Uf to which we will apply the strong unstable norm || - ||, and unmatched pieces Vlf to which
we will apply the strong stable norm || - |-

Recall S = So U (UgskoSHT) and define S®, := U (T%(SE) to be the expanded singularity set
for T~™ taking into account the boundaries of the homogeneity regions. Let w be a connected
component of W'\ S® . To each point 2 € T~"w, we associate an unstable curve 7, (vertical in
the chart) of length at most CA™"¢ such that its image T™7,, if not cut by a singularity or the
boundary of a homogeneity strip, will have length Ce. By assumption (H2), all the tangent vectors
to T+, lie in the unstable cone C*(T"x) for each i > 0 so that they remain uniformly transverse
to the stable cone and enjoy the uniform expansion given by (H2)(2).
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Doing this for each connected component of W'\ S¥ | we subdivide W'\ S¥ into a countable
collection of subintervals of points for which T™y, intersects W2\ S and subintervals for which
this is not the case. This in turn induces a corresponding partition on W2\ S%_

We denote by V,f the pieces in T~"W! which are not matched up by this process and note that
the images T"V,f occur either at the endpoints of W or because the vertical segment -y, has been
cut by a singularity. In both cases, the length of the curves T”V,f can be at most Ce’® due to the
type of tangency allowed between curves in S*; and the stable cone by (H3)(3),(4).

In the remaining pieces the foliation {1~ },cr-ny1 provides a one-to-one correspondence be-
tween points in W' and W2. We further subdivide these curves in W* in such a way that the
lengths of their images under 7 is less than dy for each 0 < i < n and these subdivided pieces
are pairwise matched by the foliation {7"~,}. We call these matched pieces U f. Possibly changing
d0/2 to do/C for some uniform constant C' > 0 (depending only on the distortion constant and the
angle between stable and unstable cones), in the definition of G,(W), we can arrange it so that

Ut c W™ for some W™ € G, (W) and V{ C Wf’" for some W™ € G, (W) for all j,k > 1 and
¢ =1,2. There are at most one Uf and two V) per Wf’n € G,(WH).

In this way we write W*¢ = (UjT”Uf) U (UgT™V). Note that the images 7"V of the unmatched
pieces must be short while the images of the matched pieces Uf may be long or short. Recalling the
notation of Section we have arranged a pairing of the pieces U]’-“ with the following property:

I U} = G () = (v ) + (6 B () : £ € ), -

then U} = Gpa(y) = {xi, (aF + (t, Fy2 (1)) : t € I}, '

so that the point = .CE} + (t, Fyy1(t)) in the chart is associated with the point z = x? + (t, Fy2(t))
J J

by the vertical segment X;jl(fyx) for each t € I;.

Given vy on W* with [Velwe 4 p < 1 and dg(th1,92) < e, with the above construction we must
estimate

’/ L"hapy dmyy —/ L"h )y de’
wi w?2

= Z /Tnvé L™k Ypdmyy | + Z /]“nUl L™h P dmyy — L7h o dmwl . (4,8)
2,k

2
™U;s

We do the estimate over the unmatched pieces V,f first using the strong stable norm. To do this,
we group pieces T’ "V,f in the following manner. We say T”V,f is created at time 0 <t <n — 1 if
t is the first time that an endpoint of T"~'V/! is created by an intersection with S¥,. Note that
due to the transversality conditions (H3)(3),(4), we have [T 'V}{| < Ce', where C is a uniform
constant. We set A(t) = {(k,£) : Vi created at time t}. We will change variables to estimate the
norm on T t=1V¢ for (k, ) € A(t).

The expression we must estimate on unmatched pieces is

Z/Tnve L'y dmy | = Z Z / (Lrt1p) |DTt+1\_1JTn7t71V:Tt+1ont“de.
Lk

t—1y/£
(k0)eAw) YT Vi
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Note that by (3.26]), |1 o Tt+1\cq(Tn_t_1VIf) < Clelerwey < Cf(WH=HW* . Fixing t,k and ¢,
we estimate following (4.5)),

/ E(ﬁn—t—lh) |DTt+1’_1JTn7t71VkZTt+1 w o Tt+1 de
Tn—t=1y

‘JTn—t—leng—t—l

|DTHHT|1

|Tn—t—1vké|a f(Tn—t—lka)
(W fFwe)

< £ s (4.9)

CO(Tn—t—l V,f)
—t—1y/¢
VD

< CR™" s T" Ve W

|JTn_t_1szTn7t71|co,
where in the last line, we have used as well as the bound ||L%h||s < Ck~||h||s for any i from
Section

Now since [T 'V}f| < Ce'o, by (H3)(1) we have |[T" 171Vf| < Cetlo. Also, we estimate over
pieces T”*t*”/f rather than T"*tV,f because we have created T"*tV,f due to an intersection with
S™, | but this is one step earlier than we would cut pieces for our generation Gi(W*) as described in
Section There may be many pieces T’ "*tV,f for each connected component of G;(W*); however,
there are at most two pieces T" "1V, (k,£) € A(t) in each connected component of Gy41(W*) so
that we can control the sum over these pieces via Lemma [3.3|(b).

Using these facts together with , we estimate,

Tn t— 1V
) [, i < o) S oy
=0 (k,0)EA(t) (4.10)

< Cn/i’"HhHSE&O(a 7),

where we have used Lemma[3.3|b) in the last line on the sum over each set A(t). Now the exponent
of € is at least (3 since we chose 8 < {to(a — ) in the definition of the norms.

The only pieces not covered by the above estimate are those pieces created at the endpoints of
W1 or W2 (and not due to any singularity cuts). There are at most 2 such pieces and they each
have length less than Ce by definition of dyys (-, ). Thus we estimate directly on these pieces,

TV £V
Wi F(v)

’/Tnve Lhp] < LIS TV F TV leaqey < Ch" Bl (4.11)
k

and the two ratios are bounded since T”V,f C W* and using Lemma (a). Since o —~y > 3, this
completes the estimate on the unmatched pieces.

Next, we estimate the difference of matched pieces in . Recalling the notation defined by
, on each Uj2 we define

= (IDT"["1Jyy T o T") 0 Gy © G-

The function ¢; is well defined on U JQ and changing variables to integrate on U f , we must estimate,

/1 h|DT"|_1JUJ1T” ProT" — /2 h]DT”\_ljU]gT” Py 0 T"
U; U?

(4.12)
<

/ h|DT”|1JU_1T”¢10T"—/ hoj| +
Ul J U?

/ h(¢; — ]DT”]’ljUzT" P o TM)|.
U? 7
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We estimate the first term on the right hand side of equation (4.12)) using the strong unstable

norm. The estimates (3.25)), (3.28)) and (3.26)) imply that

DT T 0 T s,y = FUDIUI DT T T 461 0 T e

f<Ujl) ’UJIP n|—1 n —-n n ’UJ1|'Y (413)
f(Wl) . |W1”y . ‘ ‘DT ‘ ']U]lT ‘CO(U]-l) S Ck "]U]lT ‘CO(U]-l) |W1"Y.
Similarly, since Lip(G F} © G;%) < Cy, where Cy is from (3.17)),
J

;1"

e

N
fvH wip

\¢j‘U§,y,p <C | |1DT™|~ 1JUlTn’cO vy < COr™ nUUlT leo( Ul

U?)

where 7 < Cf by Lemma ( ) since the two curves lie in the same homogeneity strip, and we

f(Ul)
have used the fact that \UZ] < C]U»1| due to the pairing (4.7). By the definition of ¢; and d,(,-),
dg(|DT"| VI Ty 0 T, ) = H]DT”] L T oT”} °Gry = 6joGrl, =0
q
Finally, we note that by Lemma we have dyys (Ujl, UJZ) < O A "dyys (WL W?2) < C A e =: 1.
In view of (4.13)), we renormalize the test functions by R; = C’/ﬁ;_”|JU_1T”|Co(U1 ”g,llh Then we
J
apply the definition of the strong unstable norm with e; in place of €. Thus,
1|'y
hIDT™| " T T 4y oT"—/ hoj | < CePr"||hl|. | T T oo
zj: /Ujl v vz 1 Z WP 0 WDy 1y

< C||hll Ak~ ”55
where the sum is < C5 by Lemma (b) with ¢ = v since there is at most one matched piece U jl

corresponding to each component of T~ "W1, Wil’n € Gu(WH).
Now we estimate the second term on the right hand side of (4.12)) using the strong stable norm,

| /U (65— DT T 0 1)

< ClRIIURIf(U3) o5 — IDT" [ Jya Ty 0 T (4.15)

Cq(Uf) '

In order to estimate the C?-norm of the function in (4.15)), we split it up into two differences. Since
Lip(Gp ) Lip(G . ) < Cy, £ =1,2, we write

65— (DT LI T™) -ty 0 T euquey

<C ’ [(|DT“[*1JU;T”) o T"} 0 Gt — [(\DT"HJU;T”) Py o T" } ° Gy

7 leary)
<C‘(\DT”| g T™) 0 Gy [¢1OT 0Gpi —poT" oGFz]

ca(ry)
n|—1 n mn|—1 n (416)
+CH(]DT T T") 0 Gy — (IDT"[ " T )oGsz} 20T 0 Gy

< O||DT"|~ 1JU1T”|CO vy [Yr1oT" 0 Gpr =20 T" 0 Gpa

s ca(ly)

2\—1 21— n|—1 n - mn|—1 n
FCHW W [(IDT Ly T 0 Gy = (DT T2 T 0 G|

where in the last step we have used (3.25). In order to bound these two terms, we prove the
following lemma.
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Lemma 4.1. There exists C > 0 such that for each j > 1,
() [(DT"[" JnT™) 0 G — (IDT" ™ JyaT™) 0 Gzlearyy < DT~ Tya T o P
(b) [roT"oGpr — a0 T" 0 Gpalea,,) < CH(W?)HW?277 P71,
J J J

We postpone the proof of the lemma to Section 1] and show how this completes the estimate
on the strong unstable norm. Notice that ||DT”| 1JU1 ™o vl < C||DT™~ 1JUzT lco(w2y by

in the proof of Lemma ( ). Then using Lemma E together with - ylelds by (4
> / B(; — |DT" [T ya Ty 0 T") dimay|
X U2 7
J

f n|—1
<C”hHsZW“DT I~ JJQ

2‘7
< C||h|se”~ wnz ‘W2|V|JU2T leows),

- Ep_q
coU?)

(4.17)

where we have used (3.28)) in the last step and the sum is finite by Lemma (b) This completes
the estimate on the second term on the right hand side of (4.12]). Now we use this bound, together

with (4.10) and (4.14) to estimate (4.8])

‘ L"hapy dmyy — / L"hapo dmw' < Cr™™(n||R||se80@) 4 ||l APP ||| P 9).
wi w2

Since 8 < min{p — ¢, {to(a — )}, we may divide through by 8 and take the appropriate suprema
to complete the proof of (2.13]).

4.3.1. Proof of Lemma . We recall the following general fact whose proof can be found in [DZ2,
Lemma 4.3].

Lemma 4.2 ([DZ2]). Let X be a metric space and choose 0 < r < s < 1. Suppose g1, g2 € C*(X)
satisfy |g1 — g2|co(xy < D1€® for some constant Dy > 0. Then

l91 — g2ler(x) < 3¢” " max{D1, H*(g1) + H*(g2)},
where H*(-) denotes the Holder constant of exponent s on X.

Proof of Lemmal{.1|(a). Throughout the proof, for ease of notation we write .J;* for | DT™|~1J x T™.
J
For any t € Ij, © = Gpi1(t) and £ = Gp2(t) lie on a common unstable curve 7, (which is a
J J
vertical line segment in the chart). Note that dy (T"z,T"z) < Ce since T"(x) and T"(Z) lie on

the element 7™, € W which intersects W' and W?; this curve has length at most Ce due to the
uniform transversality of stable and unstable cones. By (3.2) and Lemma (b),

[ (x) = J2(2)| < ClJ3 | o2y (d(T™2, T"2)" + 0(T"x, T" 7)),

where 0(T"z, T"Z) is the angle between the tangent line to W' at T"x and the tangent line to W?
at T"z. Let y € W2 be the unique point in W2 whose lift x; *(y) in the chart containing W' and
W?2 lies on the same vertical segment as Xi_l(T”a:). Since by assumption dyys(W1, W?2) < ¢, we
have 0(T"x,y) < €. Due to the uniform transversality of curves in W* and W?* and the fact that
W1 and W? are graphs of C? functions with uniformly bounded C? norms, we have 0(y, T"z) < Ce
and so 0(T"x,T"z) < Ce. Thus,

[ (x) = J3 (@) < CeP| T3 o2y (4.18)
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Noting that Lip(Gpe) < Cy, £ = 1,2, (4.18)) implies that
J
[Ji" 0 Gpr = J3 o Gpzleor;) < O3 cowz)e™-

Now the fact that J' o Gp1, J3 0o G2 € CP°(I;) means we may apply Lemma to their difference
J J
to conclude
I 0 Gpr = J3 0 Galeacryy < O lamn o) + [ levo )9

The lemma follows since |J€n|CP0(Uf) < C’JﬂcO(U]ﬁ) by (3.25]) and \JﬂCO(U}) < C’|J2"|C0(UJ2) by (4.18]).
]

Proof of Lemma (b) Let Fyye be the function whose graph Gype(Iye) = W, and set gf =

G;Vle oT" o GFf, ¢ = 1,2. Notice that since Lip(G;[}e), Lip(GFje) < Cy, and due to the uniform

contraction along stable curves, we have Lip(gf) < O, where C is independent of W* and j. We

may assume that gf (I;) C Iy NlIy2 since if not, by the uniform transversality of C*(z) and C*(x),

we must be in a neighborhood of one of the endpoints of W of length at most Ce; such short pieces
may be estimated as in (4.11) using the strong stable norm. Thus

10T o Gpi =420 T" 0 Grzlensy) < Y10 Gwi 0 gj =42 0 Gz 0 gjleasy (4.19)
+ [1ha 0 Gz 0 gj — ha 0 G2 © g |ca(s,)-

Using the above observation about gjl-, we estimate the first term of (4.19) by
|¢1 @) GWI 9] gjl — 1’/)2 o Gw2 o gjl"cq(lj) < C|’¢1 o) Gwl - 77/}2 9) GW?‘CQ(Q;(I]')) < CE, (420)

by definition of dy (1, 12).
To estimate the second term of (4.19)), notice that for ¢t € I, gjl»(t) - 9]2- (t) measures the difference
in the horizontal coordinates (in the chart) of 7" o Gp1(t) and T™ o Gp2(t). Since the distance
J J

between W' and W? is at most ¢ along vertical segments in the chart and the segment connecting
T" o G (t) and T™ o Gy2(t) lies in the unstable cone of the chart containing W' and W?2, we have
J J

| gjl. — 9]2-\50( 1;) < Ce, using the uniform transversality of stable and unstable cones. Thus for ¢ € Ij,

|42 0 Gy 0 gj(t) = 2 0 Gz 0 g7 (1)| < Clialerlgj (1) — g7 (1)IP < Clapafcre”
This estimate combined with Lemma applied to Yo 0 G2 0 gjl- — oGy 0 gJQ-, yields |13 0 G2 0
gjl — 1hy 0 Gy © gjz\cq(lj) < C|ta|creP™4. This together with (4.19)) and (4.20|) proves the lemma
since [valen(w2) < F(W?)~HW?|77. O

5. PROOF OF THEOREM [2.4] AND COROLLARY

Recall that the Lasota-Yorke estimate and the compactness of the unit ball of B in B,
proved in Lemma [3.9]imply via the standard Hennion argument that the spectral radius of £ on B
is bounded by x~! and the essential spectral radius is bounded by g < 1 (see for example [HH]).
We proceed to prove the following lemma characterizing the peripheral spectrum of £ on B.

Recall that S§' = So U Uk SH) and SH, = Ul (T%(SE!) denote the expanded singularity set
for T~" taking into account the boundaries of the homogeneity regions. SE is defined analogously.
Also, Vg denotes the eigenspace of £ associated with the eigenvalue €*™ and II, denotes the
corresponding eigenprojector onto Vy.

Lemma 5.1. Let V = ®&¢gVy. Then,

(i) the spectral radius of L on B is 1;
(ii) L restricted to V has semi-simple spectrum (no Jordan blocks);
(iii) V consists of signed measures;
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(iv) all measures in V are absolutely continuous with respect to @ = Ilom. Moreover, 1 is in the
spectrum of L.
(v) Let Sﬂ_ﬂlﬁ denote the e-neighborhood of S™,. Then for each u € V, there exists C > 0 such

that for alle > 0, we have M(Sﬁﬂl’g) < Cestola=) | I particular, ,u(LJneZT”(S_1 en—2/sto(an ) <
Cestole= and p(SH ) =
Proof. Ttems (ii)-(iv) are proved in [DZI, Lemma 5.1] and their proofs remain unchanged here so
we do not repeat them. We proceed to prove items (i) and (v).
(i) First note that the spectral radius must be at least 1: If it were smaller than 1, then since

m € B, Lemma would yield the following contradiction,
1=m1)=m(1oT") = L"m(1) < C||L"m| g < C|L|"||m| s — 0.
n oo

To show the spectral radius of £ is not more than 1, suppose z € C, |z| > 1, satisfies Lh = zh for
some h € B, h # 0. For ¢ € CP(M), Lemma implies,

(h(@)] < 27" L7h()] = 27" |h(y o T)| < |2[ T Clhlw(|[loo + HR(¢ 0 TT)) —— 0,

n—oo

since HY (o T™) < CA™P™ler(ary by (3.26), contradicting the assumption on h.

(v) Let 4 € V and fix € > 0. Let 3@1,5 denote the e-neighborhood of S¥; and let hy be a sequence
of C! functions converging to y in B; then since £ is bounded, L£hy, converges to L in B. Tt follows
from arguments similar to the proofs of Lemmasandthat (Lhi)e () := Ehk(ls@l 1) belongs

to B, due to the transversality and types of tangencies permitted by (H3) between curves in S,
and the stable cone. Then, for W € W* and ¢ € CP(W), [¢|wp <

w w —he T Jwinr-isE, | ‘

Notice that since W} € G;(W) are created by intersections of W with S¥,, it follows that there
are at most two connected components in each W} N T-1SH, cand [T Wi nSH | < Ce' due to
(H3)(3),(4). Consequently, we estimate the above expression as in (4.9) and -,

o W NTTISE, e
/W(Ehk)gwdmw < C|lhillor Z |W|7 = | Tleogwy

W, _
< O, 3 |W|7 | s Tleogwny < Cllhgllse€e=),
where we have used (H3)(1) to pass from |TW}! N S@l,s‘ to [Wln T‘18@1’€|. Similarly, (Lhy)e is
a Cauchy sequence in B, and so must converge to (Lu):(v¢) = ﬁ“(lslﬁll ¥). Then by the above
estimate, we have \EM(SEHLE)] < O||p|se8tl@=), But since Ly = zp for some z € C, |z| = 1, we
have the same bound for M(S@LE).

In particular, this implies ;(S™,) = 0. Then using repeatedly the fact that £L"u = 2"pu, |z| = 1,
and since S¥, = U (T°SY, and TS, = SH, we conclude u(S%,) = 0 for each n > 0. Moreover,
we have fi(UnezT™ (S—l en—2/¢to(a- ) < Cestola—) > ner In|=2 < Cestola—) O

Further information about the measures corresponding to the peripheral spectrum of £ can be
proved using similar techniques as in Lemma In other words, they are proved using properties
of the Banach spaces we have defined without relying on the specifics of T. We summarize these
results in our next lemma, which we state without proof since the proof can be found in [DL
Lemmas 5.5 and 5.7].
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Lemma 5.2. (1) There exist a finite number of qi € N such that the spectrum of L on the unit

disk is Up{e a1 0 < p < qr, p € N}. In addition, the set of ergodic probability measures
absolutely continuous with respect to  form a basis of Vy.

(ii) T admits only finitely many physical probability measures and they belong to Vy.

(iii) The ergodic decomposition with respect to Lebesgue and with respect to [ coincide. In
addition, the ergodic decomposition with respect to Lebesgue corresponds to the supports of
the physical measures.

The only properties of T' that are used in the proof of the preceding lemma in [DL] are the
invertibility of 7" and the items in Lemma [5.I] Lemmas [5.1] and [5.2] complete the proof of items
(1)-(3) of Theorem

Item (4) follows immediately from Lemma5.1{iv), since if (T, fz) is ergodic, there can be no other
ergodic invariant measure absolutely continuous with respect to .

To see that (T, 1) ergodic for all n € N implies a spectral gap for £, assume there exists v € Vy
for some ¢ # 0. By Lemma (i), it must be that # = p/q for some p,q € N so that v is an
invariant measure for 79. But 7z is also an invariant measure for 79 and v is absolutely continuous
with respect to & by Lemma [5.1|(iv). This contradicts the fact that (7', ) is ergodic. Thus £ has
no other eigenvalues on the unit circle and so by quasi-compactness, £ has a spectral gap on B.

The spectral gap implies that the spectral projectors Ily are all zero except for Iy which can be
recharacterized by Ilgh = lim,_,o, £L™h for all h € B. It thus follows that any distribution h € B
with h(1) = 1 satisfies lim,—, [|[L"h — Ti||s < C||h||g(c’)"™, where o/ < 1 is the spectral radius of
L —1Ip on B. This completes the proof of item (5) of the theorem.

5.1. Decay of Correlations. In this section, we prove items (6) and (7) of Theorem under
the assumption that £ has a spectral gap. In order to discuss correlations and the limit theorems
of Corollary we need the following multiplier property for functions with reasonable disconti-
nuities.

Lemma 5.3. Let P be a countable partition of M that satisfies the assumptions of Lemma[3.5 and
suppose in addition that there is a uniform bound N1 on the number of P € P that each homogeneity
region Hj can intersect.

Let A > max{B/(1 — B),p}. If ¢ is a function on M such that suppcp |ler(p) < 00 and h € B,
then ¢h € B. Moreover, |[¢h|ls < C||h||gsuppep |ler(py for some C > 0 independent of ¢ and h.

Proof. Let P and ¢ be as in the statement of the lemma. By density, it suffices to prove the lemma
for h € CY(M). By Lemma ¢h € B. We proceed to estimate its norm. For brevity, we write

[Plerpy = sup [Bler(py
Pep

To estimate the strong stable norm, we fix W € W* and ¢ € C4(W) such that |¢|wq,q < 1. For
each P; € P, set W; = W N F;. Then

\/W oh iy dmwy| = \Z/W Shap dmw | <> |IBI]s[ Wil F (W) leaqwy [ les iy < CN1E || sléleacp)

where we have used the assumptions on dF; to bound the maximum number of W; by N1 K, and
Lemma [3.4f(a) to bound f(W;)/f(W).
Now to estimate the strong unstable norm of ¢h, we let ¢ < eg and choose W', W?2 € W# with
dyys (W, W?) < e. For £ = 1,2, let 9y € CP(WZ) such that [¢g|ye ., , <1 and dg(¢1,1h2) < e.
Recalling the notation of Section we write W = Gpe(Iye), £ = 1,2. We subdivide each
curve W into matched and unmatched pieces, similar to those in Section To each point
xr € W1, we attach a vertical (in the chart) line segment ., centered at x of length 2. We define

U f C W* to be the maximal connected curves for which Uf belongs to a single element P € P
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and the family {y,},cy¢ intersects W2 but does not intersect P for any P € P. We label by
J

Vf C W the remaining maximal pieces for which there is no matching by the vertical segments ;.
We also require each Vf to be contained in a single P € P. Note that there are at most 2N, K + 2
unmatched pieces and at most N1 K matched pieces by assumption on P. Also, due to the weak
transversality of OP with C*(z), we have |V| < Cye'0 for each ¢, and a uniform constant C;.

We define ¢ = (¢1p1) o Gp1 o GE% and note that ¢ is well defined on each matched piece Ujg. We
must estimate

[ evrdm = [ ohidm| = E(;/V oh gy dmyy

(5.1)
+ 3 ( [ ohindmy — [ hpdm )+ [ o~ ova) dr.
7 \Juy 3 3
The first sum on the right hand side of ([5.1)) over unmatched pieces is estimated by,
I3 | omedmi < 3 WLV OV lewio s .
il Vi il 5.2

< (2N1K + 2)|| B s|@lexpyCre™o@ 7).

Next we estimate the difference over matched pieces in (5.1). By construction, dWs(Ujl, UJQ) <e

since U f C W*. Moreover, letting I j denote the common ¢-interval over which U jl and Uj2 are both
defined, we have

dq(p1, ) = [(o1) 0 Gpr — 9 0 Gpz2|ca(r;) = 0.
Note that [¢¢1]y1, , < Cld|er(p) for some uniform constant C' since Uj1 C W' and by Lemma(a).
J bR}

Similarly, since Gp1 o G;% has bounded C'-norm, we have || Cl¢ler(py- Renormalizing
J

<
VP —
the test functions, we apply the definition of the strong unstable norm to estimate

I3 [ ohndmw — [ hpdm| < MK hLCloles (53)
j Uj U?
Finally, we estimate the third sum on the right hand side of (5.1 using the strong stable norm.

1> /U h(p — ¢vb2) dmw| <Y hllsle — dvzleaa) |UF 1 F(UF).
J j J

Again using that G2 has bounded C'-norm, we estimate
|0 = P2|cawz) < Cl(@¥r) o Gpr = (diha) 0 Gpleasy)-
For t € I, we have

[(¢91)0G 1 (1) = (dth2) oG 2 (1) ] < [@loo |1 0G 1 (t) =1P20 G 2 (8) |+ [th2|cow2) |90 G 1 (B) —po G 2 (1)
The first difference above is bounded by e due to the assumption dy(¢1,12) < e. The second
difference is bounded by |¢|Cv(7;)s/\. Now using Lemma we conclude

|0 = P2leaw) < CIW?[77 f(W) Y Bleagpye . (5.4)
Putting together (5.2), (5.3) and (5.4) with (5.1), we have
| /W1 ohapy dmyy — /W2 ohps dmy| < Cloler(m) (IRl + [llue® + |ll,>9),

for some uniform constant C' depending on N7 and K. This completes the estimate on the strong
unstable norm since § < min{tyg(a —7v),p — ¢} and A > q. O
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Now given ¢ as in Lemma and ¢ € CP(T~*W?) for some k > 0, we define their correlation
function by

Cop(n) :==Ta(p1 o T") — A($) (V).
Define i, = ¢fi. By Lemma we have fi, € B. Thus Ilpfiy, = fi(¢)fr and so by Lemma

(¢ o T") — B(A)R(Y)| = (L "y — B(S))(¥)] < ClIL g — F(O)RllB(1¥ oo + H (¥))
and the exponential rate of convergence is given by the spectral radius of £ — Iy on B. The proof
of item (6) of Theorem is completed by noting that [|fz4[|s < C|¢|er(p) by Lemma
To prove item (7), for ¢, € C*(M), we define the Fourier transform of the correlation function,
Co(2) =Y 2"Cop(n).
nez

The importance of this function stems from the connection between its poles and the Ruelle reso-
nances, which are in principal measurable in physical systems, [Rull Ru2, [PP1l, [PP2, [.2].

Given the spectral picture we have established, it follows by standard arguments that the function
is convergent in a neighborhood of |z| = 1 and admits a meromorphic extension in the annulus
{z € C: 09 < |2] < oy'} where o9 is from (2.14). It follows that the poles of the correlation
function are in a one-to-one correspondence (including multiplicity) with the spectrum of £ outside
the disk of radius oy.

5.2. Proof of Corollary Let P be a partition of M satisfying the assumptions of Lemma
and fix A > max{p, /(1 — B)}. Let g : M — R? be a vector-valued function such that each

component g; satisfies [gilexpy < o0, @ = 1,...,d. Define |glexip)y = (E?:l |9i|gx(p))1/2- For
z € C?, we define the generalized transfer operator L.4 on B by
L.gh(Y) = h(e*99 o T) for ¢ € CP(WV?).

The proofs of the limit theorems follow from the fact that £., is an analytic perturbation of £ = Ly
for small |z]|.

Lemma 5.4. For g : M — R? with |9ler(py < 00, the map z — L4 is analytic for all z € Ce.

Proof. Fix z € C? and define the operator P,h = L((z-g)"h) for h € B. By Lemma (z-9g)"h € B
and

[Prhlls = 1£((2 - 9)"h)lis < ClILIA5]= - glorpy < CllRlslz"lgler py-

This implies that the operator y > %Pn is well-defined on B and equals L., since

oo 1 o0 X n
Z —'Pnh(w) =h (Z (2 ‘?) o T) = h(e*9Y oT) = L,4h(¢), forp € CPONV?),
‘= n! ~ nl
and we know the sum converges for all z € C¢. O

It follows from the analyticity of z — L., that both the discrete spectrum and the corresponding
spectral projectors of L., vary smoothly with z [Ka]. Since £y has a spectral gap, so does L., for
|z| sufficiently small.

Proof of Corollary ( a). The proof of this using Lemma is precisely the same as the proof of
[DZ1l, Theorem 2.6(a)] and is omitted.

Proof of Corollary ( b). In the current setting, the vector-valued almost-sure invariance principle
follows from the abstract results of Gouézel [G]. We fix g € CN(P), taking values in R? and
distribute (g o 77);en according to a (not necessarily invariant) probability measure v € B.

For n € N, letting z; = it;, t; € R?, j =1,...n, we see that L;tg codes the characteristic function

of the process (g o 77) in the sense of [G, Section 2.1], i.e., y(ei2?=0tj'g°Tj) = Lit,g - Litog(1).
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Lemma implies in particular that L;, satisfies the assumptions of strong continuity in [G,
Section 2.2] so we may apply |G, Theorem 2.1] to conclude the vector-valued almost-sure invariance
principle.

The error exponent 7 > 1/4 in the statement of the corollary is justified by [Gl eq. (1.2)] since
our observables g o T7 are in L>°(M) for each j € N.

6. DISPERSING BILLIARDS WITH CORNER POINTS

Recall from Section that @ denotes the dispersing billiard table with corner points and
M = U?il(Fi X [—m/2,m/2]) denotes the phase space of the billiard map F in canonical coordinates
(r,p). For any x € M, we denote by 7(x) the time of the first (non-tangential) collision of the
trajectory starting at x under the billiard flow.

The new phenomenon for billiards with corner points (compared to the periodic Lorentz gas with
finite horizon) is the existence of series of finite consecutive reflections near a corner point. During
those series, the free paths are short, i.e. 7(z) ~ 0, and so the expansion of unstable vectors is
weak. Let us fix a sufficiently small e; > 0, and call a series of consecutive reflections a corner
series if they all occur in the e;-neighborhood of one corner point. We recall two facts found in
[BSCIl, BSC2] which we shall use.

(F1) The number of reflections in any corner series is uniformly bounded above by mg = [9”—0} +1,

where 0y > 0 is the minimum angle of intersection of the corner points. Thus there exists
a constant 7 > 0 such that for each x € M there is an ¢ € {0,...,mo — 1} such that
7(Fi(z)) > 7.

(F2) Each corner series contains at most one grazing reflection, and that reflection is necessarily
the first or the last one in the series. There exists a constant ¢y > 0 such that in each
corner series of length £+ 1, Fiz = (r;,¢;),0 < i < £, we have cos(p;) > co for all ¢;, except
possibly one, and that exceptional one is either ¢ = 0 or ¢ = ¢. Corner series in which
the first reflection is grazing are called left-singular and those in which the last reflection is
grazing are called right-singular. Corner series with no grazing reflections are called reqular.

Let #;, i = 1,-- -4y be the r-coordinates of the corner points of 9Q. We denote by Vjy := {(r, ¢) :
r=#;,i=1,...,ip} the collisions at the corners, and by S = {(r,¢) : ¢ = £7/2} the grazing
collisions (following the notation of Section . Let Sy = Séq U V4. Note that Sy is a finite set of
smooth curves.

Since the table lies in a compact region on R?, the free path function 7 is bounded. Thus since
we have also assumed that the scatterers have strictly positive curvature K(x) at each 2z € M, there
exist constants Kmin, Kmax, Tmax Such that

0 < Knin < K(2) < Kpax and 0 < 7(x) < Typax, Vo € M.

For the purposes of checking assumptions (H1)-(H5) of Section[2.1] we work with higher iterates
of F. We will choose this higher iterate large enough that the expansion needed for (H2)(2) as
well as (H5) both hold.

We first establish some facts regarding the hyperbolicity of F.

6.1. Hyperbolicity. We begin by defining stable and unstable cones explicitly. The derivative
DF at the point = = (r,p) € M is the 2 X 2 matrix,
1 T 4 cos T
D = - .1
F(x) Cos 1 ( Ki(TK 4+ cosp) + Kcospy 7K1 + cos gy ) (6.1)
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where x1 = F(z) = (r1,¢1) and K1 = K(r1) [CMI, eq (2.26)]. Thus for any nonzero vector
dx = (dr,dyp) € C*(z), the slope of dxy = (dry,dp1) = DF(x) dx satisfies

dgy cos 1
— =K1+ —555- 6.2
an T e (6.2)

If 7(F~'z) > 7/ (vesp. 7(x) > 7'), we define the unstable (resp. stable) cone at z by,
C%(z) := {(dr,dp) € T,M : K(x) < dp/dr <K(z)+1/7'} and
C*(z) := {(dr,dp) € TuM : —K(z) > dp/dr > —K(z) —1/7'},

so that the slopes are uniformly bounded above by Kyax + 1/7’. The expression implies that
C*" is strictly invariant under DF while C* is strictly invariant under DF ! at such points.

For points where 7(F~'z) < 7/, i.e. during a corner series, we proceed differently. Suppose x;,
i=0,...4,is a corner series for . Note that C*%(x¢) is defined by since 7(F~tzg) > 7. If
xo begins a right-singular or regular corner series, then cosp(x;) > cg, i = 0,...,¢ — 1 so that by
, we estimate inductively along the corner series,

(6.3)

dpi—1
d Kmax + 2mo Kmax + 1
d%<lcmax MQCMXJF%’ P10
r'L CO 0 T

Thus the slopes of the DF? images of vectors in C%(zy) remain uniformly bounded above during
regular and right-singular corner series so we may define C*(x) using this uniform upper bound in
place of K + 1/7" at such points. Note that the lower bound in the cone remains always K.

If ¢ begins a left-singular corner series for F, we define C*(z;) according to with 7(F~1z)
in place of 7/ and there is no upper bound on the slopes in these cones. We define stable cones
for corner series in the analogous way, but interchanging the role of left and right-singular corner
series. By a similar argument to above, the slopes in C*(z) remain uniformly bounded above during
regular and left-singular corner series and lose the uniform upper bound during right-singular corner
series (where now we replace 7/ by 7(z) in (6.3)). Thus the angles between stable and unstable
cones are uniformly bounded away from zero on M \ Sy, where Sy is specified below (see also [Chll,
Section 9]). Equation implies that C*%(x) defined this way is strictly invariant under DF
and analogously C*(x) is strictly invariant under DF~!. Our piecewise definitions of stable and
unstable cones result in cone fields that have finitely many domains of continuity; however, since
the cones are strictly invariant, we may smooth them out so that they are indeed continuous on
each component of M \ Sp.

Next we study the expansion factor for vectors dz = (dr,dy) in the Euclidean norm, ||dz| =

\Vdr? + dgp?. Recall 7/ and mg from (F1) and define

mll’l)

21n A[)

In(1+ K

Ao:=(1+ T’ICmin)l/mO > 1, and ng := (6.4)

Given z = (r,p) € M, label x = xg = (ro,%0), T—i = (1_i,0—i) = F 'z_j41,i =1,...n. The
analogue of (6.1)) for DF~! yields,
1

_ 1K +cosp -7
DF1p) = — T—1
Fo@) cos p_1 ( —K_1(tm1K +cosp) —Kcosp_1 71K_1+cosp_1 )’

(6.5)

where we use the subscript —1 to denote the relevant quantities at x_; = F~'z. Now for any
nonzero vector (dr,dy) € C*(x), we use this to estimate,

ldp_1| = <K1W + ) lar| + ( ‘1’; L) [di] > (Z;;’;‘l +1)Idgl.
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This implies that for any n > mg + no,

IDF " da| _ [dr, +dp,  |dpon]
[d|| dr? 4+de* = \/dr? + dp?
O\ — - —1 ’C(x—z) (1 + T/Kmin)[n/m(ﬂ (66)
> (1+ K212 14 T@) >
> (1+ ) ]_;[1 + o8 s ! _i_]C;ﬂQn)l/Q

Z A'g—mg—‘rl(l +IC_2 )71/2 Z A'(I)'L—mo—no

min
where we have used the assumption that within every myg-iterates, at least one collision x; satisfies
7(z;) > 7/, and ng is defined in . This implies that DF " eventually expands stable vectors
uniformly.
We now choose n; > mg + ng sufficiently large to be able to apply [DT, Main Theorem]. Define
T := F™. Below we will show that 7T satisfies the conditions (H1)-(H5), and enjoys the spectral
properties proved in Theorem We will then extend these properties to F.

6.2. Smoothness and Singularities for 7. Since T'= F™ T preserves the same smooth invari-
ant measure p as F, and thus

|det D, T'| = cosp(z)/ cos p(Tx).

This verifies (H1) with f = cos¢ and fo =k = 1.
Let Sg = Sé{ UVp be defined as above. Then T*! lacks smoothness on the set Sy := U F FSp.
In general, denote
Sy = U?;%l}-¥i50.
For each n € Z, T" : M\ S, — M \ S_,, is a C? diffeomorphism.
To control distortion, we define homogeneity strips Hy, as in Section and following [BSCI].
For k > kg, denote by

Ste={(r9) : ol = £n/2Fk7?} and 8§’ = So U (UL, SEr)s (6.7)

and let H denote the region between S ,f and S IZH’

(1) ko is chosen large enough compared to ¢y ! from (F2) so that a corner series does not involve any
homogeneity strips except perhaps at the first or the last reflection; (2) k¢ is chosen large enough
to apply [DT) Main Theorem] to 7. This choice of kg and the results of [DT] guarantee that T'
satisfies (H5) with 79 = 0 and the adapted norm || - ||« taken to be the Euclidean norm. This also
fixes the choice of dg in the definition of W*.

We set S, = UM FTISE and call this the expanded singularity set for 7", As before, we call
a curve homogeneous if it lies entirely in one of the homogeneity strips Hy.

The time-reversibility of T implies that S_,, and §,, are symmetric about ¢ = 0 in M. Moreover
the set S, \ Sp is a union of compact smooth stable curves for n > 1 and unstable curves for n < —1.
Since Vj consists of a finite number of vertical lines in M and since 7 is bounded, it follows that
there are only finitely many singular curves in F'V; for each i > 0, all of which are unstable curves.
Similarly, F'S§' comprises finitely many smooth unstable curves for each i. Thus S_; comprises
a finite number of smooth compact curves. Indeed, each smooth curve in S_; \ Sy terminates on
a smooth curve in S_; and is contained in one monotonically increasing continuous curve which
stretches all the way from ¢ = —7/2 to ¢ = m/2. This property is often referred to as continuation
of singularity lines. Similarly, S,, consists of a finite number of smooth, compact curves for each n.

Now since C%(x) and C*(x) as we have defined them are invariant under DF and DF ! re-
spectively, they are also invariant under DT and DT~!. This verifies H2(1). Moreover, defining
A= AT > implies || DT~ (x)dx|| > A|dz| for dz € C%(z). This, and its symmetric
counterpart for the unstable cone, verifies item (2) of (H2) with the norm || - ||« taken to be the
Fuclidean norm.

so that r;, = 3. We place two restrictions on kq:
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It follows from and the fact that we have chosen kg large compared to ¢y ' from fact (F2)
that there exists By > 1 such that for z € M \ &y,

1 o IDF @)l _ By
Bjcos p(F~tx) — [lv]| ~ cosp(Flx)

for v € C%(x). (6.8)

(See [Ch1l Lemma 9.1].) The analogous fact holds for DF. Accordingly, since C~1k=2 < cos () <
Ck~? for some uniform constant C' and z € Hy, if F~'W C Hy, we must have |F~1W| < Ck—3

andB

|FTW| < Wk < oW F-'wW |2 —  |Flw < oW Plo. (6.9)

Iterating this equation yields |T~'W| < C|W|¢ with & = (3/5)™, verifying (H3)(1).

Item (2) of (H3) is automatic since as already described above, S_1, the singularity set for T,
comprises finitely many curves. To check item (3) in (H3), note that except at corner series, the
stable and unstable cones are bounded away from both the vertical and horizontal directions as
explained above. Since the angles between stable and unstable cones are uniformly bounded away
from zero and curves in S_,, \ Sy are unstable curves for n > 1, they are uniformly transverse to the
stable cone. Thus it remains to check that curves in Sy satisfy (H3)(3). S{! is uniformly transverse
to the stable cone since the stable cone is bounded away from the horizontal. Near Vg, however,
stable curves may be arbitrarily close to vertical during right-singular corner series.

It is proved in [BSCI), Lemma 2.7] (see also [Chll Section 9]) that if z = (7, ¢) is contained in a
stable curve W and (dr, dy) is the tangent vector to W at x, then

dy C

dr = |7 — 7o|1/2 (6.10)
where (rg, o) is the endpoint of W closest to . Thus |p — pg| < 2C|r — 70|'/2 so that any e-
neighborhood of Vj contains a length of at most C’e'/2 along W, which is what we need to establish
(H3)(3) with tg = 1/2.

Item (4) of (H3) follows immediately since all the homogeneity curves Si, k > ko, are horizontal
lines while C*(z) is bounded away from the horizontal. Moreover, any stable curve W C Hj, satisfies
|[W| < Ck=3 and we have chosen rj, = 3.

Finally, the required series in (H3)(5) converges since it is dominated by » ;. k=273¢ < oo for
all e > 0.

6.3. Distortion Bounds. Since the map T has bounded Jacobian in the vicinity of the singular
curves Vo U T~ 1V, it satisfies the same distortion bound estimates as for billiards derived from a
Lorentz gas with finite horizon. Indeed it was proved in [BSCI],[BSC2, [Ch1] that there exist invariant
families W*® and W", which contain all homogeneous stable and unstable curves respectively, with
length less than some positive constant §. In addition, by choosing a bound on the curvature of
these curves to be sufficiently large, we ensure that these families W*® and W" are invariant in the
sense described in (H4).

To establish of (H4), we establish it for F and then note that it can be extended to any
iterate of F (and thus to T') using the uniform hyperbolicity in the cones. From we see that
1/ cos (F~1z) is unbounded, 7 is bounded and Holder continuous with exponent 1/2 and all other
functions in D, F~! are bounded and smooth. Thus to establish for D,F~1, it suffices to
establish the analogous distortion bound for 1/ cos p(F~1x).

12We obtain a better estimate than the usual |F~'W| < C|W|'/? because we require that F~'W lie in a single
homogeneity strip, while the usual estimate does not use this fact. See [CMI].



42 MARK F. DEMERS AND HONG-KUN ZHANG

Now let W € W? be such that F~'W € W?* and F~'W C Hj. Then using and the fact
that |T~'W| < Ck~3, we have for any z,y € W,

1 1 1
— < ].‘—1 _ ]:—1
cosp(F1x)  cosp(Fly)| = cosp(F~1x)cosp(Fly) [cos @(F7y) = cospF o) (6.11)
Ck? 1 1 C —1 —1,71/3 .
< < —F .
~ cosp(Flx) dw(F =, Fy) < cos go(}"_lx)dw(]: ©F )

A similar bound holds for x,y € W € W" such that F~'W € W*, but with dy (, y)1/3 in place of
dw (F~tx, F~1y)'/3. This establishes of (H4) with py = 1/3.

Similarly, since |D,T| = cos¢(z)/ cos p(Tx), of (H4) holds using the same estimate of
1/ cos ¢ as above. This completes the verification of (H1)-(H5) for T

6.4. A Spectral Gap for Ly and Lp. Since we have verified (H1)-(H5) for T" and have fixed
the values for A, ry, &, ko, 7o and dy, we may also fix 6, < 1 from . We now choose the values
for the parameters «, 8,7, p, q,e0 and ¢, appearing in the norms subject to the constraints given
in Section [2.3] This fixes the Banach spaces B and B,,.

With this choice of parameters, L7, the transfer operator associated to T', is well defined on B
and B, and we may apply both Proposition and Theorem to L.

In order to conclude quasi-compactness and the same characterization of the spectrum for Lz,
the transfer operator associated to F, we must show that £7 is bounded as an operator on . This
plus the fact that Lr = L7 will be enough to apply Theorem to Lr with essential spectral
radius increased by the exponent 1/n;.

Proposition 6.1. There exists C' > 0 such that for all h € B,

I£7hlls <Clhlls  and  [|Lrhllw < C([[h]lu +[|P]ls)-

Following the notation of Section for W € W?, let W; denote the components of F~1W
belonging to G; (W), i.e. each W; is a stable homogeneous curve of length less than or equal to dy
on which F is smooth. In order to prove the proposition, we will need the following lemma.

Lemma 6.2. There exists By > 1 such that for all W € W?* and < € [0, 1], we have

Wils
Z ‘|W||< [ Jw. Fleows) < Ba.
W;€G1(W)

Proof. Since S_1 comprises finitely many curves, there exists N € N such that given W € W?,
W may be subdivided into at most N connected components by S_;. Each of these components
after iteration by F~! may in turn be cut either by the boundaries of homogeneity strips or may
be subdivided to have length at most dy in the process of creating G;(W). Since any piece that is
subdivided artificially lies in one homogeneity region, bounded distortion implies that the sum over
minimum contractions on such pieces is bounded by a constant depending only on the distortion.
On the other hand, the expansion for a curve landing in Hy, is given by as > By 1k=2. Thus,

> wiFleoawy SN(C+ By Y k) < (6.12)
W;eG1 (W) k>ko
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Now |FW;|/|Wi| < |Jw,Flco < C|FW;|/|W;| by bounded distortion. Thus given any 0 < ¢ < 1, we
have

Wils Wil | FW; WS |FW;
S o < € oy WP _ g W]

i 1 i 1
1—¢ (613)
’]:W’ n1—
<C <c)y—
< > Wi < C(C)
W;eG1(W)
where we have used Jensen’s inequality and the fact that ). [FW;| = |W|. O

Proof of Proposition [6.1. We essentially must redo the estimates of Sections [£.2] and [£.3] but for
just one iterate of Lr and without requiring any contraction in the norm.

Estimate on the strong stable norm. Let h € CY(M), W € W* and ¢ € CY(W) with
|¥|W,a,q < 1. Then following (4.2), we estimate

/ Ly dmw| < Z IRl IDF|= T, Fleaqw | © Fleaqw,) cos(Wi) [Wi]

Al
<Clln)s ”W"a | Jwi Fleowy < CllhllsBs,

for some uniform constant C' where we have used (3.25)), (3.26) and (3.28)) to simplify the expression
in the second line and Lemma [6.2] with ¢ = « in the last step. Taking the appropriate suprema
yields the required bound on ||Lzh|s.

Estimate on the strong unstable norm. Given ¢ < gg, let W', W2 € W?* with dyys (W, W?) <
e. For £ =1,2, let ¢y € CP(W*) such that [¢|ye., , < 1 and dg(v1,102) <e.
Following Section we partition F 1! into matched pieces Uf and unmatched pieces V,f

using a smooth foliation {7;},c;1 of homogeneous unstable curves. The precise characterization
J

of matched pieces given by (4.7) applies to the matched pieces U f. By (6.10)), the length of the

unmatched curves F V,f is at most Cel/2.
Now following (4.8)), (4.9) and (4.10]), we estimate the norm on unmatched pieces first,

>

0.k

and the sum is finite by Lemma with ¢ =«
To estimate the difference on matched pieces, we follow (4.12) to write

/ h|DF|~ 1JVJ¢4 o F dmw

Vi

a- Vil
< OS2, mezpuwfﬂc()(vlf) (6.15)

‘/ hnyHJUJszl o F dmy —/ h|D}“F1JUj2}'w2 o]—"dmw‘
Ul U2

J J (616)
<

/ h]D]—"|1JU_1]-"¢10]-"—/ hoj| +
UJ1 J Uj2

h(g; = [DFI™ s Fiba o f)' :

where ¢; = (|DF| " J 1 F1hy o F) o Gy o GE% is well defined on Uj2 due to the pairing given by
J J J

(4.7)-
We estimate the first term on the right hand side of (6.16|) using the strong unstable norm.
Notice that since we are only applying one iterate of F and due to bounded distortion, we have
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dws(Ujl, UJQ) < Cdyys(W, W?) < Ce. Also, using the normalization of the test functions due to

(4.13), we follow (4.14]) to estimate

Z/ h\ny—llefwlof—/ h;
U].1 J Uj2

J

< C|[hlu, (6.17)

where we have again used Lemma to bound the sum.
Finally, we estimate the second term on the right hand side of (6.16) using the strong stable

norm, following (4.15)),

/ h(¢; — |DF| " J2Faps o F)
U2 J

J

< CO||n)|s|U?|* cos U? \@ —|DF| " Jpp F by o F \cq(m '
J

We split up the estimate on the C%-norm of the test function following (4.16). Then, since the
proof of Lemma goes through essentially unchanged with F in place of T™ (except that we lose
contraction), we estimate,

>

J

2
U2

_ _ |
/U2 h(¢; — |DF|~ Jya Fipa o F)| < Chl|s” "Zj: |7‘JUJ.2}—“CO(UJ.2)7 (6.18)

J

w2y

and again the sum is finite by Lemma [6.2

Now we bring together the estimates in (6.15]), (6.17) and (6.18) to conclude,

’ Lrhipy dmw _/ Lrhip dmw‘ <cC (||h||,(,155<a—7>/2 + || hllue® + ||h||ssp_‘1) .

wi w2

Since 8 < min{p — ¢, &(a — 7)/2}, we divide through by £? and take the appropriate suprema to
complete the estimate on the unstable norm. ]

It follows from Proposition [6.1] that £ is bounded and therefore quasi-compact on B due to the
quasi-compactness of L7 = L. Thus the spectrum of Lz on B is characterized by items (1)-(3) of
Theorem In particular, each element of its peripheral spectrum in B is absolutely continuous
with respect to @ := lim, % Z:‘Zol g;m, where m here denotes Lebesgue measure on M.

However, it is well known that F preserves the smooth invariant measure p = ccos pdm, where
c is a normalizing constant. Since cosp € C!(M), we have u € B by Lemma so that p is
absolutely continuous with respect to r. But since the support of p is all of M, we must have
u = @. In addition, the mixing properties of F imply that 1 is the only eigenvalue on the unit
circle and that p is its unique probability measure. Thus, £r enjoys a spectral gap on B and items
(4)-(7) of Theorem apply. As a consequence, the limit theorems of Corollary hold for F.

7. REDUCED MAPS FOR TWO TYPES OF BILLIARDS WITH FOCUSING BOUNDARIES

In this section we turn to the two specific classes of billiards that were studied in [CZ4] and
introduced in Section Non-smooth stadia and certain types of Bunimovich tables containing
circular arcs greater than a semicircle. Both billiards were first studied by Bunimovich in [Bul,
where hyperbolicity and ergodicity were proved. Recall the hyperbolic set M defined by and
denote by R : M — Z7% the first return time to M. We will work exclusively with the induced
map T := FE. Although the billiard maps F exhibit only polynomial decay of correlations, it was
shown in [CZ4] that T exhibits exponential decay of correlations and we will show here that the
associated transfer operator L1 has a spectral gap on B, proving Theorem

Verifying properties (H1)-(H5) for 7" will proceed similarly to Section [6] but is simpler in this
case since we will not prove any results for Lp so the process of translating results for L7 into
results for Lr carried out in Section is not needed here. Below we will use the notation A ~ B
if there exists C' > 1 such that C~! < % <C.
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7.1. Nonsmooth stadia. Note that for this type of billiard, the phase space M is contained in
the two rectangles I'; x [—7/2,7/2], i = 1,2, where each I'; corresponds to one of the two circular
arcs in 0Q.

As noted in Section m, T = F& preserves the conditional measure pg since its Jacobian
satisfies | DT (x)| = cos ¢(x)/ cos p(Tx) so that (H1) is satisfied as in Section [6]

The hyperbolicity of the reduced map T, i.e. (H2), was verified in [CMI] [CZ2]. Indeed, these
references focus on the dynamics of unstable curves mapped forward under 7', while below we focus
on the the dynamics of stable curves mapped under 7!, but by symmetry, these properties are
identical.

Following [CMT], Section 8.4], we first define stable and unstable cones in M, see , by

C8(x) = {(dr,dy) : 0 < dp/dr < —K(x)}, C%(z)={(dr,dy): K(z) <dp/dr <0} (7.1)

where K(x) = —1/r; for z € T; and r; is the radius of the circular arc I';. Below we will narrow C*(x)
somewhat in order to ensure uniform transversality of our stable curves with S_; and of C*(x) with
C"(x). Thus stable curves are increasing and unstable curves are decreasing (precisely the opposite
of what occurs for dispersing billiards). The uniform hyperbolicity required for (H2)(1) and (2)
follows from the strictly negative curvature of the circular arcs and the fact that the free flight time
for the inverse return map 7! is uniformly bounded away from zero, as we have assumed that the
tables satisfy Bunimovich’s Defocusing Mechanism, see [CM1l Chapter 8].

Note that by , the cones C* and C*® share the same boundary dy/dr = 0. To guarantee the
uniform transversal property of the cones, we define a smaller stable cone field C'* such that the
boundary in the direction of (dr,0) in C* is replaced by D,, F~'(dry,0), with (1, 1) = 21 := Fa.
More precisely, note that by (6.5)), if de1/dr1 = 0 and (dr, dy) = Dy, F*(dr1,0), then

7(z) 4+ cos /K (r) + cos @1 /K(r1) cos /K (r)
= —K(r) .
T(x) + cos1/K(r1) 7(x) + cos 1 /K(r1)
When 1 = Fz lies on a different focusing boundary than z, by the Bunimovich defocusing

mechanism, we know that there exists ¢ > 0 such that 7(z) 4 cos ¢/K(r) + cos p1/K(r1) > cp, and
also 7(z) > 7(x) 4+ cos 1 /K(r1) > 7(x)/2 |[CMI1), Section 8.4]. This implies that

dy _

o g1(z) := —K(r)

Tmax
remembering that (1) < 0.

Since we have chosen M to consist of only last collisions with focusing arcs (in forward time),
the only other possibility for € M is that Fx lies on a flat segment of the boundary. In this case,

we have g1(z) = —K(x), again using (6.5)).

Now setting ¢; = %min {%, | |min}, we define the narrower stable cones by,
C%(z) = {(dr,dp) : c1 < dp/dr < —K(z)}. (7.2)

By the above discussion, they satisfy D,T~1C%(x) C C*(T~'x), wherever D, T~ is defined. With
this definition of C*(x) and C*(x), the stable and unstable cones are uniformly transverse to one
another as required. This completes the verification of (H2).

We now describe the precise structure of the singularity sets in order to verify (H3). We set
Sp = 0M and let Sy1 = Sy U (UR,FTLSy) denote the singularity sets for 7+,

Curves in S_1 \ Sy are decreasing and those in &1 \ Sy are increasing, although the slopes of
curves in S_1 \ Sp get arbitrary close to horizontal near ¢ = +7. Also, by our choice of the phase
space for the reduced map, the singular set S_; is symmetric about ¢ = 0 with the singular set
of the forward reduced map studied in [CZ1]. More precisely, on each rectangle, I'; x [—m /2,7 /2],
i = 1,2, the map 7! has two types of sequences of singularity curves converging to 4 accumulation
points in M, x;,i=1,...4.
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The first type accumulates near x; and x5, which have p(z1) = 7/2 and ¢(x2) = —7/2; they are
generated by trajectories nearly “sliding” along the circular arcs. Let us denote one such sequence
in S_1 accumulating on z; by {S; ,}nen. We denote the region between S;, and S;,—1 by M; .
A point = € M;,, undergoes n consecutive nearly sliding reflections along one arc before colliding
with another part of the boundary. A smooth stable curve W is such that 77'W that completely
crosses M, then T~"W N M,, has (Euclidean) length ~ n=2 [CZ4].

It follows from [CMI] eq. (8.23)] that the expansion satisfies

| DT~ 1o 1
[[v]l cos p(T~1x)

whenever Tz € M; . Indeed, in the Euclidean metric, it follows from [CMIl, Section 8.9] that
there is expansion of order n when T!W lands in M;,, (due to (7.3)), and there is another order
n expansion when W maps out of M;,,. This is because once we fix a non-smooth stadium, there
exists a choice of ng large enough so that a sequence of sliding collisions on one arc landing in
Un>noM; n is not followed by another sequence of sliding collisions on the other arc, i.e. it must
land ouside the set Up>pn,M;p, ¢ = 1,2, on the other arc.

Note that due to , we do not have bounded distortion for curves landing across multiple M ,,,
i =1,2. In order to control this distortion, we define homogeneity curves to coincide with a subset
of the singularity curves {S;,}. Specifically, for £ > k¢ to be chosen later, we define Sf = Sin,

~n forve C%x) (7.3)

when ny ~ k? so that Sﬁc is approximately distance k=2 from sz Let H; j, be the region between
S{i and Sﬁvﬂ and note that H; 5 contains at most 2k + 1 cells M, ,,, n ~ k?,..., k? + 2k. Thus we
subdivide T~'W according to the singularity curves S; n,, k > ko one step earlier than it would be
cut by the dynamics. The remaining S; , cut T ~1W when it leaves under a second iterate of 7.
We do not introduce any other artificial cuts.

The second type of singular curves accumulate near the other two points x3, x4 that are located
on the two lines ¢ = 4¢o. They are generated by trajectories experiencing many bounces off
the two straight sides of the stadium. As before, we denote these two sequences as {S;, }nen,
t = 3,4, accumulating on x; and let M;, denote the connected region bounded by the adjacent
curves S, Sip—1 in M \ S_1. Points in M; ,, experience exactly n reflections off the straight sides
before landing on the opposite arc of 0Q). Again let W be a stable curve passing through x; and
crossing S, for all n > ng. As shown in [CZ4], the length of W,, := W N M, ,, satisfies |W),| ~ n2.
For any o € W, its Jacobian satisfies JiT~!(x) ~ n. There is no need for any homogeneity strips
near r3 and 4.

From the constructions and facts recalled above, it is clear that (H3)(1) is satisfied with { = 1/2,
by an estimate similar to H Using the above facts and since the boundary of each cell M;,,
is comprised of 4 smooth curves, (H3)(2) is satisfied. By the definition of C*(z) in (7.2), (H3)(3)
is satisfied with tg = 1 since curves in S_; are decreasing curves, while stable curves are increasing
and bounded away from the horizontal.

(H3)(4) is also satisfied since the boundaries of the homogeneity strips have been chosen to
coincide with the curves S;,,, ¢« = 1,2, £ > ko, which are uniformly transverse to the stable
cones. Moreover, 1, = 3. Item (5) of (H3) follows immediately since the series is dominated by
Zk>k0 k=273¢ < oo for all € > 0 using the fact that f = cos¢ ~ k™2 on each Hj,.

For (H4), the existence of invariant families of stable and unstable curves follows from [CZ2] or
[CM1l, Section 8.10]. Note that the curvature bounds proved there do not depend on the particulars
of smooth versus nonsmooth stadia. To establish of (H4), for T~ 'z landing near x1 and x2,
we need to use similar arguments as we did in Section |§|, because || D, T~ || ~ 1/cosp(T~'z) by

BIn fact, nj, = k' for any ¢ > 1 would work as well for the convergence of the series (7.4) and (7.5).
lywe get & = 3/5 for curves landing in one of the H; ; and £ = 1/2 for curves starting in one of the M; ,, and use
the lesser of the two exponents.
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. An estimate similar to yields the required distortion bound with py = 1/3, due to the
spacing defined by r, = 3. The cases when x € M;, are addressed by the distortion bounds in
[CM1l, Section 8.12] and yield pg = 1/2, so we take the lesser of the two exponents for the value of
po- Similarly, of (H4) holds with pp = 1/3. This completes the verification of (H1)-(H4) for
T.

It remains to verify (H5). In particular, we want to emphasize that only holds with v > 0.
Any stable curve W € W* for which T~'W is cut into an unbounded number of short stable curves
must be in one of three places: (1) T~'W lands near one of the accumulating singular points z1 or
x2 as described above; (2) W lies in one of the homogeneity regions Hj j; or (3) W lies near one of
the accumulation points x3 or x4. We proceed to prove for each of these cases.

First we address those curves landing near z;, ¢ = 1, 2, which are cut according to our homogeneity
curves 5’56 = Sin,, k > ko upon landing. Suppose that T~'W intersects H; ., k > ko. Setting
Vi = T7'W NH; p and Wy, = TV, we have |Vi| ~ k73, Jy, T ~ k=2 by and so necessarily
|[Wi| ~ k=° by bounded distortion. Thus this series satisfies the traditional one-step expansion
with Yo = 0,

Z Wel <Y CE < Chyt, (7.4)

k> ko [Vl =

for some uniform constant C' depending on the table. This can be made less than 1 by choosing kg
large. This implies (2.5) for any o € (0, 1) via the Holder inequality, so we are still free to choose
70-

Next we consider the case when W C H;y, ¢ = 1,2. Since H;; contains at most 2k + 1 cells
M; ., as described above, T~'W will be cut into at most 2k + 1 pieces by the singularity curves.
Note that by choosing kg sufficiently large, we can guarantee that 7! does not intersect any
homogeneity strips associated with any of the other components of the phase space, so there is no
additional cutting to take into consideration. Setting W,, = W N M;, and V,, = T—'W,,, we have
|[Wh| ~ n~?2 and |Vio| ~ n~! as described above. Letting n;, denote the index of Sin coinciding with
Sz{{k (ny ~ k?) we estimate the sum required for (2.5 with vo = 0, by

I < Cknt < CETL (7.5)
=0 |Vnk+j‘
As in , this can be made small by choosing kg large and implies for any v € (0,1).

Finally, we consider the case when W is cut by singular curves close to the line ¢ = ¢ (i.e. close
to the singular points x3 and x4 described above). Let x_1 = T~ 'z and for v € T,W, we denote
v_1 = DT"'w. For € M, define 7%(x) = 7(z) + ... + 7(FF12) to be the time between the
collisions at x and Ta = Flx.

Since this estimate is more delicate than the one-step expansion near z; and xo, we will use a
special scaled norm on the tangent space, defined as follows. Let A = U;—3 4 Up>n, M;, and for
v = (dr,dp) € C*(zx), define ||[v||x = |dr| when = € A, and ||v||x = Bs|dr| when = € A€, for some
constant Bs to be determined later. Since the slopes of vectors in C*(z) are bounded away from
400, we can extend this norm to be uniformly equivalent to the Euclidean norm in the tangent
space at x.

We choose ng large enough such that for any € A, T~'2 belongs to A° and T~ 'z does not
lie in any of the homogeneity regions Hj ,, £ > kg. The main reason that we can guarantee this
is because ¢g > 0. Note that this scaling does not affect our previous estimates in and .
since the neighborhoods defined by M; , with n > ng for each of the x; do not map to one another
under one iterate of 7-! in non-smooth stadia.
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Recall that for x € M, ,, @ = 3,4, its trajectory hits the other arc after n collisions with the flat
boundary under the original billiard map. Thus its free path satisfies 7" (x_1) = 2ncos g /|K| +
O(1), where O(1) < C, for some uniform positive constant C' > 0 depending on the table.

According to for v € C*(z), dp/dr > 0. Thus for x € M; ,,, using (8.3) and (8.21) in [CMI],
for v € C*(x), the expansion factor satisfies

lo-ill: _ Bscose (TH(z_1)(IK(z)| = dp/dr) |\ _ Bsr"(@-1)IK(2)]
llv]|« CoS p_1 cos ¢ oS o

+0(1) = 2Bn + O(1),

where we have used the fact that ¢_1 is approximately g for z € M;,, with n large, and cos ¢ is
bounded away from 0.
Let V,, = T~'W,,, where W,, = W N M; ,, as before. The distortion bound on W yields,

< [Vl
(W«

(2Byn + O(1))e~CalVal'/? < (2Byn + O(1))eCl V"2, (7.6)
where |V,,|. is the length of V,, measured in the adapted metric. If necessary, we increase ng
sufficiently so that Cy := CalVnol'? < 9,

Due to the facts from [CZ4] recalled earlier about the spacing and Jacobian on M; ,,, there exists
a uniform constant a > 0, such that |V,|. = an™' + O(n~2). This implies that if W € W lies
entirely in A, we have

W« a _
W= 3 Wal. = 3 Wl 152 > 221 00,

n>ngo n>ngo

Using this and again (7.6]), for any vy € (0,1), the one-step expansion estimate holds:

o |vn|*>7° W, | .
<4 = ——+0O(n . e
> <rw* V. = P00) = pree o+ O 1)

n=ng

According to (H5), we must choose vy € (0,1/ry) = (0,1/3). For definiteness and with in
mind, we choose 79 = 1/4. Thus choosing Bs; = 7 and ng sufficiently large, we can make 9 < 1.
Note that the above expression diverges when ¢ = 0, which is the traditional one-step expansion.
The definition of || - ||« increases expansion by a factor of Bs = 7 when mapping from A to A¢,
but decreases expansion by a factor of 1/7 when mapping from A€ to A. In order to overcome this
contraction factor, we formulate the following complexity assumption on the stadium.
Let Ag=1+ Tﬁin/rmax, where rp.x = max{r;,re} and Trﬁin = minxeM{TR(x)} > 0. We assume

there exists ny > 0 such that
Ayt >7 and AN (UL, T'A) = 0. (7.8)

Note that this assumption can easily be satisfied for nonsmooth stadia by choosing geometric
parameters so that Ag > 2, which forces ny = 3. Then typically, the first three iterates of the orbits
of x;, i = 1,2, are disjoint. Thus choosing ng sufficiently large we can guarantee .

This assumption guarantees that enough expansion builds up for T~™ to overcome the factor
of 1/7 encountered when mapping from A¢ to A. Thus the expansion for 7" dominates the
complexity and so (H5) is satisfied for W close to z3 and z4. The choice of ng also fixes the value
of §g in the definition of W5.

This completes the required verification of (H1)-(H5) and so completes the proof of Theorem[2.7]
via Theorem for the reduced map T™t. To pass from T to T, simply note that by ,
and , the one-step expansion is uniformly finite for 7" even if it is not contracting. Thus ||L7||5
is finite as explained in Section and Lr inherits the spectral gap from Lpn = L7
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7.2. Bunimovich tables. The verification for this class of billiards proceeds much as the class
above, except that due to the nature of the table and the unspecified location of corner points (where
the smooth arcs comprising the boundary 9@ terminate), the necessary complexity assumption
requires more conditions than (7.8)).

Since the tables we consider have both dispersing and focusing boundaries (recall that we have
assumed that there are no flat boundaries in our Bunimovich tables), they are treated by a combi-
nation of the techniques described for stadia in Section [7.1] and for dispersing billiards in Section [6}
In particular, the stable and unstable cones are defined separately on these two types of boundaries
as described in each of those two sections, using and . Given our work in Section we
define homogeneity strips on the dispersing boundaries as in with exponent r, = 3; on the
focusing boundaries we choose them to coincide with a subset of the singularity curves S;, with
exponent rp = 3 near ¢ = +7/2 as described in Section The stable/unstable cones can be
defined as in (7.2). We will not repeat the verification of (H1)-(H4) as above, but instead focus
on two main points: the verification of (H3) and (H5). We recall the structure of the singularity
sets for the return map T = F% from [CZ4].

On each component I'; x [-m/2,7/2] C M corresponding to a focusing arc I';, there are once
again 4 accumulation points for the singularity set S_; of 7!, which we shall denote by x;,
i =1,...4 as in the previous section. The first two of these points, x; and xo are created by the
same “sliding” trajectories as x; and xo described in Section [7.1] and the analysis of expansion
factors is the same. A similar analysis of expansion factors holds at dispersing boundaries as in
since we have chosen r, = 3 and the expansion upon landing near a dispersing boundary is
also of order 1/ cos (T~ 'z). Thus the series required for (H5) can be made arbitrarily small as
in and by choice of kg for all stable curves landing on dispersing boundaries and on
focusing boundaries near x; and xs.

The second two points z3 and x4 lie on the line ¢ = 0 and are created by trajectories which
run near one the diameters of the circular arc. Such trajectories make successive bounces across I';
while rotating slowly around the circle until they reach an opening through which they escape to
collide with a different arc.

As before, denote by {S; }nen the sequence of curves in S_; accumulating on z;, i = 3,4, and
by M; , the connected region in M \ S_1 bounded by S;,, and S;,—1. The curves S; ,, are distance
of order n~! from x; and are uniformly transverse to the stable cone. Thus any stable curve W
crossing M; , satisfies |[W,| :== |[W N M;,| = an™? + O(n~3). In addition, the expansion factor on
W N M, ,, under T71 is 4nr 4+ O(1), where r is the radius of the large arc [CZ4]. As before, let
Vi i=T7 W,

As before, define A = U;—3 4 Up>n, M; , and A° = M\ A. As in Section we define the scaled
norm ||v]|, for any tangent vector in 7, M. Now by repeating the same calculation as in , we
can prove the one step expansion estimate (H5) for W € W*, W C A, with ¥ < 1, B; = 7 and
Yo = 1/4.

In order to address more general W, we need to resort to a higher iterate of 1" and formulate
our complexity assumption following [CZ1]. We split the curves in S_; into primary and secondary
singularities. The secondary singularities are all those curves S;,, with n > ng for some ng chosen
below. In addition, at dispersing boundaries, we consider all the boundaries of homogeneity strips
to be secondary singularities. The primary singularities are the finitely many remaining curves in
S_1 and are denoted by S¥}. Define S¥, = U T (ST)) to be the set of primary singularity curves
for T7" and let Kp, denote the minimum number of curves in st » Which intersect at any one
point of M. The assumption on complexity for the Bunimovich table is then two-fold.

(1) There exists no > 0 sufficiently large and n; € N such that

A™ >7 and AN(UR,TA) =0 (7.9)
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where A is the minimum expansion factor in the p-metric for stable vectors under DT 1.

(2) There exists na > 0 such that
Kpp, < A™. (7.10)

Note that is the same as and guarantees that the expansion in the scaled metric has a
chance to recover when mapping from A° to A. It is easily satisfied if the orbits of the singular points
x; are disjoint for the first several iterates. On the other hand, is a complexity condition
which is necessary due to the indeterminate location of corner points on the Bunimovich table. It
now follows from [CZI] Theorem 12] and [CZ4] that T3 satisfies (H5) for some ng > 0.

Finally, we check that (H3)(1)-(5) are satisfied for this class of tables. As in Section[7.1] (H3)(1)
is satisfied for T with £ = 1/2, again using , and for T3 with £ < 27"3. Also since the boundary
of each cell M; ,, is comprised of 4 smooth curves and the maximum length of a stable curve in M; ,
goes to zero with n, (H3)(2) is satisfied. By the definition of C*(x) in and (7.2), (H3)(3)
is satisfied with t9 = 1 as before. (H3)(4) is also satisfied on focusing boundaries with r;, = 3
since the boundaries of the homogeneity strips have been chosen to coincide with the curves S; 5, ,
i =1,2, k > ko, which are uniformly transverse to the stable cones. On dispersing boundaries, the
transversality is also uniform as described in Section[6]and rj, = 3 as well. Item (5) of (H3) follows
immediately since the series is dominated by > ;. k~273¢ < oo for all € > 0 on both focusing and
dispersing boundaries, using the fact that f = cosp ~ k™2 on each Hj.

Having verified (H1)-(H5), we may conclude a spectral gap for Lns = L7? and since || Lr||g is
finite even when (H5) is not contracting as explained in Section the spectral gap follows for
L1 as well, completing the proof of Theorem
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