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Abstract. We study the statistical properties of a general class of two-dimensional hyperbolic
systems with singularities by constructing Banach spaces on which the associated transfer oper-
ators are quasi-compact. When the map is mixing, the transfer operator has a spectral gap and
many related statistical properties follow, such as exponential decay of correlations, the central
limit theorem, the identification of Ruelle resonances, large deviation estimates and an almost-sure
invariance principle. To demonstrate the utility of this approach, we give two applications to spe-
cific systems: dispersing billiards with corner points and the reduced maps for certain billiards with
focusing boundaries.

1. Introduction

The study of the statistical properties of hyperbolic systems with singularities is motivated in
large part by mathematical billiards, introduced in [Si] and since studied extensively by many
authors. A general class of such systems was introduced in the fundamental work by Katok and
Strelcyn [KS] in which the following assumptions were made on the singularity set S: the derivatives
of the map T can only grow mildly near S (bounded by a negative power of the distance to S)
and T preserves an invariant measure µ with the property that every ε-neighborhood Nε(S) of S
satisfies

µ(Nε(S)) = O(εa) (1.1)

for some constant a > 0. These together with several other mild assumptions are sufficient for the
construction of stable and unstable manifolds, their absolute continuity, and certain formulas for
the entropy of T [KS].

In later studies of finer statistical properties of billiards and related models, the fact that a = 1 in
(1.1) played a vital role in the work on dispersing billiards [BSC1, Y, Ch1], Bunimovich’s stadium
[Ma], higher-dimensional Lorentz gases [BT], systems of two hard balls of different masses [CD1],
certain abstract multidimensional models [Ch2], and others. Only recently, Chernov and Zhang
[CZ4] extended these studies to cover systems with more general singularities, i.e. with a < 1 in
(1.1), and obtained exponential decay of correlations under certain assumptions, using coupling
methods. The coupling scheme is simple and intuitive as it captures the geometrical properties of
the dynamical systems, but it can only be used under the assumption of the existence of an SRB
measure.

In this paper we present a functional analytic framework in which to study certain general
classes of hyperbolic systems with singularities in two dimensions. We drop two assumptions used
in [CZ4]: the a priori existence of an SRB measure, and the absolute continuity of the holonomy
map between unstable manifolds.1 For our class of maps, we construct Banach spaces on which the
associated transfer operators are quasi-compact. When the map is mixing, the transfer operator
has a spectral gap and many results follow immediately: exponential decay of correlations, the
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1We drop such conditions as part of our formal assumptions since they are not needed for the present approach;
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identification of Ruelle resonances, local large deviation estimates and an almost-sure invariance
principle. We remark that our large deviation estimate has a uniform rate function with respect to
any probability measure in our Banach space; this includes both Lebesgue measure and the SRB
measure for the system, even though such measures may be singular with respect to one another
(see Corollary 2.5).

The functional analytic approach we adopt in this paper traces back to classical results of Doeblin
and Fortet regarding Markov chains [DF, IM, N]. This approach was adapted to overcome the
problem of discontinuities for expanding maps by using the smoothing effect of the transfer operator
on functions of bounded variation [LY, K, Sa, Bu, T1, T2, BK]. Its extension to hyperbolic
maps followed, although the required Banach spaces were no longer spaces of functions, but of
distributions: first to Anosov diffeomorphisms [R1, R2, R3, BKL, B2, BaT, GL] and then to
piecewise hyperbolic maps [DL, BG1, BG2], and recently to the billiard map associated with a
periodic Lorentz gas [DZ1].

In addition to the many limit theorems that follow from the existence of a spectral gap mentioned
above, the quasi-compactness of the transfer operator has several important applications which
serve to highlight the strengths of this approach. It can be used to determine the stability of
statistical properties under perturbations, for example using perturbation theory [Ka] or the looser
perturbative framework of [KL], as done recently for perturbations of the Lorentz gas in [DZ2]. It
can be used to study the mixing rates of flows following the approach of [L1, BL]; indeed, a version
of the norms presented here is expected to resolve the long-standing open conjecture of exponential
decay of correlations for finite horizon billiard flows. As a final example, we mention the application
to slowly mixing systems via the renewal theory developed by Sarig [Sr].

Our purpose in this paper is to formulate the approach used for the Lorentz gas in [DZ1] in as
broad a framework as possible, which we present as abstract assumptions (H1)-(H5) in Section 2.1.
To this end, we allow tangencies between the singularity curves and stable and unstable cones (see
(H3)), and weaken the one-step expansion condition used in [DZ1] to admit more general singular-
ities of the form (1.1) with a < 1 (see (H5)). We also formulate condition (H1) on the Jacobian of
the map to allow perturbations of classical billiards, such as billiards under external forces or those
subject to twists or kicks at collisions (see [DZ2]). In order to accommodate this more general set-
ting, we have adapted and generalized the Banach space norms used in [DZ1] and prove new growth
lemmas to derive the necessary Lasota-Yorke inequalities. To demonstrate the broad applicability
of these abstract results, we then apply this framework to dispersing billiards with corner points as
well as to the reduced maps for two types of billiard systems with focusing boundaries that were
studied in [CZ4]: nonsmooth stadia and Bunimovich tables. We also recover all the results from
[DZ1] for both the finite and infinite horizon Lorentz gas in this general framework.

The paper is organized as follows. In Section 2, we state our abstract conditions (H1)-(H5),
define the Banach spaces on which we will study the transfer operator and state our main results. In
Section 3, we prove the necessary estimates to control the cutting generated by singularities in the
presence of the weakened one-step expansion condition (H5) and prove preliminary properties of
our Banach spaces including embeddings and compactness. Section 4 contains the required Lasota-
Yorke inequalities and in Section 5 we characterize the peripheral spectrum and prove some related
statistical properties, including limit theorems. Section 6 contains the application to billiards with
corner points; Section 7 applies the present framework to the reduced maps corresponding to the
two types of billiards with focusing boundaries mentioned above.

2. Setting and Statement of Results

2.1. Assumptions on the hyperbolic map T . We begin by defining the class of hyperbolic maps
to which our results apply. Let M be a smooth two-dimensional Riemannian manifold (possibly
with boundary and not necessarily connected). We consider maps T defined on an open subset
of M which are piecewise hyperbolic in the sense described precisely below. Let d denote the
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Riemannian metric on M and for a curve W , let dW denote the metric induced by restricting d to
W . The corresponding unnormalized arclength measure on W is denoted by mW .

(H1) Smoothness of the map. Let 1−η0 ≤ κ ≤ 1, where η0 will be specified after the statement
of Proposition 2.3 in Section 2.4. Assume f ≥ 0 is a C1 smooth function on M and f0 ≥ κ is a
piecewise C1 function such that

|DxT | := | detDxT | =
f(x)

f(Tx)
· f0(x), (2.1)

wherever DxT exists. We assume that T is nondegenerate in the sense that the level sets of f are
finite unions of smooth compact curves.

When f0 ≡ 1, assumption (2.1) implies that the map T preserves the measure fdm on the phase
space M , where m denotes the Riemannian volume on M . This is the case for classical billiards.
The inclusion of f0 allows us to apply this framework to perturbations of billiards; for example, to
dispersing billiards subject to external forces and twists or kicks at reflections as in [DZ2].

(H2) Hyperbolicity. Let S0 be a finite union of compact C2 smooth curves in M such that
∂M ∪ f−1(0) ⊂ S0. Denote2 S±1 = S0 ∪ T∓1S0. We require that T : M \ S1 → M \ S−1 be a C2

diffeomorphism. Note that while S0 is assumed to be a finite union of compact smooth curves, S±1

may have countably many such curves.
We assume there exist two families of cones Cu(x) (unstable) and Cs(x) (stable) in the tangent

spaces TxM , continuous on the closure of each component of M \ S0, such that for all x ∈ M the
angle between Cu(x) and Cs(x) is uniformly bounded away from zero. In addition there exists
Λ > 1 with the following properties:

(1) DxT (Cu(x)) ⊂ Cu(Tx) and DxT
−1(Cs(x)) ⊂ Cs(T−1x) whenever DxT and DxT

−1 exist.
(2) ‖DxTv‖∗ ≥ Λ‖v‖∗, ∀v ∈ Cu(x) and ‖DxT

−1v‖∗ ≥ Λ‖v‖∗, ∀v ∈ Cs(x), where ‖ · ‖∗ is an
adapted norm, uniformly equivalent to the Euclidean norm, ‖ · ‖.

In order to control distortion when ‖DxT
−1v‖, v ∈ Cs(x), becomes unbounded, we introduce

the concept of homogeneity regions, inspired by the study of billiards. We fix an exponent rh > 1
which will determine the spacing of the boundaries of the homogeneity regions.3 First, we define
these regions in a neighborhood of f−1(0). Let SH0 = f−1(0) and SHk = f−1(k−rh+1) for k > k0,

where k0 is a fixed integer with value chosen from (H5). Due to (H1), SH0 and SHk are finite unions

of smooth curves. The region between SHk and SHk+1 is called a homogeneity region with index k,

and denoted as Hk. It is not essential here that SHk be precisely f−1(k−rh+1); in applications, it

may be convenient to allow some flexibility, SHk ≈ f−1(k−rh+1); see for example our application to
nonsmooth stadia in Section 7.

It may be that ‖DxT
−1‖ becomes unbounded even when f(T−1x) 6= 0. This may happen,

for example, in the area-preserving case |DxT | = 1. (See [W, BBN] for an example of such a
map derived from a system of bouncing balls.4) In this case, we may define homogeneity regions
analogous to Hk above with the same spacing exponent. Thus we may define homogeneity regions
in the image of wherever the expansion becomes unbounded, and in particular always near f−1(0).
In all cases, however, the Hk must accumulate on a finite number of smooth, compact curves in
S0 as defined in (H2). We call this set of curves SH0 and allow the Hk to accumulate at single
points. In applications, the decision whether to introduce these extra cuts will depend on whether

2 If for some set A, there exists x ∈ A, such that T−1x is not well-defined, we extend our notation by T−1A :=
{x ∈M : Tx ∈ A}.

3The standard choice for dispersing billiards is rh = 3, following [BSC1, BSC2].
4We are not claiming this system as an application of our method at the present time, but rather that we expect

axioms (H1)-(H5) will apply, possibly with minor modifications.
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the singularities of the map already provide the required bounded distortion (see Section 7 for
an example of a map where additional cuts are not required even though the derivative becomes
unbounded). The required properties of the homogeneity regions Hk are listed in (H3)-(H5) below.
We denote by Hk0 the region in M that comprises the complement of the closures, M \ (∪k>k0Hk).

We say that a smooth curve W ⊂ M is a stable (unstable) curve if at every point x ∈ W the
tangent line TxW belongs in the stable (unstable) cone Cs(x) (Cu(x)). We call a stable (unstable)
curve homogeneous if it lies entirely in one homogeneity region Hk. We will work with families of
homogeneous stable and unstable curves, Ws and Wu, defined below in (H4).

(H3) Structure of Singularities.

(1) There exist constants C0 > 0 and ξ ≤ 1 such that if W ∈ W s and T−1 is smooth on W
such that T−1W ∈ Ws, then |T−1W | ≤ C0|W |ξ.

(2) If D is a connected component of M\S−1, then ∂D consists of finitely many smooth compact
curves. Moreover, for each ε > 0, there are at most finitely many connected components of
M \ S−1 containing stable curves of length greater than ε.

(3) There exist constants C1 > 0 and 0 < t0 ≤ 1 such that for any stable curve W and any
smooth curve S ⊂ S−n, we have mW (Nε(S) ∩W ) ≤ C1ε

t0 for all ε > 0 sufficiently small,
where Nε(·) denotes the ε-neighborhood of a set in M .

(4) The homogeneity curves SHk , k ≥ k0, satisfy the same weak transversality condition as in
(3) above. In addition, there exists C2 > 0 such that for all k > k0, if W ∈ Ws with
W ⊂ Hk, then |W | ≤ C2k

−rh .
(5) On each connected component of Hk ∩ (M \ S0), k > k0, we choose a smooth foliation
{Wξ}ξ∈Ek ⊂ Ws whose elements completely cross that component of Hk ∩ (M \S0). This is
possible by (H3)(4) above. We decompose the Riemannian volume m on this component
into dm = λ(dξ)ρξdmW where mW is arclength on Wξ, ρξ is a smooth function depending
on the choice of foliation, and λ is the transverse measure on Ek. We assume that∑

k>k0

∫
Ek

f(Wξ)|Wξ|εdλ(ξ) <∞ for all ε > 0,

where f(Wξ) is the average value of f on Wξ (taken with respect to arclength).5

Since the items in (H3) are quite technical, we briefly explain the significance of each and
where it is used in our proofs. (H3)(1) is used in the Lasota-Yorke estimate in Section 4.3. The
assumption on the finiteness of ∂D in (H3)(2) is used in Lemma 3.6. The shortness of stable curves
from (H3)(2) is used in the graph transform argument of Lemma 3.2.

The weak transversality assumptions in (H3)(3) and (H3)(4) are standard assumptions to
control the interaction between hyperbolicity and singularities; they are essential throughout this
paper. The introduction of the exponent t0 allows for the types of singularity sets with ‘non-
degenerate tangencies’ found in billiards with corner points. Of course, if Cs(x) is uniformly
transverse to S−n, then one can take t0 = 1; however, without loss of generality in the arguments
that follow we will take t0 ≤ 1/2 as it simplifies the proof of Lemma 3.5 which otherwise would
have to be split into two cases.

The second part of (H3)(4) is a spacing requirement for the homogeneity strips so that sta-
ble curves in strips of high index are short. This is necessary for the graph transform argument
(Lemma 3.2), approximation by smooth functions in our Banach space (Lemma 3.5) and compact-
ness (Lemma 3.9). Finally, (H3)(5) is a kind of summability condition over homogeneity strips

5The assumption (H3)(5) is automatically satisfied when rh ≥ 2 for the homogeneity strips Hk defined by
f−1(k−rh+1) as long as λ(Ek) remains uniformly bounded. For then using (H3)(4), the series is majorized by∑
k≥k0 k

−rh+1−εrh <∞. This is the case for the billiards we consider in Sections 6 and 7.
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used only in the proof of Lemma 3.7 in order to control the distributional norm of elements of our
Banach spaces. It is easily satisfied for the billiards considered in Sections 6 and 7.

Remark 2.1. One can replace (H3)(1) with the following assumption on the blowup of the deriv-
ative: There exist constants C0 > 0 and 0 < a < 1 such that,

‖DxT
−1v‖ ≤ C0‖v‖d(x,S−1)−a for all v ∈ Cs(x), (2.2)

wherever DxT
−1 is defined.

This, together with (H3)(3), yields the bound |T−1W | ≤ C|W |t0−a, which is useful if a < t0.

(H4) Invariant families of stable and unstable curves. LetWs denote the set of homogeneous
C2 stable curves with length less than some positive constant δ0 (to be chosen in (2.6)) and with
curvature bounded above by some uniform constant B > 0. We assume there exists a choice of B
such that Ws is invariant under T−1 in the following sense: The connected components of T−1W
belong to Ws whenever W ∈ Ws (up to subdivision of the connected components to guarantee
length at most δ0).

We require the following distortion bounds: There exist p0 ∈ (0, 1] and C3 ≥ 1 such that if
W ∈ Ws is such that T−1W ∈ Ws or W ∈ Wu is such that T−1W ∈ Wu, then for any x, y ∈W ,

‖DxT
−1 −DyT

−1‖ ≤ C3‖DxT
−1‖max{d(x, y)p0 , d(T−1x, T−1y)p0}. (2.3)

We also require the analogous distortion bound for the full Jacobian of the map. If W ∈ Ws is
is such that TW ∈ Ws or if W ∈ Wu is such that TW ∈ Wu, then for any x, y ∈W ,∣∣∣∣ |DxT |

|DyT |
− 1

∣∣∣∣ ≤ C3 max{dW (x, y)p0 , dW (Tx, Ty)p0}. (2.4)

Our final assumption is on the complexity of the singularities of T−1. It says that the expansion
due to hyperbolicity dominates the cutting due to singularities, which is a standard assumption for
hyperbolic maps with singularities. The version we use here is the weakened form introduced in
[CZ4] as described in the introduction.6

(H5) One-step expansion. Let W ∈ Ws and partition the connected components of T−1W into
maximal pieces Vi such that each Vi is a homogeneous stable curve (not necessarily of length at
most δ0). Let |JViT |∗ denote the minimum contraction on Vi under T in the metric induced by the
adapted norm ‖ · ‖∗, and let |W |∗ denote the length of W ∈ Ws in this metric. We assume there
exists a constant γ0 ∈ [0, 1/rh) and a choice of k0 for the homogeneity strips such that

lim sup
δ→0

sup
W∈Ws

|W |<δ

∑
i

(
|Vi|∗
|W |∗

)γ0
|JViT |∗ < 1. (2.5)

In light of (H5), we fix δ0 > 0 in the definition of Ws sufficiently small that,

sup
W∈Ws

∑
i

(
|Vi|∗
|W |∗

)γ0
|JViT |∗ =: θ∗ < 1. (2.6)

In the proof of Lemma 3.2 (which is essentially a graph transform argument), the index k0 from
(H5) may be increased and the maximum length scale δ0 may be decreased, but this will not affect
θ∗ fixed above.

6Note that our parameter γ0 is 1− q in the notation of [CZ4].
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2.2. Transfer Operator. Notice that if ψ is a smooth test function, then ψ ◦ T is only piecewise
smooth due to the singularities of T . For this reason, we introduce scales of spaces, defined using the
invariant family of curves Ws from (H4), on which to describe the action of the transfer operator
L associated with T .

Define T−nWs to be the set of homogeneous stable curves W such that Tn is smooth on W
and T iW ∈ Ws for 0 ≤ i ≤ n. Then T−nWs ⊂ Ws and it follows from (H4) that the connected
components of T−nW belong to Ws whenever W ∈ Ws (up to subdividing long pieces).

We denote (normalized) Lebesgue measure on M by m. For W ∈ T−nWs, a complex-valued
test function ψ : M → C and 0 < p ≤ 1, define Hp

W (ψ) to be the Hölder constant of ψ on
W with exponent p measured in the metric dW . Define Hp

n(ψ) = supW∈T−nWs H
p
W (ψ) and let

C̃p(T−nWs) = {ψ : M → C : |ψ|∞ + Hp
n(ψ) < ∞}, denote the set of bounded complex-valued

functions which are Hölder continuous on elements of T−nWs. The set C̃p(T−nWs) equipped with
the norm |ψ|Cp(T−nWs) = |ψ|∞+Hp

n(ψ) is a Banach space. We define Cp(T−nWs) to be the closure

of C̃1(T−nWs) in C̃p(T−nWs).7

It follows from (3.26) that if ψ ∈ C̃p(T−(n−1)Ws), then ψ ◦ T ∈ C̃p(T−nWs). Similarly, if

ζ ∈ C̃1(T−(n−1)Ws), then ζ ◦ T ∈ C̃1(T−nWs). These two facts together imply that for p < 1, if

ψ ∈ Cp(T−(n−1)Ws), then ψ ◦ T ∈ Cp(T−nWs).
If h ∈ (Cp(T−nWs))′, is an element of the dual of Cp(T−nWs), then L : (Cp(T−nWs))′ →

(Cp(T−(n−1)Ws))′ acts on h by

Lh(ψ) = h(ψ ◦ T ), ∀ψ ∈ Cp(T−(n−1)Ws).

If h ∈ L1(M,m), then h is canonically identified with a signed measure absolutely continuous
with respect to Lebesgue, which we shall also call h, i.e.,

h(ψ) =

∫
M
ψhdm.

With the above identification, we write L1(M,m) ⊂ (Cp(T−nWs))′ for each n ∈ N. Then restricted
to L1(M,m), L acts according to the familiar expression

Lnh = h ◦ T−n |DTn(T−n)|−1 for any n ≥ 0 and any h ∈ L1(M,m).

2.3. Definition of the Norms. The following norms are defined via integration on the set of
admissible stable curves Ws given by (H4). In Section 3.1 we define precisely the notion of
a distance dWs(·, ·) between such curves as well as a distance dq(·, ·) defined among functions
supported on these curves.

Given a curve W ∈ Ws, set |W | = mW (W ), where as before mW denotes the (unnormalized)
arclength measure on W . With a slight abuse of notation, we define f(W ) to be the average value
of f(x) on W ∈ Ws, i.e. f(W ) = |W |−1

∫
W f(x) dmW , where f is defined by (2.1).

For 0 ≤ p ≤ 1, as in Section 2.2 we denote by C̃p(W ) the set of continuous complex-valued

functions on W with Hölder exponent p and by Cp(W ) the closure of C̃1(W ) in the C̃p-norm8:
|ψ|Cp(W ) = |ψ|C0(W ) + Hp

W (ψ), where Hp
W (ψ) is the Hölder constant of ψ along W . Notice that

with this definition, |ψ1ψ2|Cp(W ) ≤ |ψ1|Cp(W )|ψ2|Cp(W ). We define C̃p(M) and Cp(M) similarly.
For α, p ≥ 0, define the following norms for test functions,

|ψ|W,α,p := |W |α · f(W ) · |ψ|Cp(W ).

We now fix the following choices of parameters for our norms, based on (H1)-(H5): First choose
α, γ > 0 such that γ0 < γ < α < 1/rh, where γ0 is from (H5) and rh determines the spacing of Hk;

7Here by C̃1(Ws) we mean to indicate C̃p(Ws) with p = 1, i.e. functions which are Lipschitz on elements of Ws.
8Note that while Cp(W ) may not contain all of C̃p(W ), it does contain Cp

′
(W ) for all p′ > p.
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next choose 0 < q < p ≤ p0 such that p < γ, where p0 is the Holder exponent from (H4); finally,
choose

0 < β < min
{
p− q, ξt0(α− γ), t0(α−γ)

2(1−t0) ,
1
rh
− α

}
, (2.7)

where ξ is from (H3)(1) and t0 ≤ 1/2 is from (H3)(2).
Given a function h ∈ C1(M), we define the weak norm of h by

|h|w := sup
W∈Ws

sup
ψ∈Cp(W )
|ψ|W,γ,p≤1

∫
W
hψ dmW . (2.8)

We define the strong stable norm of h as

‖h‖s := sup
W∈Ws

sup
ψ∈Cq(W )
|ψ|W,α,q≤1

∫
W
hψ dmW (2.9)

and the strong unstable norm of h as

‖h‖u := sup
ε≤ε0

sup
W1,W2∈Ws

dWs (W1,W2)≤ε

sup
ψi∈Cp(Wi)
|ψi|Wi,γ,p≤1

dq(ψ1,ψ2)≤ε

1

εβ

∣∣∣∣∫
W1

hψ1 dmW −
∫
W2

hψ2 dmW

∣∣∣∣ (2.10)

where ε0 > 0 is chosen less than δ0, the maximum length of W ∈ Ws which is determined by (2.6).
Here dWs(W1,W2) and dq(ψ1, ψ2) are defined in Section 3.1. We then define the strong norm of h
by

‖h‖B = ‖h‖s + cu‖h‖u
where cu is a small constant chosen in (2.14).

We define B to be the completion of C1(M) in the strong norm and Bw to be the completion of
C1(M) in the weak norm.

2.4. Statement of Results. We assume throughout that T satisfies assumptions (H1)-(H5) as
described in Section 2.1. The first result gives a more concrete description of the abstract spaces
B and Bw introduced above.

Lemma 2.2. For λ > β/(1− β) and each n ≥ 0, Cλ(M) ↪→ B ↪→ Bw ↪→ (Cp(T−nWs))′, and each
of the embeddings is continuous and injective. Moreover, L is well defined as a continuous operator
on both B and Bw.

Proof. The continuity of the embeddings follows from the following three estimates, respectively:
‖h‖B ≤ C|h|Cλ(M) by (3.23) in the proof of Lemma 3.5, | · |w ≤ ‖ · ‖B by definition of the norms,

and |h(ψ)| ≤ C|h|w|ψ|Cp(T−nWs) from Lemma 3.7.
The injectivity of the first embedding is immediate while that of the second follows from the

fact that our test functions for ‖ · ‖s are in Cq(M) rather than C̃q(M). The injectivity of the third
embedding follows from Lemma 3.8 since (Cp(T−nWs)′ ⊂ (Cp(M))′ for each n ≥ 0.

By Lemma 3.6, if h ∈ C1(M), then Lh ∈ B. Indeed, the estimates of Section 4 prove that
‖Lh‖B ≤ C‖h‖B for h ∈ C1(M). Now identify g ∈ B with a Cauchy sequence {hn}n≥0 ⊂ C1(M).
Since L is bounded when applied to functions in C1(M), it follows that {Lhn}n≥0 is a Cauchy
sequence in B. By the injectivity of the inclusion B ↪→ (Cp(T−nWs))′, n ≥ 0, we identify its limit
with Lg and so ‖Lg‖B = limn ‖Lhn‖B ≤ limnC‖hn‖B = C‖g‖B. Thus L is bounded and therefore
continuous on B. A similar argument holds for Bw. �

The following proposition is proved in Section 4.
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Proposition 2.3. Let Λ > 1 be the minimum expansion from (H2)(2), let κ ≤ 1 be from (H1),
and let δ0 > 0, θ∗ < 1 be constants defined by (2.6). There exists C > 0 such that for all h ∈ B
and n ≥ 0,

|Lnh|w ≤ Cκ−n|h|w , (2.11)

‖Lnh‖s ≤ C(θ
n/s0
∗ + Λ−qn)κ−n‖h‖s + Cδγ−α0 κ−n|h|w , (2.12)

‖Lnh‖u ≤ CΛ−βnκ−n‖h‖u + Cnκ−n‖h‖s , (2.13)

where s0 = 1−γ0
1−α .

We now state the restriction on η0 referred to in (H1). We take η0 > 0 to be sufficiently small

that 1− η0 > max{Λ−β, θ1/s0
∗ ,Λ−q}.

Then since κ ≥ 1−η0, we may choose 1 > σ0 > κ−1 max{Λ−β, θ1/s0
∗ ,Λ−q} and there exists N ≥ 0

such that

‖LNh‖B = ‖LNh‖s + cu‖LNh‖u ≤
σN0
2
‖h‖s + Cδγ−α0 κ−N |h|w + cuσ

N
0 ‖h‖u + cuCNκ

−N‖h‖s

≤ σN0 ‖h‖B + Cδγ−α0 κ−N |h|w
(2.14)

provided cu is chosen small enough with respect to N . The above represents the traditional Lasota-
Yorke inequality.

The final ingredient in the strategy to prove the quasi-compactness of the operator L is the
relative compactness of the unit ball of B in Bw. This is proven in Lemma 3.9. It thus follows by
standard arguments (see [B1, HH]) that the essential spectral radius of L on B is bounded by σ0,
while the spectral radius is at most κ−1.

Despite this, we prove in Section 5 that the spectral radius is in fact 1, along with the following
theorem which characterizes the spectral properties of L and their consequences for the statistical
properties of T . Let Πθ denote the eigenprojector onto Vθ, the eigenspace of L in B corresponding
to the eigenvalue e2πiθ.

Theorem 2.4. The spectral radius of L on B is 1 while its essential spectral radius is bounded
by σ0 < 1. The peripheral spectrum of L on B consists of finitely many cyclic groups with no
Jordan blocks. The maps {Tn}n∈N admit only finitely many physical measures9, they form a basis
for V := ⊕θVθ and the cycles correspond to the cyclic groups. Moreover,

(1) Each element of V is a signed measure absolutely continuous with respect to the probability

measure µ := limn→∞
1
n

∑n−1
i=0 Lim. In particular, all the physical measures are absolutely

continuous with respect to µ.
(2) Let SH0 = S0∪(∪k≥k0SHk ) and SH±n = ∪ni=0T

∓i(SH0 ). If µ ∈ V and SH−1,ε is an ε-neighborhood

of SH−1, then for each ε > 0, µ(SH−1,ε) ≤ Cεξt0(α−γ) for some uniform constant C. In

particular, µ(∪n∈ZTn(SH−1,εn−2/ξt0(α−γ))) ≤ Cε
ξt0(α−γ) and µ(S±n) = 0.

(3) The supports of the physical measures correspond to the ergodic decomposition with respect
to Lebesgue.

(4) If (T, µ) is ergodic, then 1 is a simple eigenvalue.

The next three items all assume that (Tn, µ) is ergodic for all n ≥ 1.

(5) If (Tn, µ) is ergodic for all n, then 1 is the only eigenvalue of modulus one and L enjoys a
spectral gap. For any probability measure ν ∈ B, we have limn→∞ ‖Lnν − µ‖B = 0, and the
convergence is at an exponential rate.

9An ergodic, invariant probability measure µ is called a physical measure if there exists a positive Lebesgue measure

set Bµ, with µ(Bµ) = 1, such that lim
n→∞

1

n

n−1∑
i=0

f(T ix) = µ(f) for all x ∈ Bµ and all continuous functions f .
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(6) Let λ > max{p, β/(1 − β)}, where p and β are from Section 2.3, and suppose P is a
partition of M satisfying the assumptions of Lemma 5.3. If φ is a function satisfying
supP∈P |φ|Cλ(P ) <∞ and ψ ∈ Cp(T−kWs) for some k ≥ 0, then∣∣∣ ∫

M
φψ ◦ Tndµ−

∫
M
φdµ

∫
M
ψdµ

∣∣∣ ≤ Cσn1 ( sup
P∈P
|φ|Cλ(P )

)
(|ψ|∞ +Hp

k(ψ))

for some σ1 < 1 and all n ≥ 0.
(7) The Fourier transform of the correlation function (sometimes called the power spectrum)

admits a meromorphic extension in the annulus {z ∈ C ; σ0 < |z| < σ−1
0 } and the poles

(Ruelle resonances) correspond exactly to the eigenvalues of L, where σ0 < 1 is from (2.14).

When T has a spectral gap, the following limit theorems (among others) follow by standard

methods. For a function g on M , define Sng =
∑n−1

k=0 g ◦ T k.

Corollary 2.5. Assume T has a spectral gap. As in Theorem 2.4, let λ > max{p, β/(1− β)} and
suppose P is a partition of M satisfying the assumptions of Lemma 5.3.

(a) (Local large deviation estimate.) Let g satisfy supP∈P |g|Cλ(P ) <∞. For any (not necessar-

ily invariant) probability measure ν ∈ B,

lim
ε→0

lim
n→∞

1

n
log ν

(
x ∈M :

1

n
Sng(x) ∈ [t− ε, t+ ε]

)
= −I(t)

where the rate function I(t) is independent of ν ∈ B, and t is in a neighborhood of the mean
µ(g).

(b) (Vector-valued almost-sure invariance principle.) Suppose g : M → Rd is an Rd-valued
observable with µ(g) = 0 and such that supP∈P |gi|Cλ(P ) < ∞ for each of its component

functions gi, i = 1, . . . , d. Distribute (g ◦ T j)j∈N according to a probability measure ν ∈ B.

Then there exists a probability space Ω with random variables {Xn} satisfying Sng
dist.
= Xn,

and a Brownian motion W with mean 0 and covariance matrix Σ2 such that

Xn = W (n) + o(nr) for any r > 1/4 almost-surely in Ω.

Theorem 2.4 and Corollary 2.5 are proved in Section 5.

2.4.1. Application to Dispersing Billiards with Corner Points. We apply our abstract framework to
dispersing billiards with corner points. Let Q ⊂ R2 be a compact region whose boundary consists
of finitely many C3 curves positioned so that they are convex inward to Q with strictly positive
curvature. We assume the interior of Q is connected, but not necessarily simply connected. Thus
the boundary of Q comprises a finite number b0 of connected components, Γi and each Γi consists
of a finite number of smooth curves as described above. The intersections of the smooth curves
comprising ∂Q are called corner points and we assume that all such intersections are transverse,
i.e. the angle at each corner point is positive.10

We consider the billiard flow on the table Q induced by a particle traveling at unit speed and
undergoing elastic collisions at the boundaries. The phase space for the billiard flow is M =
Q×S1/∼ with the conventional identifications at the boundaries. DefineM = ∪b0i=1(Γi×[−π/2, π/2])
to be a union of cylinders. The billiard map F : M → M is the Poincaré map corresponding
to collisions with the scatterers. We will denote coordinates on M by (r, ϕ), where r ∈ Γi is
parametrized by arclength (oriented according to convention so that Q is always on the left when
traversing ∂Q in the positive direction) and ϕ is the angle that the velocity vector at r makes with
the normal pointing into the domain Q just after the moment of collision. F preserves a measure
µSRB defined by dµSRB = c cosϕdr dϕ on M , where c is the normalizing constant.

10In the presence of cusps (corner points whose angle is zero), it was proved in [CM2, CZ3] that such billiards
have only polynomial decay of correlations.
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Chernov [Ch1] proved exponential decay of correlations for billiards with corner points under an
additional complexity assumption, which now can be removed due to the recent advance contained
in [DT]. Here we apply our approach based on the spectral analysis of the transfer operator
by establishing (H1)-(H5) for an iterate of the map F . In addition to exponential decay of
correlations, the present method also implies a wide variety of other limit theorems, including
those given by Corollary 2.5. Such limit theorems with respect to the smooth invariant measure
were already proved using Young towers ([MN1, MN2, RY]) but the extension to non-invariant (and
even singular) measures is new for this class of maps. The following theorem is proved in Section 6.

Theorem 2.6. Under the assumptions above, there exists n1 ∈ N such that T := Fn1 satisfies
properties (H1)-(H5). In terms of the quantities introduced there: in (H1), f = cosϕ, f0 ≡ κ = 1;
in (H3), ξ = (3/5)n1, t0 = 1/2, and rh = 3; in (H4), p0 = 1/3; in (H5), γ0 = 0.

Fixing the choice of constants in the norms according to Section 2.3 defines a Banach space B
on which LF is quasi-compact and enjoys a spectral gap. Thus all the items of Theorem 2.4 and
Corollary 2.5 apply to the billiard map F .

2.4.2. Application to Certain Billiards with Focusing Boundaries. Next we consider two specific
classes of billiards that were studied in [CZ4]. The first is a non-smooth stadium, which is a
convex domain Q bounded by two parallel straight segments and two minor circular arcs (i.e., arcs
smaller than a semicircle) with radii r1 ≤ r2. We assume that Q satisfies the standard Bunimovich
assumptions [Bu], i.e. the complement of each arc in ∂Q to a full circle crosses both straight
segments in ∂Q, but does not cross the other arc. We will also need a complexity assumption,
which is easily satisfied for for certain choices of the geometric parameters for this type of stadium;
this is formulated precisely in (7.8) of Section 7.1.

We present the application to non-smooth stadia rather than the standard smooth stadium in
order to demonstrate the wider applicability of our weakened one-step expansion condition (H5).
It is known that (H5) is satisfied for the smooth stadium with γ0 = 0 (the traditional one-step
expansion), while for non-smooth stadia, it fails. Thus we need to choose γ0 > 0 in (H5) [CZ4].

Our second class of billiards corresponds to Bunimovich tables [Bu, CM1] whose focusing bound-
aries contain major arcs (i.e. arcs greater than a semicircle). Such arcs add a new type of ‘bad spot’
where the hyperbolicity is weak due to nearly diametrical reflections, see [CZ1]. For simplicity, we
assume that the major arcs are less than 240o, to prevent even further technical complications. Also
we assume that the boundary components are either focusing or dispersing, and that they intersect
each other transversally (do not make cusps). Finally, we assume that every focusing component
Γi is an arc of a circle such that there are no points of ∂Q on that circle or inside it, other than
the arc Γi itself; this is known as Bunimovich’s Defocusing Condition. Finally, we formulate the
required complexity assumption on the billiard table as (7.9) and (7.10) of Section 7.2.

For both types of billiards, we set M = ∪iΓi × [−π/2, π/2], where Γi denote the smooth compo-
nents of ∂Q, and let F : M →M denote the collision map as in Section 2.4.1. We adopt the same
canonical coordinates (r, ϕ) as in Section 2.4.1 and F preserves the same smooth measure µSRB.
Under our assumptions, in each case the billiard dynamics is hyperbolic, ergodic, and mixing.

For billiards with focusing boundary components, the hyperbolicity may be weak during long
series of successive reflections along certain trajectories. To study the mixing rates, one needs to
find and remove the spots in the phase space where expansion (contraction) slows down. Such
spots come in several types and are easy to identify, for example, see [CZ1] and [CM1, Chapter 8].
Traditionally, the collision space can be naturally divided into focusing, dispersing and neutral
parts:

M0 = {(r, ϕ) ∈M : r ∈ ∂0Q}, M± = {(r, ϕ) ∈M : r ∈ ∂±Q},
where ∂0Q is the union of flat boundaries, ∂−Q contains focusing boundaries and ∂+Q corresponds
to dispersing boundaries. Let

M̄ = {x ∈M− : π(x) ∈ Γi, π(Fx) ∈ Γj , j 6= i} ∪M+, (2.15)
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where π(x) denotes the projection onto the position coordinate. Note that M̄ contains only the
last collisions with each focusing arc. The reduced map T : M̄ → M̄ is the first return map to M̄
and preserves the measure µSRB conditioned on M̄ , which we denote by µ0 = [µSRB(M̄)]−1µSRB.
Furthermore, T has uniform expansion and contraction, since we omit all collisions too close to the
‘bad spots’ in the collision space; however, T has a larger singularity set than the original map.

We remark that in [CM1, CZ1], M̄ is defined to contain only the first collision with each focusing
arc rather the last collision that we have chosen here. We make this choice for M̄ since we are
interested in the propagation of stable curves under T−1. Thus by symmetry, the properties for
unstable curves mapped forward in the first entry space defined in [CM1, CZ1] will hold for stable
curves mapped backward in the last exit space we define here. Indeed, our definition of M̄ coincides
with that used in [BSC2, Ma].

To characterize the mixing rates for the original billiard maps, it is essential to prove the reduced
system (T, M̄, µ0) enjoys exponential decay of correlations. Chernov and Zhang [CZ4] proved
exponential decay of correlations for these reduced systems under the same assumptions as above.
Here we use our approach based on the spectral analysis of the transfer operator permitted by
establishing (H1)-(H5) for the map T . As before, this method also allows us to apply the limit
theorems of Corollary 2.5 to the reduced map T . Note that because the original map F has
polynomial decay of correlations, the spectral gap for LT does not imply a spectral gap for LF .
This is in contrast to the case of dispersing billiards with corner points described in Theorem 2.6
in which we are able to obtain a spectral gap for LF . The following theorem is proved in Section 7.

Theorem 2.7. For the two types of reduced systems (T, M̄, µ0) described above, there exists n1 ∈ N
such that the map T1 = Tn1 satisfies properties (H1)-(H5). In terms of the quantities introduced
there, in (H1), f = cosϕ, f0 = κ = 1; in (H3), ξ = (1

2)n1, t0 = 1, and rh = 3; in (H4), p0 = 1/3;
in (H5), γ0 can be taken to be any number in (0, 1/3), but for definiteness we choose γ0 = 1/4.

Fixing the choice of constants in the norms according to Section 2.3 defines a Banach space B
on which LT is quasi-compact and enjoys a spectral gap. Thus all the items of Theorem 2.4 and
Corollary 2.5 apply to T .

3. Preliminary Estimates and Properties of the Banach Spaces

3.1. Representation of Admissible Stable Curves via Charts. Recall that SH0 = S0 ∪
(∪k≥k0SHk ). On each connected component of M \ SH0 , by (H2) we may choose a finite num-

ber of coordinate charts {χj}Kj=1, whose domains Rj depend on whether they contain part of a

curve in SH0 .
If χj maps only to the interior of M \ SH0 , then Rj = (−rj , rj)2. If χj maps to a part of the

boundary of SH0 , then we take Rj to be (−rj , rj)2 restricted to one side of a C1 curve (the preimage
of the boundary curve or singularity) which we position so that it passes through the origin in Rj .
On the other hand, if the image of χj contains a point of intersection of two boundary curves, we
place this intersection point at the origin and consider Rj to be (−rj , rj)2 intersected with one
of the sectors created by the intersection (we use a separate chart for each sector). Finally, in
homogeneity strips of high index, charts will have two nonintersecting smooth curves which map
to part of the boundary of Hk. In these cases, the domain of the chart will be the usual square
intersected with the region between these two curves.

Let Es(x) and Eu(x) denote the stable and unstable subspaces at x respectively. We denote by
yj the centroid of Rj and construct each χj to satisfy,

(a) Dχj(yj) is an isometry and the C2 norms of χj and χ−1
j are bounded by a constant Cc > 0

on Rj .
(b) Dχj(yj) · (R× {0}) = Es(χj(yj)) and Dχj(yj) · ({0} × R) = Eu(χj(yj)).
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(c) There exists aj < 1 such that the cone Csj = {u + v ∈ R2 : u ∈ R × {0}, v ∈ {0} ×
R, ‖v‖ ≤ aj‖u‖} has the following property: For x ∈ Rj such that χj(x) /∈ SH0 , Dχj(x)Csj ⊇
Cs(χj(x)). Similarly, there exists an unstable cone in the chart, containing the vertical
direction, and enjoying the analogous property with respect to Cu(x).

(d) M \ SH0 is covered by the sets {χj(Rj ∩ (− rj
2 ,

rj
2 )2)}j .

Note that although this collection of charts is finite on each component of M \ SH0 , it forms a
countable cover of M \ SH0 . Also, these charts do not take into account cuts necessitated by S−1

since we use them only to represent curves in Ws and Wu and not to iterate the dynamics. When
we do iterate the dynamics, we must use smaller charts and it is a consequence of Lemma 3.2 (graph
transform argument) that for k large enough, on each component of Hk these smaller charts can
be chosen large enough to cross Hk completely in the direction of the stable cone.

Let r0 = min1≤j≤K rj > 0 and a0 = max1≤j≤K aj < 1. Fix B < ∞ and consider the set of
functions

Ξ := {F ∈ C2([−r0, r0],R) : F (0) = 0, |F |C1 ≤ a0, |F |C2 ≤ B}.

Assumption (H4) implies that we may realize elements ofWs as graphs of functions in Ξ as follows.
Let Ir = (−r, r), r ≤ r0. For x ∈ Rj ∩ (− rj

2 ,
rj
2 )2 such that x+ (t, F (t)) ∈ Rj for t ∈ Ir, we define

G(x, r, F )(t) = χj(x+ (t, F (t))), t ∈ Ir, to be a lift of the graph of F to M . For brevity, we often

write GF for G(x, r, F ). Note that Lip(GF ) ≤ Cc(1 + aj) and Lip(G−1
F ) ≤ Cc, where Lip(·) denotes

the Lipschitz constant of a function on Ir. Then each W ∈ Ws can be written as W = G(x, r, F )(Ir)
for an appropriate choice of x, r and F . If necessary, we shrink r0 further so that supW∈Ws |W | ≤ δ0,
where δ0 is chosen in (2.6). Note that although r0 is fixed on each component of M \ SH0 , it is not
uniform on M .

Let Wj = Wj(χij , xj , rj , Fj) ∈ Ws, j = 1, 2, be two stable curves and let Hkj be the homogeneity
strip containing Wj . We define the distance between W1 and W2 to be,

dWs(W1,W2) = η(k1, k2) + η(i1, i2) + |r2 − r1|+ |x1 − x2|+ |F1 − F2|C1(Ir1∩Ir2 ),

where η(A,B) = 0 if A = B and η(A,B) =∞ otherwise, i.e., we only compare curves which lie in
the same homogeneity region and are mapped under the same chart.

Given two functions ψi ∈ Cq(Wi,C), we define the distance between ψ1, ψ2 as

dq(ψ1, ψ2) = |ψ1 ◦GF1 − ψ2 ◦GF2 |Cq(I1∩I2).

3.2. Distortion Bounds. In this section, we derive several distortion bounds which we shall use
throughout the paper. The statements are quite standard for hyperbolic maps and follow from
assumptions (H2) - (H4).

Lemma 3.1. There exists Cd > 0 such that for any stable curve W ∈ Ws, with T iW ∈ Ws for
i = 0, 1, . . . , n, and any x, y ∈W ,∣∣∣∣JWTn(x)

JWTn(y)
− 1

∣∣∣∣ ≤ CddW (x, y)p0 , (3.1)

where JWT (x) = | det(DxT |TxW )| denotes the Jacobian of T along W and dW (·, ·) is the arclength
distance on W .

If T iW is a homogeneous stable curve for 0 ≤ i ≤ n, or if T iW is a homogeneous unstable curve
for 0 ≤ i ≤ n, then for any x, y ∈W ,∣∣∣∣ |DxT

n|
|DyTn|

− 1

∣∣∣∣ ≤ Cd max{dW (x, y)p0 , dW (Tnx, Tny)p0}. (3.2)
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Proof. First we prove (3.1). Suppose T iW is a stable curve for i = 0, . . . n. It is equivalent to
estimate,

log
JTnWT

−n(Tnx)

JTnWTn(Tny)
≤

n∑
i=1

1

Ai
|JT iWT−1(T ix)− JT iWT−1(T iy)|, (3.3)

where Ai = min{JT iWT−1(T ix), JT iWT
−1(T iy)}.

We estimate the differences one term at a time and assume without loss of generality that the
minimum for Ai is attained at T ix. Set xi = T ix, yi = T iy. Let ~u1(xi) denote the unit tangent
vector to T iW at xi and notice that JT iWT

−1(xi) = ‖DxiT
−1~u1‖. Define ~u2(yi) similarly. Then

using (2.3) of (H4),

| ‖DxiT
−1~u1‖ − ‖DxiT

−1~u2‖ |
≤ | ‖DxiT

−1~u1‖ − ‖DxiT
−1~u2‖|+ |‖DxiT

−1~u2‖ − ‖DyiT
−1~u2‖ |

≤ ‖DxiT
−1‖ (‖~u1 − ~u2‖+ CddW (xi−1, yi−1)p0).

Now since T iW has bounded curvature, we have ‖~u1 − ~u2‖ ≤ CdW (xi, yi) ≤ CdW (xi−1, yi−1),
where in the last inequality we have used the fact that T iW is expanded under T−1 from (H2).
Finally, note that ‖DxiT

−1‖/‖DxiT
−1~u‖ ≤ C where C is some uniform constant for all unit vectors

~u ∈ Cs(xi). Putting these estimates together with (3.3), we obtain the required distortion bound,

log
JTnWT

−n(Tnx)

JTnWTn(Tny)
≤

n∑
i=1

CdW (xi−1, yi−1)p0 ≤
n∑
i=1

CΛ−p0(i−1)dW (x, y)p0 .

The proof of (3.2) follows similarly from (2.4) and is omitted. �

Next we prove a distortion bound for the stable Jacobian of T along different stable curves as
well as the exponential contraction of those curves in the following context. Let W 1,W 2 ∈ Ws and
suppose there exist U j ⊂ T−nW j , j = 1, 2, such that for 0 ≤ i ≤ n,

(i) T iU j ∈ Ws and the curves T iU1 and T iU2 lie in the same homogeneity strip;
(ii) U1 and U2 can be put into a 1-1 correspondence by a smooth foliation {γx}x∈U1 of curves

γx ∈ Wu such that {Tnγx} ⊂ Wu creates a 1-1 correspondence between TnU1 and TnU2;
(iii) |T iγx| ≤ 2 max{|T iU1|, |T iU2|}, for all x ∈ U1.

Let JUkT
n denote the stable Jacobian of Tn along the curve Uk with respect to arclength.

Lemma 3.2. Assume (i)-(iii) above, and for x ∈ U1, define x∗ = γx ∩ U2. There exists C∗ > 0,
independent of W 1,W 2 ∈ Ws, such that for all n ≥ 0,

(a) dWs(U1, U2) ≤ C∗Λ−ndWs(W 1,W 2);

(b)

∣∣∣∣ JU1Tn(x)

JU2Tn(x∗)
− 1

∣∣∣∣ ≤ C∗[d(Tnx, Tnx∗)p0 + θ(Tnx, Tnx∗)],

where θ(Tnx, Tnx∗) is the angle formed by the tangent lines of TnU1 and TnU2 at Tnx and Tnx∗,
respectively.

Proof. (a) This is essentially a graph transform argument adapted for this class of maps satisfying
(H2) - (H4). What we need to show here is that we do not need to cut curves lying in homo-
geneity strips any further in order to get the required contraction and control on distortion. The
assumptions of the lemma imply that T iU1 and T iU2 can be viewed as lying in a single chart for
each iterate, 0 ≤ i ≤ n. The purpose of this lemma is to show that locally DT is comparable along
T iU1 and T iU2. Note that by assumption (i) before the statement of the lemma, the curves we
work with always lie in the stable cones of the relevant charts.

Due to the uniform expansion of γx under Tn given by (H2), we have

|γx| ≤ CeCtΛ−ndWs(W 1,W 2),
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where where Ce is a uniform constant relating the Euclidean norm to the adapted norm ‖ · ‖∗, and
Ct is a constant depending only on the maximum angular diameter of Cu(x) (which must be less
than π/2 by definition of the charts).

In the notation of Section 3.1, we write U j = Gj(xj , rj , Fj)(Irj ), j = 1, 2. By the uniform
transversality of Cs(x) with Cu(x) as well as the smoothness of the charts χi, there exists a constant
C such that |r1 − r2|+ |x1 − x2| ≤ C|γx| ≤ C ′Λ−ndWs(W 1,W 2), where for the last inequality, we
have used the previous paragraph.

Letting I = Ir1 ∩ Ir2 and recalling the definition of dWs(·, ·) from Section 3.1, it remains to
estimate |F1 − F2|C1(I). Using again the estimate on |γx| together with the maximum angular

diameter of the unstable cone, we have |F1−F2|C0(I) ≤ CΛ−ndW s(W 1,W 2). In order to show that
the slopes of these curves also contract exponentially, we make the usual graph transform argument
using charts in the adapted norm ‖ · ‖∗ from (H2).

Fix x ∈ U1 and define charts along the orbit of x so that xi := T ix, 0 ≤ i ≤ n, corresponds to
the origin in each chart with the stable direction at xi given by the horizontal axis and the unstable
direction by the vertical axis in the charts. Let ϑ < 1 denote the maximum absolute value of slopes
of stable curves in the chart. Due to property (iii) before the statement of the lemma, we may
choose the size of the charts to have stable and unstable diameters ≤ C|T iU1| for each i, for some
uniform constant C. The dynamics induced by T−1 on these charts is defined by

T̃−1
xi = χ−1

i−1 ◦ T
−1 ◦ χi,

where the domain of the charts χi are possibly much smaller than those defined in Section 3.1 since
these charts must avoid singularity curves S−1. Nevertheless, it holds that the charts can be chosen
such that |χxi |C2 , |χ−1

xi |C2 ≤ C for some uniform constant C.

Note that DT̃−1
xi satisfies (H4) with possibly larger constant C3 > 0. In the chart coordinates,

since T̃−1
xi (0) = 0, we have

T̃−1
xi (s, t) = (Ais+ αi(s, t), Bit+ βi(s, t)),

where Ai is the expansion at xi in the stable direction and Bi is the contraction at xi in the unstable
direction given by DT̃−1

xi (0). The nonlinear functions αi, βi satisfy αi(0, 0) = βi(0, 0) = 0 and their

Lipschitz constants Lip(·) are bounded by Lip(T̃−1
xi −DT̃

−1
xi (0)), which we estimate using (2.3) of

(H4) as the maximum of

‖DT̃−1
xi (u)−DT̃−1

xi (0)‖ ≤ C‖DT̃−1
xi (0)‖max{‖u‖p0 , ‖T̃−1

xi (u)‖p0 , (3.4)

where u ranges over the chart at xi.
We fix i and let g1, g2 denote two Lipschitz functions whose graphs lie in the stable cone of the

chart at xi and satisfy gj(0) = 0, j = 1, 2. Define L(g1, g2) = sups 6=0
|g1(s)−g2(s)|

|s| . Let g̃1 = T̃−1
∗ g1

and g̃2 = T̃−1
∗ g2 denote the graphs of the images of these two curves in the chart at xi−1 and

suppose that g̃1, g̃2 lie in the stable cone at xi−1. We wish to estimate L(g̃1, g̃2). For s on the
horizontal axis in the chart at xi, we write,

|g̃1(Ais+αi(s, g1(s)))− g̃2(Ais+ αi(s, g1(s)))| ≤ |g̃1(Ais+ αi(s, g1(s)))− g̃2(Ais+ αi(s, g2(s)))|
+ |g̃2(Ais+ αi(s, g2(s)))− g̃2(Ais+ αi(s, g1(s)))|

≤ |Bi||g1(s)− g2(s)|+ |βi(s, g1(s))− βi(s, g2(s))|+ ϑ|αi(s, g1(s))− αi(s, g2(s))|
≤ (|Bi|+ Lip(βi) + ϑLip(αi))|g1(s)− g2(s)|.

On the other hand,

|Ais+ αi(s, g1(s))| ≥
(
|Ai| − Lip(αi)(1 + ϑ)

)
|s|.
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Putting these together, we see that,

L(g̃1, g̃2) ≤ sup
s 6=0

(|Bi|+ Lip(βi) + ϑLip(αi))|g1(s)− g2(s)|
(|Ai| − Lip(αi)(1 + ϑ))|s|

≤ |Bi|+ Lip(βi) + ϑLip(αi)

|Ai| − Lip(αi)(1 + ϑ)
L(g1, g2).

(3.5)

Fix ε1 > 0. Using (H3)(2), there are at most finitely many connected components D of M \S−1

such that the stable diameter (the maximum length of a stable curve) in D is greater than ε1.
Suppose the chart at xi lies in one of the countably many components with stable diameter less
than ε1. Since the image of the chart under T−1 lies in one homogeneity region by assumption,

using (H3)(1) the length of the images of each of these curves is at most C0ε
ξ
1. By assumption (iii)

before the statement of the lemma, the unstable diameter in both charts is at most of the same

order and so we may bound both ‖u‖ and ‖T̃−1
xi (u)‖ in (3.4) by C0ε

ξ
1. Putting these estimates

together with (3.5) yields,

L(g̃1, g̃2) ≤ Λ−1 + C‖DxiT
−1‖C0ε

ξp0
1

‖DxiT
−1‖(1− CC0ε

ξp0
1 )

L(g1, g2) ≤
(

Λ−2 +O(εξp01 )
)
L(g1, g2),

and the contracting factor can be made smaller than Λ−1 for ε1 small enough. In particular, the
contraction is smaller than Λ−1 on all curves landing in a homogeneity region Hk with k sufficiently
large by (H3)(4).

Thus we may choose ε1 > 0 such that the contraction is less than Λ−1 on all curves lying in
components of M \ S−1 with stable diameter less than ε1. On the remainder of M , by (H4) the
norm and distortion constant of DxT

−1 are uniformly bounded by constants depending on ε1. For
curves in this part of M , we choose δ0, the maximum length of stable curves in Ws, sufficiently
small that the distortion given by (3.4) is less than 1

2(Λ−1/2 − Λ−1). Then by (3.5), since ϑ < 1,

the contraction on these pieces is less than Λ−1 as well.
Applying these estimates successively along the orbit of x completes the proof of item (a).

(b) It is equivalent to estimate log
JTnU1

T−n(Tnx)

JTnU2
T−n(Tnx∗) , for x ∈ U1. Recalling that x∗ = γx ∩ U2, we

write

log
JTnU1T

−n(Tnx)

JTnU2T−n(Tnx∗)
≤

n∑
i=1

1

Ai
|JT iU1

T−1(T ix)− JT iU2
T−1(T ix∗)|

where Ai = min{JT iU1
T−1(T ix), JT iU2

T−1(T ix∗)}. Following the proof of Lemma 3.1 after (3.3)
and using again (2.3), we arrive at the estimate,

log
JTnU1T

−n(Tnx)

JTnU2T−n(Tnx∗)
≤ C

n∑
i=1

‖~u1(xi)− ~u2(x∗i )‖+ d(xi, x
∗
i )
p0 ,

where as before, xi = T ix and x∗i = T ix∗. Now ‖~u1(xi)−~u2(x∗i )‖ ≤ θ(xi, x∗i ) ≤ C0Λi−nθ(Tnx, Tnx∗)
by part (a) of the lemma together with the fact that curves inWs have C2 norm uniformly bounded
above. Also, d(xi, x

∗
i ) ≤ CeΛi−nd(Tnx, Tnx∗) by (H2)(2), which completes the proof of the lemma.

�

3.3. Growth Lemma. In order to prove the characterization of our Banach spaces B and Bw
given by Lemma 2.2 as well as the estimates of Proposition 2.3, we need some understanding of the
properties of T−nW for W ∈ Ws. To ensure that each connected component Vi of T−1W is again
in Ws, we subdivide any of the long pieces Vi whose length is > δ0, where δ0 is from (2.6). This
process is then iterated so that given W ∈ Ws, we construct the components of T−nW , which we
call the nth generation Gn(W ), inductively as follows.
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Let G0(W ) = {W} and suppose we have defined Gn−1(W ) ⊂ Ws. First, for any W ′ ∈ Gn−1(W ),
we partition T−1W ′ into maximal components W ′i so that T is smooth on each W ′i and each W ′i
is a homogeneous stable curve. If any W ′i have length greater than δ0, we subdivide those pieces
into pieces of length between δ0/2 and δ0. We define Gn(W ) to be the collection of all pieces
Wn
i ⊂ T−nW obtained in this way. Note that each Wn

i is in Ws by construction and (H4).
For W ∈ Ws, n ≥ 0, and 0 ≤ k ≤ n, let Gk(W ) = {W k

i } denote the kth generation pieces in
T−kW . Let Bk(W ) = {i : |W k

i | < δ0/3} and Lk(W ) = {i : |W k
i | ≥ δ0/3} denote the index of the

short and long elements of Gk(W ), respectively. We consider {Gk(W )}nk=0 as a tree with W as its

root and Gk(W ) as the kth level.
We group the pieces in Gn(W ) as follows. Let Wn

i0
∈ Gn(W ) and let W k

j ∈ Lk(W ) denote the

most recent long “ancestor” of Wn
i0

, i.e. k = max{0 ≤ ` ≤ n : Tn−`(Wn
i0

) ⊂W `
j and j ∈ L`(W )}. If

no such ancestor exists, set k = 0 and W k
j = W . Note that if Wn

i0
itself is long, then W k

j = Wn
i0

.
Let

In(W k
j ) = {i : W k

j is the most recent long ancestor of Wn
i }.

The set In(W ) represents those curves Wn
i that belong to short pieces in Gk(W ) at each time step

1 ≤ k ≤ n, i.e. such Wn
i are never part of a piece that has grown to length ≥ δ0/3.

We prove here a growth lemma essential for controlling the iterates of L.

Lemma 3.3. Let W ∈ Ws and for n ≥ 0, let In(W ) and Gn(W ) be defined as above. For
γ0 ≤ ς < 1, set s = (1−γ0)/(1− ς). There exist constants C4, C5 ≥ 1, independent of W , such that
for any n ≥ 0,

(a)
∑

i∈In(W )

|Wn
i |ς

|W |ς
|JWn

i
Tn|C0(Wn

i ) ≤ C4θ
n/s
∗ ;

(b)
∑

Wn
i ∈Gn(W )

|Wn
i |ς

|W |ς
|JWn

i
Tn|C0(Wn

i ) ≤ C5 = C5(ς).

Proof. (a) We first prove this by induction on n for ς = γ0 in the adapted metric with C4 = 1. The
case n = 1 follows from assumption (H5) since short pieces do not require extra subdivision in the
creation of G1(W ). Now assume (a) holds with C4 = 1 for all times up to n− 1. Fix W ∈ Ws and
for Wn−1

j ∈ In−1(W ), let A(Wn−1
j ) = {i : Wn

i ∈ In(W ), TWn
i ⊆W

n−1
j }.

Note that at each iterate between 1 and n, every Wn
i ∈ In(W ) is created by cuts due to

singularities or the boundaries of homogeneity regions and not by any artificial subdivisions since
these only occur when a piece has grown to length greater than δ0. Thus the indices in A(Wn−1

j )

form a subset of the pieces Vi of T−1Wn−1
j referred to in (H5). So we may estimate,

∑
i∈In(W )

|Wn
i |
γ0
∗

|W |γ0∗
|JWn

i
Tn|∗ ≤

∑
j∈In−1(W )

∑
i∈A(Wn−1

j )

|Wn
i |
γ0
∗

|W |γ0∗
|Wn−1

j |γ0∗
|Wn−1

j |γ0∗
|JWn−1

j
Tn−1|∗|JWn

i
T |∗

≤ θ∗
∑

j∈In−1(W )

|Wn−1
j |γ0∗
|W |γ0∗

|JWn−1
j

Tn−1|∗ ≤ θn∗ .

(3.6)

The analogous estimate in the Euclidean norm then follows up to a constant C ′4 depending on the
uniform constant relating ‖ · ‖ to ‖ · ‖∗.

Next we extend (a) to γ0 < ς < 1 via a Hölder inequality. Fix ς > γ0 and define s = (1−γ0)/(1−
ς) > 1. We will use repeatedly that by (3.1),

|TnWn
i |/|Wn

i | ≤ |JWn
i
Tn|C0(Wn

i ) ≤ (1 + Cd)|TnWn
i |/|Wn

i |. (3.7)
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Now multiplying by |W |/|W |, we have∑
i∈In(W )

|Wn
i |ς

|W |ς
|JWn

i
Tn|C0(Wn

i ) ≤ (1 + Cd)
∑

i∈In(W )

|W |1−ς

|Wn
i |1−ς

|TnWn
i |

|W |

≤ (1 + Cd)

 ∑
i∈In(W )

|W |(1−ς)s

|Wn
i |(1−ς)s

|TnWn
i |

|W |

1/s ∑
i∈In(W )

|TnWn
i |

|W |

1−1/s

≤ (1 + Cd)

 ∑
i∈In(W )

|Wn
i |γ0
|W |γ0

|JWn
i
Tn|C0(Wn

i )

1/s

≤ (1 + Cd)C
′
4θ
n/s
∗

by (3.6) since
∑

Wn
i ∈Gn(W )

|TnWn
i |

|W | = 1. Part (a) follows with C4 = (1 + Cd)C
′
4.

(b) Fix ς ≥ γ0, W ∈ Ws and n > 0. We group Wn
i ∈ Gn(W ) by most recent long ancestor W k

j ∈
Lk(W ) as described before the statement of the lemma. Then using the fact that |JWn

i
Tn|C0(Wn

i ) ≤
|JWk

j
T k|C0(Wk

j )|JWn
i
Tn−k|C0(Wn

i ), we estimate∑
Wn
i ∈Gn(W )

|Wn
i |ς

|W |ς
|JWn

i
Tn|C0(Wn

i )

≤
n∑
k=0

 ∑
Wk
j ∈Lk(W )

|W k
j |ς

|W |ς
|JWk

j
T k|C0(Wk

j )

∑
i∈In−k(Wk

j )

|Wn
i |ς

|W k
j |ς
|JWn

i
Tn−k|C0(Wn

i )

 .

Note that In(W k
j ) (with W as root) and In−k(W k

j ) (with W k
j as root) correspond to the same set

of short pieces in the (n− k)th generation of W k
j , so we can apply part (a) of the lemma to each of

these sums separately with s = (1− γ0)/(1− ς) as before. Since |W k
j | ≥ δ0/3, we split off the term

for k = 0 and use (3.7) to estimate∑
Wn
i ∈Gn(W )

|Wn
i |ς

|W |ς
|JWn

i
Tn|C0(Wn

i ) ≤
n−1∑
k=1

∑
Wk
j ∈Lk(W )

3δς−1
0 C4θ

(n−k)/s
∗ (1 + Cd)|W |−ς |T kW k

j | + C4θ
n/s
∗

≤ Cδς−1
0

n−1∑
k=1

|W |1−ςθ(n−k)/s
∗ + C4θ

n/s
∗ ,

which is uniformly bounded in n, where we have used
∑

Wk
j ∈Lk(W ) |T kW k

j | ≤ |W |. �

3.4. Properties of the Banach spaces. We begin by verifying that our Banach spaces contain
an interesting class of measures. We first record the following simple observations.

Lemma 3.4. (a) There exists a constant Cf > 0 such that for any homogeneous stable curve W
and any x ∈W ,

C−1
f ≤ f(x)

f(W )
≤ Cf

where f(W ) is as defined in Section 2.3. In addition if two curves W,W ′ ∈ Ws lie in the homo-
geneity region, then f(W )/f(W ′) satisfies the same bounds as above.

(b) There exists Cw > 0 such that if W1,W2 ∈ Ws with dWs(W1,W2) ≤ ε and |W2| ≥ ε, then
|W1|/|W2| ≤ Cw.
(c) There exists C > 0 such that for any W ∈ Ws,

|W |1−αf(W )−1 ≤ Ck−rhδ1 , (3.8)
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where δ1 := 1
rh
− α > 0 by choice of α in Section 2.3.

Proof. (a) Since f(x) is continuous on W , there exists y ∈ W such that f(y) = f(W ). The bound
is trivial if f is not close to 0. On those Hk with f close to 0, the first bound follows from the
definition of Hk: There exists C > 0 such that if x ∈ Hk, then Ck−rh+1 ≤ f(x) ≤ C−1k−rh+1. If W
and W ′ lie in the same homogeneity strip, f(W )/f(W ′) satisfies the same bounds by an identical
argument.

(b) Recalling the definition of dWs(·, ·) from Section 3.1, there exists ϑ > 0, depending on the
maximum slope of functions F ∈ Ξ, such that ||W1| − |W2|| ≤ ε(1 + ϑ) + ε|IW1 ∩ IW2 |, where IWj

are the intervals where GWj is defined, j = 1, 2. If |W2| ≥ ε, we may divide by |W2| to obtain,

|W1|/|W2| ≤ 1 + (1 + ϑ) + |IW2 |/|W2|,
which is uniformly bounded.

(c) Consider the expression |W |1−αf(W )−1. Since W is a homogeneous curve, it lies either in Hk0

or in a homogeneity strip indexed by k > k0. In the former case, f(W ) ≥ k−rh+1
0 so that the above

expression is bounded. In the latter case, f(W ) ≥ Ck−rh+1 while by (H3)(4), |W | ≤ C2k
−rh . Thus

|W |1−αf(W )−1 ≤ Ckrhα−1 ≤ Ck−rhδ1 ,
where δ1 = 1

rh
− α > 0 as defined in the statement of the lemma. �

The first main lemma of this section, Lemma 3.5, shows that B contains functions with certain
types of discontinuities. The argument uses the fact that the contribution to the norm of the
function we must approximate from homogeneity strips of high index is small. The proof is similar
to [DZ1, Lemma 3.7], but is modified to (a) allow tangencies between the discontinuities of the given
function and the stable cone, and (b) respect the additional constants and restrictions introduced
into the norms to exploit the weak form of the one-step expansion given by (2.5).

The subsequent lemmas 3.6, 3.7 and 3.9 are similar to lemmas appearing in [DZ1], but we
have adapted their proofs to this more general setting. In particular, the proof of Lemma 3.7 is
significantly changed to accommodate (H3) and requires the summability condition (H3)(5) since
we allow additional homogeneity strips where f is not close to 0. Lemma 3.8 is new and does not
appear in [DZ1].

Lemma 3.5. Let P be a (mod 0) countable partition of M into open, simply connected sets such
that (1) for each k ∈ N, there is an Nk < ∞ such that at most Nk elements P ∈ P intersect Hk;
(2) there are constants K,C5 > 0 such that for each P ∈ P and W ∈ Ws, P ∩W comprises at
most K connected components and for any ε > 0, mW (Nε(∂P ) ∩W ) ≤ C5ε

t0.
Let λ > β/(1 − β). If h ∈ Cλ(P ) for each P ∈ P and supP∈P |h|Cλ(P ) < ∞, then h ∈ B. In

particular, Cλ(M) ⊂ B for each λ > β/(1− β) and Lebesgue measure is in B.

Proof. Since B is defined as the completion of C1(M), we must show that h as above can be
approximated by functions in C1(M) in the ‖ · ‖B norm.

For P ∈ P we define Pk to be a simply connected component of P ∩Hk. The label Pk may not
be unique, but there are only finitely many such elements for each k ≥ k0 by assumption (1) of
the lemma. Let h be as in the statement of the lemma. Since ‖h‖B = supk ‖h|Hk‖B by definition
of Ws, we may fix k and approximate h on one Hk at a time. We fix Pk and for simplicity first
consider h ≡ 0 off of Pk.

Choose η > 0 and define P̂k = Pk\(Bη/krh (∂Pk)), the part of Pk which is at least η/krh away from

the boundary of Pk. Let ρη(x, y) be a nonnegative C∞ bump function such (1)
∫
P̂k
ρη(x, y)dm(y) = 1

for each x ∈ P̂k, and (2) ρη(x, y) = 0 whenever d(x, y) > η/(2krh). Define

fη(x) =

∫
P̂k

h(y)ρη(x, y) dm(y), for x ∈M .
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Note that fη ∈ C∞(M) and that fη(x) ≡ 0 for x /∈ Pk. It is also straightforward to check that
|fη|Cλ(P̂k) ≤ |h|Cλ(Pk) and |fη|∞ ≤ |h|∞.

Now let W ∈ Ws, W ⊂ Hk, and take ψ ∈ Cq(W ), |ψ|W,α,q ≤ 1. Notice that |ψ|∞ ≤
|W |−αf(W )−1. Thus,∫

W
(h− fη)ψ dmW =

∫
W∩P̂k

(h− fη)ψ dmW +

∫
W\P̂k

(h− fη)ψ dmW

≤ |h− fη|C0(W∩P̂k)|W |
1−αf(W )−1 + 2|h|∞|W ∩ (Pk \ P̂k)||W |−αf(W )−1,

(3.9)

since the supports of h and fη lie entirely in the closure of Pk.

For the first term above, we estimate the difference in functions for x ∈W ∩ P̂k by,

|h(x)− fη(x)| ≤
∫
P̂k

|h(x)− h(y)|ρη(x, y) dm(y).

The integrand is 0 whenever, d(x, y) > η/(2krh), thus

|h(x)− fη(x)| ≤ C|h|Cλ(P )η
λk−rhλ.

Thus by Lemma 3.4(c), we obtain for the first term of (3.9),

|h− fη|C0(W∩Pk)|W |1−αf(W )−1 ≤ C|h|Cλ(P )η
λk−rh(λ+δ1). (3.10)

For the second term of (3.9), note that |W ∩(Pk\P̂k)||W |−α ≤ |W ∩(Pk\P̂k)|1−α. By assumption

(2) of the lemma, W ∩(Pk \ P̂k) comprises at most K connected components, each of length at most
min{C4k

−rh , C(η/krh)t0} due to weak transversality and (H3)(4). Recalling our convention that

t0 ≤ 1/2, this minimum is largest when the two quantities are equal,11 i.e., when η = k−rh(1−t0)/t0 .
Thus

|h|∞|W ∩ (Pk \ P̂k)||W |−αf(W )−1 ≤ C|h|∞krhα−1 ≤ C|h|∞ηδ1t0/(1−t0), (3.11)

where δ1 = 1
rh
− α > 0 as before. Putting together these estimates and taking the suprema over

W ⊂ Hk and ψ ∈ Cq(W ), we have by (3.9),

‖(h− fPkη )|Hk‖s ≤ C|h|Cλ(P )(η
λ + ηδ1t0/(1−t0)).

Notice that if we were not concerned with approximating h by fη, but only estimating ‖h‖s, then
(3.8) and (3.9) would imply,

‖h|Hk‖s ≤ C|h|∞k
−rhδ1 for all bounded functions h. (3.12)

To estimate ‖(h− fη)|Hk‖u, fix 0 < ε ≤ ε0, where ε0 is from (2.10), and let W1,W2 ⊂ Hk be two
admissible stable curves such that dWs(W1,W2) ≤ ε. In the notation of Section 3.1, we identify
Wi with GWi(t), t ∈ Ii. Let ψ1, ψ2 be two test functions satisfying |ψi|Wi,γ,p ≤ 1, i = 1, 2, and
|ψ1 ◦ GW1 − ψ2 ◦ GW2 |Cq(I1∩I2) ≤ ε. Without loss of generality, assume λ = β/(1 − β) + δ2 ≤ 1/2,
for some δ2 > 0. This is always possible since by (2.7) in the definition of the norms, β < 1/3.

First assume that ε ≥ η(1+δ2)/(1−β)k−(rh−1+rhγ)/(1−β). Following the analogous estimate on the
stable norm given by (3.9) with γ in place of α (this is possible since γ < α), (3.11) becomes,

|h|∞|W ∩ (Pk \ P̂k)||W |−γf(W )−1 ≤ C|h|∞krhγ−1 = C|h|∞k−rhδ1−rh(α−γ) ≤ C|h|∞ηz/(1−t0)k−rhδ1 ,

where z := t0(α− γ), remembering that η = k−rh(1−t0)/t0 in (3.11). Putting this together with the
analogue of (3.10), we have

ε−β
∣∣∣∣∫
W1

(h− fη)ψ1 dmW −
∫
W2

(h− fη)ψ2 dmW

∣∣∣∣ ≤ Cε−β|h|Cλ(P )(η
λ + ηz/(1−t0))k−rhδ1 . (3.13)

11If t0 = 1, the minimum is Cηk−rh and the estimate in (3.11) becomes ≤ C|h|∞η1−αkα−1. One can carry this
change through to get improved estimates on the exponents in this case.
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Since ε ≥ η(1+δ2)/(1−β)k−(rh−1+rhγ)/(1−β), the exponent of k in the above expression is given by

β
rh − 1 + rhγ

1− β
− rhδ1 < 0

as β < δ1 from the definition of the norms so that rh−1+rhγ
1−β < rh(1−δ1)

1−β < rh. Again using the fact

that β < 1/3 and the definition of δ2, we have 1+δ2
1−β ≤ 2, so that the exponent of η is given by

η
−β 1+δ2

1−β
(
η

β
1−β+δ2 + ηz/(1−t0)

)
≤ ηδ2(1− β

1−β )
+ η

z
1−t0

−2β
,

and both terms have positive exponents since β < z/2(1− t0) by (2.7).

It remains to estimate the case ε < η(1+δ2)/(1−β)k−(rh−1+rhγ)/(1−β). For this estimate, we split
up the terms involving h and fη,∫

W1

(h− fη)ψ1 dmW −
∫
W2

(h− fη)ψ2 dmW

=

∫
W1

hψ1 dmW −
∫
W2

hψ2 dmW +

∫
W2

fηψ2 dmW −
∫
W1

fηψ1 dmW .

(3.14)

We first estimate the difference involving h.
We match W1 and W2 using a foliation of homogeneous unstable curves which are vertical line

segments of length at most ε in the chart on which GWi is defined, i = 1, 2. This partitions W1 in
the following way: curves U i1 ⊂ W1 for which the unstable curve connecting U i1 to W2 lies entirely

in Pk; curves V j
1 ⊂W1 which either are not matched to W2 (near the endpoints of W1) or for which

the vertical segment connecting V i
1 to W2 does not lie entirely in Pk. In particular if |W2| < ε, we

set V` = W`, ` = 1, 2, and declare W` to be unmatched. This induces a corresponding partition

on W2 into curves U i2 and V j
2 . We call U i` ⊂ W` the matched pieces and V j

` ⊂ W` the unmatched
pieces and note that by assumption on P, there can be no more than K matched pieces and K + 2
unmatched pieces.

We split up the integrals on W1 and W2 on matched and unmatched pieces,∫
W1

hψ1 dmW −
∫
W2

hψ2 dmW =
∑
i

∫
U i1

hψ1 dmW −
∫
U i2

hψ2 dmW +
∑
j,`

∫
V j`

hψ` dmW . (3.15)

We estimate the integrals on the unmatched pieces first. Since h ≡ 0 off of Pk, and ∂Pk and
the unstable curves are either uniformly transverse to the stable cone or have the type of tangency

allowed by assumption (2) in the statement of the lemma, we have |supp(h) ∩ V j
` | ≤ Cε

t0 for each

V `
j . Then using (3.12), we estimate

|
∫
V j`

hψi dmW | ≤ ‖h|Hk‖s|supp(h) ∩ V j
` |
αf(V j

` )|ψ`|Cq(W`) ≤ C|h|∞k
−rhδ1 |supp(h) ∩ V `

j |α|W`|−γ ,

where in the last inequality, |ψ`|Cq(W`) ≤ f(W`)
−1|W`|−γ and we have used Lemma 3.4 to bound

f(V j
` )/f(W`). Since (supp(h) ∩ V `

j ) ⊂W`, remembering that z = t0(α− γ) we have

|supp(h) ∩ V `
j |α|W`|−γ ≤ |supp(h) ∩ V `

j |α−γ ≤ Cεt0(α−γ) = Cεz.

Putting these estimates together, we obtain our bound on unmatched pieces,

|
∫
V jk

hψi dmW | ≤ C|h|∞εzk−rhδ1 . (3.16)

Next we estimate the difference on matched pieces in (3.15). To do this, we change variables to
the intervals Ii common to U i1 and U i2.

|
∫
Ii

(hψ1) ◦GU i1 JGU i1 − (hψ2) ◦GU i2 JGU i2 dt| ≤ `(Ii)|(hψ1) ◦GU i1 JGU i1 − (hψ2) ◦GU i2 JGU i2 |C0(Ii),
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where JGU ik
denotes the Jacobian of GU ik

. Due to the uniform upper bound on the slopes of curves

in the stable cone, there exists Cg > 0 such that

|JGU ik |C0(Ii) ≤ Cg. (3.17)

We split the difference on matched pieces into the sum of three terms. The first term is,

A := |h ◦GU i1 − h ◦GU i2 |C0(Ii)|ψ1 ◦GU i1JGU i1 |C0(Ii)

≤ CgH
λ(h)

f(W1)|W1|γ
sup
t∈Ii

(
d(GU i1

(t), GU i2
(t))λ

)
,

where Hλ(h) denotes the Hölder constant of h with exponent λ. Now d(GU i1
(t), GU i2

(t)) = |FU i1(t)−
FU i2

(t)| ≤ ε by definition of dWs(·, ·). Thus,

A ≤ CgHλ(h)
ελ

f(W1)|W1|γ
(3.18)

The second term of the difference is,

B := |ψ1 ◦GU i1 − ψ2 ◦GU i2 |C0(Ii)|h ◦GU i2JGU i1 |C0(Ii) ≤ ε|h|∞Cg, (3.19)

by assumption on ψ1 and ψ2. Finally, the last difference we must estimate is,

E := |h◦GU i2ψ2◦GU i2 |C0(Ii)|JGU i1−JGU i2 |C0(Ii) ≤ |h|∞|ψ2|∞|F ′U i1−F
′
U i2
|C0(Ii) ≤

|h|∞ε
f(W2)|W2|γ

, (3.20)

again by definition of dWs(·, ·), where F ′
U ik

= dFU ik
/dt.

Putting together the estimates for A, B and E, as well as (3.16), into (3.15), we have

ε−β

∣∣∣∣∣
∫
Uj1

hψ1 dmW −
∫
Uj2

hψ2 dmW

∣∣∣∣∣ ≤ C|W1|
( Hλ(h)ελ−β

f(W1)|W1|γ
+
|h|∞ε1−β

f(W2)|W2|γ
)

+ C|h|∞εz−βk−rhδ1

≤ C |W1|1−γ

f(W1)
|h|Cλ(Pk)ε

λ−β + C|h|∞εz−βk−rhδ1 ≤ C|h|Cλ(Pk)ε
z−βk−rhδ1 ,

(3.21)

where we have used Lemma 3.4(b) to bound |W1|/|W2| and f(W1)/f(W2), and (3.8) for the last
step. Also, z − β > 0 since β is chosen < t0(α − γ) in the definition of the norms. Notice that

(3.21) holds without the assumption ε < η(1+δ2)/(1−β)k−(rh−1+rhγ)/(1−β) which is what makes (3.23)
possible.

A similar estimate holds for fη. Indeed the estimate is simpler since fη is Lipschitz continuous
on all of M with H1(fη) ≤ C|h|∞krh/η. Thus we may partition W1 and W2 into one matched piece
and at most two unmatched pieces near their endpoints. The unmatched pieces have length at
most Cεt0 so that an estimate similar to (3.16) holds for fη. Then since fη is Lipschitz continuous
everywhere, estimates A, B and E hold on the single matched piece with λ = 1 and so,

ε−β
∣∣∣∣∫
U1

fηψ1 dmW −
∫
U2

fηψ2 dmW

∣∣∣∣ ≤ C|W1|
(H1(fη)ε

1−β

f(W1)|W1|γ
+
|h|∞ε1−β

f(W2)|W2|γ
)

+C|h|∞εz−β. (3.22)

Following the same estimate as in (3.21), it is clear that the only term that can cause a problem is
the first one in (3.22) due to the size of H1(fη). We estimate using the analogue of (3.8) with γ in
place of α,

|W1|1−γ

f(W1)

ε1−βkrh

η
≤ C 1

k1−rhγ
η1+δ2krh

η krh−1+rhγ
≤ Cηδ2 .

Putting together the estimates in (3.13), (3.21) and (3.22), we have shown that ‖(h−fη)|Hk‖u ≤
CK(Hλ(h) + |h|∞)ηδ3 , where δ3 := min{δ2(1 − β

1−β ), z − β, z
1−t0 − 2β} > 0. This together with
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the estimate on the strong stable norm implies that ‖(h − fη)|Hk‖B ≤ C|h|Cλ(P )η
δ, where δ =

min{δ1, δ3}. Notice that if we are not concerned with approximating h by fη, then (3.12) and
(3.21) together imply that

‖h|Hk‖B ≤ C sup
P∈P
|h|Cλ(P )k

−rhδ1 . (3.23)

In making this approximation argument, we have assumed that h ≡ 0 outside Pk. More general
h can be expressed as h =

∑
k

∑
Pk
h1P where h1Pk ≡ 0 outside of Pk and so can be approximated

by a C1 function fPkη as above. Due to (3.23), given ε > 0, we first choose K ′ε so that ‖h|Hk‖B < ε for
all k > K ′ε. By property (1) of P, there exists Nε > 0 such that for each k0 ≤ k ≤ K ′ε, Hk intersects
at most Nε elements of P. We thus form the finite sum

∑
k0≤k≤K′ε

∑
Pk
fPkη and approximate h by

0 on ∪k>K′εHk. Since there are at most Nε elements Pk for each k ≤ K ′ε,∥∥∥(h− ∑
k≤K′ε

∑
Pk

fPkη
)∥∥∥
B
≤ ε+ sup

k≤K′ε

∥∥∥∑
Pk

(
h1Pk − f

Pk
η

)∣∣∣
Hk

∥∥∥
B
≤ ε+ CNεη

δ sup
P∈P
|h|Cλ(P ),

and finally we choose η sufficiently small that ηδNε < ε. �

Next we prove that L is well-defined as an operator on B. Its proof uses the fact that ‖Lh‖B <∞
for h ∈ C1(M) from Section 4.

Lemma 3.6. If h ∈ C1(M), then Lh ∈ B.

Proof. Let h ∈ C1(M). As in the proof of Lemma 3.5, we must approximate Lh by C1 functions
in the norm ‖ · ‖B. Note that Lh has a countable number of smooth discontinuity curves given by
SH−1 = S−1∪T (∪k≥k0SHk ) (we include the images of boundaries of the homogeneity regions). These
curves define a countable partition P of M into open simply connected sets which does not satisfy
assumption (1) of Lemma 3.5 since each Hk can intersect countably many P ∈ P. In addition, the
C1 norm of Lh blows up near the curves T (SH0 ).

Let {Pj}j∈N be an enumeration of the elements of P. For J > k0, let P J = ∪j>JPj . Given ε > 0,
we claim that ‖Lh|PJ‖B < ε for J sufficiently large.

Indeed, the claim is trivial using the estimates of Section 4. For example, we must estimate
‖Lh|PJ‖s = ‖1PJLh‖s. Taking W ∈ Ws and ψ ∈ Cq(W ) with |ψ|W,α,q ≤ 1, we write∫

W
1PJLhψ dmW =

∫
T−1(W∩PJ )

h|DT |−1JT−1WT ψ ◦ T dmW ,

and the homogeneous stable components of T−1(W ∩ P J) correspond precisely to the tail of the
series considered in (4.2) and following and so can be made arbitrarily small by choosing J large
(notice that we do not need contraction here so that we may use the simpler estimate similar to
Section 4.1 applied to the strong stable norm rather than the estimate of Section 4.2).

Similarly, in estimating ‖Lh‖u, one can see that the contribution from P J corresponds to the
tail of the series from the estimates of Section 4.3, and so this too can be made arbitrarily small
by choosing J large.

Now fix ε > 0 and choose J such that ‖Lh|PJ‖B < ε. On the finite set of Pj with j ≤ J , the
C1 norm of Lh is bounded by a constant CJ < ∞ and can be approximated using Lemma 3.5 as
follows. Since the partition P∗ = {Pj}j≤J ∪{P J} is finite, it satisfies assumption (1) of Lemma 3.5.
To verify assumption (2) of Lemma 3.5, note that by (H3)(2) we have only finitely many curves
in SH−1 comprising ∂Pj for j ≤ J . Thus there is a uniform upper bound KJ <∞ on the number of

connected components of Pj ∩W for all W ∈ Ws, W ⊂ M \ P J . Finally, the weak transversality
assumption (2) of Lemma 3.5 is guaranteed by (H3)(3),(4).

Now we approximate Lh as in Lemma 3.5 on the finitely many elements Pj , j ≤ J , choosing
η in the approximating function fη small compared to CJ and KJ , and approximate Lh by 0 on
P J . �
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The next lemma allows us to establish a connection between our Banach spaces and the space
of distributions introduced in Section 2.2. Recall that Hp

n(ψ) = supW∈T−nWs H
p
W (ψ).

Lemma 3.7. For each h ∈ C1(M), n ≥ 0, and ψ ∈ Cp(T−nWs) we have∣∣∣∣∫
M
hψ dm

∣∣∣∣ ≤ C|h|w(|ψ|∞ +Hp
n(ψ)).

Proof. We partition each component of Hk0 ∩ (M \S0) into finitely many boxes Bj whose boundary
curves are elements of Ws and Wu as well as the boundary of Hk0 ∩ (M \ S0). We construct the
boxes so that each Bj has diameter ≤ δ0 and is foliated by curves W ∈ Ws. On each Bj , we
choose a smooth foliation {Wξ}ξ∈Ej ⊂ Ws, each of whose elements completely crosses Bj in the
approximate stable direction. This is possible since by (H2), M \ S0 has finitely many connected
components and the cones are continuous up to the closure of each component.

We decompose Lebesgue measure on Bj into dm = λ(dξ)dmξ, where mξ is the conditional
measure of m on Wξ and λ is the transverse measure on Ej . We normalize the measures so that
mξ(Wξ) = |Wξ|. Since the foliation is smooth, dmξ = ρξdmW where C−1 ≤ |ρξ|C1(Wξ) ≤ C for

some constant C independent of ξ. Note that λ(Ej) ≤ Cδ0 due to the transversality of curves in
Ws and Wu.

Next in each homogeneity region, on each connected component of Hk ∩ (M \ S0), k > k0, we
choose a smooth foliation {Wξ}ξ∈Ek ⊂ Ws whose elements all cross the component of Hk∩ (M \S0)
in which they lie. This is possible due to (H3)(4). We again decompose m on each component of
Hk ∩ (M \ S0) into dm = λ(dξ)dmξ, ξ ∈ Ek, and dmξ = ρξdmW is normalized as above.

Now let h ∈ C1(M) and ψ ∈ Cp(T−nWs). Notice that since M = T−nM (mod 0), we have∫
M hψ dm =

∫
M L

nhψ ◦ T−n dm. We estimate the second integral on each connected component
M` of M \ S0, ` ≤ L, where L is finite due to (H2).∫

M`

Lnhψ ◦ T−n dm =
∑
j

∫
Bj

Lnhψ ◦ T−n dm+
∑
k>k0

∫
Hk
Lnhψ ◦ T−n dm

=
∑
j

∫
Ej

∫
Wξ

Lnhψ ◦ T−n ρξ dmWdλ(ξ) +
∑
k>k0

∫
Ek

∫
Wξ

Lnhψ ◦ T−n ρξ dmWdλ(ξ).

(3.24)

We change variables and estimate the integrals on one Wξ at a time. Letting Wn
ξ,i denote the

components of Gn(Wξ) defined in Section 3.3, we define JWn
ξ,i
Tn to be the stable Jacobian of Tn

along the curve Wn
ξ,i, and write

|
∫
Wξ

Lnhψ ◦ T−n ρξ dmW | =
∑
i

∫
Wn
ξ,i

hψ|DTn|−1JWn
ξ,i
Tn ρξ ◦ Tn dmW

≤
∑
i

|h|wf(Wn
ξ,i)|Wn

ξ,i|γ |ψ|Cp(Wn
ξ,i)
|ρξ ◦ Tn|Cp(Wn

ξ,i)
||DTn|−1JWn

ξ,i
Tn|Cp(Wn

ξ,i)
.

The distortion bounds given by Lemma 3.1 imply that

||DTn|−1JWn
i
Tn|Cp(Wn

i ) ≤ (1 + 2Cd)||DTn|−1JWn
i
Tn|C0(Wn

i ). (3.25)

Moreover, for x, y ∈Wn
ξ,i, it follows from (H2)(2) that

|ρξ(Tnx)− ρξ(Tny)|
dW (Tnx, Tny)p

· dW (Tnx, Tny)p

dW (x, y)p
≤ C|ρξ|Cp(Wξ)|JWn

ξ,i
Tn|pC0(Wn

ξ,i)
≤ CΛ−pn|ρξ|Cp(Wξ), (3.26)
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and so |ρξ ◦ Tn|Cp(Wn
ξ,i)
≤ C|ρξ|Cp(Wξ) ≤ C for some uniform constant C. Putting these estimates

together yields,

|
∫
Wξ

Lnhψ ◦ T−n ρξ dmW | ≤ C|h|w(|ψ|∞ +Hp
n(ψ))

∑
i

f(Wn
ξi

)|Wn
ξ,i|γ ||DTn|−1JWn

ξ,i
Tn|C0(Wn

ξ,i)
.

(3.27)
We group pieces Wn

ξ,i ∈ Gn(Wξ) according to most recent long ancestor W k
ξ,j ∈ Lk(Wξ) as described

in Section 3.3. Since by (H1),

|DTn|−1(x) = f(Tnx)

f(x)·Πn−1
m=0f0(Tmx)

≤ f(Tnx)
f(x) κ−n,

for x ∈Wn
ξ,i, we have by Lemma 3.4(a),

f(Wn
ξ,i) ||DTn|−1|C0(Wn

ξ,i)
≤ C2

ff(Wξ)κ
−n. (3.28)

Splitting up the Jacobians according to times k and n− k and using (3.28) on the intervals of time
n− k, we obtain,

∑
i

f(Wn
ξ,i)|Wn

ξ,i|γ ||DTn|−1JWn
ξ,i
Tn|C0(Wn

ξ,i)
≤

∑
i∈In(Wξ)

Cf(Wξ)κ
−n|Wn

ξ,i|γ |JWn
ξ,i
Tn|C0(Wn

ξ,i)

+

n∑
k=1

∑
j∈Lk(Wξ)

|W k
ξ,j |γ ||DT k|−1JWk

ξ,j
T k|C0(Wk

ξ,j)

 ∑
i∈In(Wk

j )

Cκ−(n−k)
|Wn

ξ,i|γ

|W k
ξ,j |γ
|JWn

ξ,i
Tn−k|C0(Wn

ξ,i)


≤ Cf(Wξ)|Wξ|γ(θ

1/s
∗ κ−1)n +

n∑
k=1

∑
j∈Lk(Wξ)

|W k
ξ,j |γ ||DT k|−1JWk

ξ,j
Tn|C0(Wk

ξ,j)
C(θ

1/s
∗ κ−1)n−k,

(3.29)

where we have used Lemma 3.3(a) on each of the terms involving In(W k
ξ,j) from time k to time n

with ς = γ and s = (1− γ0)/(1− γ).
For each k ≥ 1, since |W k

ξ,j | ≥ δ0/3, we have by bounded distortion Lemma 3.1,

∑
j∈Lk(Wξ)

|W k
ξ,j |γ ||DT k|−1JWk

ξ,j
Tn|C0(Wk

ξ,j)
≤ (1 + 2Cd)3δ

γ−1
0

∑
j∈Lk(Wξ)

∫
Wk
ξ,j

|DT k|−1JWk
ξ,j
T kdmW

≤ Cδγ−1
0

∫
Wξ

|DT−k| dmW .

Putting this estimate together with (3.27) and (3.29) yields,

∣∣∣∣∣
∫
Wξ

Lnhψ ◦ T−n ρξ dmW

∣∣∣∣∣ ≤ C|h|w(|ψ|∞+Hp
n(ψ))

[
f(Wξ)|Wξ|γ+

n∑
k=1

(θ
1/s
∗ κ−1)n−k

∫
Wξ

|DT−k| dmW

]
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for some uniform constant C. Thus∣∣∣ ∫
M`

Lnh ψ ◦ T−n dm
∣∣∣ ≤ C|h|w(|ψ|∞ +Hp

n(ψ))
(∑

j

∫
Ej

f(Wξ)|Wξ|γ dλ(ξ) +
∑
t>k0

∫
Et

f(Wξ)|Wξ|γ dλ(ξ)

+
∑
j

n∑
k=1

(θ
1/s
∗ κ−1)n−k

∫
Bj

|DT−k|dm+
∑
t>k0

n∑
k=1

(θ
1/s
∗ κ−1)n−k

∫
Ht
|DT−k|dm

)
≤ C|h|w(|ψ|∞ +Hp

n(ψ))
(∑

j

λ(Ej) +
∑
t>k0

∫
Et

f(Wξ)|Wξ|γ dλ(ξ)

+
n∑
k=1

(θ
1/s
∗ κ−1)n−k

∫
M`

|DT−k|dm
)
.

The first two sums are finite since there are only finitely many Ej and using (H3)(5) for t > k0.
Since there are only finitely many M` by assumption on S0, the first two sums remain finite when
we sum over `. For the third sum, we sum over ` and use the fact that

∫
M |DT

−k|dm = 1 for each

k ≥ 1. Thus the third sum is uniformly bounded in n using the fact that θ
1/s
∗ κ−1 < 1 by (H1) and

the discussion after Proposition 2.3 since 1−γ0
1−γ < 1−γ0

1−α . �

The next lemma is very similar to [GL, Proposition 4.1] and is used in the proof of Lemma 2.2
to show that the relevant embeddings are in fact injective.

Lemma 3.8. The embedding Bw ↪→ (Cp(M))′ is injective.

Proof. For h ∈ C1(M) and W ∈ Ws, we define

〈Dp
W (h), ψ〉 =

∫
W
hψ dmW , ψ ∈ Cp(M).

Since |〈Dp
W (h), ψ〉| ≤ |h|w|W |γf(W )|ψ|Cp(W ), D

p
W (h) defines a distribution of order p on M , i.e.,

Dp
W (h) ∈ (Cp(M))′. And since the map h → Dp

W (h) is continuous in the | · |w -norm, it can be
extended to Bw.

We assume |h|w 6= 0 and show that h 6= 0 as an element of (Cp(M))′. Since |h|w 6= 0, there
exists ψ ∈ Cp(M) and W ∈ Ws such that 〈Dp

W (h), ψ〉 =: δ > 0. Since the map W → 〈Dp
W (h), ψ〉

is continuous for h ∈ C1(M), by density, it is continuous for all h ∈ Bw. Thus we can find an open
set E foliated by curves W ′ ∈ Ws close to W such that 〈Dp

W ′(h), ψ〉 ≥ δ/2 for each W ′ ⊂ E.
We localize the support of ψ to this set as follows. We extend each stable curve W ′ in E by a

length ε > 0 in either direction to form a larger set E′ ⊃ E. We call these extended curves W ′ε. We
multiply ψ by a smooth bump function ϕ such that ϕ = 0 on M \ E′ and ϕ = 1 on E. We choose
ϕ so that |ϕψ|Cp(W ′ε)

≤ C|ψ|Cp(M)ε
−p, for some uniform constant C. Then

〈Dp
W ′ε

(h), ϕψ〉 = 〈Dp
W ′(h), ψ〉+ 〈Dp

W ′ε\W ′
(h), ϕψ〉

≥ δ/2− C|ψ|Cp(M)ε
−p|W ′ε \W ′|γ ≥ δ/2− C|ψ|Cp(M)ε

γ−p.

This can be made larger than δ/4 by choosing ε sufficiently small since γ > p by definition of the
norms.

Thus the function ϕψ ∈ Cp(M) satisfies h(ϕψ) 6= 0. We conclude that h 6= 0 as an element of
(Cp(M))′. �

We conclude this section by proving the following important fact regarding compactness.

Lemma 3.9. The unit ball of B is compactly embedded in Bw.
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Proof. Let 0 < ε ≤ ε0 be fixed. Let kε ∈ N be the least integer k such that 1/krh < ε. We split M
into two parts, A = ∪k≤kεHk and B = M \ A. By (H3)(4), any W ∈ Ws such that W ⊂ B must
satisfy |W | ≤ C2ε.

Let h ∈ C1(M) with ‖h‖B ≤ 1. First we estimate the weak norm of h on curves W in B. If
W ⊂ Hk for k ≥ kε, and |ψ|W,γ,p ≤ 1, then

|
∫
W
hψ dmW | ≤ ‖h‖s|ψ|W,α,q ≤ ‖h‖s|W |αf(W )|ψ|Cq(W ) ≤ C‖h‖sεα−γ . (3.30)

Now on A, notice that there exists a constant Dε > 1 such that 1/f(W ) ≤ Dε. Also, since A
contains only finitely many homogeneity strips, we may choose finitely many charts χi as defined
in Section 3.1. In each chart, the set of functions F ∈ Ξ is compact in the C1-norm. Thus we
may choose finitely many curves Wi ∈ Ws such that {Wi}Nεi=1 forms an ε-covering of Ws|A in the
distance dWs . Indeed, we choose each of the Wi to satisfy |Wi| ≥ ε since we may approximate the
norm of h on any stable curve with length less than ε by 0 according to (3.30).

For each Wi, let Ii be the interval on the horizontal axis in the chart on which the corresponding
functionGFi is defined, i.e., Wi = GFi(Ii). Since any ball of finite radius in the Cp-norm is compactly

embedded in Cq, we may choose finitely many functions ψi,j ∈ Cp(Ii) such that {ψi,j}Lεj=1 forms an

ε-covering in the Cq(Ii)-norm of the ball of radius CgDεε
−γ in Cp(Ii), where Cg is from (3.17).

Now let W = GFW (IW ) ∈ Ws|A with |W | ≥ ε, and ψ ∈ Cp(W ) with |ψ|W,γ,p ≤ 1. We fix a chart

and choose one of the curves Wi = GFi(Ii) such that dWs(Wi,W ) < ε. Let ψ = ψ ◦ GFW be the

push down of ψ to IW and note that |ψ|Cp(IW ) ≤ Cgf(W )−1|W |−γ ≤ CgDεε
−γ .

Next let I = Ii∩IW and choose ψi,j ∈ Cp(Ii) such that |ψ−ψi,j |Cq(I) ≤ ε. Define ψi,j = ψi,j ◦G−1
Fi

to be the lift of ψi,j to Wi. Note that

|ψi,j |Wi,γ,p ≤ 2Cg
f(Wi)|Wi|γ

f(W )|W |γ
≤ 2CgCfCw.

by Lemma 3.4 since Wi and W lie in the same homogeneity region and |W | ≥ ε. Then normalizing
ψ and ψi,j by 2CgCfCw, we estimate∣∣∣∣∫

W
hψ dmW −

∫
Wi

hψi,j dmW

∣∣∣∣ ≤ εβ‖h‖u2CgCfCw.

We have proved that for each 0 < ε ≤ ε0, there exist finitely many bounded linear functionals `i,j ,
`i,j(h) =

∫
Wi
hψi,jdmW , such that

|h|w ≤ max
i≤Nε; j≤Lε

`i,j(h) + εβC‖h‖u + εα−γC‖h‖s ≤ max
i≤Nε; j≤Lε

`i,j(h) + εβCc−1
u ‖h‖B,

which implies the required compactness. �

4. Lasota-Yorke Estimates

Since by Lemma 2.2, L is continuous on B, it suffices to prove Proposition 2.3 for h ∈ C1(M).

4.1. Estimating the Weak Norm. Let h ∈ C1(M), W ∈ Ws and ψ ∈ Cp(W ) such that |ψ|W,γ,p ≤
1. Let Wn

i denote the elements of Gn(W ) as defined in Section 3.3. For n ≥ 0, we write,∫
W
Lnhψ dmW =

∑
Wn
i ∈Gn(W )

∫
Wn
i

h
JWn

i
Tn

|DTn|
ψ ◦ Tn dmW , (4.1)

where JWn
i
Tn denotes the Jacobian of Tn along Wn

i .
Using the definition of the weak norm on each Wn

i , we estimate (4.1) by

|
∫
W
Lnhψ dmW | ≤

∑
Wn
i ∈Gn

|h|w||DTn|−1JWn
i
Tn|Cp(Wn

i )|ψ ◦ Tn|Cp(Wn
i )f(Wn

i ) |Wn
i |γ . (4.2)
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By (3.26), we have |ψ ◦ Tn|Cp(Wn
i ) ≤ C|ψ|Cp(W ) ≤ Cf(W )−1|W |−γ . Using this estimate plus (3.25)

in equation (4.2), we obtain

|
∫
W
Lnhψ dmW | ≤ C|h|w

∑
Wn
i ∈Gn

|Wn
i |γ

|W |γ
· f(Wn

i )

f(W )
||DTn|−1JWn

i
Tn|C0(Wn

i ).

Finally, using (3.28) we estimate

|
∫
W
Lnhψ dmW | ≤ C|h|wκ−n

∑
Wn
i ∈Gn

(
|Wn

i |
|W |

)γ
· |JWn

i
Tn|C0(Wn

i ) ≤ CC5|h|wκ−n,

where in the last inequality we have used Lemma 3.3(b) with ς = γ. Taking the supremum over all
W ∈ Ws and ψ ∈ Cp(W ) with |ψ|W,γ,p ≤ 1 yields (2.11).

4.2. Estimating the Strong Stable Norm. As before, let h ∈ C1(M), W ∈ Ws and denote by
Wn
i the elements of Gn(W ). For ψ ∈ Cq(W ) with |ψ|W,α,q ≤ 1, define ψi = |Wn

i |−1
∫
Wn
i
ψ◦Tn dmW .

Following equation (4.1), we write∫
W
Lnhψ dmW =

∑
i

∫
Wn
i

h
JWn

i
Tn

|DTn|
(ψ ◦ Tn − ψi) dmW + ψi

∫
Wn
i

h
JWn

i
Tn

|DTn|
dmW . (4.3)

To estimate the first term on the right hand side of (4.3), we first estimate |ψ ◦Tn−ψi|Cq(Wn
i ). If

Hq
W (ψ) denotes the Hölder constant of ψ along W , then equation (3.26) implies Hq

Wn
i

(ψ◦Tn−ψi) ≤
CΛ−qnHq

W (ψ), since ψi is constant on Wn
i . To estimate the C0 norm, note that ψi = ψ ◦Tn(yi) for

some yi ∈Wn
i . Thus for each x ∈Wn

i ,

|ψ ◦ Tn(x)− ψi| = |ψ ◦ Tn(x)− ψ ◦ Tn(yi)| ≤ Hq
Wn
i

(ψ ◦ Tn)|Wn
i |q ≤ CH

q
W (ψ)Λ−qn.

These estimates together with the fact that |ϕ|W,α,q ≤ 1 imply

|ψ ◦ Tn − ψi|Cq(Wn
i ) ≤ CΛ−qn|ψ|Cq(W ) ≤ CΛ−qn|W |−αf(W )−1. (4.4)

We apply (4.4), the distortion estimate (3.25) and the definition of the strong stable norm to the
first term of (4.3),

|
∑
i

∫
Wn
i

h
JWn

i
Tn

|DTn|
(ψ ◦ Tn − ψi) dmW | ≤ C

∑
i

‖h‖s
|Wn

i |α

|W |α
f(Wn

i )

f(W )

∣∣∣∣JWn
i
Tn

|DTn|

∣∣∣∣
C0(Wn

i )

Λ−qn

≤ CΛ−qnκ−n‖h‖s
∑
i

|Wn
i |α

|W |α
|JWn

i
Tn|C0(Wn

i ) ≤ C ′Λ−qnκ−n‖h‖s,
(4.5)

where in the second line we have used (3.28) and Lemma 3.3(b) with ς = α.
For the second term on the right hand side of (4.3), we use the fact that |ψi| ≤ |W |−αf(W )−1

since |ψ|W,α,q ≤ 1. Recall the notation introduced before the statement of Lemma 3.3. Grouping
the pieces Wn

i ∈ Gn(W ) according to most recent long ancestors, we have

∑
i

1

|W |αf(W )

∫
Wn
i

h
JWn

i
Tn

|DTn|
dmW =

n∑
k=1

∑
j∈Lk

∑
i∈In(Wk

j )

1

|W |αf(W )

∫
Wn
i

h
JWn

i
Tn

|DTn|
dmW

+
∑

i∈In(W )

1

|W |αf(W )

∫
Wn
i

h
JWn

i
Tn

|DTn|
dmW
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where we have split up the terms involving k = 0 and k ≥ 1. We estimate the terms with k ≥ 1 by
the weak norm and the terms with k = 0 by the strong stable norm,∑

i

1

|W |αf(W )

∫
Wn
i

h
JWn

i
Tn

|DTn|
dmW ≤ C

n∑
k=1

∑
j∈Lk

∑
i∈In(Wk

j )

|Wn
i |γf(Wn

i )

|W |αf(W )
|h|w

∣∣∣∣JWn
i
Tn

|DTn|

∣∣∣∣
C0(Wn

i )

+ C
∑

i∈In(W )

|Wn
i |αf(Wn

i )

|W |αf(W )
‖h‖s||DTn|−1JWn

i
Tn|C0(Wn

i ).

As usual, by (3.28), the ratio of f ’s times |DTn|−1 is bounded by Cκ−n.
In the first sum above corresponding to k ≥ 1, we split the Jacobians according to times k and

n− k and use Lemma 3.3(a) in each term from time k to time n− k,∑
i∈In(Wk

j )

|Wn
i |γ

|W k
j |γ
|JWn

i
Tn−k|C0(Wn

i ) ≤ C4θ
(n−k)/s
∗ ,

where s = 1−γ0
1−γ . Using this estimate, we obtain,

n∑
k=1

∑
j∈Lk

∑
i∈In(Wk

j )

|Wn
i |γ

|W |α
|W k

j |α

|W k
j |α

f(Wn
i )

f(W )

∣∣∣∣JWn
i
Tn

|DTn|

∣∣∣∣
C0(Wn

i )

≤ Cδγ−α0 κ−n
n∑
k=1

∑
j∈Lk

|W k
j |α

|W |α
|JWk

j
T k|C0(Wk

j )θ
(n−k)/s
∗ ,

since |W k
j | ≥ δ0/3. The last two sums are bounded independently of n and W by Lemma 3.3(b)

with ς = α.
Finally, for the sum corresponding to k = 0, we have∑

i∈In(W )

|Wn
i |α

|W |α
|JWn

i
Tn|C0(Wn

i ) ≤ Cθ
n/s0
∗ ,

again using Lemma 3.3(a) with s0 = 1−γ0
1−α .

Gathering these estimates together, we obtain,∑
i

1

|W |αf(W )

∣∣∣∣∣
∫
Wn
i

h|DTn|−1JWn
i
Tn dmW

∣∣∣∣∣ ≤ Cδγ−α0 |h|wκ−n + C‖h‖sθn/s0∗ κ−n. (4.6)

Putting together (4.5) and (4.6) in (4.3) proves (2.12),

‖Lnh‖s ≤ C(Λ−qn + θ
n/s0
∗ )κ−n‖h‖s + Cδγ−α0 κ−n|h|w.

4.3. Estimating the Strong Unstable Norm. Fix ε ≤ ε0 and consider two curvesW 1,W 2 ∈ Ws

with dWs(W 1,W 2) ≤ ε. For n ≥ 1, we describe how to partition T−nW `, ` = 1, 2, into matched
pieces U `j to which we will apply the strong unstable norm ‖ · ‖u and unmatched pieces V `

k to which

we will apply the strong stable norm ‖ · ‖s.
Recall SH0 = S0 ∪ (∪k>k0SHk ) and define SH−n := ∪ni=0T

i(SH0 ) to be the expanded singularity set
for T−n taking into account the boundaries of the homogeneity regions. Let ω be a connected
component of W 1 \ SH−n. To each point x ∈ T−nω, we associate an unstable curve γx (vertical in
the chart) of length at most CΛ−nε such that its image Tnγx, if not cut by a singularity or the
boundary of a homogeneity strip, will have length Cε. By assumption (H2), all the tangent vectors
to T iγx lie in the unstable cone Cu(T ix) for each i ≥ 0 so that they remain uniformly transverse
to the stable cone and enjoy the uniform expansion given by (H2)(2).
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Doing this for each connected component of W 1 \ SH−n, we subdivide W 1 \ SH−n into a countable

collection of subintervals of points for which Tnγx intersects W 2 \ SH−n and subintervals for which

this is not the case. This in turn induces a corresponding partition on W 2 \ SH−n.

We denote by V `
k the pieces in T−nW ` which are not matched up by this process and note that

the images TnV `
k occur either at the endpoints of W ` or because the vertical segment γx has been

cut by a singularity. In both cases, the length of the curves TnV `
k can be at most Cεt0 due to the

type of tangency allowed between curves in SH−1 and the stable cone by (H3)(3),(4).
In the remaining pieces the foliation {Tnγx}x∈T−nW 1 provides a one-to-one correspondence be-

tween points in W 1 and W 2. We further subdivide these curves in W ` in such a way that the
lengths of their images under T−i is less than δ0 for each 0 ≤ i ≤ n and these subdivided pieces
are pairwise matched by the foliation {Tnγx}. We call these matched pieces U `j . Possibly changing

δ0/2 to δ0/C for some uniform constant C > 0 (depending only on the distortion constant and the
angle between stable and unstable cones), in the definition of Gn(W ), we can arrange it so that

U `j ⊂ W `,n
i for some W `,n

i ∈ Gn(W `) and V `
k ⊂ W `,n

i′ for some W `,n
i ∈ Gn(W `) for all j, k ≥ 1 and

` = 1, 2. There are at most one U `j and two V `
k per W `,n

i ∈ Gn(W `).

In this way we write W ` = (∪jTnU `j )∪ (∪kTnV `
k ). Note that the images TnV `

k of the unmatched

pieces must be short while the images of the matched pieces U `j may be long or short. Recalling the

notation of Section 3.1, we have arranged a pairing of the pieces Ukj with the following property:

If U1
j = GF 1

j
(Ij) = {χij (x1

j + (t, FU1
j
(t))) : t ∈ Ij},

then U2
j = GF 2

j
(Ij) = {χij (x2

j + (t, FU2
j
(t))) : t ∈ Ij},

(4.7)

so that the point x = x1
j + (t, FU1

j
(t)) in the chart is associated with the point x̄ = x2

j + (t, FU2
j
(t))

by the vertical segment χ−1
ij

(γx) for each t ∈ Ij .
Given ψ` on W ` with |ψ`|W `,γ,p ≤ 1 and dq(ψ1, ψ2) ≤ ε, with the above construction we must

estimate

∣∣∣∣∫
W 1

Lnhψ1 dmW −
∫
W 2

Lnhψ2 dmW

∣∣∣∣
≤
∑
`,k

∣∣∣∣∣
∫
TnV `k

Lnhψ` dmW

∣∣∣∣∣+
∑
j

∣∣∣∣∣
∫
TnU1

j

Lnhψ1 dmW −
∫
TnU2

j

Lnhψ2 dmW

∣∣∣∣∣ . (4.8)

We do the estimate over the unmatched pieces V `
k first using the strong stable norm. To do this,

we group pieces TnV `
k in the following manner. We say TnV `

k is created at time 0 ≤ t ≤ n − 1 if

t is the first time that an endpoint of Tn−tV `
k is created by an intersection with SH−1. Note that

due to the transversality conditions (H3)(3),(4), we have |Tn−tV `
k | ≤ Cεt0 , where C is a uniform

constant. We set A(t) = {(k, `) : V `
k created at time t}. We will change variables to estimate the

norm on Tn−t−1V `
k for (k, `) ∈ A(t).

The expression we must estimate on unmatched pieces is

∣∣∣∣∣∣
∑
`,k

∫
TnV `k

Lnhψ dmW

∣∣∣∣∣∣ =

n−1∑
t=0

∑
(k,`)∈A(t)

∫
Tn−t−1V `k

(Ln−t−1h) |DT t+1|−1JTn−t−1V `k
T t+1 ψ ◦ T t+1 dmW .
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Note that by (3.26), |ψ` ◦ T t+1|Cq(Tn−t−1V `k ) ≤ C|ψ`|Cp(W `) ≤ Cf(W `)−1|W `|−γ . Fixing t, k and `,

we estimate following (4.5),∫
Tn−t−1V `k

(Ln−t−1h) |DT t+1|−1JTn−t−1V `k
T t+1 ψ ◦ T t+1 dmW

≤ ‖Ln−t−1h‖s
|Tn−t−1V `

k |α

|W `|γ
f(Tn−t−1V `

k )

f(W `)

∣∣∣∣∣ |JTn−t−1V `k
Tn−t−1

|DT t+1|−1

∣∣∣∣∣
C0(Tn−t−1V `k )

≤ Cκ−n‖h‖s|Tn−t−1V `
k |α−γ

|Tn−t−1V `
k |γ

|W `|γ
|JTn−t−1V `k

Tn−t−1|C0 ,

(4.9)

where in the last line, we have used (3.28) as well as the bound ‖Lih‖s ≤ Cκ−i‖h‖s for any i from
Section 4.2.

Now since |Tn−tV `
k | ≤ Cεt0 , by (H3)(1) we have |Tn−t−1V `

k | ≤ Cεξt0 . Also, we estimate over

pieces Tn−t−1V `
k rather than Tn−tV `

k because we have created Tn−tV `
k due to an intersection with

SH−1, but this is one step earlier than we would cut pieces for our generation Gt(W `) as described in

Section 3.3. There may be many pieces Tn−tV `
k for each connected component of Gt(W `); however,

there are at most two pieces Tn−t−1V `
k , (k, `) ∈ A(t) in each connected component of Gt+1(W `) so

that we can control the sum over these pieces via Lemma 3.3(b).
Using these facts together with (4.9), we estimate,

|
∑
`,k

∫
TnV `k

Lnhψ| ≤ Cκ−n‖h‖sεξt0(α−γ)
n−1∑
t=0

∑
(k,`)∈A(t)

|Tn−t−1V `
k |γ

|W `|γ
|JTn−t−1V `k

Tn−t−1|C0

≤ Cnκ−n‖h‖sεξt0(α−γ),

(4.10)

where we have used Lemma 3.3(b) in the last line on the sum over each set A(t). Now the exponent
of ε is at least β since we chose β < ξt0(α− γ) in the definition of the norms.

The only pieces not covered by the above estimate are those pieces created at the endpoints of
W 1 or W 2 (and not due to any singularity cuts). There are at most 2 such pieces and they each
have length less than Cε by definition of dWs(·, ·). Thus we estimate directly on these pieces,

|
∫
TnV `k

Lnhψ| ≤ ‖Lnh‖s|TnV `
k |αf(TnV `

k )|ψ|Cq(W `) ≤ Cκ−n‖h‖sεα−γ
|TnV `

k |γ

|W `|γ
f(TnV `

k )

f(W `)
(4.11)

and the two ratios are bounded since TnV `
k ⊂ W ` and using Lemma 3.4(a). Since α− γ ≥ β, this

completes the estimate on the unmatched pieces.
Next, we estimate the difference of matched pieces in (4.8). Recalling the notation defined by

(4.7), on each U2
j we define

φj = (|DTn|−1JU1
j
Tn ψ1 ◦ Tn) ◦GF 1

j
◦G−1

F 2
j
.

The function φj is well defined on U2
j and changing variables to integrate on U `j , we must estimate,∣∣∣∣∣

∫
U1
j

h|DTn|−1JU1
j
Tn ψ1 ◦ Tn −

∫
U2
j

h|DTn|−1JU2
j
Tn ψ2 ◦ Tn

∣∣∣∣∣
≤

∣∣∣∣∣
∫
U1
j

h|DTn|−1JU1
j
Tn ψ1 ◦ Tn −

∫
U2
j

hφj

∣∣∣∣∣+

∣∣∣∣∣
∫
U2
j

h(φj − |DTn|−1JU2
j
Tn ψ2 ◦ Tn)

∣∣∣∣∣ .
(4.12)
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We estimate the first term on the right hand side of equation (4.12) using the strong unstable
norm. The estimates (3.25), (3.28) and (3.26) imply that

| |DTn|−1JU1
j
Tn · ψ1 ◦ Tn|U1

j ,γ,p
= f(U1

j )|U1
j |γ | |DTn|−1JU1

j
Tn · ψ1 ◦ Tn|Cp(U1

j )

≤ C
f(U1

j )

f(W 1)
·
|U1
j |γ

|W 1|γ
· | |DTn|−1JU1

j
Tn|C0(U1

j ) ≤ Cκ−n|JU1
j
Tn|C0(U1

j )

|U1
j |γ

|W 1|γ
.

(4.13)

Similarly, since Lip(GF 1
j
◦G−1

F 2
j
) ≤ Cg, where Cg is from (3.17),

|φj |U2
j ,γ,p

≤ C
f(U2

j )

f(W 1)

|U2
j |γ

|W 1|γ
| |DTn|−1JU1

j
Tn|C0(U1

j ) ≤ Cκ−n|JU1
j
Tn|C0(U1

j )

|U1
j |γ

|W 1|γ
,

where
f(U2

j )

f(U1
j )
≤ Cf by Lemma 3.4(a) since the two curves lie in the same homogeneity strip, and we

have used the fact that |U2
j | ≤ C|U1

j | due to the pairing (4.7). By the definition of φj and dq(·, ·),

dq(|DTn|−1JU1
j
Tnψ1 ◦ Tn, φj) =

∣∣∣[|DTn|−1JU1
j
Tnψ1 ◦ Tn

]
◦GF 1

j
− φj ◦GF 2

j

∣∣∣
Cq(Ij)

= 0.

Finally, we note that by Lemma 3.2, we have dWs(U1
j , U

2
j ) ≤ C∗Λ−ndWs(W 1,W 2) ≤ C∗Λ−nε =: ε1.

In view of (4.13), we renormalize the test functions by Rj = Cκ−n|JU1
j
Tn|C0(U1

j )

|U1
j |γ

|W 1|γ . Then we

apply the definition of the strong unstable norm with ε1 in place of ε. Thus,∑
j

∣∣∣∣∣
∫
U1
j

h|DTn|−1JU1
j
Tn ψ1 ◦ Tn −

∫
U2
j

hφj

∣∣∣∣∣ ≤ Cεβ1κ−n‖h‖u∑
j

|U1
j |γ

|W 1|γ
|JU1

j
Tn|C0(U1

j )

≤ C‖h‖uΛ−nβκ−nεβ

(4.14)

where the sum is ≤ C5 by Lemma 3.3(b) with ς = γ since there is at most one matched piece U1
j

corresponding to each component of T−nW 1, W 1,n
i ∈ Gn(W 1).

Now we estimate the second term on the right hand side of (4.12) using the strong stable norm,

|
∫
U2
j

h
(
φj − |DTn|−1JU2

j
Tnψ2 ◦ Tn

)
|

≤ C‖h‖s|U2
j |αf(U2

j )
∣∣∣φj − |DTn|−1JU2

j
Tnψ2 ◦ Tn

∣∣∣
Cq(U2

j )
. (4.15)

In order to estimate the Cq-norm of the function in (4.15), we split it up into two differences. Since
Lip(GF `j

), Lip(G−1
F `j

) ≤ Cg, ` = 1, 2, we write

|φj − (|DTn|−1JU2
j
Tn) · ψ2 ◦ Tn|Cq(U2

j )

≤ C
∣∣∣[(|DTn|−1JU1

j
Tn) · ψ1 ◦ Tn

]
◦GF 1

j
−
[
(|DTn|−1JU2

j
Tn) · ψ2 ◦ Tn

]
◦GF 2

j

∣∣∣
Cq(Ij)

≤ C
∣∣∣(|DTn|−1JU1

j
Tn) ◦GF 1

j

[
ψ1 ◦ Tn ◦GF 1

j
− ψ2 ◦ Tn ◦GF 2

j

]∣∣∣
Cq(Ij)

+ C
∣∣∣[(|DTn|−1JU1

j
Tn) ◦GF 1

j
− (|DTn|−1JU2

j
Tn) ◦GF 2

j

]
ψ2 ◦ Tn ◦GF 2

j

∣∣∣
Cq(Ij)

≤ C| |DTn|−1JU1
j
Tn|C0(U1

j )

∣∣∣ψ1 ◦ Tn ◦GF 1
j
− ψ2 ◦ Tn ◦GF 2

j

∣∣∣
Cq(Ij)

+ Cf(W 2)−1|W 2|−γ
∣∣∣(|DTn|−1JU1

j
Tn) ◦GF 1

j
− (|DTn|−1JU2

j
Tn) ◦GF 2

j

∣∣∣
Cq(Ij)

,

(4.16)

where in the last step we have used (3.25). In order to bound these two terms, we prove the
following lemma.
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Lemma 4.1. There exists C > 0 such that for each j ≥ 1,

(a) |(|DTn|−1JU1
j
Tn) ◦GF 1

j
− (|DTn|−1JU2

j
Tn) ◦GF 2

j
|Cq(Ij) ≤ C||DT

n|−1JU2
j
Tn|C0(U2

j )ε
p0−q;

(b) |ψ1 ◦ Tn ◦GF 1
j
− ψ2 ◦ Tn ◦GF 2

j
|Cq(Irj ) ≤ Cf(W 2)−1|W 2|−γ εp−q.

We postpone the proof of the lemma to Section 4.3.1 and show how this completes the estimate
on the strong unstable norm. Notice that ||DTn|−1JU1

j
Tn|C0(U1

j ) ≤ C||DTn|−1JU2
j
Tn|C0(U2

j ) by

(4.18) in the proof of Lemma 4.1(a). Then using Lemma 4.1 together with (4.16) yields by (4.15)∑
j

∣∣∣ ∫
U2
j

h(φj − |DTn|−1JU2
j
Tnψ2 ◦ Tn) dmW

∣∣∣
≤ C‖h‖s

∑
j

|U2
j |αf(U2

j )

|W 2|γf(W 2)

∣∣∣|DTn|−1JU2
j
Tn
∣∣∣
C0(U2

j )
εp−q

≤ C‖h‖sεp−qκ−n
∑
j

|U2
j |γ

|W 2|γ
|JU2

j
Tn|C0(U2

j ),

(4.17)

where we have used (3.28) in the last step and the sum is finite by Lemma 3.3(b). This completes
the estimate on the second term on the right hand side of (4.12). Now we use this bound, together
with (4.10) and (4.14) to estimate (4.8)∣∣∣∣∫

W 1

Lnhψ1 dmW −
∫
W 2

Lnhψ2 dmW

∣∣∣∣ ≤ Cκ−n(n‖h‖sεξt0(α−γ) + ‖h‖uΛ−nβεβ + ‖h‖sεp−q).

Since β < min{p− q, ξt0(α− γ)}, we may divide through by εβ and take the appropriate suprema
to complete the proof of (2.13).

4.3.1. Proof of Lemma 4.1. We recall the following general fact whose proof can be found in [DZ2,
Lemma 4.3].

Lemma 4.2 ([DZ2]). Let X be a metric space and choose 0 < r < s ≤ 1. Suppose g1, g2 ∈ Cs(X)
satisfy |g1 − g2|C0(X) ≤ D1ε

s for some constant D1 > 0. Then

|g1 − g2|Cr(X) ≤ 3εs−r max{D1, H
s(g1) +Hs(g2)},

where Hs(·) denotes the Hölder constant of exponent s on X.

Proof of Lemma 4.1(a). Throughout the proof, for ease of notation we write Jnk for |DTn|−1JUkj
Tn.

For any t ∈ Ij , x = GF 1
j
(t) and x̄ = GF 2

j
(t) lie on a common unstable curve γx (which is a

vertical line segment in the chart). Note that dW (Tnx, Tnx̄) ≤ Cε since Tn(x) and Tn(x̄) lie on
the element Tnγx ∈ Wu which intersects W 1 and W 2; this curve has length at most Cε due to the
uniform transversality of stable and unstable cones. By (3.2) and Lemma 3.2(b),

|Jn1 (x)− Jn2 (x̄)| ≤ C|Jn2 |C0(U2
j )(d(Tnx, Tnx̄)p0 + θ(Tnx, Tnx̄)),

where θ(Tnx, Tnx̄) is the angle between the tangent line to W 1 at Tnx and the tangent line to W 2

at Tnx̄. Let y ∈ W 2 be the unique point in W 2 whose lift χ−1
i (y) in the chart containing W 1 and

W 2 lies on the same vertical segment as χ−1
i (Tnx). Since by assumption dWs(W 1,W 2) ≤ ε, we

have θ(Tnx, y) ≤ ε. Due to the uniform transversality of curves in Wu and Ws and the fact that
W 1 and W 2 are graphs of C2 functions with uniformly bounded C2 norms, we have θ(y, Tnx̄) ≤ Cε
and so θ(Tnx, Tnx̄) ≤ Cε. Thus,

|Jn1 (x)− Jn2 (x̄)| ≤ Cεp0 |Jn2 |C0(U2
j ). (4.18)
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Noting that Lip(GF `j
) ≤ Cg, ` = 1, 2, (4.18) implies that

|Jn1 ◦GF 1
j
− Jn2 ◦GF 2

j
|C0(Ij) ≤ C|J

n
2 |C0(U2

j )ε
p0 .

Now the fact that Jn1 ◦GF 1
j
, Jn2 ◦GF 2

j
∈ Cp0(Ij) means we may apply Lemma 4.2 to their difference

to conclude
|Jn1 ◦GF 1

j
− Jn2 ◦GF 2

j
|Cq(Ij) ≤ C(|Jn1 |Cp0 (U1

j ) + |Jn2 |Cp0 (U2
j ))ε

p0−q.

The lemma follows since |Jn` |Cp0 (U`j ) ≤ C|Jn` |C0(U`j ) by (3.25) and |Jn1 |C0(U1
j ) ≤ C|Jn2 |C0(U2

j ) by (4.18).

�

Proof of Lemma 4.1(b). Let FW ` be the function whose graph GW `(IW `) = W `, and set g`j :=

G−1
W ` ◦ Tn ◦ GF `j , ` = 1, 2. Notice that since Lip(G−1

W `), Lip(GF `j
) ≤ Cg, and due to the uniform

contraction along stable curves, we have Lip(g`j) ≤ C, where C is independent of W ` and j. We

may assume that g`j(Ij) ⊂ IW 1 ∩IW 2 since if not, by the uniform transversality of Cu(x) and Cs(x),

we must be in a neighborhood of one of the endpoints of W ` of length at most Cε; such short pieces
may be estimated as in (4.11) using the strong stable norm. Thus

|ψ1 ◦ Tn ◦GF 1
j
− ψ2 ◦ Tn ◦GF 2

j
|Cq(Ij) ≤ |ψ1 ◦GW 1 ◦ g1

j − ψ2 ◦GW 2 ◦ g1
j |Cq(Ij)

+ |ψ2 ◦GW 2 ◦ g1
j − ψ2 ◦GW 2 ◦ g2

j |Cq(Ij).
(4.19)

Using the above observation about g1
j , we estimate the first term of (4.19) by

|ψ1 ◦GW 1 ◦ g1
j − ψ2 ◦GW 2 ◦ g1

j |Cq(Ij) ≤ C|ψ1 ◦GW 1 − ψ2 ◦GW 2 |Cq(g1j (Ij))
≤ Cε, (4.20)

by definition of dq(ψ1, ψ2).
To estimate the second term of (4.19), notice that for t ∈ Ij , g1

j (t)−g2
j (t) measures the difference

in the horizontal coordinates (in the chart) of Tn ◦ GF 1
j
(t) and Tn ◦ GF 2

j
(t). Since the distance

between W 1 and W 2 is at most ε along vertical segments in the chart and the segment connecting
Tn ◦GF 1

j
(t) and Tn ◦GF 2

j
(t) lies in the unstable cone of the chart containing W 1 and W 2, we have

|g1
j − g2

j |C0(Ij) ≤ Cε, using the uniform transversality of stable and unstable cones. Thus for t ∈ Ij ,

|ψ2 ◦GW 2 ◦ g1
j (t)− ψ2 ◦GW 2 ◦ g2

j (t)| ≤ C|ψ2|Cp |g1
j (t)− g2

j (t)|p ≤ C|ψ2|Cpεp.

This estimate combined with Lemma 4.2 applied to ψ2 ◦GW 2 ◦g1
j −ψ2 ◦GW 2 ◦g2

j , yields |ψ2 ◦GW 2 ◦
g1
j − ψ2 ◦ GW 2 ◦ g2

j |Cq(Ij) ≤ C|ψ2|Cpεp−q. This together with (4.19) and (4.20) proves the lemma

since |ψ2|Cp(W 2) ≤ f(W 2)−1|W 2|−γ . �

5. Proof of Theorem 2.4 and Corollary 2.5

Recall that the Lasota-Yorke estimate (2.14) and the compactness of the unit ball of B in Bw
proved in Lemma 3.9 imply via the standard Hennion argument that the spectral radius of L on B
is bounded by κ−1 and the essential spectral radius is bounded by σ0 < 1 (see for example [HH]).
We proceed to prove the following lemma characterizing the peripheral spectrum of L on B.

Recall that SH0 = S0 ∪ (∪k>k0SHk ) and SH−n = ∪ni=0T
i(SH0 ) denote the expanded singularity set

for T−n taking into account the boundaries of the homogeneity regions. SHn is defined analogously.
Also, Vθ denotes the eigenspace of L associated with the eigenvalue e2πiθ and Πθ denotes the
corresponding eigenprojector onto Vθ.

Lemma 5.1. Let V = ⊕θVθ. Then,

(i) the spectral radius of L on B is 1;
(ii) L restricted to V has semi-simple spectrum (no Jordan blocks);

(iii) V consists of signed measures;
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(iv) all measures in V are absolutely continuous with respect to µ = Π0m. Moreover, 1 is in the
spectrum of L.

(v) Let SH−1,ε denote the ε-neighborhood of SH−1. Then for each µ ∈ V, there exists C > 0 such

that for all ε > 0, we have µ(SH−1,ε) ≤ Cεξt0(α−γ). In particular, µ(∪n∈ZTn(SH−1,εn−2/ξt0(α−γ))) ≤
Cεξt0(α−γ) and µ(SH±n) = 0.

Proof. Items (ii)-(iv) are proved in [DZ1, Lemma 5.1] and their proofs remain unchanged here so
we do not repeat them. We proceed to prove items (i) and (v).

(i) First note that the spectral radius must be at least 1: If it were smaller than 1, then since
m ∈ B, Lemma 3.7 would yield the following contradiction,

1 = m(1) = m(1 ◦ Tn) = Lnm(1) ≤ C‖Lnm‖B ≤ C‖L‖n‖m‖B −−−→
n→∞

0.

To show the spectral radius of L is not more than 1, suppose z ∈ C, |z| > 1, satisfies Lh = zh for
some h ∈ B, h 6= 0. For ψ ∈ Cp(M), Lemma 3.7 implies,

|h(ψ)| ≤ |z−nLnh(ψ)| = |z|−n|h(ψ ◦ Tn)| ≤ |z|−nC|h|w(|ψ|∞ +Hp
n(ψ ◦ Tn)) −−−→

n→∞
0,

since Hp
n(ψ ◦ Tn) ≤ CΛ−pn|ψ|Cp(M) by (3.26), contradicting the assumption on h.

(v) Let µ ∈ V and fix ε > 0. Let SH−1,ε denote the ε-neighborhood of SH−1 and let hk be a sequence

of C1 functions converging to µ in B; then since L is bounded, Lhk converges to Lµ in B. It follows
from arguments similar to the proofs of Lemmas 3.5 and 3.6 that (Lhk)ε(ψ) := Lhk(1SH−1,ε

ψ) belongs

to Bw due to the transversality and types of tangencies permitted by (H3) between curves in SH−1

and the stable cone. Then, for W ∈ Ws and ψ ∈ Cp(W ), |ψ|W,γ,p ≤ 1,∫
W

(Lhk)εψ dmW =

∫
W
Lhk · 1SH−1,ε

ψ dmW =
∑
i

∫
W 1
i ∩T−1SH−1,ε

hk|DT |−1JW 1
i
Tψ ◦ TdmW .

Notice that since W 1
i ∈ G1(W ) are created by intersections of W with SH−1, it follows that there

are at most two connected components in each W 1
i ∩ T−1SH−1,ε and |TW 1

i ∩ SH−1,ε| ≤ Cεt0 due to

(H3)(3),(4). Consequently, we estimate the above expression as in (4.9) and (4.10),∣∣∣∣∫
W

(Lhk)εψ dmW

∣∣∣∣ ≤ C‖hk‖sκ−1
∑
i

|W 1
i ∩ T−1SH−1,ε|α

|W |γ
|JW 1

i
T |C0(W 1

i )

≤ Cεξt0(α−γ)‖hk‖s
∑
i

|W 1
i |γ

|W |γ
|JW 1

i
T |C0(W 1

i ) ≤ C‖hk‖sεξt0(α−γ),

where we have used (H3)(1) to pass from |TW 1
i ∩ SH−1,ε| to |W 1

i ∩ T−1SH−1,ε|. Similarly, (Lhk)ε is

a Cauchy sequence in Bw and so must converge to (Lµ)ε(ψ) := Lµ(1SH−1,ε
ψ). Then by the above

estimate, we have |Lµ(SH−1,ε)| ≤ C‖µ‖sεξt0(α−γ). But since Lµ = zµ for some z ∈ C, |z| = 1, we

have the same bound for µ(SH−1,ε).

In particular, this implies µ(SH−1) = 0. Then using repeatedly the fact that Lnµ = znµ, |z| = 1,

and since SH−n = ∪ni=0T
iSH−1 and T−nSH−n = SHn , we conclude µ(SH−n) = 0 for each n ≥ 0. Moreover,

we have µ(∪n∈ZTn(SH−1,εn−2/ξt0(α−γ))) ≤ Cε
ξt0(α−γ)

∑
n∈Z |n|−2 ≤ Cεξt0(α−γ). �

Further information about the measures corresponding to the peripheral spectrum of L can be
proved using similar techniques as in Lemma 5.1: In other words, they are proved using properties
of the Banach spaces we have defined without relying on the specifics of T . We summarize these
results in our next lemma, which we state without proof since the proof can be found in [DL,
Lemmas 5.5 and 5.7].
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Lemma 5.2. (i) There exist a finite number of qk ∈ N such that the spectrum of L on the unit

disk is ∪k{e
2πi p

qk : 0 ≤ p < qk, p ∈ N}. In addition, the set of ergodic probability measures
absolutely continuous with respect to µ form a basis of V0.

(ii) T admits only finitely many physical probability measures and they belong to V0.
(iii) The ergodic decomposition with respect to Lebesgue and with respect to µ coincide. In

addition, the ergodic decomposition with respect to Lebesgue corresponds to the supports of
the physical measures.

The only properties of T that are used in the proof of the preceding lemma in [DL] are the
invertibility of T and the items in Lemma 5.1. Lemmas 5.1 and 5.2 complete the proof of items
(1)-(3) of Theorem 2.4.

Item (4) follows immediately from Lemma 5.1(iv), since if (T, µ) is ergodic, there can be no other
ergodic invariant measure absolutely continuous with respect to µ.

To see that (Tn, µ) ergodic for all n ∈ N implies a spectral gap for L, assume there exists ν ∈ Vθ
for some θ 6= 0. By Lemma 5.2(i), it must be that θ = p/q for some p, q ∈ N so that ν is an
invariant measure for T q. But µ is also an invariant measure for T q and ν is absolutely continuous
with respect to µ by Lemma 5.1(iv). This contradicts the fact that (T q, µ) is ergodic. Thus L has
no other eigenvalues on the unit circle and so by quasi-compactness, L has a spectral gap on B.

The spectral gap implies that the spectral projectors Πθ are all zero except for Π0 which can be
recharacterized by Π0h = limn→∞ Lnh for all h ∈ B. It thus follows that any distribution h ∈ B
with h(1) = 1 satisfies limn→∞ ‖Lnh − µ‖B ≤ C‖h‖B(σ′)n, where σ′ < 1 is the spectral radius of
L −Π0 on B. This completes the proof of item (5) of the theorem.

5.1. Decay of Correlations. In this section, we prove items (6) and (7) of Theorem 2.4 under
the assumption that L has a spectral gap. In order to discuss correlations and the limit theorems
of Corollary 2.5, we need the following multiplier property for functions with reasonable disconti-
nuities.

Lemma 5.3. Let P be a countable partition of M that satisfies the assumptions of Lemma 3.5 and
suppose in addition that there is a uniform bound N1 on the number of P ∈ P that each homogeneity
region Hk can intersect.

Let λ > max{β/(1− β), p}. If φ is a function on M such that supP∈P |φ|Cλ(P ) <∞ and h ∈ B,

then φh ∈ B. Moreover, ‖φh‖B ≤ C‖h‖B supP∈P |φ|Cλ(P ) for some C > 0 independent of φ and h.

Proof. Let P and φ be as in the statement of the lemma. By density, it suffices to prove the lemma
for h ∈ C1(M). By Lemma 3.5, φh ∈ B. We proceed to estimate its norm. For brevity, we write

|φ|Cλ(P) = sup
P∈P
|φ|Cλ(P ).

To estimate the strong stable norm, we fix W ∈ Ws and ψ ∈ Cq(W ) such that |ψ|W,α,q ≤ 1. For
each Pi ∈ P, set Wi = W ∩ Pi. Then

|
∫
W
φhψ dmW | = |

∑
i

∫
Wi

φhψ dmW | ≤
∑
i

‖h‖s|Wi|αf(Wi)|φ|Cq(Wi)|ψ|Cq(Wi) ≤ CfN1K‖h‖s|φ|Cλ(P),

where we have used the assumptions on ∂Pi to bound the maximum number of Wi by N1K, and
Lemma 3.4(a) to bound f(Wi)/f(W ).

Now to estimate the strong unstable norm of φh, we let ε ≤ ε0 and choose W 1,W 2 ∈ Ws with
dWs(W 1,W 2) < ε. For ` = 1, 2, let ψ` ∈ Cp(W `) such that |ψ`|W `,γ,p ≤ 1 and dq(ψ1, ψ2) ≤ ε.

Recalling the notation of Section 3.1, we write W ` = GF `(IW `), ` = 1, 2. We subdivide each
curve W ` into matched and unmatched pieces, similar to those in Section 4.3. To each point
x ∈ W 1, we attach a vertical (in the chart) line segment γx, centered at x of length 2ε. We define
U `j ⊂ W ` to be the maximal connected curves for which U `j belongs to a single element P ∈ P
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and the family {γx}x∈U`j intersects W 2 but does not intersect ∂P for any P ∈ P. We label by

V `
i ⊂W ` the remaining maximal pieces for which there is no matching by the vertical segments γx.

We also require each V `
i to be contained in a single P ∈ P. Note that there are at most 2N1K + 2

unmatched pieces and at most N1K matched pieces by assumption on P. Also, due to the weak
transversality of ∂P with Cs(x), we have |V `

i | ≤ Ctεt0 for each `, i and a uniform constant Ct.

We define ϕ = (φψ1) ◦GF 1 ◦G−1
F 2 and note that ϕ is well defined on each matched piece U2

j . We
must estimate

|
∫
W 1

φhψ1 dmW −
∫
W 2

φhψ2 dmW | =
∑
i,`

∫
V `i

φhψ` dmW

+
∑
j

(∫
U1
j

φhψ1 dmW −
∫
U2
j

hϕdmW

)
+

∫
U2
j

h(ϕ− φψ2) dmW .

(5.1)

The first sum on the right hand side of (5.1) over unmatched pieces is estimated by,

|
∑
i,`

∫
V `i

φhψ` dmW | ≤
∑
i,`

‖h‖s|V `
i |αf(V `

i )|φ|Cq(V `i )|ψ`|Cq(V `i )

≤ (2N1K + 2)‖h‖s|φ|Cλ(P)Ctε
t0(α−γ).

(5.2)

Next we estimate the difference over matched pieces in (5.1). By construction, dWs(U1
j , U

2
j ) ≤ ε

since U `j ⊆W `. Moreover, letting Ij denote the common t-interval over which U1
j and U2

j are both
defined, we have

dq(φψ1, ϕ) = |(φψ1) ◦GF 1 − ϕ ◦GF 2 |Cq(Ij) = 0.

Note that |φψ1|U1
j ,γ,p

≤ C|φ|Cλ(P) for some uniform constant C since U1
j ⊆W 1 and by Lemma 3.4(a).

Similarly, since GF 1 ◦ G−1
F 2 has bounded C1-norm, we have |ϕ|U2

j ,γ,p
≤ C|φ|Cλ(P). Renormalizing

the test functions, we apply the definition of the strong unstable norm to estimate

|
∑
j

∫
U1
j

φhψ1 dmW −
∫
U2
j

hϕdmW | ≤ N1Kε
β‖h‖uC|φ|Cλ(P). (5.3)

Finally, we estimate the third sum on the right hand side of (5.1) using the strong stable norm.

|
∑
j

∫
U2
j

h(ϕ− φψ2) dmW | ≤
∑
j

‖h‖s|ϕ− φψ2|Cq(U2
j )|U2

j |αf(U2
j ).

Again using that GF 2 has bounded C1-norm, we estimate

|ϕ− φψ2|Cq(U2
j ) ≤ C|(φψ1) ◦GF 1 − (φψ2) ◦GF 2 |Cq(Ij).

For t ∈ Ij , we have

|(φψ1)◦GF 1(t)−(φψ2)◦GF 2(t)| ≤ |φ|∞|ψ1◦GF 1(t)−ψ2◦GF 2(t)|+|ψ2|C0(W 2)|φ◦GF 1(t)−φ◦GF 2(t)|.

The first difference above is bounded by ε due to the assumption dq(ψ1, ψ2) ≤ ε. The second

difference is bounded by |φ|Cγ(P)ε
λ. Now using Lemma 4.2, we conclude

|ϕ− φψ2|Cq(U2
j ) ≤ C|W 2|−γf(W 2)−1|φ|Cλ(P)ε

λ−q. (5.4)

Putting together (5.2), (5.3) and (5.4) with (5.1), we have

|
∫
W 1

φhψ1 dmW −
∫
W 2

φhψ2 dmW | ≤ C|φ|Cγ(P)(‖h‖sεt0(α−γ) + ‖h‖uεβ + ‖h‖sελ−q),

for some uniform constant C depending on N1 and K. This completes the estimate on the strong
unstable norm since β ≤ min{t0(α− γ), p− q} and λ > q. �
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Now given φ as in Lemma 5.3 and ψ ∈ Cp(T−kWs) for some k ≥ 0, we define their correlation
function by

Cφ,ψ(n) := µ(φψ ◦ Tn)− µ(φ)µ(ψ).

Define µφ = φµ. By Lemma 5.3, we have µφ ∈ B. Thus Π0µφ = µ(φ)µ and so by Lemma 3.7,

|µ(φψ ◦ Tn)− µ(φ)µ(ψ)| = |(Lnµφ − µ(φ)µ)(ψ)| ≤ C‖Lnµφ − µ(φ)µ‖B(|ψ|∞ +Hp
k(ψ))

and the exponential rate of convergence is given by the spectral radius of L−Π0 on B. The proof
of item (6) of Theorem 2.4 is completed by noting that ‖µφ‖B ≤ C|φ|Cλ(P) by Lemma 5.3.

To prove item (7), for φ, ψ ∈ Cλ(M), we define the Fourier transform of the correlation function,

Ĉφ,ψ(z) :=
∑
n∈Z

znCφ,ψ(n).

The importance of this function stems from the connection between its poles and the Ruelle reso-
nances, which are in principal measurable in physical systems, [Ru1, Ru2, PP1, PP2, L2].

Given the spectral picture we have established, it follows by standard arguments that the function
is convergent in a neighborhood of |z| = 1 and admits a meromorphic extension in the annulus
{z ∈ C : σ0 < |z| < σ−1

0 } where σ0 is from (2.14). It follows that the poles of the correlation
function are in a one-to-one correspondence (including multiplicity) with the spectrum of L outside
the disk of radius σ0.

5.2. Proof of Corollary 2.5. Let P be a partition of M satisfying the assumptions of Lemma 5.3
and fix λ > max{p, β/(1 − β)}. Let g : M → Rd be a vector-valued function such that each

component gi satisfies |gi|Cλ(P) < ∞, i = 1, . . . , d. Define |g|Cλ(P) =
(∑d

i=1 |gi|2Cλ(P)

)1/2
. For

z ∈ Cd, we define the generalized transfer operator Lzg on B by

Lzgh(ψ) = h(ez·gψ ◦ T ) for ψ ∈ Cp(Ws).

The proofs of the limit theorems follow from the fact that Lzg is an analytic perturbation of L = L0

for small |z|.

Lemma 5.4. For g : M → R2 with |g|Cλ(P) <∞, the map z 7→ Lzg is analytic for all z ∈ Cd.

Proof. Fix z ∈ Cd and define the operator Pnh = L((z ·g)nh) for h ∈ B. By Lemma 5.3, (z ·g)nh ∈ B
and

‖Pnh‖B = ‖L((z · g)nh)‖B ≤ C‖L‖‖h‖B|z · g|nCλ(P) ≤ C‖h‖B|z|
n|g|nCλ(P).

This implies that the operator
∑∞

n=0
1
n!Pn is well-defined on B and equals Lzg since

∞∑
n=0

1

n!
Pnh(ψ) = h

( ∞∑
n=0

(z · g)n

n!
ψ ◦ T

)
= h(ez·gψ ◦ T ) = Lzgh(ψ), for ψ ∈ Cp(Ws),

and we know the sum converges for all z ∈ Cd. �

It follows from the analyticity of z 7→ Lzg that both the discrete spectrum and the corresponding
spectral projectors of Lzg vary smoothly with z [Ka]. Since L0 has a spectral gap, so does Lzg for
|z| sufficiently small.

Proof of Corollary 2.5(a). The proof of this using Lemma 5.4 is precisely the same as the proof of
[DZ1, Theorem 2.6(a)] and is omitted.

Proof of Corollary 2.5(b). In the current setting, the vector-valued almost-sure invariance principle
follows from the abstract results of Gouëzel [G]. We fix g ∈ Cλ(P), taking values in Rd, and
distribute (g ◦ T j)j∈N according to a (not necessarily invariant) probability measure ν ∈ B.

For n ∈ N, letting zj = itj , tj ∈ Rd, j = 1, . . . n, we see that Litg codes the characteristic function

of the process (g ◦ T j) in the sense of [G, Section 2.1], i.e., ν(ei
∑n
j=0 tj ·g◦T j ) = Litng · · · Lit0gν(1).
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Lemma 5.4 implies in particular that Litg satisfies the assumptions of strong continuity in [G,
Section 2.2] so we may apply [G, Theorem 2.1] to conclude the vector-valued almost-sure invariance
principle.

The error exponent r > 1/4 in the statement of the corollary is justified by [G, eq. (1.2)] since
our observables g ◦ T j are in L∞(M) for each j ∈ N.

6. Dispersing Billiards with Corner Points

Recall from Section 2.4.1 that Q denotes the dispersing billiard table with corner points and
M = ∪b0i=1(Γi× [−π/2, π/2]) denotes the phase space of the billiard map F in canonical coordinates
(r, ϕ). For any x ∈ M , we denote by τ(x) the time of the first (non-tangential) collision of the
trajectory starting at x under the billiard flow.

The new phenomenon for billiards with corner points (compared to the periodic Lorentz gas with
finite horizon) is the existence of series of finite consecutive reflections near a corner point. During
those series, the free paths are short, i.e. τ(x) ≈ 0, and so the expansion of unstable vectors is
weak. Let us fix a sufficiently small ε1 > 0, and call a series of consecutive reflections a corner
series if they all occur in the ε1-neighborhood of one corner point. We recall two facts found in
[BSC1, BSC2] which we shall use.

(F1) The number of reflections in any corner series is uniformly bounded above by m0 =
[
π
θ0

]
+1,

where θ0 > 0 is the minimum angle of intersection of the corner points. Thus there exists
a constant τ ′ > 0 such that for each x ∈ M there is an i ∈ {0, ...,m0 − 1} such that
τ(F i(x)) > τ ′.

(F2) Each corner series contains at most one grazing reflection, and that reflection is necessarily
the first or the last one in the series. There exists a constant c0 > 0 such that in each
corner series of length `+1, F ix = (ri, ϕi), 0 ≤ i ≤ `, we have cos(ϕi) ≥ c0 for all ϕi, except
possibly one, and that exceptional one is either i = 0 or i = `. Corner series in which
the first reflection is grazing are called left-singular and those in which the last reflection is
grazing are called right-singular. Corner series with no grazing reflections are called regular.

Let r̂i, i = 1, · · · i0 be the r-coordinates of the corner points of ∂Q. We denote by V0 := {(r, ϕ) :
r = r̂i, i = 1, . . . , i0} the collisions at the corners, and by SH0 = {(r, ϕ) : ϕ = ±π/2} the grazing
collisions (following the notation of Section 2.1). Let S0 = SH0 ∪ V0. Note that S0 is a finite set of
smooth curves.

Since the table lies in a compact region on R2, the free path function τ is bounded. Thus since
we have also assumed that the scatterers have strictly positive curvature K(x) at each x ∈M , there
exist constants Kmin,Kmax, τmax such that

0 < Kmin ≤ K(x) ≤ Kmax and 0 ≤ τ(x) ≤ τmax, ∀x ∈M.

For the purposes of checking assumptions (H1)-(H5) of Section 2.1, we work with higher iterates
of F . We will choose this higher iterate large enough that the expansion needed for (H2)(2) as
well as (H5) both hold.

We first establish some facts regarding the hyperbolicity of F .

6.1. Hyperbolicity. We begin by defining stable and unstable cones explicitly. The derivative
DF at the point x = (r, ϕ) ∈M is the 2× 2 matrix,

DF(x) = − 1

cosϕ1

(
τK + cosϕ τ

K1(τK + cosϕ) +K cosϕ1 τK1 + cosϕ1

)
(6.1)
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where x1 = F(x) = (r1, ϕ1) and K1 = K(r1) [CM1, eq (2.26)]. Thus for any nonzero vector
dx = (dr, dϕ) ∈ Cu(x), the slope of dx1 = (dr1, dϕ1) = DF(x) dx satisfies

dϕ1

dr1
= K1 +

cosϕ1

τ + cosϕ

K+ dϕ
dr

. (6.2)

If τ(F−1x) ≥ τ ′ (resp. τ(x) ≥ τ ′), we define the unstable (resp. stable) cone at x by,

Cu(x) := {(dr, dϕ) ∈ TxM : K(x) ≤ dϕ/dr ≤ K(x) + 1/τ ′} and

Cs(x) := {(dr, dϕ) ∈ TxM : −K(x) ≥ dϕ/dr ≥ −K(x)− 1/τ ′},
(6.3)

so that the slopes are uniformly bounded above by Kmax + 1/τ ′. The expression (6.2) implies that
Cu is strictly invariant under DF while Cs is strictly invariant under DF−1 at such points.

For points where τ(F−1x) < τ ′, i.e. during a corner series, we proceed differently. Suppose xi,
i = 0, . . . `, is a corner series for F . Note that Cu(x0) is defined by (6.3) since τ(F−1x0) ≥ τ ′. If
x0 begins a right-singular or regular corner series, then cosϕ(xi) ≥ c0, i = 0, . . . , ` − 1 so that by
(6.2), we estimate inductively along the corner series,

dϕi
dri
≤ Kmax +

Kmax + dϕi−1

dri−1

c0
≤ Kmax +

2m0Kmax + 1

cm0
0 τ ′

, i = 1, . . . `.

Thus the slopes of the DF i images of vectors in Cu(x0) remain uniformly bounded above during
regular and right-singular corner series so we may define Cu(x) using this uniform upper bound in
place of K + 1/τ ′ at such points. Note that the lower bound in the cone remains always K.

If x0 begins a left-singular corner series for F , we define Cu(xi) according to (6.3) with τ(F−1x)
in place of τ ′ and there is no upper bound on the slopes in these cones. We define stable cones
for corner series in the analogous way, but interchanging the role of left and right-singular corner
series. By a similar argument to above, the slopes in Cs(x) remain uniformly bounded above during
regular and left-singular corner series and lose the uniform upper bound during right-singular corner
series (where now we replace τ ′ by τ(x) in (6.3)). Thus the angles between stable and unstable
cones are uniformly bounded away from zero on M \S0, where S0 is specified below (see also [Ch1,
Section 9]). Equation (6.2) implies that Cu(x) defined this way is strictly invariant under DF
and analogously Cs(x) is strictly invariant under DF−1. Our piecewise definitions of stable and
unstable cones result in cone fields that have finitely many domains of continuity; however, since
the cones are strictly invariant, we may smooth them out so that they are indeed continuous on
each component of M \ S0.

Next we study the expansion factor for vectors dx = (dr, dϕ) in the Euclidean norm, ‖dx‖ =√
dr2 + dϕ2. Recall τ ′ and m0 from (F1) and define

Λ0 := (1 + τ ′Kmin)1/m0 > 1, and n0 :=

[
ln(1 +K−2

min)

2 ln Λ0

]
. (6.4)

Given x = (r, ϕ) ∈ M , label x = x0 = (r0, ϕ0), x−i = (r−i, ϕ−i) = F−1x−i+1, i = 1, . . . n. The
analogue of (6.1) for DF−1 yields,

DF−1(x) = − 1

cosϕ−1

(
τ−1K + cosϕ −τ−1

−K−1(τ−1K + cosϕ)−K cosϕ−1 τ−1K−1 + cosϕ−1

)
, (6.5)

where we use the subscript −1 to denote the relevant quantities at x−1 = F−1x. Now for any
nonzero vector (dr, dϕ) ∈ Cs(x), we use this to estimate,

|dϕ−1| =
(
K−1

τ−1K + cosϕ

cosϕ−1
+K

)
|dr|+

(τ−1K−1

cosϕ−1
+ 1
)
|dϕ| ≥

(τ−1K−1

cosϕ−1
+ 1
)
|dϕ|.
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This implies that for any n ≥ m0 + n0,

‖DF−ndx‖
‖dx‖

=

√
dr2
−n + dϕ2

−n
dr2 + dϕ2

≥ |dϕ−n|√
dr2 + dϕ2

≥ (1 +K−2)−1/2
n∏
i=1

(
1 +

τ(x−i)K(x−i)

cosϕ−i

)
≥ (1 + τ ′Kmin)[n/m0]

(1 +K−2
min)1/2

≥ Λn−m0+1
0 (1 +K−2

min)−1/2 ≥ Λn−m0−n0
0

(6.6)

where we have used the assumption that within every m0-iterates, at least one collision xi satisfies
τ(xi) > τ ′, and n0 is defined in (6.4). This implies that DF−n eventually expands stable vectors
uniformly.

We now choose n1 > m0 + n0 sufficiently large to be able to apply [DT, Main Theorem]. Define
T := Fn1 . Below we will show that T satisfies the conditions (H1)-(H5), and enjoys the spectral
properties proved in Theorem 2.4. We will then extend these properties to F .

6.2. Smoothness and Singularities for T . Since T = Fn1 , T preserves the same smooth invari-
ant measure µ as F , and thus

|detDxT | = cosϕ(x)/ cosϕ(Tx).

This verifies (H1) with f = cosϕ and f0 ≡ κ = 1.
Let S0 = SH0 ∪V0 be defined as above. Then T±1 lacks smoothness on the set S±1 := ∪m1

i=0F∓iS0.
In general, denote

S±n = ∪nm1
i=0 F

∓iS0.

For each n ∈ Z, Tn : M \ Sn →M \ S−n is a C2 diffeomorphism.
To control distortion, we define homogeneity strips Hk, as in Section 2.1 and following [BSC1].

For k ≥ k0, denote by

SH±k = {(r, ϕ) : |ϕ| = ±π/2∓ k−2} and SH0 = S0 ∪ (∪∞k≥k0S
H
±k), (6.7)

and let Hk denote the region between SHk and SHk+1, so that rh = 3. We place two restrictions on k0:

(1) k0 is chosen large enough compared to c−1
0 from (F2) so that a corner series does not involve any

homogeneity strips except perhaps at the first or the last reflection; (2) k0 is chosen large enough
to apply [DT, Main Theorem] to T . This choice of k0 and the results of [DT] guarantee that T
satisfies (H5) with γ0 = 0 and the adapted norm ‖ · ‖∗ taken to be the Euclidean norm. This also
fixes the choice of δ0 in the definition of Ws.

We set SH±n = ∪nm1
i=0 F∓iSH0 and call this the expanded singularity set for T±n. As before, we call

a curve homogeneous if it lies entirely in one of the homogeneity strips Hk.
The time-reversibility of T implies that S−n and Sn are symmetric about ϕ = 0 in M . Moreover

the set Sn\S0 is a union of compact smooth stable curves for n ≥ 1 and unstable curves for n ≤ −1.
Since V0 consists of a finite number of vertical lines in M and since τ is bounded, it follows that
there are only finitely many singular curves in F iV0 for each i ≥ 0, all of which are unstable curves.
Similarly, F iSH0 comprises finitely many smooth unstable curves for each i. Thus S−1 comprises
a finite number of smooth compact curves. Indeed, each smooth curve in S−1 \ S0 terminates on
a smooth curve in S−1 and is contained in one monotonically increasing continuous curve which
stretches all the way from ϕ = −π/2 to ϕ = π/2. This property is often referred to as continuation
of singularity lines. Similarly, Sn consists of a finite number of smooth, compact curves for each n.

Now since Cu(x) and Cs(x) as we have defined them are invariant under DF and DF−1 re-
spectively, they are also invariant under DT and DT−1. This verifies H2(1). Moreover, defining
Λ := Λm1−m0−n0

0 > 1, (6.6) implies ‖DT−1(x)dx‖ ≥ Λ‖dx‖ for dx ∈ Cs(x). This, and its symmetric
counterpart for the unstable cone, verifies item (2) of (H2) with the norm ‖ · ‖∗ taken to be the
Euclidean norm.
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It follows from (6.6) and the fact that we have chosen k0 large compared to c−1
0 from fact (F2)

that there exists B1 ≥ 1 such that for x ∈M \ S1,

1

B1 cosϕ(F−1x)
≤ ‖DF

−1(x)v‖
‖v‖

≤ B1

cosϕ(F−1x)
for v ∈ Cs(x). (6.8)

(See [Ch1, Lemma 9.1].) The analogous fact holds for DF . Accordingly, since C−1k−2 ≤ cosϕ(x) ≤
Ck−2 for some uniform constant C and x ∈ Hk, if F−1W ⊂ Hk, we must have |F−1W | ≤ Ck−3

and,12

|F−1W | ≤ C|W |k2 ≤ C|W ||F−1W |−2/3 =⇒ |F−1W | ≤ C|W |3/5. (6.9)

Iterating this equation yields |T−1W | ≤ C|W |ξ with ξ = (3/5)n1 , verifying (H3)(1).
Item (2) of (H3) is automatic since as already described above, S−1, the singularity set for T ,

comprises finitely many curves. To check item (3) in (H3), note that except at corner series, the
stable and unstable cones are bounded away from both the vertical and horizontal directions as
explained above. Since the angles between stable and unstable cones are uniformly bounded away
from zero and curves in S−n \S0 are unstable curves for n ≥ 1, they are uniformly transverse to the
stable cone. Thus it remains to check that curves in S0 satisfy (H3)(3). SH0 is uniformly transverse
to the stable cone since the stable cone is bounded away from the horizontal. Near V0, however,
stable curves may be arbitrarily close to vertical during right-singular corner series.

It is proved in [BSC1, Lemma 2.7] (see also [Ch1, Section 9]) that if x = (r, ϕ) is contained in a
stable curve W and (dr, dϕ) is the tangent vector to W at x, then

dϕ

dr
≤ C

|r − r0|1/2
(6.10)

where (r0, ϕ0) is the endpoint of W closest to x. Thus |ϕ − ϕ0| ≤ 2C|r − r0|1/2 so that any ε-

neighborhood of V0 contains a length of at most C ′ε1/2 along W , which is what we need to establish
(H3)(3) with t0 = 1/2.

Item (4) of (H3) follows immediately since all the homogeneity curves SHk , k ≥ k0, are horizontal
lines while Cs(x) is bounded away from the horizontal. Moreover, any stable curve W ⊂ Hk satisfies
|W | ≤ Ck−3 and we have chosen rh = 3.

Finally, the required series in (H3)(5) converges since it is dominated by
∑

k≥k0 k
−2−3ε <∞ for

all ε > 0.

6.3. Distortion Bounds. Since the map T has bounded Jacobian in the vicinity of the singular
curves V0 ∪ T−1V0, it satisfies the same distortion bound estimates as for billiards derived from a
Lorentz gas with finite horizon. Indeed it was proved in [BSC1, BSC2, Ch1] that there exist invariant
families Ws and Wu, which contain all homogeneous stable and unstable curves respectively, with
length less than some positive constant δ. In addition, by choosing a bound on the curvature of
these curves to be sufficiently large, we ensure that these families Ws and Wu are invariant in the
sense described in (H4).

To establish (2.3) of (H4), we establish it for F and then note that it can be extended to any
iterate of F (and thus to T ) using the uniform hyperbolicity in the cones. From (6.5) we see that
1/ cosϕ(F−1x) is unbounded, τ is bounded and Hölder continuous with exponent 1/2 and all other
functions in DxF−1 are bounded and smooth. Thus to establish (2.3) for DxF−1, it suffices to
establish the analogous distortion bound for 1/ cosϕ(F−1x).

12We obtain a better estimate than the usual |F−1W | ≤ C|W |1/2 because we require that F−1W lie in a single
homogeneity strip, while the usual estimate does not use this fact. See [CM1].
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Now let W ∈ Ws be such that F−1W ∈ Ws and F−1W ⊂ Hk. Then using (6.8) and the fact
that |T−1W | ≤ Ck−3, we have for any x, y ∈W ,∣∣∣∣ 1

cosϕ(F−1x)
− 1

cosϕ(F−1y)

∣∣∣∣ ≤ 1

cosϕ(F−1x) cosϕ(F−1y)
| cosϕ(F−1y)− cosϕ(F−1x)|

≤ Ck2

cosϕ(F−1x)
dW (F−1x,F−1y) ≤ C

cosϕ(F−1x)
dW (F−1x,F−1y)1/3.

(6.11)

A similar bound holds for x, y ∈W ∈ Wu such that F−1W ∈ Wu, but with dW (x, y)1/3 in place of

dW (F−1x,F−1y)1/3. This establishes (2.3) of (H4) with p0 = 1/3.
Similarly, since |DxT | = cosϕ(x)/ cosϕ(Tx), (2.4) of (H4) holds using the same estimate of

1/ cosϕ as above. This completes the verification of (H1)-(H5) for T .

6.4. A Spectral Gap for LT and LF . Since we have verified (H1)-(H5) for T and have fixed
the values for Λ, rh, ξ, k0, γ0 and δ0, we may also fix θ∗ < 1 from (2.6). We now choose the values
for the parameters α, β, γ, p, q, ε0 and cu appearing in the norms subject to the constraints given
in Section 2.3. This fixes the Banach spaces B and Bw.

With this choice of parameters, LT , the transfer operator associated to T , is well defined on B
and Bw and we may apply both Proposition 2.3 and Theorem 2.4 to LT .

In order to conclude quasi-compactness and the same characterization of the spectrum for LF ,
the transfer operator associated to F , we must show that LF is bounded as an operator on B. This
plus the fact that LT = Ln1

F will be enough to apply Theorem 2.4 to LF with essential spectral
radius increased by the exponent 1/n1.

Proposition 6.1. There exists C > 0 such that for all h ∈ B,

‖LFh‖s ≤ C‖h‖s and ‖LFh‖u ≤ C(‖h‖u + ‖h‖s).

Following the notation of Section 3.3, for W ∈ Ws, let Wi denote the components of F−1W
belonging to G1(W ), i.e. each Wi is a stable homogeneous curve of length less than or equal to δ0

on which F is smooth. In order to prove the proposition, we will need the following lemma.

Lemma 6.2. There exists B2 ≥ 1 such that for all W ∈ Ws and ς ∈ [0, 1], we have

∑
Wi∈G1(W )

|Wi|ς

|W |ς
|JWiF|C0(Wi) ≤ B2.

Proof. Since S−1 comprises finitely many curves, there exists N ∈ N such that given W ∈ Ws,
W may be subdivided into at most N connected components by S−1. Each of these components
after iteration by F−1 may in turn be cut either by the boundaries of homogeneity strips or may
be subdivided to have length at most δ0 in the process of creating G1(W ). Since any piece that is
subdivided artificially lies in one homogeneity region, bounded distortion implies that the sum over
minimum contractions on such pieces is bounded by a constant depending only on the distortion.
On the other hand, the expansion for a curve landing in Hk is given by (6.8) as ≥ B−1

1 k−2. Thus,

∑
Wi∈G1(W )

|JWiF|C0(Wi) ≤ N(C +B−1
2

∑
k≥k0

k−2) ≤ C ′. (6.12)
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Now |FWi|/|Wi| ≤ |JWiF|C0 ≤ C|FWi|/|Wi| by bounded distortion. Thus given any 0 ≤ ς ≤ 1, we
have ∑

Wi∈G1(W )

|Wi|ς

|W |ς
|JWiF|C0(Wi) ≤ C

∑
Wi∈G1(W )

|Wi|ς

|W |ς
|FWi|
|Wi|

= C
∑

Wi∈G1(W )

|W |1−ς

|Wi|1−ς
|FWi|
|W |

≤ C

 ∑
Wi∈G1(W )

|FWi|
|Wi|

1−ς

≤ C(C ′)1−ς ,

(6.13)

where we have used Jensen’s inequality and the fact that
∑

i |FWi| = |W |. �

Proof of Proposition 6.1. We essentially must redo the estimates of Sections 4.2 and 4.3, but for
just one iterate of LF and without requiring any contraction in the norm.

Estimate on the strong stable norm. Let h ∈ C1(M), W ∈ Ws and ψ ∈ Cq(W ) with
|ψ|W,α,q ≤ 1. Then following (4.2), we estimate

|
∫
W
Lnhψ dmW | ≤

∑
Wi∈G1

‖h‖s||DF|−1JWiF|Cq(Wi)|ψ ◦ F|Cq(Wi) cos(Wi) |Wi|α

≤ C‖h‖s
∑
i

|Wi|α

|W |α
|JWiF|C0(Wi) ≤ C‖h‖sB3,

(6.14)

for some uniform constant C where we have used (3.25), (3.26) and (3.28) to simplify the expression
in the second line and Lemma 6.2 with ς = α in the last step. Taking the appropriate suprema
yields the required bound on ‖LFh‖s.

Estimate on the strong unstable norm. Given ε ≤ ε0, let W 1,W 2 ∈ Ws with dWs(W 1,W 2) <
ε. For ` = 1, 2, let ψ` ∈ Cp(W `) such that |ψ`|W `,γ,p ≤ 1 and dq(ψ1, ψ2) ≤ ε.

Following Section 4.3, we partition F−1W ` into matched pieces U `j and unmatched pieces V `
k

using a smooth foliation {γx}x∈U1
j

of homogeneous unstable curves. The precise characterization

of matched pieces given by (4.7) applies to the matched pieces U `j . By (6.10), the length of the

unmatched curves FV `
k is at most Cε1/2.

Now following (4.8), (4.9) and (4.10), we estimate the norm on unmatched pieces first,∑
`,k

∣∣∣∣∣
∫
V `k

h|DF|−1JV `k
Fψ` ◦ F dmW

∣∣∣∣∣ ≤ Cεξ(α−γ)/2‖h‖s
∑
`,k

|V `
k |γ

|W `|γ
|JV `kF|C0(V `k ) (6.15)

and the sum is finite by Lemma 6.2 with ς = γ.
To estimate the difference on matched pieces, we follow (4.12) to write∣∣∣∣∣

∫
U1
j

h|DF|−1JU1
j
F ψ1 ◦ F dmW −

∫
U2
j

h|DF|−1JU2
j
F ψ2 ◦ F dmW

∣∣∣∣∣
≤

∣∣∣∣∣
∫
U1
j

h|DF|−1JU1
j
F ψ1 ◦ F −

∫
U2
j

hφj

∣∣∣∣∣+

∣∣∣∣∣
∫
U2
j

h(φj − |DF|−1JU2
j
F ψ2 ◦ F)

∣∣∣∣∣ ,
(6.16)

where φj = (|DF|−1JU1
j
F ψ1 ◦ F) ◦ GF 1

j
◦ G−1

F 2
j

is well defined on U2
j due to the pairing given by

(4.7).
We estimate the first term on the right hand side of (6.16) using the strong unstable norm.

Notice that since we are only applying one iterate of F and due to bounded distortion, we have
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dWs(U1
j , U

2
j ) ≤ CdWs(W 1,W 2) ≤ Cε. Also, using the normalization of the test functions due to

(4.13), we follow (4.14) to estimate∑
j

∣∣∣∣∣
∫
U1
j

h|DF|−1JU1
j
F ψ1 ◦ F −

∫
U2
j

hφj

∣∣∣∣∣ ≤ Cεβ‖h‖u, (6.17)

where we have again used Lemma 6.2 to bound the sum.
Finally, we estimate the second term on the right hand side of (6.16) using the strong stable

norm, following (4.15),∣∣∣∣∣
∫
U2
j

h(φj − |DF|−1JU2
j
Fψ2 ◦ F)

∣∣∣∣∣ ≤ C‖h‖s|U2
j |α cosU2

j

∣∣∣φj − |DF|−1JU2
j
F ψ2 ◦ F

∣∣∣
Cq(U2

j )
.

We split up the estimate on the Cq-norm of the test function following (4.16). Then, since the
proof of Lemma 4.1 goes through essentially unchanged with F in place of Tn (except that we lose
contraction), we estimate,∑

j

∣∣∣∣∣
∫
U2
j

h(φj − |DF|−1JU2
j
Fψ2 ◦ F)

∣∣∣∣∣ ≤ C‖h‖sεp−q∑
j

|U2
j |γ

|W 2|γ
|JU2

j
F|C0(U2

j ), (6.18)

and again the sum is finite by Lemma 6.2.
Now we bring together the estimates in (6.15), (6.17) and (6.18) to conclude,∣∣∣∣∫

W 1

LFhψ1 dmW −
∫
W 2

LFhψ2 dmW

∣∣∣∣ ≤ C
(
‖h‖sεξ(α−γ)/2 + ‖h‖uεβ + ‖h‖sεp−q

)
.

Since β < min{p − q, ξ(α − γ)/2}, we divide through by εβ and take the appropriate suprema to
complete the estimate on the unstable norm. �

It follows from Proposition 6.1 that LF is bounded and therefore quasi-compact on B due to the
quasi-compactness of LT = Ln1

F . Thus the spectrum of LF on B is characterized by items (1)-(3) of
Theorem 2.4. In particular, each element of its peripheral spectrum in B is absolutely continuous
with respect to µ := limn→∞

1
n

∑n−1
i=0 LiFm, where m here denotes Lebesgue measure on M .

However, it is well known that F preserves the smooth invariant measure µ = c cosϕdm, where
c is a normalizing constant. Since cosϕ ∈ C1(M), we have µ ∈ B by Lemma 3.5 so that µ is
absolutely continuous with respect to µ. But since the support of µ is all of M , we must have
µ = µ. In addition, the mixing properties of F imply that 1 is the only eigenvalue on the unit
circle and that µ is its unique probability measure. Thus, LF enjoys a spectral gap on B and items
(4)-(7) of Theorem 2.4 apply. As a consequence, the limit theorems of Corollary 2.5 hold for F .

7. Reduced maps for two types of billiards with focusing boundaries

In this section we turn to the two specific classes of billiards that were studied in [CZ4] and
introduced in Section 2.4.2: Non-smooth stadia and certain types of Bunimovich tables containing
circular arcs greater than a semicircle. Both billiards were first studied by Bunimovich in [Bu],
where hyperbolicity and ergodicity were proved. Recall the hyperbolic set M̄ defined by (2.15) and
denote by R : M̄ → Z+ the first return time to M̄ . We will work exclusively with the induced
map T := FR. Although the billiard maps F exhibit only polynomial decay of correlations, it was
shown in [CZ4] that T exhibits exponential decay of correlations and we will show here that the
associated transfer operator LT has a spectral gap on B, proving Theorem 2.7.

Verifying properties (H1)-(H5) for T will proceed similarly to Section 6, but is simpler in this
case since we will not prove any results for LF so the process of translating results for LT into
results for LF carried out in Section 6.4 is not needed here. Below we will use the notation A ∼ B
if there exists C > 1 such that C−1 ≤ A

B ≤ C.
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7.1. Nonsmooth stadia. Note that for this type of billiard, the phase space M̄ is contained in
the two rectangles Γi × [−π/2, π/2], i = 1, 2, where each Γi corresponds to one of the two circular
arcs in ∂Q.

As noted in Section 2.4.2, T = FR preserves the conditional measure µ0 since its Jacobian
satisfies |DT (x)| = cosϕ(x)/ cosϕ(Tx) so that (H1) is satisfied as in Section 6.

The hyperbolicity of the reduced map T , i.e. (H2), was verified in [CM1, CZ2]. Indeed, these
references focus on the dynamics of unstable curves mapped forward under T , while below we focus
on the the dynamics of stable curves mapped under T−1, but by symmetry, these properties are
identical.

Following [CM1, Section 8.4], we first define stable and unstable cones in M̄ , see (2.15), by

C̄s(x) = {(dr, dϕ) : 0 ≤ dϕ/dr ≤ −K(x)}, Cu(x) = {(dr, dϕ) : K(x) ≤ dϕ/dr ≤ 0} (7.1)

where K(x) = −1/ri for x ∈ Γi and ri is the radius of the circular arc Γi. Below we will narrow C̄s(x)
somewhat in order to ensure uniform transversality of our stable curves with S−1 and of Cs(x) with
Cu(x). Thus stable curves are increasing and unstable curves are decreasing (precisely the opposite
of what occurs for dispersing billiards). The uniform hyperbolicity required for (H2)(1) and (2)
follows from the strictly negative curvature of the circular arcs and the fact that the free flight time
for the inverse return map T−1 is uniformly bounded away from zero, as we have assumed that the
tables satisfy Bunimovich’s Defocusing Mechanism, see [CM1, Chapter 8].

Note that by (7.1), the cones Cu and C̄s share the same boundary dϕ/dr = 0. To guarantee the
uniform transversal property of the cones, we define a smaller stable cone field Cs such that the
boundary in the direction of (dr, 0) in C̄s is replaced by Dx1F−1(dr1, 0), with (r1, ϕ1) = x1 := Fx.
More precisely, note that by (6.5), if dϕ1/dr1 = 0 and (dr, dϕ) = Dx1F−1(dr1, 0), then

dϕ

dr
= g1(x) := −K(r)

τ(x) + cosϕ/K(r) + cosϕ1/K(r1)

τ(x) + cosϕ1/K(r1)
= −K(r)

(
1 +

cosϕ/K(r)

τ(x) + cosϕ1/K(r1)

)
.

When x1 = Fx lies on a different focusing boundary than x, by the Bunimovich defocusing
mechanism, we know that there exists c0 > 0 such that τ(x) + cosϕ/K(r) + cosϕ1/K(r1) > c0, and
also τ(x) ≥ τ(x) + cosϕ1/K(r1) ≥ τ(x)/2 [CM1, Section 8.4]. This implies that

g1(x) ≥ c0|K|min

τmax
,

remembering that K(r) < 0.
Since we have chosen M̄ to consist of only last collisions with focusing arcs (in forward time),

the only other possibility for x ∈ M̄ is that Fx lies on a flat segment of the boundary. In this case,
we have g1(x) = −K(x), again using (6.5).

Now setting c1 = 1
2 min

{ c0|K|min

τmax
, |K|min

}
, we define the narrower stable cones by,

Cs(x) = {(dr, dϕ) : c1 ≤ dϕ/dr ≤ −K(x)}. (7.2)

By the above discussion, they satisfy DxT
−1C̄s(x) ⊂ Cs(T−1x), wherever DxT

−1 is defined. With
this definition of Cs(x) and Cu(x), the stable and unstable cones are uniformly transverse to one
another as required. This completes the verification of (H2).

We now describe the precise structure of the singularity sets in order to verify (H3). We set
S0 = ∂M̄ and let S±1 = S0 ∪ (∪Ri=0F∓1S0) denote the singularity sets for T±1.

Curves in S−1 \ S0 are decreasing and those in S1 \ S0 are increasing, although the slopes of
curves in S−1 \ S0 get arbitrary close to horizontal near ϕ = ±π

2 . Also, by our choice of the phase
space for the reduced map, the singular set S−1 is symmetric about ϕ = 0 with the singular set
of the forward reduced map studied in [CZ1]. More precisely, on each rectangle, Γi × [−π/2, π/2],
i = 1, 2, the map T−1 has two types of sequences of singularity curves converging to 4 accumulation
points in M̄ , xi, i = 1, . . . 4.
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The first type accumulates near x1 and x2, which have ϕ(x1) = π/2 and ϕ(x2) = −π/2; they are
generated by trajectories nearly “sliding” along the circular arcs. Let us denote one such sequence
in S−1 accumulating on xi by {Si,n}n∈N. We denote the region between Si,n and Si,n−1 by Mi,n.
A point x ∈ Mi,n undergoes n consecutive nearly sliding reflections along one arc before colliding
with another part of the boundary. A smooth stable curve W is such that T−1W that completely
crosses Mn, then T−nW ∩Mn has (Euclidean) length ∼ n−2 [CZ4].

It follows from [CM1, eq. (8.23)] that the expansion satisfies

‖DxT
−1v‖
‖v‖

∼ 1

cosϕ(T−1x)
∼ n for v ∈ Cs(x) (7.3)

whenever T−1x ∈ Mi,n. Indeed, in the Euclidean metric, it follows from [CM1, Section 8.9] that
there is expansion of order n when T−1W lands in Mi,n (due to (7.3)), and there is another order
n expansion when W maps out of Mi,n. This is because once we fix a non-smooth stadium, there
exists a choice of n0 large enough so that a sequence of sliding collisions on one arc landing in
∪n≥n0Mi,n is not followed by another sequence of sliding collisions on the other arc, i.e. it must
land ouside the set ∪n≥n0Mi,n, i = 1, 2, on the other arc.

Note that due to (7.3), we do not have bounded distortion for curves landing across multiple Mi,n,
i = 1, 2. In order to control this distortion, we define homogeneity curves to coincide with a subset
of the singularity curves {Si,n}. Specifically, for k ≥ k0 to be chosen later, we define SHi,k = Si,nk
when nk ≈ k2 so that SHi,k is approximately distance k−2 from xi.

13 Let Hi,k be the region between

SHi,k and SHi,k+1 and note that Hi,k contains at most 2k+ 1 cells Mi,n, n ≈ k2, . . . , k2 + 2k. Thus we

subdivide T−1W according to the singularity curves Si,nk , k ≥ k0 one step earlier than it would be
cut by the dynamics. The remaining Si,n cut T−1W when it leaves under a second iterate of T−1.
We do not introduce any other artificial cuts.

The second type of singular curves accumulate near the other two points x3, x4 that are located
on the two lines ϕ = ±ϕ0. They are generated by trajectories experiencing many bounces off
the two straight sides of the stadium. As before, we denote these two sequences as {Si,n}n∈N,
i = 3, 4, accumulating on xi and let Mi,n denote the connected region bounded by the adjacent
curves Si,n, Si,n−1 in M̄ \ S−1. Points in Mi,n experience exactly n reflections off the straight sides
before landing on the opposite arc of ∂Q. Again let W be a stable curve passing through xi and
crossing Si,n, for all n ≥ n0. As shown in [CZ4], the length of Wn := W ∩Mi,n satisfies |Wn| ∼ n−2.
For any x ∈Wn, its Jacobian satisfies JWT

−1(x) ∼ n. There is no need for any homogeneity strips
near x3 and x4.

From the constructions and facts recalled above, it is clear that (H3)(1) is satisfied with ξ = 1/2,
by an estimate similar to (6.9).14 Using the above facts and since the boundary of each cell Mi,n

is comprised of 4 smooth curves, (H3)(2) is satisfied. By the definition of Cs(x) in (7.2), (H3)(3)
is satisfied with t0 = 1 since curves in S−1 are decreasing curves, while stable curves are increasing
and bounded away from the horizontal.

(H3)(4) is also satisfied since the boundaries of the homogeneity strips have been chosen to
coincide with the curves Si,nk , i = 1, 2, k ≥ k0, which are uniformly transverse to the stable
cones. Moreover, rh = 3. Item (5) of (H3) follows immediately since the series is dominated by∑

k≥k0 k
−2−3ε <∞ for all ε > 0 using the fact that f = cosϕ ≈ k−2 on each Hk.

For (H4), the existence of invariant families of stable and unstable curves follows from [CZ2] or
[CM1, Section 8.10]. Note that the curvature bounds proved there do not depend on the particulars
of smooth versus nonsmooth stadia. To establish (2.3) of (H4), for T−1x landing near x1 and x2,
we need to use similar arguments as we did in Section 6, because ‖DxT

−1‖ ∼ 1/ cosϕ(T−1x) by

13In fact, nk = kt for any t > 1 would work as well for the convergence of the series (7.4) and (7.5).
14We get ξ = 3/5 for curves landing in one of the Hi,k and ξ = 1/2 for curves starting in one of the Mi,n, and use

the lesser of the two exponents.
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(7.3). An estimate similar to (6.11) yields the required distortion bound with p0 = 1/3, due to the
spacing defined by rh = 3. The cases when x ∈ Mi,n are addressed by the distortion bounds in
[CM1, Section 8.12] and yield p0 = 1/2, so we take the lesser of the two exponents for the value of
p0. Similarly, (2.4) of (H4) holds with p0 = 1/3. This completes the verification of (H1)-(H4) for
T .

It remains to verify (H5). In particular, we want to emphasize that (2.5) only holds with γ0 > 0.
Any stable curve W ∈ Ws for which T−1W is cut into an unbounded number of short stable curves
must be in one of three places: (1) T−1W lands near one of the accumulating singular points x1 or
x2 as described above; (2) W lies in one of the homogeneity regions Hi,k; or (3) W lies near one of
the accumulation points x3 or x4. We proceed to prove (2.5) for each of these cases.

First we address those curves landing near xi, i = 1, 2, which are cut according to our homogeneity
curves SHi,k = Si,nk , k ≥ k0 upon landing. Suppose that T−1W intersects Hi,k, k ≥ k0. Setting

Vk = T−1W ∩ Hi,k and Wk = TVk, we have |Vk| ∼ k−3, JVkT ∼ k−2 by (7.3) and so necessarily
|Wk| ∼ k−5 by bounded distortion. Thus this series satisfies the traditional one-step expansion
with γ0 = 0, ∑

k≥k0

|Wk|
|Vk|

≤
∑
k≥k0

Ck−2 ≤ Ck−1
0 , (7.4)

for some uniform constant C depending on the table. This can be made less than 1 by choosing k0

large. This implies (2.5) for any γ0 ∈ (0, 1) via the Hölder inequality, so we are still free to choose
γ0.

Next we consider the case when W ⊂ Hi,k, i = 1, 2. Since Hi,k contains at most 2k + 1 cells
Mi,n, as described above, T−1W will be cut into at most 2k + 1 pieces by the singularity curves.
Note that by choosing k0 sufficiently large, we can guarantee that T−1W does not intersect any
homogeneity strips associated with any of the other components of the phase space, so there is no
additional cutting to take into consideration. Setting Wn = W ∩Mi,n and Vn = T−1Wn, we have
|Wn| ∼ n−2 and |Vn| ∼ n−1 as described above. Letting nk denote the index of Si,n coinciding with
SHi,k (nk ∼ k2) we estimate the sum required for (2.5) with γ0 = 0, by

2k∑
j=0

|Wnk+j |
|Vnk+j |

≤ Ckn−1
k ≤ Ck

−1. (7.5)

As in (7.4), this can be made small by choosing k0 large and implies (2.5) for any γ0 ∈ (0, 1).
Finally, we consider the case when W is cut by singular curves close to the line ϕ = ϕ0 (i.e. close

to the singular points x3 and x4 described above). Let x−1 = T−1x and for v ∈ TxW , we denote
v−1 = DT−1v. For x ∈ M̄ , define τR(x) = τ(x) + . . . + τ(FR−1x) to be the time between the
collisions at x and Tx = FRx.

Since this estimate is more delicate than the one-step expansion near x1 and x2, we will use a
special scaled norm on the tangent space, defined as follows. Let A = ∪i=3,4 ∪n≥n0 Mi,n and for
v = (dr, dϕ) ∈ Cs(x), define ‖v‖∗ = |dr| when x ∈ A, and ‖v‖∗ = Bs|dr| when x ∈ Ac, for some
constant Bs to be determined later. Since the slopes of vectors in Cs(x) are bounded away from
±∞, we can extend this norm to be uniformly equivalent to the Euclidean norm in the tangent
space at x.

We choose n0 large enough such that for any x ∈ A, T−1x belongs to Ac and T−1x does not
lie in any of the homogeneity regions Hi,k, k ≥ k0. The main reason that we can guarantee this
is because ϕ0 > 0. Note that this scaling does not affect our previous estimates in (7.4) and (7.5)
since the neighborhoods defined by Mi,n with n ≥ n0 for each of the xi do not map to one another
under one iterate of T−1 in non-smooth stadia.
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Recall that for x ∈Mi,n, i = 3, 4, its trajectory hits the other arc after n collisions with the flat
boundary under the original billiard map. Thus its free path satisfies τn(x−1) = 2n cosϕ0/|K| +
O(1), where O(1) ≤ C, for some uniform positive constant C > 0 depending on the table.

According to (7.2) for v ∈ Cs(x), dϕ/dr > 0. Thus for x ∈Mi,n, using (8.3) and (8.21) in [CM1],
for v ∈ Cs(x), the expansion factor satisfies

‖v−1‖∗
‖v‖∗

=
Bs cosϕ

cosϕ−1
·
(
τR(x−1)(|K(x)| − dϕ/dr)

cosϕ
+ 1

)
=
Bsτ

n(x−1)|K(x)|
cosϕ0

+O(1) = 2Bsn+O(1),

where we have used the fact that ϕ−1 is approximately ϕ0 for x ∈Mi,n with n large, and cosϕ0 is
bounded away from 0.

Let Vn = T−1Wn, where Wn = W ∩Mi,n as before. The distortion bound on W yields,

(2Bsn+O(1))e−Cd|Vn|
1/2 ≤ |Vn|∗

|Wn|∗
≤ (2Bsn+O(1))eCd|Vn|

1/2
, (7.6)

where |Vn|∗ is the length of Vn measured in the adapted metric. If necessary, we increase n0

sufficiently so that C0 := eCd|Vn0 |
1/2

< 2.
Due to the facts from [CZ4] recalled earlier about the spacing and Jacobian on Mi,n, there exists

a uniform constant a > 0, such that |Vn|∗ = an−1 + O(n−2). This implies that if W ∈ Ws lies
entirely in A, we have

|W |∗ =
∑
n>n0

|Wn|∗ =
∑
n>n0

|Vn|∗ ·
|Wn|∗
|Vn|∗

≥ a

Bsn0
+O(n−2

0 ).

Using this and again (7.6), for any γ0 ∈ (0, 1), the one-step expansion estimate holds:

∞∑
n=n0

(
|Vn|∗
|W |∗

)γ0 |Wn|∗
|Vn|∗

≤ ϑ(γ0) :=
1

B1−γ0
s γ0

+O(n−1
0 ). (7.7)

According to (H5), we must choose γ0 ∈ (0, 1/rh) = (0, 1/3). For definiteness and with (2.7) in
mind, we choose γ0 = 1/4. Thus choosing Bs = 7 and n0 sufficiently large, we can make ϑ < 1.
Note that the above expression diverges when γ0 = 0, which is the traditional one-step expansion.

The definition of ‖ · ‖∗ increases expansion by a factor of Bs = 7 when mapping from A to Ac,
but decreases expansion by a factor of 1/7 when mapping from Ac to A. In order to overcome this
contraction factor, we formulate the following complexity assumption on the stadium.

Let Λ0 = 1 + τRmin/rmax, where rmax = max{r1, r2} and τRmin = minx∈M̄{τR(x)} > 0. We assume
there exists n1 > 0 such that

Λn1
0 > 7 and A ∩ (∪n1

i=1T
−iA) = ∅. (7.8)

Note that this assumption can easily be satisfied for nonsmooth stadia by choosing geometric
parameters so that Λ0 > 2, which forces n1 = 3. Then typically, the first three iterates of the orbits
of xi, i = 1, 2, are disjoint. Thus choosing n0 sufficiently large we can guarantee (7.8).

This assumption guarantees that enough expansion builds up for T−n1 to overcome the factor
of 1/7 encountered when mapping from Ac to A. Thus the expansion for T−n1 dominates the
complexity and so (H5) is satisfied for W close to x3 and x4. The choice of n0 also fixes the value
of δ0 in the definition of Ws.

This completes the required verification of (H1)-(H5) and so completes the proof of Theorem 2.7
via Theorem 2.4 for the reduced map Tn1 . To pass from Tn1 to T , simply note that by (7.4), (7.5)
and (7.7), the one-step expansion is uniformly finite for T even if it is not contracting. Thus ‖LT ‖B
is finite as explained in Section 6.4 and LT inherits the spectral gap from LTn1 = Ln1

T .
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7.2. Bunimovich tables. The verification for this class of billiards proceeds much as the class
above, except that due to the nature of the table and the unspecified location of corner points (where
the smooth arcs comprising the boundary ∂Q terminate), the necessary complexity assumption
requires more conditions than (7.8).

Since the tables we consider have both dispersing and focusing boundaries (recall that we have
assumed that there are no flat boundaries in our Bunimovich tables), they are treated by a combi-
nation of the techniques described for stadia in Section 7.1 and for dispersing billiards in Section 6.
In particular, the stable and unstable cones are defined separately on these two types of boundaries
as described in each of those two sections, using (6.3) and (7.2). Given our work in Section 7.1, we
define homogeneity strips on the dispersing boundaries as in (6.7) with exponent rh = 3; on the
focusing boundaries we choose them to coincide with a subset of the singularity curves Si,n with
exponent rh = 3 near ϕ = ±π/2 as described in Section 7.1. The stable/unstable cones can be
defined as in (7.2). We will not repeat the verification of (H1)-(H4) as above, but instead focus
on two main points: the verification of (H3) and (H5). We recall the structure of the singularity
sets for the return map T = FR from [CZ4].

On each component Γi × [−π/2, π/2] ⊂ M corresponding to a focusing arc Γi, there are once
again 4 accumulation points for the singularity set S−1 of T−1, which we shall denote by xi,
i = 1, . . . 4 as in the previous section. The first two of these points, x1 and x2 are created by the
same “sliding” trajectories as x1 and x2 described in Section 7.1 and the analysis of expansion
factors is the same. A similar analysis of expansion factors holds at dispersing boundaries as in
(7.4) since we have chosen rh = 3 and the expansion upon landing near a dispersing boundary is
also of order 1/ cosϕ(T−1x). Thus the series required for (H5) can be made arbitrarily small as
in (7.4) and (7.5) by choice of k0 for all stable curves landing on dispersing boundaries and on
focusing boundaries near x1 and x2.

The second two points x3 and x4 lie on the line ϕ = 0 and are created by trajectories which
run near one the diameters of the circular arc. Such trajectories make successive bounces across Γi
while rotating slowly around the circle until they reach an opening through which they escape to
collide with a different arc.

As before, denote by {Si,n}n∈N the sequence of curves in S−1 accumulating on xi, i = 3, 4, and
by Mi,n the connected region in M̄ \ S−1 bounded by Si,n and Si,n−1. The curves Si,n are distance
of order n−1 from xi and are uniformly transverse to the stable cone. Thus any stable curve W
crossing M̄i,n satisfies |Wn| := |W ∩Mi,n| = an−2 +O(n−3). In addition, the expansion factor on
W ∩Mi,n under T−1 is 4nr + O(1), where r is the radius of the large arc [CZ4]. As before, let
Vn := T−1Wn.

As before, define A = ∪i=3,4 ∪n≥n0 Mi,n and Ac = M̄ \A. As in Section 7.1, we define the scaled
norm ‖v‖∗ for any tangent vector in TxM . Now by repeating the same calculation as in (7.7), we
can prove the one step expansion estimate (H5) for W ∈ Ws, W ⊂ A, with ϑ < 1, Bs = 7 and
γ0 = 1/4.

In order to address more general W , we need to resort to a higher iterate of T and formulate
our complexity assumption following [CZ1]. We split the curves in S−1 into primary and secondary
singularities. The secondary singularities are all those curves Si,n with n > n0 for some n0 chosen
below. In addition, at dispersing boundaries, we consider all the boundaries of homogeneity strips
to be secondary singularities. The primary singularities are the finitely many remaining curves in
S−1 and are denoted by SP−1. Define SP−n = ∪ni=0T

i(SP−1) to be the set of primary singularity curves

for T−n and let KP,n denote the minimum number of curves in SP−n which intersect at any one
point of M . The assumption on complexity for the Bunimovich table is then two-fold.

(1) There exists n0 > 0 sufficiently large and n1 ∈ N such that

Λn1 > 7 and A ∩ (∪n1
i=1T

−iA) = ∅ (7.9)
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where Λ is the minimum expansion factor in the p-metric for stable vectors under DT−1.

(2) There exists n2 > 0 such that
KP,n2 < Λn2 . (7.10)

Note that (7.9) is the same as (7.8) and guarantees that the expansion in the scaled metric has a
chance to recover when mapping from Ac to A. It is easily satisfied if the orbits of the singular points
xi are disjoint for the first several iterates. On the other hand, (7.10) is a complexity condition
which is necessary due to the indeterminate location of corner points on the Bunimovich table. It
now follows from [CZ1, Theorem 12] and [CZ4] that Tn3 satisfies (H5) for some n3 > 0.

Finally, we check that (H3)(1)-(5) are satisfied for this class of tables. As in Section 7.1, (H3)(1)
is satisfied for T with ξ = 1/2, again using (6.9), and for Tn3 with ξ ≤ 2−n3 . Also since the boundary
of each cell Mi,n is comprised of 4 smooth curves and the maximum length of a stable curve in Mi,n

goes to zero with n, (H3)(2) is satisfied. By the definition of Cs(x) in (6.3) and (7.2), (H3)(3)
is satisfied with t0 = 1 as before. (H3)(4) is also satisfied on focusing boundaries with rh = 3
since the boundaries of the homogeneity strips have been chosen to coincide with the curves Si,nk ,
i = 1, 2, k ≥ k0, which are uniformly transverse to the stable cones. On dispersing boundaries, the
transversality is also uniform as described in Section 6 and rh = 3 as well. Item (5) of (H3) follows
immediately since the series is dominated by

∑
k≥k0 k

−2−3ε <∞ for all ε > 0 on both focusing and

dispersing boundaries, using the fact that f = cosϕ ≈ k−2 on each Hk.
Having verified (H1)-(H5), we may conclude a spectral gap for LTn3 = Ln3

T and since ‖LT ‖B is
finite even when (H5) is not contracting as explained in Section 7.1, the spectral gap follows for
LT as well, completing the proof of Theorem 2.7.
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