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The purpose of these notes is to provide an introduction to some of the key issues involved
in the study of open systems. The notes will present some proofs to illustrate certain key ideas,
embedded in a larger survey of the topic.

1 Basic Definitions and Motivating Questions

We begin with a self-map T : M 	 of a complete metric space M . Let H be an open subset of
M , which we will call the ‘hole’ and let M̊ = M \H denote its complement. We keep track of the
iterates of a point x ∈ M as long as they do not enter H. Once Tn(x) ∈ H, we say the point has
fallen into the hole and no longer consider it. Alternatively, we may be interested in the dynamics
near an invariant set Ω ⊂ M that is not an attractor, and take M̊ to be an open neighborhood of
Ω. Without specifying the geometry of H, these two problems are mathematically equivalent.

We denote by M̊n = ∩ni=0T
−iM̊ the set of points which have not entered the hole by time n.

Note M̊0 = M̊ . We will be interested in the open system T̊ : M̊1 → M̊ and its iterates T̊n = Tn|M̊n.

1.1 Motivating Questions

In this section we present some motivating questions which will serve as a guide in what follows.
Q1. (Escape rate) Let µ0 be an initial probability measure on M . At what rate does µ0(M̊n)

decay?
When we expect an exponential decay in µ0(M̊n), we define

ρ(µ0;H) = lim inf
n→∞

1

n
logµ0(M̊n) and ρ(µ0;H) = lim sup

n→∞

1

n
logµ0(M̊n). (1.1)

If ρ = ρ = ρ, then −ρ is the exponential escape rate with respect to µ0.

Q2. (Limiting Distribution) Define the push-forward measure T̊n∗ µ0(A) = µ0(T̊−nA) =
µ0(T−nA ∩ M̊n) and consider the sequence of probability measures,

µn =
T̊n∗ µ0

|T̊n∗ µ0|
=

T̊n∗ µ0

µ0(M̊n)
.

Does µn converge to a limiting distribution µ∞? What are the properties of this limiting dis-
tribution? (I.e., is it absolutely continuous with respect to µ0 or is it SRB-like for hyperbolic
maps?)
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Q3. (Dependence on µ0 and H) Suppose the escape rate ρ and a limiting distribution exist.
For what class of initial distributions µ0 is there a common escape rate ρ and limiting distribution
µ∞? How do ρ and µ∞ vary with the hole? If we take a sequence of holes Hε shrinking to a point
in some reasonable way, does the corresponding sequence of limiting distributions µε∞ converge to
an invariant measure for T , the map without the hole? One can think of this as a form of stability
of the invariant measure with respect to small leaks in the system.

Q4. (Pressure on Survivor Set) For this question, assume T is a differentiable mapping
and M is a smooth Riemannian manifold.

Define the survivor set to be M̊∞ = ∩∞i=0T
−i(M̊) if T is not invertible and M̊∞ = ∩∞−∞T−i(M̊)

if T is invertible. This is the T -invariant set of points that never enter H.
For ν an invariant measure on the survivor set, define the pressure of ν to be

Pν = hν(T )−
∫
χ+dν

where hν(T ) denotes the Kolmogorov-Sinai entropy and χ+ denotes the sum of positive Lyapunov
exponents (see Section 3.1 for definitions of these quantities).

We say the open system satisfies an escape rate formula if there exists a measure ν, supported
on the survivor set M̊∞ such that ρ = Pν . We say the system satisfies a variational principle if

ρ = PC := sup{Pν : ν ∈ C}

for some resaonable class of invariant measures C, which will in general be system dependent. For
example, for a smooth system, C might be the set of invariant measures for T supported on M̊∞.

A variational principle for the open system can be seen as an extension of Pesin’s formula
for closed systems, which states that for large classes of smooth and piecewise smooth systems,
PC = 0, where C is the set of invariant Borel probability measures for T . In addition, for diffeomor-
phisms of compact Riemannian manifolds, the SRB measure1 is the unique measure that attains
the supremum [Y4].

1.2 Connection Between Limiting Distribution and Escape Rate

Define T̊1µ0 = T̊∗µ0

|T̊∗µ0|
and suppose

lim
n→∞

T̊ n1 µ0 = µ∞.

If µ∞ gives 0 weight to the discontinuities of T̊ (note that the discontinuity set for T̊ includes the
bounary of H even if T is continuous), then

T̊1µ∞ = T̊1( lim
n→∞

T̊ n1 µ0) = lim
n→∞

T̊ n+1
1 µ0 = µ∞,

so that
T̊∗µ∞

|T̊∗µ∞|
= µ∞, (1.2)

i.e. µ∞ is invariant under the action of pushing forward and renormalizing by the remaining mass.
A measure that satisfies (1.2) is called a conditionally invariant probability measure. When such

1For (nonuniformly) hyperbolic systems, an SRB measure is an invariant measure whose conditional measures on
unstable manifolds are absolutely continuous with respect to the Riemannian volume.
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a measure µ is absolutely continuous with respect to a reference measure of interest (for exam-
ple Lebesgue measure), we call µ an absolutely continuous conditionally invariant measure and
abbreviate it a.c.c.i.m.

Set λ = |T̊∗µ∞| = µ∞(M̊1) and note that iterating (1.2) we obtain µ∞(M̊n) = T̊n∗ µ∞(M̊) = λn,
so that −ρ(µ∞) = − log λ is the escape rate with respect to µ∞. In addition, ρ(µ0) = log λ for
any µ0 that converges to µ∞ under T̊ n1 . So − log λ represents a unified rate of escape for a class of
initial distributions. λ is often referred to as the eigenvalue of the conditionally invariant measure
µ for the open system.

2 Conditionally Invariant Measures

The characterization of limiting distributions as conditionally invariant measures and the connec-
tion to a unified escape rate for a class of initial distributions suggests that the existence (and
uniqueness?) of conditionally invariant measures, and especially a.c.c.i.m., is an important first
step toward understanding open systems.

2.1 Transfer Operator

A useful tool in the study of invariant and conditionally invariant measures is the transfer operator
associated with a dynamical system.

Given a transformation T on a smooth Riemannian manifold M with Lebesgue measure m (not
necessarily invariant), let JT denote the Jacobian of T . Then the transfer operator L is defined on
L1(m) by,

Lf(x) =
∑

y∈T−1x

f(y)

JT (y)
, and its iterates by, Lnf(x) =

∑
y∈T−nx

f(y)

JTn(y)
.

The importance of the transfer operator stems from the fact that if µ is a measure absolutely
continuous with respect to m with density f , then the density of T∗µ is given by Lf .

Similarly, given a hole H ⊂M , we may define the corresponding ‘punctured’ transfer operator
for the open system by

L̊f(x) = 1M̊ (x)L(1M̊f)(x) = L(1M̊1f)(x) =
∑

y∈T̊−1x

f(y)

JT (y)
. (2.1)

Problem 1. Prove that the iterates of L̊ satisfy L̊nf = Ln(1M̊nf). Prove also that if µ is a

probability measure with density f with respect to m, then T̊∗µ has density L̊f .

If µ is an a.c.c.i.m. with eigenvaue λ and density f , then for any measurable A ⊂M ,∫
A
L̊f dm = T̊∗µ(A) = λµ(A) = λ

∫
A
f dm,

so that L̊f = λf and f is an eigenvector with eigenvalue λ for L̊.

2.2 Some Simple Examples

Example 1. Tent Map with a Hole. Let 0 < ε < 1 and define T : [0, 1] 	 be such that

T (x) =

{ 2
1−εx, 0 ≤ x ≤ 1

2(1− ε)
2

1−ε(1− x), 1
2(1 + ε) < x ≤ 1

.
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Figure 1: The triadic baker map.

Here H = (1
2(1− ε), 1

2(1 + ε)) is the hole. We do not specify T on H since that is irrelevant. It is
an easy calculation to see that normalized Lebesgue measure on M := [0, 1]\H is an a.c.c.i.m. for
T̊ with λ = 1− ε. (For example, show L̊1M̊ = (1− ε)1M̊ .) Note that M̊∞ is a Cantor set, so that

any invariant measure ν supported on M̊∞ is necessarily singular with respect to Lebesgue.

Example 2. Triadic Baker Map. Let M be the unit square [0, 1] × [0, 1] divided into three
vertical strips V1, V2 and V3 of equal width, and let T be such that T (Vi) = Hi where H1, H2 and
H3 are horizontal strips as shown in Figure 1. On each Vi, T is affine and area-preserving: Vi is
contracted by a factor of 1

3 in the vertical direction and expanded by a factor of 3 in the horizontal
direction.

Now introduce the hole H = V2, so that M̊ = V1 ∪ V3. At the first step under T̊ , two vertical
rectangles (the middle thirds of V1 and V3) enter H, so that M̊1 is the union of 4 vertical rectangles
of width 1/9. Continuing, we see that M̊n is the union of 2n+1 vertical rectangles of height 1 and
width 3−n−1. Thus m(M̊n) = (2/3)n+1 and so ρ(m) = log(2/3).

Now consider an arbitrary conditionally invariant measure µ for this open system. Since T (V2) =
H2, the support of µ cannot meet this set. Similarly, it cannot meet T 2(V2), which is the union of
horizontal strips that are the middle thirds of H1 and H3. Continuing this line of argument, we see
that any conditionally invariant measure must be supported on M \ ∪n≥0T

n(V2), which is equal to
([0, 1

3 ] ∪ [2
3 , 1])× Γ where Γ is the middle thirds Cantor set in the vertical direction.

In this simple example, it is easy to see what one obtains by pushing forward Lebesgue measure
m and renormalizing. Starting with m on M̊ , one checks that with Λ = 2

3 , Λ−nT̊n∗ m is supported

on the union of 2n horizontal rectangles intersected with M̊ of height 3−n each, and is uniformly
distributed on it. Thus as n tends to ∞, Λ−nT̊n∗ m converges to µ∞ := normalized Lebesgue
measure on [0, 1

3 ] ∪ [2
3 , 1] crossed with the (1

2 ,
1
2)-Bernoulli measure on Γ. This measure µ∞ is, by

any standard, a natural conditionally invariant measure.
Notice that µ∞ is singular with respect to m (even though T preserves m), and that it has

smooth conditional measures on horizontal lines, which are unstable manifolds of T . This is the
typical structure for conditionally invariant measures for invertible maps: they are supported on
the (singular) set M \∪n≥0T

n(H). By contrast, the survivor set M̊∞ is smaller still, M̊∞ = Γ×Γ,
the direct product of two Cantor sets.2

Remark 2.1. Example 2 suggests a strong resemblance between a.c.c.i.m. in open systems and SRB
measures in closed systems. For invertible maps, conditionally invariant measures with absolutely

2The open baker map with H = V2 presented here is equivalent to a linear Smale horseshoe. For more general
horseshoes studied from this point of view, see [C1, C2].
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continuous conditional measures on unstable manifolds are natural replacements for a.c.c.i.m. To
avoid cumbersome language, we use a.c.c.i.m. as an abbreviation for these measures as well.

2.3 Construction of many a.c.c.i.m. with overlapping supports

The two examples above paint a simple, unambiguous picture for a.c.c.i.m. and their relation
to SRB measures, but unless more conditions are imposed on this class of measures, the actual
situation cannot be more different. In this section we demonstrate for non-invertible maps how in
quite general settings one can construct uncountably many a.c.c.i.m. with overlapping supports for
any given λ ∈ [0, 1). Similar constructions of conditionally invariant measures smooth on unstable
manifolds are easily carried out for Anosov diffeomorphisms.

For this section, assume that M is a Riemmanian manifold, possibly with boundary, and that on
an open subset U of M of full Lebesgue measure, T is locally invertible and nonsingular with respect
to m with Jacobian JT > 0. We assume further that for each x ∈ U ,

∑
z∈T−1x(JT (z))−1 <∞. In

the language of transfer operators, this assumption is L1 <∞.
Let H ⊂M be an open set. We will proceed to identify a disjoint sequence of sets which march

progressively toward the hole and eventually fall in. Additionally, these sets should consist of points
with good pre-images. More precisely, for each n ≥ 1, let En = M̊n−1 \M̊n denote the set of points
that enters H for the first time at precisely time n. Let G := {x ∈M : for every n ≥ 1,∃zn ∈ M̊n

such that T̊n(zn) = x} denote the set of points that have at least one preimage under each iterate
of T̊ .

Theorem 2.2. Let (T,M,H) be as above. We assume

m(E1 ∩G) > 0.

Then given any λ, 0 ≤ λ < 1, T̊ admits uncountably many a.c.c.i.m. with escape rate − log λ.

Proof. Let Gn := En ∩G. We claim that

(i) for n = 1, 2, . . ., the sets Gn are pairwise disjoint with m(Gn) > 0;
(ii) for each n > 1, T̊ (Gn) = Gn−1 and T−1(Gn−1) ∩G = Gn.

To prove (ii), note that x ∈ Gn implies T̊ (x) ∈ En−1 and if {zi}∞i=1 is a sequence of preimages with
zi ∈ M̊ i and T̊ i(zi) = x, then {T̊ (zi)}∞i=1 ⊂ M̊ is the required sequence of primages of T̊ (x) so
that T̊ (x) ∈ Gn−1. This implies that T (Gn) ⊂ Gn−1 and since the above argument holds for any
y ∈ T−1(T̊ x) ∩G, also Gn ⊂ T−1(Gn−1) ∩G.

Similarly, consider x ∈ Gn−1 and an associated sequence of preimages {zi}∞i=1. Then zi ∈ G
as well using the same sequence. In particular, z1 ∈ Gn so that x ∈ T (Gn), proving both reverse
inequalities. This proves (ii). As for (i), the sets Gn are pairwise disjoint because the En are, and
the fact that they have positive measure follows inductively from m(G1) > 0, T̊ (Gn) = Gn−1 and
JT > 0.

Now fix λ such that 0 ≤ λ < 1, and let ψ ≥ 0 be an integrable function with
∫
G1 ψdm = 1. On

G1, define
f(x) = (1− λ)ψ(x).

Note that
∫
G1 fdm = 1− λ. This is the amount that falls in the hole at time 1.

Proceeding inductively, suppose f has been defined on Gn−1. For y ∈ Gn, we let T̊ (y) = x, and
define

f(y) =
λf(x)∑

z∈T̊−1x∩G

1

JT (z)

=
λf(x)

L̊(1G)
, (2.2)
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so that f is constant on T̊−1x ∩G. Set f = 0 on M \ ∪nGn.
To prove conditional invariance with escape rate − log λ, it suffices, in light of (i), (ii) and the

definition of f on G1, to check that for each n > 1,

L(f |Gn) = λ f |Gn−1. (2.3)

This follows from the way we have defined f in (2.2).
Since G ⊂ T−1G, (ii) implies inductively that Gn = T̊−n+1G1 ∩ G. Using this together with

(2.3), we conclude∫
M
fdm =

∞∑
n=1

∫
Gn
fdm =

∞∑
n=1

∫
G1

L̊nf dm =
∞∑
n=1

λn−1

∫
G1

fdm =
∞∑
n=0

λn(1− λ) = 1,

so that f as defined is a probability density. In the second equality we have used the fact that
f = 0 on (T̊−n+1G1) \ G. Since the choice of ψ is entirely arbitrary, the construction above gives
uncountably many a.c.c.i.m. as desired.

Remark 2.3. As the proof above shows, a.c.c.i.m. can be constructed quite arbitrarily – with
overlapping supports if one so desires – once a suitable sequence of sets in M is located. Analogously,
one can construct arbitrary a.c.c.i.m. for invertible systems supported on the singular sets M \
∪∞i=0T

i(H), as in Example 2.

We conclude that absolute continuity with respect to m alone is not a sufficient condition
for identifying a meaningful class of conditionally invariant measures (contrast this with the fact
that ergodic invariant measures for closed systems cannot have overlapping supports). This result
highlights the importance of (Q2) from Section 1.1: Characterizing physically relevant a.c.c.i.m. as
limiting distributions for a class of initial measures.

2.4 Examples

We revisit Example 1 in Sect. 2.2, the tent map with a hole. Observe that in this example,
G = [0, 1] \H, and for each n ≥ 1, Gn = En is the union of 2n disjoint intervals of length (1−ε

2 )n

each. The following are three examples of a.c.c.i.m. obtained from the constructions in the proof
of Theorem 2.2.

(i) λ = 1 − ε and ψ = 1
m(E1)

. The construction in Theorem 2.2 gives µ = normalized Lebesgue

measure on [0, 1]\H. It is easy to check that λ = Λ where − log Λ is the escape rate of
Lebesgue measure.

(ii) Let E1 =: [a1, b1] ∪ [a2, b2]. On [a1, b1], we define ψ(x) = 1
m(E1)

(
1 + c sin 2π(x−a1)

b1−a1

)
; ψ is

defined analogously on [a2, b2]. Again choose λ = 1 − ε. For |c| < 1, the construction in
Theorem 2.2 yields an a.c.c.i.m. with density bounded away from zero and infinity (so it
follows that λ = Λ, independently of (i)). The density, however, is not of bounded variation.3

(iii) Choose α < 1
2 and set f = αn on En for n ≥ 1. The resulting conditionally invariant measure

has a density of bounded variation and λ = α(1− ε) so that its escape rate is strictly greater
than − log Λ. (This construction is due to Chernov and van den Bedem; see [BC].)

3We mention the idea of bounded variation because it is well known that densities in this class are preserved by
piecewise expanding maps (without holes). The connection will become clear in Section 4.
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Problem 2. Consider the triadic baker map with H = V2. Using the ideas of Theorem 2.2, for
any 0 ≤ λ < 1, construct a family of conditionally invariant measures with eigenvalue λ and
having absolutely continuous conditional measures on unstable curves. This illustrates that the
ideas of Theorem 2.2 apply to invertible systems as well, even though a.c.c.i.m. for such systems
are necessarily singular with respect to Lebesgue.

3 Connection Between Escape Rate and Pressure: Holes of Any
Size

In this section we focus on inequalities and equalities relating escape rates and pressure and address
primarily motivating questions (Q3) and (Q4). We do not assume the holes are small and so do
not take a perturbative view of the systems in question.

3.1 Entropy and Lyapunov Exponents

We begin by recalling some essential definitions needed for the discussion that follows. A more
complete treatment of these topics can be found, for example, in [W, KH].

I. Entropy. Suppose (X,B, µ) is a probability space. A partition of X is a pairwise disjoint
collection of elements of B whose union is X.

Given two partitions α and β, the join of α and β is defined by,

α ∨ β = {Ai ∩Bj : Ai ∈ α,Bj ∈ β}.

This definition can be extended to the join of multiple partitions α ∨ β ∨ γ in the obvious way.
The entropy of a partition α is given by

H(α) = −
∑
Ai∈α

µ(Ai) logµ(Ai).

If T is a measure-preserving transformation of X, then T−nα denotes the partition {T−nAi :
Ai ∈ α}. The entropy of T with respect to α is defined by

hµ(T, α) = lim
n→∞

1

n
H

(
n−1∨
i=0

T−iα

)
,

while the entropy of T is defined as,

hµ(T ) = sup{hµ(T, α) : α is a finite partition of X}.

Intuitively, one can think of the entropy as capturing the rate of increase in complexity under the
dynamics of T . Thus if the process of dynamically refining a partition α, is ‘chopping’ X into
roughly enhµ(T ) pieces, one might expect that the measure of a typical pieces is roughly e−nhµ(T ).
This intuition is formalized by the Shannon-MacMillan-Breiman theorem. We do not state this
theorem, but an extension of it that we will use.

Given a transformation T of a compact metric space X and a function g on X, define the
dynamical (Bowen) balls

B(x, n, g) = {y ∈M : d(T ix, T iy) < g(T ix), 0 ≤ i ≤ n}.
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Theorem 3.1. Let T : X 	 be a measurable transformation of a compact metric space of finite
capacity,4 and let µ be an ergodic invariant measure for T . Let ĝε : X → R be a family of functions
satisfying |ĝε|∞ ≤ Cε and

∫
X − log ĝε dµ <∞, for some C > 0. Then for µ-a.e. x,

lim
ε→0+

lim inf
n→∞

− 1

n
logµ(B(x, n, ĝε)) = lim

ε→0+
lim sup
n→∞

− 1

n
logµ(B(x, n, ĝε)) = hµ(T ).

The above theorem follows from [M, Lemma 2] and [BrK, Main Theorem].

II. Lyapunov exponents.
Given an invertible (piecewise) differentiable5 map T of a manifold M of dimension d, one

defines,

λ+(x, v) = lim sup
n→∞

1

n
log ‖DTn(x)v‖, and λ+(x, v) = lim inf

n→∞

1

n
log ‖DTn(x)v‖,

for any v ∈ Rd and x ∈ M . When λ+ = λ+, we define the common value to be λ+. Similar
definitions hold for λ−, λ− and λ− with DTn replaced by DT−n.

Theorem 3.2 (Oseledec’s Theorem, invertible version [O]). Let T : M 	 be as above and let µ
be an invariant measure for T . At µ-a.e. x ∈ M , there exist numbers λ1(x) < · · · < λr(x)(x) and
subspaces E1(x), . . . , Er(x)(x), such that

(i) Rd = E1(x)⊕ · · · ⊕ Er(x)(x);

(ii) for all v ∈ Ei(x), λ+(x, v) = −λ−(x, v) = λi(x);

(iii) for i 6= j, limn→∞
1
n log | sin](DT±nEi(x), DT±nEj(x))| = 0.

Moreover, the functions r, λi and Ei are measureable.

The numbers λi(x) are called the Lyapunov exponents of (T, µ). They measure the exponential
rate of contraction and expansion in dynamical directions preserved by T . The multiplicity of λi
is the dimension of Ei. A quantity of interest will be the sum of positive Lyapunov exponents for
(T, µ) counted with multiplicity, which we will denote by χ+(x). When µ is ergodic, the functions
r(x) and λi(x) are constant for µ-a.e. x and we define χ+

µ to be the sum of positive Lyapunov
exponents, constanst almost everywhere.

3.2 Relation to Escape

Example 3. Baker Map Revisited. Consider the triadic baker map of Example 2 in Section 2.2
with hole H = V2. As mentioned there, M̊n is a union of 2n+1 vertical rectangles each of height 1
and width 3−n−1. Thus m(M̊n) = (2/3)n+1 so that

ρ(m) = log(2/3) = log 2− log 3.

The survivor set for this example is M̊∞ = Γ × Γ, where Γ is the middle thirds Cantor set. The
dynamics on this set is equivalent to the full two-sided shift on two symbols (simply identify x
with the sequence (ij)

∞
j=−∞, ij ∈ {1, 3}, where T j(x) ∈ Vij for j ∈ N and T−j(x) ∈ Hij for

4Finite capacity means there exists d <∞ such that lim supr→0
logC(r)
− log r

= d where C(r) is the minimum cardinality
of a covering of X by open balls of radius r.

5For maps with singularities, one requires that
∫

log+ ‖DT‖dµ < ∞ and
∫

log+ ‖DT−1‖dµ < ∞, where µ is an
invariant measure of interest.
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j ∈ N+). In terms of the formula given above, log 2 is the topological entropy of the full shift on
two symbols (also the measure-theoretic entropy of the (1

2 ,
1
2)-Bernoulli shift), while log 3 is the

positive Lyapunov exponent for each x ∈ M̊∞. Thus one sees very easily in this example why
ρ(m) = PIH , where IH is the set of invariant measures on M̊∞.

Problem 3. Consider a linear toral automorphism T : T2 	 whose stable and unstable directions
are mutually perpendicular. Let R = {R1, R2, . . . Rq} be a Markov partition for T whose elements
are (real) rectangles. Let H = Rq.

Define Q = (qi,j) to be the adjacency matrix for T : qi,j = 1 if m(Ri ∩ T−1Rj) > 0; qi,j = 0
otherwise. Let Q̊ denote the (q − 1) × (q − 1) matrix obtained by deleting the qth row and column
of Q. Assume that Q̊ is irreducible and aperiodic.

Prove that T̊n∗ m

m(M̊n)
→ µ as n→∞, where on each Rk, µ is the product of Lebesgue measure on

unstable segments and a measure supported on a Cantor set in the stable direction.
Show also that the escape rate with respect to Lebesgue, − log Λ, exists and equals βα−1, where

β is the largest eigenvalue of Q̊ and α > 1 is the derivative of T in the unstable direction.

Now let T be a diffeomorhphism of a smooth compact, Riemannian manifold M , and let H ⊂M
be an open set with piecewise smooth boundary. Let EH denote those ergodic invariant measures
supported on M̊∞. Define

GH = {ν ∈ EH : ∃C, γ > 0 such that ∀ε > 0, ν(Nε(∂H)) ≤ Cεγ}, (3.1)

where Nε(·) denotes the ε-neighborhood of a set. GH consists of invariant measures supported on
M̊∞ that do not give too much weight to the boundary of H. This restriction essentially treats
∂H as part of the singularity set for T and the restriction is similar to that used to obtain pressure
results for maps with singularities (and no holes). See, for example, [KS].

The following theorem generalizes earlier results of Bowen [Bo2] and Young [Y1] regarding
escape from neighborhoods of uniformly hyperbolic invariant sets.

Theorem 3.3 ([DWY2]). Let T and H be as above and let m denote Lebesgue measure. Then

ρ(m) ≥ PGH = sup
ν∈GH

{hν(T )− χ+
ν }.

Setting H = ∅, one has 0 ≤ PEH , which holds in great generality for closed systems. For
(piecewise) hyperbolic systems, the equality 0 = PEH is known as Pesin’s formula.

Proof of Theorem 3.3. We give an idea of the proof, which uses Theorem 3.1 in addition to the
following volume lemma.

Proposition 3.4. Let gε = 1
3 min{ε, d(x, ∂H)}. Given ν ∈ GH , there exists a measurable set

E ⊂ M̊∞ with ν(E) > 0 such that for every x ∈ E,

sup
ε>0

lim sup
n→∞

− 1

n
logm(B(x, n, gε)) ≤ χ+

ν .

This volume lemma holds in a number of contexts, including maps with singularities and dif-
feomorphisms of manifolds, even allowing for 0 Lyapunov exponents. For an example of its proof
in several contexts, see [DWY2, Section 4]. In fact, the inequality is often an equality, but we do
not need the reverse inequality for the present theorem.
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To proceed with the proof of the theorem, we fix ν ∈ GH and show that ĝε = 3gε satisfies the
hypotheses of Theorem 3.1. Using the fact that ν(Nε(∂H)) ≤ Cεγ for some C, γ > 0 and all ε > 0,
we write, ∫

M
− log ĝε dν ≤ − log ε+

∞∑
n=0

ν(Nεe−n(∂H) \Nεe−(n+1)(∂H))(n+ 1− log ε)

≤ − log ε+
∞∑
n=0

Cεγe−γn(n+ 1− log ε) <∞.

Next fix δ > 0, and let σ := ν(E) where E is given by Proposition 3.4. By Theorem 3.1, we may
choose first ε > 0 sufficiently small, and then n0 = n0(δ, ε) ∈ Z+ sufficiently large and a measurable
set E′ ⊂ E with ν(E′) ≥ σ/2 such that for every x ∈ E′,

(i) ν(B(x, n, 3gε)) ≤ e−n(hν−δ) for all n ≥ n0;

(ii) m(B(x, n, gε)) ≥ e−n(χ+
ν +δ) for all n ≥ n0.

For n ≥ n0, let Cn ⊂ E′ be a maximal set of points such that B(xi, n, gε) ∩ B(xj , n, gε) = ∅
whenever xi, xj ∈ Cn, xi 6= xj . By the maximality of Cn, for every y ∈ E′, there exists xi ∈ Cn
such that B(y, n, gε) ∩ B(xi, n, gε) 6= ∅. We will show that y ∈ B(xi, n, 3gε). This will imply
E′ ⊂ ∪xi∈CnB(xi, n, 3gε), and hence #Cn ≥ σ

2 e
n(hµ−δ) by (i), where #Cn denotes the cardinality of

the set.
To show y ∈ B(xi, n, 3gε), it suffices to show d(fky, fkxi) < 3gε(f

kxi) ∀k ≤ n, since y ∈ E′ ⊂
M̊n. Now B(y, n, gε)∩B(xi, n, gε) 6= ∅ means there exists z ∈M such that d(fkxi, f

kz) ≤ gε(fkxi)
and d(fkz, fky) ≤ gε(fky) for all 0 ≤ k ≤ n. Thus the assertion above boils down to the following
lemma.

Lemma 3.5. For any x, y ∈ M , if there exists z ∈ M with d(x, z) ≤ gε(x) and d(z, y) ≤ gε(y),
then d(x, y) ≤ 3gε(x).

Proof of Lemma. It suffices to show gε(y) ≤ 2gε(x), for that will imply d(x, y) ≤ d(x, z) +d(z, y) ≤
gε(x) + gε(y) ≤ 3gε(x), proving the lemma. Observe that

d(y, ∂H) ≤ d(y, z) + d(z, x) + d(x, ∂H)

≤ gε(y) + gε(x) + d(x, ∂H) ≤ 1
3d(y, ∂H) + 4

3d(x, ∂H),

the last inequality following from gε(·) ≤ 1
3d(·, ∂H). Altogether, this gives d(y, ∂H) ≤ 2d(x, ∂H).

To finish, consider the following two cases:
Case 1: d(x, ∂H) > ε. With gε(x) = 1

3ε, gε(y) is automatically < 2gε(x) since it is ≤ 1
3ε.

Case 2: d(x, ∂H) ≤ ε. In this case gε(y) ≤ 1
3d(y, ∂H) ≤ 2

3d(x, ∂H) = 2gε(x).

For each x ∈ E′, we have B(x, n, gε) ⊂ M̊n by definition of gε. Since the B(xi, n, gε) are disjoint,
we may estimate m(M̊n) by

m(M̊n) ≥
∑
xi∈Cn

m(B(xi, n, gε)) ≥ #Cn · min
xi∈Cn

m(B(xi, n, gε)) ≥
σ

2
en(hν−δ)e−n(χ+

ν +δ).

This yields

lim inf
n→∞

1

n
logm(M̊n) ≥ hν(T )− χ+

ν − 2δ.

The theorem is proved since δ was chosen arbitrarily.
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Figure 2: The Figure 8 attractor. The only invariant measure is δp, where p is the saddle point.

Theorem 3.3 can be generalized in a number of ways. For example, one can vary the initial
distribution. For ϕ ∈ L1(m), ϕ ≥ 0, define µϕ := ϕm. Define

Gϕ = {ν ∈ EH for which ∃cν > 0 and an open set O such that ν(O) > 0 and ϕ|O ≥ cν}.

Then, ρ(µϕ) ≥ PGH∩Gϕ ([DWY2, Theorem A]).
Alternatively, for a map with a singularity set S, one can define GS as in (3.1), but with Nε(∂H)

repleced by Nε(S). One can then show, ρ(µϕ) ≥ PGH∩Gϕ∩GS ([DWY2, Theorem C]).
Similarly, if one is interested in escape rates with respect to SRB measures that are singular

with respect to Lebesgue, one can adopt suitable restrictions on G to measures which ‘see’ the SRB
measure. For details, see [DWY2, Theorem B].

Remark 3.6. Upper bounds on ρ(m) do not hold in as great generality as the results discussed
above. Consider the case when Ω ⊂M is an attractor and assume there exists an open neighborhood
O of Ω such that T (O) ⊂ O and Ω = ∩n≥0T

n(O). Let H = M \ O. Then immediately, ρ(m) = 0.
Since hν(T ) ≤ χ+

ν for all ν ∈ EH [R], showing that ρ(m) ≤ PG for some class of invariant measures
G in this case is equivalent to proving 0 = PE , which is false in general. The Figure 8 attractor is
an example for which PE < 0 while ρ(m) = 0 if the open set O is some neighborhood of the attractor
(see Figure 2). For a more extensive example, see [BBS].

3.3 Special case: Anosov diffeomorphisms

With Remark 3.6 in mind, we next consider both upper and lower bounds for the escape rate in
a uniformly hyperbolic setting. In this section, T is a C1+ε Anosov diffeomorphism of a compact
manifold M and H is an open set with finitely many components. Let H denote the collection of
such holes in M endowed with the topology induced by the Hausdorff metric. The sets GH and EH
are defined as in the previous section.

Anosov diffeomorphisms with holes that are elements of a Markov partition were considered in
[CM1, CM2] and later extended to small non-Markov holes in [CMT1, CMT2] by approximation.
In the current setting, we do not assume the holes are elements of a Markov partition and we do
not assume they are small.

Theorem 3.7 ([DW]). Let T : M 	 be a C1+ε Anosov diffeomorphism with hole H ∈ H. Then

PGH ≤ ρ(m) ≤ ρ(m) ≤ PEH .

If in addition ∂H ∩ M̊∞ = ∅, then ρ(m) is well-defined and equals PGH = PEH .

11



Proof. The lower bound follows from Theorem 3.3. The upper bound follows from approximating
H ∈ H by an increasing sequence of ‘Markov’ holes Hk ⊂ H, i.e. each Hk is a finite union of elements
of a Markov partition for T . Since T admits Markov partitions with arbitrarily fine diameter, we
may choose Hk so that ∪k≥1Hk = H.

Set M̊k = M\Hk and in general denote by the subscript k objects associated withHk. Now M̊k is
a decreasing sequence of sets with ∩k≥1M̊k = M̊ and similarly for the survivor sets M̊∞ = ∩k≥1M̊

∞
k .

Since Hk is a Markov hole, the results of [CM2] imply that there exists an invariant measure νk
supported on M̊∞k such that ρ(m) = Pνk .

Let ν be a limit point of the νk. Then ν is an invariant measure supported on M̊∞. Moreover,
letting Eu(x) denote the unstable subspace for T at x, since log | det(DT |Eu)(x)| is continuous, we
have limk→∞

∫
χ+dνk =

∫
χ+dν.

In addition, hν(T ) ≥ lim supk→∞ hνk(T ) due to the expansiveness6 of T [Bo1]. The brief proof
is included here for convenience. Since T is expansive, there exists ε > 0 such that if α is a
finite measurable partition of M with diam(α) < ε, then hη(f, α) = hη(f) for any invariant Borel
measure η. Fix such a partition α with ν(∂α) = 0. Let Hη(αn) denote the entropy of the partition
αn =

∨n
i=−n T

iα with respect to a measure η, and for δ > 0 choose n such that 1
nHν(αn) ≤ hν(T )+δ.

Then since 1
nHη(αn) is a decreasing function of n for any η, we have

lim sup
k→∞

hνk(T ) = lim sup
k→∞

hνk(T, α) ≤ lim sup
k→∞

1

n
Hνk(αn) = lim

k→∞

1

n
Hν(αn) ≤ hν(T ) + δ,

proving the claim, since δ > 0 is arbitrary.
We have shown that

Pν ≥ lim sup
k→∞

Pνk = lim sup
k→∞

ρk(m) ≥ ρ(m),

where the last inequality is true by monotonicity: M̊k ⊃ M̊ for each k. By the ergodic decom-
position, there exists a measure πν on the set I(M̊∞) of invariant Borel probability measures on
M̊∞ such that ν =

∫
I η dπν(η). In fact, since T and log |det(DT |Eu)| are continuous, we have

hν(T ) −
∫
χ+dν =

∫
I(hη(T ) −

∫
χ+dη) dπν(η) (see for example [W, Theorem 8.4]), so there must

exist an ergodic measure η ∈ EH such that Pη ≥ ρ(m).
To prove the last statement of the theorem, notice that since ∂H and M̊∞ are compact, the

requirement ∂H ∩ M̊∞ = ∅ is equivalent to d(∂H ∩ M̊∞) > 0. Thus GH = EH in this case,
completing the proof of the theorem.

Although simple and quite general, Theorem 3.7 gives a surprising amount of information about
the structure of the escape rate as a function of the hole H. Our next set of results are taken from
[DW] and illustrate the essential consequences of this connection between pressure and escape. For
simplicity, we will restrict ourselves to the case when M is two-dimensional. In two dimensions, we
call a hole H ∈ H regular if its boundary comprises a finite union of stable and unstable manifolds.
The main ideas are a consequence of the following observations.

• The condition ∂H ∩ M̊∞ = ∅ is typically satisfied: If T is topologically transitive, it holds
for an open and dense set of holes and for a full measure set of parameters along sequences
of regular holes.

• Exceptional situations do occur; indeed, these exceptions cause the escape rate to vary -
otherwise, it remains locally constant.

6Expansive means there exists ε0 > 0 such that for any x, y ∈ M , x 6= y, there exists i = i(x, y) ∈ Z such that
d(T ix, T iy) > ε0.
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Observe that while the assumption thatH be regular places a strong restriction on the boundary,
this condition is satisfied by any hole that is a union of elements of a Markov partition. Thus this
class of holes contains all holes compatible with any Markov coding that can be used to study the
system.

Proposition 3.8. Let dim(M) = 2, T be topologically transitive and suppose {Ht}t∈I ⊂ H is a
sequence of regular holes such that the number of smooth components of ∂Ht is uniformly bounded
on I and t 7→ ∂Ht is continuous. Assume,

For any subinterval J ⊆ I and any curve γ locally transverse to {∂Ht}t∈J , if E ⊂ J has

positive Lebesgue measure in I, then {γ ∩ ∂Ht}t∈E has positive Lebesgue measure on γ.

Let −ρ(t) and −ρ(t) denote the upper and lower escape rates from M \Ht with respect to Lebesgue.
Then

(a) M̊∞(Ht) ∩ ∂Ht = ∅ for an open and dense set of t ∈ I and the exceptional set has zero
Lebesgue measure in I. As a consequence, ρ(t) exists and is locally constant on an open and
full measure set of t.

Now assume that {Ht}t∈I is monotonically increasing. Then

(b) the functions t 7→ ρ(t) and ρ(t) are monotonically decreasing and each forms a devil’s stair-
case, possibly with jumps;

(c) ρ(·) and ρ(·) are in general neither upper nor lower semi-continuous once they are out of the
small hole regime;

(d) if ρ(·) is lower semi-continuous at t, then ρ(t) exists;

(e) if ρ(·) is upper semi-continuous at t, then ρ(t) exists.

Note that statement (a), the sequence {Ht}t∈I is neither assumed to converge to a point nor to be
monotonic. Also, statements (d) and (e) imply that ρ(t) typically exists even when ∂Ht∩M̊∞(Ht) 6=
∅. The only values of t at which ρ(t) may not exist are those at which ρ(t) and ρ(t) jump and fail
to be lower and upper semi-continuous, respectively. This can occur at most countably many times
along the sequence.

Remark 3.9. If one considers the recent results in [BY, KL2, FP] regarding the existence of the
derivative of ρ(t) in the zero hole limit (i.e. as Ht shrinks to a point) in a number of hyperbolic
settings, the picture of ρ(t) that emerges from Proposition 3.8 is rather surprising. It indicates that
along sequences of regular holes, ρ(t) cannot be smooth on any interval containing 0: Indeed ρ(t)
cannot even be absolutely continuous on any interval on which it is not constant.

Proposition 3.10. There are examples of Anosov diffeomorphisms with regular holes where

(a) PGH < ρ(m) = PEH ; (b) PGH = ρ(m) < PEH ; and (c) PGH < ρ(m) ≤ ρ(m) < PEH .

Problem 4. Construct examples of Anosov diffeomorphisms and holes H to illustrate each of the
items of Proposition 3.10.

Remark 3.11. We conclude with an observation on large versus small holes in hyperbolic systems.
It follows from other techniques not presented here that for a large class of small holes, t 7→ ρ(t) is
Hölder continuous. Evidently then, no invariant measure with pressure close enough to 0 can be too
concentrated near ∂H for this class of holes. On the other hand, for larger holes invariant measures
which maximize pressure can live on ∂H and create jumps in the escape rate as demonstrated by
Propositions 3.8 and 3.10.
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4 Small Holes: Spectral Methods

In this section we will consider small holes in uniformly hyperbolic systems taking the point of view
that the open system is a perturbation of the closed system, in a sense that we shall make precise.
For definiteness, we specialize our discussion to 1-dimensional piecewise expanding maps.

Let I = [0, 1] and let T : I 	 be piecewise expanding, i.e. we assume there exists a finite
partition of I such that T extends to a C2 map on the closure of each partition element. Moreover,
|T ′| ≥ σ−1 > 2. We assume for simplicity that σ−1 > 2. If it is not, one can always choose n0 ∈ N
such that σ−n0 > 2 and then work with Tn0 .

Let m denote Lebesgue measure on I. For an interval J ⊆ I, we define the variation of a
function f ∈ L1(m) on J = [a, b] by ∨

J

f = sup
ϕ∈K(J)

∫
fϕ′ dm,

where K(J) = {ϕ ∈ C1(J), |ϕ|C0(J) ≤ 1, ϕ(a) = ϕ(b) = 0}. Define the variation norm of f to
be ‖f‖BV =

∨
I f + |f |L1(m), and let BV = {f ∈ L1(m) : ‖f‖BV < ∞} denote the functions of

bounded variation on I.
It is a classical result that for this class of maps, the associated transfer operator L acting on

functions of bounded variation is quasi-compact. This result relies on the following fundamental
inequalities [LY]: There exists C > 0 such that for all f ∈ BV and all n ≥ 0,

‖Lnf‖BV ≤ Cσn‖f‖BV + C|f |L1(m), |Lnf |L1(m) ≤ |f |L1(m). (4.1)

The first inequality above is called a Lasota-Yorke or Doeblin-Fortet inequality. It says that due to
the expansion of the map, the action of the transfer operator decreases the variation of a function,
up to a ‘weak’ term depending on the nonlinearities and discontinuities of the map. The second
inequality is a simple consequence of the fact that L gives the change of variables with respect to
Lebesgue measure,

∫
Lf dm =

∫
f dm.

The contraction given by (4.1) together with the compactness of the unit ball of BV in L1(m)
yield the following theorem.

Theorem 4.1 ([K]). L acting on BV is quasi-compact. It has spectral radius 1 and essential
spectral radius ≤ σ. The spectrum of L outside any disk of radius σ′ > σ consists of finitely many
eigenvalues, each of finite multiplicity.

If T is topologically mixing,7 then L has a spectral gap: 1 is a simple eigenvalue and the rest of
the spectrum is contained inside a disk of radius τ < 1.

Comments about the proof. The fact that the spectral radius is at most 1 is due to (4.1) together
with the bound |f |L1(m) ≤ ‖f‖BV . That it is at least 1 follows from,

∫
Ln1 dm =

∫
1 dm = 1

∀n ∈ N. The bound on the essential spectral radius and resulting quasi-compactness follows from
a general result of Hennion [H] using a formula for the essential spectral radius due to Nussbaum
[N].

Once quasi-compactness is established, a spectral gap follows once one proves that 1 is simple
and eliminates other eigenvalues on the unit circle. The mixing assumption is sufficient for this.

7This is equivalent to the covering property: For each interval J ⊂ I, ∃n = n(J) such that Tn(J) = I (mod 0)
[L2].
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A consequence of quasi-compactness is the following decomposition of L. For each σ′ > σ, there
exists a number N(σ′) and mutually orthogonal projections Πi, i = 1, . . . N(σ′), and R, commuting

with L, such that R+
∑N(σ′)

i=1 Πi = Id and Rank(Πi) <∞. Then

L =

N(σ′)∑
i=1

λiΠiΛi +RL, (4.2)

where ‖RLn‖BV ≤ Cτn, τ < |λi| ≤ 1 and Λi = Πi +Ni, where Ni is nilpotent and ΠiNi = NiΠi =
Ni.

4.1 Piecewise Expanding Maps with Holes

With the above spectral picture in mind and recalling the discussion in Section 2.1, that the density
of an a.c.c.i.m. is an eigenvector for the punctured transfer operator L̊, the goal at this point will be
to show that the nice spectral picture persists for the punctured transfer operator L̊ for sufficiently
small holes.

Unfortunately, in both L1(m) and BV , arbitrarily small holes are order 1 perturbations, thus
standard perturbation theory will not apply.

Lemma 4.2. Let H ⊂ I be a finite union of intervals such that m(I \ I̊1) > 0. Then ‖L− L̊‖BV =
O(1) and |L − L̊|L1(m) = 1.

Proof. To prove the second claim, choose f ∈ L1(m), f ≥ 0 so that supp(f) ⊂ I \ I̊1. Then using
(2.1), ∫

|(L − L̊)f | dm =

∫
L(1I\I̊1f) dm =

∫
1I\I̊1f dm = |f |L1(m),

so that |L − L̊|L1(m) = 1. (Note that |(L − L̊)f |L1(m) ≤ |f |L1(m) so the norm cannot be more than
1.)

To prove the first claim, for f ∈ BV and ϕ ∈ K(I) we write,∫
ϕ′(L − L̊)(f) dm =

∫
ϕ′L(1I\I̊1f) dm =

∫
ϕ′L(1H∪T−1Hf) dm .

Now H ∪ T−1H is a finite union of intervals and if H is small, then L(1H∪T−1H) will not be
constant and indeed will have a jump of at least 1

max |T ′| . So choosing ϕ so that ϕ′ is large in a

neighborhood of such a jump gives a lower bound on ‖L− L̊‖BV of at least 1
max |T ′| . Note however,

that ‖L − L̊‖BV <∞ since

‖(L − L̊)f‖BV ≤ ‖L(1H∪T−1Hf)‖BV ≤ 2‖L‖BV ‖1H∪T−1H‖BV ‖f‖BV ,

and 1H∪T−1H has finite variation while ‖L‖BV is finite by (4.1).
In very special cases, if H is very large, it may be that L(1H∪T−1H) is constant in I. In this case,

we may choose f so that f has a jump of order 1 in the interior of H ∪T−1H. Then L(1H∪T−1Hf)
will have a jump of at least 1

max |T ′| which again gives a lower bound on the variation.

For an alternative perturbative approach, we turn to a framework created by Keller and Liverani
[KL1], which allows one to consider a wider class of perturbations by viewing L̊ as an operator from
BV to L1(m). The essential ingredients are as follows:8

8In fact, the requirements given in [KL1] are more general than those listed here, but we have simplified the
requirements to clarify the exposition.
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(1) (Compact embedding) A pair of Banach spaces, (Bs, ‖ · ‖s) (strong) and (Bw, | · |w (weak),
such that |f |w ≤ C‖f‖s for all f ∈ Bs and the unit ball of Bs is compactly embedded in Bw.

(2) (Uniform Lasota-Yorke inequlities) A family of bounded, linear operators {Lε}ε≥0 on Bs for
which there exist constants C > 0 and ς < 1 such that for all n ≥ 0,

‖Lnε f‖s ≤ Cςn‖f‖s + C|f |w
|Lnε f |w ≤ C|f |w ∀f ∈ Bs

(3) (Closeness of the operators in a weak sense) There exists a monotone increasing function
ψ(ε), such that |||L0 − Lε||| ≤ ψ(ε)→ 0 as ε→ 0 where

|||L||| := sup{|Lf |w : f ∈ Bs, ‖f‖s ≤ 1}.

Theorem 4.3 ([KL1]). Under conditions (1)–(3) listed above, the essential spectrum of all operators
Lε is bounded by ς < 1. Moreover, for ε sufficiently small, the spectrum and spectral projectors of
Lε outside the disk of radius ς vary as a Hölder continuous function of ψ(ε) in the weak norm.

Remark 4.4. The theorem implies that if λ0 is an isolated eigenvalue of L0 with |λ0| > ς, then
λ0 has finite rank and for δ > 0 sufficiently small, there exists ε0 = ε0(δ) such that for ε < ε0, the

spectrum of Lε has finitely many eigenvalues λ
(j)
ε inside the disk of radius δ around λ0 and the sum

of the multiplicities of the λ
(j)
ε equals the multiplicity of λ0.

In particular then, if L0 has a spectral gap, then so does Lε for ε > 0 sufficiently small.

The importance of this result lies in the fact that closeness in the norm ||| · ||| is much weaker
than closeness in ‖ · ‖s or | · |w, and so allows the development of perturbation theory for a much
wider class of perturbations. In what follows, we define this norm with respect to BV and L1(m),
i.e.

|||L||| := sup{|Lf |L1(m) : f ∈ BV, ‖f‖BV ≤ 1}.

Lemma 4.5. Let H ⊂ I be a finite union of intervals. Then,

|||L − L̊||| ≤ m(H ∪ T−1H).

Proof. Let f ∈ BV with ‖f‖BV ≤ 1. Now

|(L − L̊)f |L1(m) =

∫
L(1I\I̊1f) dm =

∫
1H∪T−1Hf dm ≤ ‖f‖BVm(H ∪ T−1H),

using the fact that |f |∞ ≤ ‖f‖BV . Taking the appropriate supremum completes the proof of the
lemma.

We consider families of holes {Hε}ε≥0 satisfying a certain uniform property. Let T̊ε denote the
map corresponding to the hole Hε and L̊ε denote the associated transfer operator for T̊ε. We denote
by Jε the maximal partition of I̊ε into intervals on which T̊ε is smooth. We assume the following
property of the family {Hε}.

(H) inf
ε≥0

inf
J∈Jε

m(T̊ε(J)) > 0.
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Corollary 4.6. Suppose T is a piecewise expanding map of the interval such that L has a spec-
tral gap on BV . Let {Hε}ε≥0 be a family of holes, each comprising finitely many intervals, with
m(Hε)→ 0 as ε→ 0 and satisfying property (H).

Then for ε sufficiently small, L̊ε has a spectral gap on BV .

Proof. The corollary follows from Theorem 4.3 once we establish (1)-(3), with Lε = L̊ε. Note that
(1) holds for Bs = BV and Bw = L1(m) and (3) follows from Lemma 4.5. It remains to verify (2).

The second inequality in (2) is immediate with C = 1. The first inequality also follows from
standard estimates, yet it is important to note the uniformly of the constants in ε. Standard
estimates show (see for example, [L2, eq. (2.1)]) that for f ∈ BV ,

∨
I

L̊εf ≤ 2σ
∨
I

f +

(
sup
x∈I

|D2T (x)|
|DT (x)|2

+ 2 sup
J∈Jε

1

m(T̊ε(J))

(
1 +

supx∈J |D2T (x)|
infx∈J |DT (x)|

))∫
I
|f | dm. (4.3)

Note that the only constant above that depends on ε is supJ∈Jε
1

m(T̊ε(J))
, which is bounded uniformly

by assumption (H). Thus there exists C0 > 0, independent of ε, such that the second term in (4.3)
is bounded by C0|f |L1(m). The inequality can then be iterated for any n, proving (2)

∨
I

L̊nε f ≤ (2σ)n
∨
I

f +
C0

1− 2σ
|f |L1(m).

The consequences of L̊ε having a spectral gap are numerous and allow us to answer many of
the motivating questions posed in Section 1.1 regarding limiting distributions and escape rates.

Corollary 4.7. Suppose H is a finite union of intervals and that L̊ has a spectral gap. Let λ < 1
be the largest eigenvalue of L̊. Then there exists g ∈ BV , with g ≥ 0 and |g|L1(m) = 1 such that

L̊g = λg. Moreover,

(a) There exists ς ∈ (0, 1) and C > 0 such that for all n ≥ 0 and f ∈ BV ,

‖λ−nL̊nf − c(f)g‖BV ≤ Cςn‖f‖BV

for some constant c(f).

(b) If f ∈ BV has c(f) > 0, then ρ(µf ) = log λ, where dµf = fdm.

(c) c(f) > 0 if and only if

lim
n→∞

∥∥∥∥∥ L̊nf
|L̊nf |L1(m)

− g

∥∥∥∥∥
BV

≤ Cςn‖f‖BV ,

for some constant C independent of f ∈ BV .

(d) Suppose {Hε} is a family of holes as in Corollary 4.6. Let λε be the largest eigenvalue of L̊ε
and let gε be its associated (normalized) eigenvector. Then

|gε − g0|L1(m) → 0 and λε → 1 as ε→ 0,

where g0 is the density of the unique absolutely continuous invariant measure for T .
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Proof. (a) λ−1L̊ has spectral radius 1, essential spectral radius at most 2σλ−1 < 1 and a decom-
position via spectral projectors analogous to the one given in (4.2). The conclusion of (a) follows
for any ς greater than the second largest eigenvalue of λ−1L̊ or 2σλ−1, whichever is larger.

(b) By (a), since convergence in BV implies convergence in L1(m),

λ−n
∫
I̊n
f dm = λ−n

∫
L̊nf dm n→∞−−−→ c(f).

Then if c(f) > 0, ρ(µf ) = log λ.

(c) Assume c(f) > 0. Then using the same calculation as in part (b),

lim
n→∞

L̊nf
|L̊nf |L1(m)

= lim
n→∞

L̊nf
λn

λn

|L̊nf |L1(m)

= c(f)g · 1
c(f) = g.

The converse follows from the linear structure of L̊. Let V be the eigenspace corresponding to λ,
spanned by g. Then we can write BV = V⊕W where W = {f ∈ BV : c(f) = 0}.
(d) The convergence of gε to g0 and λε to 1 follows from the Hölder continuity of the spectrum and
spectral projectors in the weak norm outside the disk of radius 2σ guaranteed by Theorem 4.3.

Remark 4.8. We have described the application of this perturbation theory in the setting of piece-
wise expanding maps to keep the exposition simple; however, it is general enough to apply to hyper-
bolic maps as well, as soon as sutiable Banach spaces have been constructed on which the transfer
operator for the closed system is quasi-compact. To date, this has been accomplished for piecewise
hyperbolic maps with holes [DL], and dispersing billiards with holes [D3], including holes which
interact with infinite horizon corridors [D4].

There is one last question we have not yet addressed using spectral theory, which is (Q4),
connecting pressure on the survivor set to the escape rate. Indeed, given a limiting distribution
with a strong convergence property as in Corollary 4.7(b), there is a standard way to construct a
physically relevant invariant measure on the survivor set. (See [CMS1] for example.)

For any ψ ∈ BV , define

Q(ψ) = lim
n→∞

λ−n
∫
I̊n
ψg dm, (4.4)

where g is the (normalized) eigenfunction of L̊ corresponding to λ. The limit exists by Corollary 4.7;
indeed, Q(ψ) = c(ψg). Since Q(1) = 1 and |Q(ψ)| ≤ |ψ|∞, Q extends to a bounded linear functional
on C0(I). By the Riesz representation theorem, there exists a Borel probability measure ν such
that ν(ψ) = Q(ψ) for each ψ ∈ C0(I). It is immediate from (4.4) that ν is supported on I̊∞.
Moreover, ν is a T invariant measure since,

ν(ψ ◦ T ) = lim
n→∞

λ−n
∫
I̊n
ψ ◦ T g dm = lim

n→∞
λ−n

∫
I̊n−1

ψL̊g dm = lim
n→∞

λ1−n
∫
I̊n−1

ψ g dm = ν(ψ),

for each ψ ∈ C0(I).
The question of whether ν satisfies an escape rate formula and achieves the supremum of

pressures over some class of invariant measures supported on I̊∞ has so far not been established
using the spectral gap for L̊ on BV. Rather, typically one uses a Markov extension for the open
system to bring to bear the theory of Gibbs measures for countable Markov shifts to establish this
fact. That is the content of the next section.
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5 Markov Extensions for Open Systems

Briefly, a Markov extension of a dynamical system (T,M) is a system (F,∆) admitting a finite
or countable Markov partition for which (T,M) is a quotient. What one gains by passing to a
Markov extension is the ability to code the system and use the powerful results available to finite
and countable state Markov shifts. What one loses is compactness (∆ is typically not compact even
when M is) and some control of objects that do not ‘lift’ to the extension.

We sketch the main ideas in the construction of a certain type of Markov extension, known as
a Young tower. Given a map T : M 	, choose a reference set Λ ⊂ M and consider iterates of the
form T i(Λ). We wait for a part of T i(Λ) to make a ‘good’ return to Λ.9 A stopping time is then
declared on the piece of Λ which has made a good return, and we continue to iterate the rest of
Λ until another good return is made. In this way, one obtains a countable partition {Λi} and a
stopping time τ : Λ→ N such that τ is constant on each Λi and T τ (Λi) makes a good return to Λ.
The induced map T τ : Λ→ Λ can be viewed as a generalized horseshoe with variable return times
and countably many branches.

Define ∆0 = Λ and
∆ = {(x, n) ∈ ∆0 × N : n < τ(x)}

to be the tower. We denote by ∆` the set of points (x, n), with n = `. The tower map is defined by
F (x, `) = (x, `+1) if ` < τ(x)−1 and F (x, τ(x)−1) = (T τ (x), 0). This defines a natural projection
π : ∆→M such that π ◦ F = T ◦ π and an identification of ∆` with those points in Λ which have
not made a good return to Λ by time n.

Pushing the partition {Λi} up the levels of the tower induces a countable Markov partition on
∆. Alternatively, one sometimes constructs a dynamical partition {∆`,j} defined inductively during
the construction of the tower which is coarser than that induced by {Λi}. In any case, one requires
some bounded distortion property on partition elements at return times, such as,∣∣∣∣DT τ (x)

DT τ (y)
− 1

∣∣∣∣ ≤ Cdd(T τ (x), T τ (y)) (5.1)

for all x, y ∈ Λi and some constant Cd > 0, independent of i.
Important statistical properties of the system are reflected in the rate of decay in the tail of

the return time: m(τ > n). If this quantity decays exponentially and g.c.d.{τ} = 1, then the rate
of decay of correlations is exponential; while if the rate of decay is polynomial, so is the decay of
correlations.

5.1 Young Towers for Expanding Maps with Holes

We describe the construction of a Young tower more explicitly in the setting of piecewise expanding
maps fo the interval with holes. Unfortunately, even if a tower has been constructed in a system
without a hole, a new tower must be constructed after the introduction of the hole. This is because
to preserve the Markov property for the open system, the hole should lift to a countable union of
partition elements in ∆. This means that the boundary of the hole must be considered as part
of the discontinuity set of the map as the reference set is iterated. These new discontinuities will
affect return times in unbounded ways and there is no monotonicity: some intervals may make a
good return earlier and some may make a good return later than they would have had the hole not
been present. When H lifts to a countable union of partition elements, we say the tower respects
the hole.

9In the context of expanding systems, a good return is one which completely covers Λ; for hyperbolic systems, a
good return crosses Λ in the unstable directions while lying strictly inside it in the stable directions.
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In this section, T is a piecewise expanding map as in Section 4 and H is a finite union of open
intervals. Let {Ij} denote the finite collection of intervals on which T̊ is monotonic and smooth.
In this one-dimensional setting, Λ will be an interval contained inside one of the Ij . First we prove
a preliminary growth lemma.

Lemma 5.1. Fix a length scale d ≤ minjm(Ij). Let J be any interval of length at least d lying
entirely in one of the Ij. There exists a countable partition Z of J into intervals, and a stopping
time t : J → N, constant on each Z ∈ Z, such that

(a) T t is C2 on each Z ∈ Z and satisfies bounded distortion, (5.1);

(b) for each Z ∈ Z, either Z ⊂ I̊t and T t(Z) = Ij for some Ij, or Z ⊂ I̊t−1 and T t(Z) ⊂ H;

(c) m(t > n) ≤ (2σ)n;

(d) m(x ∈ J : T t(x) ∈ H) ≤ σm(H)
1−2σ .

Proof. We define a partition on J inductively. Let Ω0 = {J} and let Ωn−1 ⊆ J denote the set of
points on which t has not been defined by time n− 1. Ωn−1 consists of a finite number of intervals.

For ω ∈ Ωn−1, consider Tnω. If Tnω does not cover any Ij , then it can intersect at most one
component of H and Tn−1ω contains at most one singularity point of T . On the at most one
component of ω ∩ T−nH, we define t = n and place this interval into Z; we place the at most two
components of ω on which Tn is smooth into Ωn.

If, on the other hand, Tnω contains one or more of the Ij , we define t = n on any components
ω′ for which Tnω′ ⊂ H or Tnω′ = Ij ; each of these intervals is included as a element of Z. The
at most two components of ω on which Tn is smooth and on which S has not yet been defined are
placed into Ωn.

From this construction of t and Z, (a) and (b) are automatic. (c) follows since Ωn consists of
at most 2n intervals of length at most Dσn, where D is the maximum length of one of the Ij . Thus
m(S > n) = m(Ωn) ≤ D(2σ)n.

Similarly, from each component of Ωn−1, at most m(H)σn measure can enter H at time n.
Since there are at most 2n−1 such components, the set of points that can fall into H at time n is
at most m(H)σn2n−1. Summing this over n yields (e).

From this growth lemma, the tower can easily be constructed, using some combinatorial condi-
tion of the form: For each Ij , there exists nj such that

T̊nj (Ij ∩ I̊nj ) = I̊ . (5.2)

This condition can be viewed as a property for the open system similar to the covering property
for closed systems.

For each j, Ij ∩ I̊nj is a finite collection of intervals on which T̊nj is injective. The images of
these intervals cover I̊ by (5.2) and the endpoints of the intervals induce a finite partition Qj of I̊.
Let Q = ∨jQj and note that Q is still a finite partition of I̊.

Choose Λ to be an element of Q. Apply Lemma 5.1 to each element of Q with d fixed as the
length of the shortest element of Q. This gives a stopping time according to which every interval
has either entered H or grown to cover at least one Ij . Choose Λ to be an element of Q covered
by at least one of the intervals in T̊nj (Ij ∩ I̊n). The combinatorial condition in (5.2) implies that
every interval of fixed length must have a positive fraction of its measure, call it δ, make a good
return at least every n0 iterates, where n0 = maxj nj . This yields the desired return time τ with
decay rate,

m(x ∈ Λ : τ(x) > n} ≤ C(2σ)n + C(1− δ)n/n0 .
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5.2 The Open Tower: Spectral Arguments

With the tower constructed respecting the hole, we now wish to leverage the Markov structure
of the tower to analyze the open system. First notice that the Lebesgue measure m lifts easily
to a reference measure m on the tower simply by m|∆0 = m|Λ, and m|∆`

= F∗m|∆`−1
for ` ≥ 1.

Since JF ≡ 1 except at return times, this immediately implies that defining the associated transfer
operator by,

L∆f =
∑

y∈F−1x

f(y)

JF (y)
, for f ∈ L1(m),

one immediately has
∫

∆ L∆f dm =
∫

∆ f dm. And for the open system,
∫

∆̊ L̊∆f dm =
∫

∆̊1 f dm,

with the usual definition of L̊∆ and ∆̊n. Note, however, that π∗m 6= m.
The inductive construction of Ωn in the proof of Lemma 5.1 induces a natural Markov partition

{∆`,j} on the tower. In this simple setting, there are only finitely many elements on each level of
the tower, although that need not be the case for more general systems. We assume there exist
constants C,α > 0 such that m(∆`) = m(τ > `) ≤ Ce−α`.

The usual mixing condition for F is that g.c.d.{τ} = 1, which we can impose on our construction
using the transitivity condition (5.2).

Define the separation time s(x, y) = inf{n ∈ N : Fn(x), Fn(y) lie in different ∆`,j}. Choose
β ∈ (0, α) and define a separation time metric dβ(x, y) = e−βs(x,y).

The function space introduced in [Y2] and used since in a variety of settings is the weighted
function space ‖f‖ = ‖f‖∞ + ‖f‖Lip, where

‖f‖∞ = sup
`≥0

e−β`|f |∆`
|∞

‖f‖Lip = sup
`,j

e−β`Lip(f |∆`,j
),

and Lip(f) denotes the Lipschitz constant of f in the metric dβ. Let B∆ = {f ∈ L1(m) : ‖f‖ <∞}.

Problem 5. Prove that the unit ball of B∆ is compactly embedded in L1(m).

At this point the following estimates are standard [Y2, D1, BDM].

‖L̊n∆f‖∞ ≤ Ce−βn‖f‖Lip + C|f |L1(m), ‖L̊n∆f‖Lip ≤ Ce−βn‖f‖Lip + C|f |L1(m).

Using Problem 5, it follows from standard arguments (see for example [B]) as in the proof of
Theorem 4.1 that L̊∆ is quasi-compact as an operator on B∆ with essential spectral radius bounded
by e−β.

However, this is not enough to conclude a spectral gap (even with g.c.d.{τ} = 1) since we must
first show that the spectral radius of L̊∆ is strictly larger than e−β. In this setting, perturbative
arguments are not available since shrinking the hole would require a different tower construction for
each hole. Thus we would be comparing a sequence of operators on a sequence of Banach spaces,
which is somewhat cumbersome.

An easier route is to assume a smallness condition on the size of the hole and then to prove
directly a lower bound on the spectral radius of L̊∆ and a Perron-Frobenius type decomposition of
the peripheral spectrum. Such a decomposition, coupled with the mixing assumption g.c.d.{τ} = 1,
is sufficient to prove a spectral gap for L̊∆ on B∆. From this, the full set of results presented in
Corollary 4.7 hold for the tower with holes (except (d)).
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Remark 5.2. We have left open the form of the smallness condition since there are several possible
formulations. One possibility is to assume the hole is sufficiently small that the normalization
required after pushing a certain class of regular densities forward one step is small compared to
1 − e−β. Thus in one step, one sees that the spectral radius must be larger than e−β. This is the
approach taken in [D1, D2, BDM].

A less restrictive approach is to use an asymptotic requirement: assume −ρ(m) < β and show
that this implies that the spectral radius is strictly greater than the essential spectral radius. This
approach is taken in the recent preprint [DT]. This is a less restrictive requirement, but also less
constructive in terms of an explicit condition on the hole.

At this point, one also defines an invariant measure ν on ∆̊ via the analgous limit to (4.4),

ν(ψ) = lim
n→∞

λ−n
∫

∆̊n

ψ g dm, (5.3)

where λ ∈ (e−β, 1) is the largest eigenvalue of L̊∆ and g ∈ B∆ is the associated (normalized)
eigenvector.

Problem 6. Assume that g ≥ δ > 0 on ∆0. Let [i0, i1, . . . , in−1] ⊂ ∆0 denote a cylinder set of
length n with respect to the first return map, S := F τ . Prove that for ν defined as in (5.3) (and
L̊∆ having a spectral gap), there exists C ≥ 1 such that for all n ∈ N,

C−1λ−τ
n(y∗)|JSn(y∗)|−1 ≤ ν([i0, i1, . . . , in−1]) ≤ Cλ−τn(y∗)|JSn(y∗)|−1,

where y∗ is an arbitrary point in [i0, i1, . . . , in−1] and τn is the time of the nth return to ∆0.

Problem 6 implies that ν0 := 1
ν(∆0)ν|∆0 is a Gibbs measure for S = F τ with potential φ =

− log |λτJS|.
We define a topology on ∆0 ∩ ∆̊∞ by using the cylinder sets in Z = {Λi} as our basis. The fact

that S|∆0∩∆̊∞ is topologically mixing then follows from the condition g.c.d.{τ} = 1 and the fact
that the partition Z is generating since F is expanding.

Then Problem 6 together with [Sa, Theorems 7 and 8] implies that

0 = sup
η0∈MS

{
hη0(S) +

∫
∆0

φdη0

}
, (5.4)

where MS is the set of S-invariant Borel probability measures on ∆0 ∩ ∆̊∞. Moreover, ν0 ∈ MS

is the unique nonsingular10 measure which attains the supremum.
We now project this variational principle for S to obtain one for F .

Lemma 5.3. LetMF be the set of F -invariant Borel probability measures on ∆. For any η ∈MF ,
let η0 = 1

η0(∆0)η|∆0. Then ∫
∆0

log JS dη0 =

∫
∆

log JF dη

∫
∆0

τ dη0.

Proof. Notice that η0 ∈ MS . For x ∈ ∆0, JS(x) = JF τ (x) = Π
τ(x)−1
i=0 JF (F ix). However,

JF (F ix) = 1 for i < R(x)− 1, so that JS(x) = JF (F τ−1x). In other words, we have∫
∆0

log JS dη0 = η(∆0)−1

∫
F−1∆0

log JF dη = η(∆0)−1

∫
∆

log JF dη. (5.5)

10Nonsingular in this context means η0(S(A)) = 0 if and only if η0(A) = 0 for Borel sets A ⊂ ∆0.
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Since the η-measure of a partition element ∆`,j does not change as it moves up the tower, we
have

1 =
∑
(`,j)

η(∆`,j) =
∑
i

η(Λi)τ(Λi) =

∫
∆0

τ dη.

So by definition of η0, we have∫
∆0

τ dη0 = η(∆0)−1

∫
∆0

τ dη = η(∆0)−1.

This, together with (5.5), proves the lemma.

Since S = F τ is a first return map to ∆0, the general formula of Abramov [A] implies that
hη(F ) = hη0(S)η(∆0) so that

hη0(S) = η(∆0)−1hη(F ) = hη(F )

∫
∆0

τ dη0. (5.6)

Since
∫

∆0
τ dη0 = η(∆0)−1 6= 0 and there is a 1-1 correspondence between measures in MS and

MF , putting equation (5.6) and Lemma 5.3 together with (5.4), we have

log λ = sup
η∈MF

{
hη(F )−

∫
∆

log JF dη

}
. (5.7)

Moreover, ν is the only nonsingular F -invariant probability measure which attains the supremum.

5.3 Projecting the Results from the Tower

The last step in the use of the Young tower is to project our results down to our original map
T : I 	.

For any η ∈ MF , we can define η̃ = π∗η ∈ MT . Then given a function f̃ on X, we have∫
X f̃ dη̃ =

∫
∆ f̃ ◦ π dη. From the relation π ◦ F = T ◦ π, we have

Jm,mπ(Fx)JmF (x) = JmT (πx)Jm,mπ(x)

for each x ∈ ∆, where Jm,mπ = dm◦π
dm . Thus,∫

I
log JT dη̃ =

∫
∆

(log JF + log Jπ ◦ F − log Jπ) dη =

∫
∆

log JF dη

since the last two terms cancel by the the F -invariance of η.
The fact that hη(F ) = hη̃(T ) follows since π is at most countable-to-one ([Bu, Proposition 2.8]).

Thus

hη(F )−
∫

∆
log JF dη = hη̃(T )−

∫
I

log JT dη̃

for each η ∈MF . And in particular, setting ν̃ = π∗ν, we have

log λ = hν̃(T )−
∫
I

log JT dν̃,

so that ν̃ satisfies the escape rate formula.
There is only one issue with the above: Is − log λ, where λ is the spectral radius of L̊∆, the

same as escape rate from I̊ with respect to Lebesgue measure?
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To answer this question, one must consider how the evolution of densities on ∆ parallels the
evolution of densities on I. Given a measure µ = fm on ∆, we may define its projection µ = π∗µ
and the density of this projection with respect to m will be given by

Pπf(x) =
∑

y∈π−1x

f(y)

Jπ(y)
.

Notice that |Pπf |L1(m) = |f |L1(m) and also,

Pπ(L̊nF f) = L̊nT (Pπf), for f ∈ L1(m).

The importance of these relations lies in the fact that if L̊F g = λg, then L̊T (Pπg) = λPπg, and if
f̃ = Pπf , then

L̊nF f
|L̊nF f |L1(m)

→ g in L1(m) implies
L̊nT f̃

|L̊nT f̃ |L1(m)

→ Pπg in L1(m). (5.8)

Thus Pπg seems to define the physically relevant limiting distribution we are looking for.
However, the space of functions PπB∆ is not well understood in general and for some hyperbolic

systems, it is even difficult to show that it contains Lebesgue measure. In one dimension, it is
possible to identify conditions that guarantee that Cp(I) ⊂ PπB∆, and so solve the problem of
‘liftability’ of the types of noninvariant measures that we would like to evolve under the dynamics.
The two properties introduced in [BDM] are as follows.

(A1) There exist constants ξ > 1 and C1, C2 > 0 such that

(a) for any x ∈ Λ, n ≥ 1 and k < τn(x), |DT τn(x)−k(T kx)| > C1ξ
τn(x)−k.

(b) Let x, y ∈ Λi and τi = τ(Λi). Then
∣∣∣DT `(πx)
DT `(πy)

∣∣∣ ≤ C2 for ` ≤ τi. If T τ (Λi) ⊆ Λ, then∣∣∣DT τi (πx)
DT τi (πy) − 1

∣∣∣ ≤ C2d(T τi(πx), T τi(πy)).

Property (A1)(a) says that although T may not be expanding everywhere in its phase space, we
only count returns to Λ during which average expansion has occurred - this permits its application
to nonuniformly expanding maps such as unimodal maps. Property (A1)(b) is simply bounded
distortion. In fact, (A1) implies the distortion bound (5.1) in the current setting.

Problem 7. Choose p ≥ β/ log ξ and show using (A1) that the separation time metric dβ on ∆
and the usual Euclidian distance on I are compatible in the following sense: Any f ∈ Cp(I) has
Lip(f ◦ π) <∞.

Unfortunately, the result of Problem 7 is not sufficient for our purposes. Since typically Pπ(f ◦
π) 6= f , we need the following additional property for our tower construction.

(A2) There exists an index set K ⊂ N× N such that

(a) m
(
X\ ∪(`,j)∈K π(∆`,j)

)
= 0;

(b) π(∆`1,j1) ∩ π(∆`2,j2) = ∅ for all but finitely many (`1, j1), (`2, j2) ∈ K.

(c) Define Jπ`,j := Jπ|∆`,j
. Then sup(`,j)∈K |Jπ`,j |∞ + Lip(Jπ`,j) = D <∞.
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This property guarantees that given f ∈ Cp(I), we may define f̃ ∈ B∆ such that Pπf̃ = f
[BDM, Proposition 4.2]. This guarantees in particular that the evolution of Hölder continuous
functions in I follows the same limiting behavior as functions in B∆. In particular, 1 ∈ PπB∆ and
log λ is the desired escape rate with respect to Lebesgue measure. We conclude by remarking that
all piecewise expanding maps considered here admit towers satisfying (A1) and (A2), see [BDM,
Section 4.2].

5.4 Unimodal Maps of the Interval

Once the general machinery for Young towers with holes has been laid out, including the issues
involving the projection of results discussed in Section 5.3, it can be used to study many classes
of nonuniformly hyperbolic systems. A prime example is unimodal maps of the interval. The big
difference from the viewpoint of our current discussion is that such maps have no Banach space for
which it is currently known that L̊ enjoys a spectral gap. So for this class of systems, we must rely
exclusively on Markov extensions to provide both the limiting distribution as well as the variational
principle characterizing the escape rate.

The classical representative of maps in this class is the logistic family, Ta = ax(1− x), defined
on the interval [0, 1]. For certain parameter values a ∈ [0, 2], Ta admits an absolutely continu-
ous invariant measure and has exponential decay of correlations, so one expects that the standard
program for hyperbolic systems with holes should hold: a unified escape rate, a physical condi-
tionally invariant limiting distribution, and the characterization of the escape rate via a variational
principle.

To give an idea of the properties required for such an analysis to go through, we recall the
restrictions placed in T in [BDM], which in turn uses the framework of [DHL].11

The map T : I 	 is assumed to be C2 and has a critical point c with critical order 1 < `c <∞.
Furthermore, T satisfies the following conditions for all δ > 0 (where Bδ(c) is a δ-neighborhood of
c):

(C1) Expansion outside Bδ(c): There exist ξ, κ > 0 such that for every x and n ≥ 1 such that
x0 = x, . . . , xn−1 = Tn−1(x) /∈ Bδ(c), we have

|DTn(x)| ≥ κδ`c−1eξn,

Moreover, if x0 ∈ T (Bδ(c)) or xn ∈ Bδ(c), then we have

|DTn(x)| ≥ κeξn.

(C2) Slow recurrence and derivative growth along critical orbit: There exists Λ > 0 and αc ∈
(0,Λ/(5`c)) such that

|DT k(T (c))| ≥ eΛk and dist(T k(c), c) > δe−αck for all k ≥ 1.

(C3) Density of preimages: The preimages of c are dense in I.

Condition (C1) follows for piecewise C2 maps from Mañé’s Theorem, see [MS, Chapter III.5]. The
first half of condition (C2) is the Collet-Eckmann condition, and the second half is a slow recurrence
condition. Condition (C3) excludes the existence of non-repelling periodic points.

11In fact, both [BDM] and [DHL] allow maps with multiple turning points as well as singularities, but we simplify
the exposition here.

25



For this class of maps (and more general ones), with some condition on the size and generic
placement of the holes, [BDM] constructs Young towers with exponential tails respecting the holes
and satisfying (A1) and (A2). Thus the full set of results for the open system are proved in this
setting.

5.5 Dispersing Billiards with Small Holes

Young towers can also be constructed for hyperbolic systems with singularities. In this case,
the reference set Λ is more complicated - typically is has a product structure of local stable and
unstable manifolds, and for systems with singularities, Λ comprises a positive measure Cantor set in
the unstable direction, so it is not connected, complicating the discussion of ’liftability’ of measures
in Section 5.3.

Perhaps the prime example of hyperbolic systems with singularities in two dimensions are
mathematical billiards. In such systems, a point mass moving at constant speed is assumed to
reflect elastically off of fixed boundaries in a two-dimensional domain. The hyperbolicity of the
system depends entirely on the geometry of these boundaries. Typically, these are either smooth
obstacles in T2, or the piecewise smooth boundary of a bounded domain in R2 with only finitely
many corner points allowed.

The billiard map is defined to be the discrete time collision-to-collision map with the boundary,
recording position (parametrized by arclength) and the angle an outgoing velocity vector makes
with the normal vector to the boundary at each collision. The phase space of the map is a union of
cylinders: The periodic coordinate is the position coordinate, while the angular coordinate ranges
from −π/2 to π/2.

If one asssumes the boundaries are convex with strictly positive curvature, then the billiard is
hyperbolic; however, the map has singularities: the derivative blows up at tangential collisions and
these complicate the analysis of such systems.

When we place a hole in such a system, we first define a hole in the billiard table (perhaps an
open convex set, or an arc in a boundary) and then determine the geometry of the induced holes
in the phase space of the map.

Recently, Banach spaces of distributions were constructed where the transfer operator associated
to a dispersing billiard map has a spectral gap [DZ1, DZ2]. So from the perturbative point of view,
the approach outlined in Section 4.1 is available to this class of billiards with holes. Such an
approach was carried out in [D3, D4]. On the other hand, to obtain a variational principle for the
open system, one still needs to construct an associated Young tower. This was done first in [DWY1]
and more recently in [D3, D4], so that the analogue of full set of results described in Corollary 4.7
has been established for a large class of dispersing billiards with holes. For a discussion of the
different types of holes allowed with accompanying pictures, see [D3]. [D4] contains a somewhat
technical generalization specific to billiards with infinite horizon.

6 Open Systems with Subexponential Rates of Escape

So far we have only considered systems with exponential rates of escape. A natural question is:

How much of this program involving escape rates, limiting distributions and pressure on the
survivor set carries over to systems with subexponential rates of mixing?

We will address this question in the context of a simple class of intermittent maps of the interval,
the Manneville-Pomeau or LSV maps.
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6.1 Manneville-Pomeau or LSV Maps with Holes

For γ ∈ (0, 1), define the following map on I = [0, 1].

T (x) =

{
x+ 2γx1+γ , x ∈ [0, 1/2)
2x− 1, x ∈ [1/2, 1]

.

0 is a neutral fixed point since T (0) = 0 and T ′(0) = 1. Elsewhere, T ′ > 1. For γ ∈ (0, 1), T admits
an invariant probability measure, absolutely continuous with respect to Lebesgue, with density
gSRB(x) ∼ x−γ . With respect to µSRB, T has polynomial decay of correlations with rate n−1/γ+1

[Y3].
A convenient countable Markov partition for T is constructed as follows. Set an = T−n(1/2)

and J0 = [1/2, 1], Jn = [an, an−1), n ≥ 1. The partition is Q = {Jn}n≥0 and follows from the
definition of an that T (Jn) = Jn−1 for n ≥ 1 and T (J0) = I.

It follows from standard estimates [Y3, LSV] that

an ∼ n−1/γ and |Jn| ∼ n−1−1/γ . (6.1)

This spacing determines the rate of mixing of the system.

Introduction of the Hole. We refine the partition Q by setting,

Qn = Q∨

(
n∨
i=0

T−i({[0, 1/2), [1/2, 1]})

)
.

Note that {[0, 1/2), [1/2, 1]} is a finite Markov partition for T and this definition of Qn preserves 0
as the only accumulation point of the elements of the partition. We start with Q, however, since
this allows us to control distortion (see Lemma 6.1).

Now fix N0 and take H to be a finite union of elements of QN0 . H is not allowed to contain an
element of Q nor a right neighborhood of 1/2 since this would trivialize the effect of the neutral
fixed point on the dynamics. With this assumption, QN0 is a countable Markov partition for T̊ as
well as T .

In this context, the exponential rate of escape ρ(m) is obviously 0, where m denotes Lebesgue
measure. So we instead will ask about a polynomial rate of escape defined by

epoly(µf ) = lim
n→∞

−
logµf (I̊n)

log n
,

where I̊n denotes as usual the set of points which have not escape by time n, and µf is a probability
measure having density f with respect to Lebesgue, i.e. dµf = fdm.

6.1.1 Initial Estimates

Before proving results about escape rates and limiting distributions, we record the following stan-
dard lemma.

Lemma 6.1. Given k ≥ 0 and n ≥ 1, let x, y ∈ I̊n lie in the same element of Qn+1 such that
Tn(x), Tn(y) ∈ Jk. There exists C > 0, independent of n, k, x and y such that

(a)
1

DTn(x)
≤ C

(
k

n+ k

) γ+1
γ

;
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(b)

∣∣∣∣log
DTn(x)

DTn(y)

∣∣∣∣ ≤ C|Tn(x)− Tn(y)|
γ
γ+1 .

Statement (a) is standard (see [Y3, LSV]), so we prove (b).

Proof of (b). Given i ∈ {0, · · · , n− 1}, let Jki denote the element of Q containing T i(x) and T i(y).

Let also Bki = 2γγ(γ + 1)aγ−1
ki

be the maximum value of |D2T | and M
(j)
ki

be the minimum value of

|DT j | on Jki , respectively. Setting p = γ
γ+1 , we have

∣∣∣∣log
DTn(x)

DTn(y)

∣∣∣∣ ≤ n−1∑
i=0

| logDT ◦ T i(x)− logDT ◦ T i(y)| ≤
n−1∑
i=0

Bki |T
i(x)− T i(y)|

≤
n−1∑
i=0

Bki |T
i(x)− T i(y)|1−p |T

i(x)− T i(y)|p

|Tn(x)− Tn(y)|p
|Tn(x)− Tn(y)|p

≤
n−1∑
i=0

Bki |Jki |1−p

(M
(n−i)
ki

)p
|Tn(x)− Tn(y)|p.

Now, Tn(x) has no preimage in
⋃

i>n+k

Ji, so the weakest expansion (and largest Bki) occurs when

x ∈ Jk+n, i.e. when ki = k + n− i. This is the worst case scenario in computing the upper bound,
so using (6.1), there exists C > 0 such that∣∣∣∣log

DTn(x)

DTn(y)

∣∣∣∣ ≤ Ck n−1∑
i=0

(n+ k − i)−2|Tn(x)− Tn(y)|p ≤ C ′|Tn(x)− Tn(y)|p

proving statement (b).

For α ∈ [0, 1), define a class of densities by

Fα =

{
f ∈ L1(m) : f ≥ 0,∃x0 ∈ (0, 1) such that 0 < inf

x∈(0,x0)
xαf(x) ≤ sup

x∈(0,1)
xαf(x) <∞

}
.

Theorem 6.2 (Escape Rate). For any α ∈ [0, 1), f ∈ Fα, there exists C > 0 such that for all
n ≥ 0,

C−1n
− 1
γ

(1−α) ≤
∫
I̊n
f dm ≤ Cn−

1
γ

(1−α)
.

Thus is µf = fm, then epoly(µf ) = 1
γ (1−α) and in particular, epoly(m) = 1

γ while epoly(µSRB) =
1
γ − 1. Here we see already a difference with exponential escape: the polynomial rate of escape
depends strongly on the initial density.

The proof of Theorem 6.2 relies on estimating repeated passes through a neighborhood of the
origin coupled with the fact that outside of this neighborhood, the map is uniformly expanding and
mixes exponentially fast [DF].

Problem 8. Prove the following simpler estimate. Assume H = Jh for some h ≥ 1. Prove that

m(I̊n−1 \ I̊n) ≤ Cn−
1
γ
−1

for all n ≥ 0. I̊n−1 \ I̊n is the set of points that enters H for the first time

at precisely time n. Deduce that m(I̊n) ≤ Cn−
1
γ .
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6.1.2 Limiting Distribution

Notice that in this setting, we cannot hope to prove the existence of a spectral gap for L since
that would imply exponential decay of correlations. We must rely instead on softer arguments. To
control the evolution of measures, define the following class of densities which are Hölder continuous
on elements of the partition QN0 . Let C0(QN0) denote the set of functions which are continuous
on each element of QN0 . For f ∈ C0(QN0), f ≥ 0, p ∈ R+ and J ∈ QN0 , define

Hp
J(f) =


0 if f ≡ 0 on J

sup
x 6=y∈J

log f(x)− log f(y)

|x− y|p
otherwise

Let ‖f‖p = supJ∈QN0
Hp
J(f), then define

Fp =
{
f ∈ C0(QN0) : |f |L1(m) = 1, and ‖f‖p <∞

}
,

and Fpα = Fp ∩ Fα.

Theorem 6.3 ([DF]). Let f ∈ Fpα for some p > 0, α ∈ [0, 1). Then

lim
n→∞

T̊n∗ µf

µf (I̊n)
= δ0,

where δ0 denotes the point mass at 0 and the convergence is in the weak sense. Moreover, we have

lim
n→∞

µf (I̊n+1)

µf (I̊n)
= 1.

Note that Theorem 6.3 applies to Lebesgue measure and indeed to any measure with strictly
positive Holder continuous density on I. It also applies to µSRB since its density gSRB belongs to
Fpγ for any p ∈ (0, γ

γ+1 ].
This theorem implies that arbitrarily small holes in systems with polynomial rates of escape

can act as large perturbations from the point of view of the physical limit
T̊n∗ µf
µf (I̊n)

. For H = ∅,
this sequence converges to the absolutely continuous SRB measure for the closed system, while for
any positive sized hole, it converges to the point mass at 0. From this point of view, the limiting
distribution is unstable with respect to small leaks in the system.

Indeed, this is not a special case, but typical behavior for systems with subexponential escape.
Indeed, if T is a Borel measurable map of a compact, separable metric space X, then it is enough
to assume

lim sup
n→∞

1

n
logµ(X̊n) = 0,

in order to observe that limit points of T̊n∗ µ

µ(X̊n)
are typically singular with respect to the initial

distribution µ and supported on the survivor set. See [DF, Theorem 2.3].

6.1.3 Proof of Theorem 6.3

We begin by establishing some simple facts about the class of densities with which we shall work.
Set Bp = {f ∈ Fp : ‖f‖p ≤ 1} and define L̊1f = L̊f/|L̊f |L1(m).
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Proposition 6.4. (a) The set {(1− s)µf + sδ0 : s ∈ [0, 1], f ∈ Bp} is compact.

(b) Let p ∈ (0, γ
γ+1 ] and α ∈ [0, 1). We have L̊1(Fpα) ⊂ Fpα. In addition, there exist two constants

C1, C2 ≥ 0, such that for every f ∈ Fpα,

‖L̊n1f‖p ≤ C1‖f‖p + C2 for all n ≥ 1. (6.2)

Problem 9. Prove Proposition 6.4(a).

Problem 10. Prove the inequality (6.2).

The proof of Theorem 6.3 relies on the above proposition in addition to the following more
technical volume estimates,

(a) For f ∈ F0, there exists C̄ > 0 such that12 for any n ≥ 0, µf (I̊n−1 \ I̊n) ≤ C̄n−
γ+1
γ log n;

(b) For f ∈ Fα, there exists C̄ > 0 such that for any n ≥ 0, µf (I̊n−1 \ I̊n) ≤ C̄n−
γ+1−α

γ .

For α > 0, item (b) above together with µf (I̊n) ≥ Cfn−
1−α
γ from Theorem 6.2 yields

1 ≥
µf (I̊n+1)

µf (I̊n)
=
µf (I̊n)− µf (I̊n \ I̊n+1)

µf (I̊n)
≥ 1− C̄n

− γ+1
γ

+α
γ

Cfn
− 1−α

γ

= 1− C̄

Cf
n−1 → 1 as n→∞.

A similar conclusion holds for α = 0 using item (a) and Theorem 6.2. Consequently, for every
k ≥ 1 (and α ∈ [0, 1)),

lim
n→∞

µf (I̊n+k)

µf (I̊n)
=

k−1∏
i=0

(
lim
n→∞

µf (I̊n+i+1)

µf (I̊n+i)

)
= 1. (6.3)

Now, fix α ∈ [0, 1), p ∈ (0, γ
γ+1 ], and f ∈ Fpα. We apply Proposition 6.4(b) to conclude

that the sequence
{
T̊n∗ µf
µf (I̊n)

}
n∈N

is composed of absolutely continuous probability measures with

densities in Fpα and the log-Hölder constant ‖ · ‖p is uniformly bounded along this sequence. By
Proposition 6.4(a), any of its limit points must have the form µ∞ = (1− s∞)µf∞ + s∞δ0 for some
f∞ ∈ Fp and s∞ ∈ [0, 1]. We want to prove that s∞ = 1 for any limit point.

Let J ∈ QN0 , let gn := L̊n1f and consider a converging subsequence {gnj}j∈N with limit point

(1− s∞)f∞. (Recall that L̊n1 is the normalized transfer operator.) Since f∞ ∈ Fp, the convergence
gnj |J → (1 − s∞)f∞|J holds in the uniform topology of functions defined on this interval. In
particular, its integrals against any bounded measurable function converge as well on each J ∈ QN0 .

Fixing k ≥ 1, note that the set
k⋃
i=0

T−i(H) is bounded away from 0 and thus intersects only

finitely many elements of QN0 . Thus the sequence {gnj}j∈N converges uniformly on this set as well.
Now, we have

µf (I̊k+nj )

µf (I̊nj )
=
|L̊nj+kf |1
|L̊njf |1

=

∫
I
L̊kgnj dm =

∫
I̊k
gnj dm = 1−

∫
∪ki=0T

−i(H)
gnj dm,

using the fact that
∫
I gnj dm = 1.

12It is likely that the logn factor can be eliminated from this estimate.
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Since the limit of the above expression is 1 by (6.3) and the convergence of gnj to (1− s∞)f∞ is

uniform on each J , we must have f∞ ≡ 0 on
k⋃
i=0

T−i(H). Since f∞ ∈ Fp is log-Hölder continuous

on each J ∈ QN0 , we conclude that f∞ ≡ 0 on any J such that J ∩
(

k⋃
i=0

T−i(H)

)
6= ∅. Since

this holds for all k, the transitivity of T implies that we must have f∞ ≡ 0 on all J ∈ QN0 , i.e.
s∞ = 1. Since the subsequence is arbitrary, it follows that s∞ = 1 for any limit point as desired.
This completes the proof of Theorem 6.3.

6.2 Geometric Potentials for Manneville-Pomeau Maps

The results of the previous section suggest the following questions for this test case involving systems
with polynomial escape.

(1) Can we recover some notion of stability for open systems with slow rates of mixing?

(2) Can we obtain a different perspective by varying the potential?

In this section we describe some preliminary attempts to address these questions which are part of
the recent preprint [DT].

Consider the family of potentials {tϕ : t ∈ R}, ϕ = − log |DT |. Define the related pressure,

P(tϕ) = sup

{
hν(T ) + t

∫
ϕdν : ν ∈MT

}
where MT denotes the set of T -invariant, ergodic, Borel probability measures on I. Note that
P(ϕ) = 0 and P(0) = log 2 = topological entropy of T .

We summarize some classical facts about this family of potentials for T .

• For t ∈ [0, 1), P(tϕ) > 0.

• There exists a tϕ− P(tϕ) conformal measure mt, i.e. dmt
d(mt◦T ) = etϕ−P(tϕ).

• There exists an equilibrium state µt which is an invariant measure absolutely continuous w.r.t.
mt such that µt attains the supremum in the expression for P(tϕ).

• For t < 1, µt is exponentially mixing with rate e−P(tϕ).

As before, we assume H is a finite union of elements of QN0 that allows repeated passes through
a neighborhood of 0 - this allows the effect of the neutral fixed point to be felt by the open system
and does not trivialize the dynamics.

Define the punctured potential ϕH = −∞ on H and ϕH = ϕ elsewhere. Similarly, define the
punctured pressure by,

P (tϕH) = sup

{
hν(T ) + t

∫
ϕdν : ν ∈MT and ν(H) = 0

}
.

Note that the condition ν(H) = 0 for an invariant measure is equivalent to requiring that ν be
supported on the survivor set I̊∞.
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We define the transfer operator for the potential tϕ− P(tϕ) by

Ltϕf(x) =
∑

y∈T−1x

f(y)e−tϕ(y)−P(tϕ),

and similarly for the punctured potential, L̊tϕH .
Recall the exponential rate of escape −ρ(µ;H) defined in (1.1).

Proposition 6.5 ([DT]). For t ∈ [0, 1], the exponential escape rate −ρ(mt;H) with respect to mt

exists and

(a) ρ(mt;H) = P(tϕH)− P(tϕ);

(b) for t < 1, ρ(mt;H) < 0.

(c) Define tH = sup{t > 0 : P(tϕH) > 0}. Then tH = dimHaus(I̊
∞).

The proposition suggests that tH is a dividing line between qualitatively different behaviors
with respect to the conformal measures mt.

• If t < tH , then P(tϕH) > 0 so ρ(mt;H) > −P(tϕ).

• If t ≥ tH , then P(tϕH) = 0, so ρ(mt, H) = −P(tϕ).

The gap between the escape rate and the pressure for t < tH means that in this range of
parameters, the system behaves as a classical uniformly hyperbolic open system.

Define Y̊ = [1/2, 1] \H and let Λ be the recurrent part of Y̊ . Define τ be the first return to Λ
or the first entry into H. Following Section 5, we define the associated Young tower for the open
system by

∆ = {(x, `) ∈ Λ× N : ` < τ(x)},

and the tower map F is defined as usual. In this simple case, since τ is a first return map, the tail
bound is immediate using the conformality of the measure mt and (6.1),

mt(τ > n) ≤ Ce−nP(tϕ),

since {τ > n} = T−1(∪k≥n−1Jk).

Case 1: Uniformly Hyperbolic Behavior: t < tH

Since P(tϕH) > 0 for t in this range, we have −ρ(mt) < P(tϕ) by Proposition 6.5(a). So we
may choose β ∈ (−ρ(mt),P(tϕ)) and define the function space B∆ on ∆ as in Section 5.2 with
weight β.

The potential tϕ−P(tϕ) lifts to a potential φ∆,t on ∆ by setting φ∆,t = 0 on ∆ \F−1(∆0) and
φ∆,t =

∑τ−1
i=0 tϕ ◦T i− τP(tϕ) on F−1(∆0). This definition ensures that induced reference measure

mt on ∆ (defined as in the beginning of Section 5.2) is a conformal measure for φ∆,t.

One obtains similar Lasota-Yorke inequalities for the associated transfer operator L̊φ∆,t
.

‖L̊nφ∆,t
f‖Lip ≤ Ce−βn‖f‖Lip + C|f |L1(mt) and ‖L̊nφ∆,t

f‖Lip ≤ Ce−βn‖f‖Lip + C|f |L1(mt)

This implies the essential spectral radius of L̊φ∆,t
is bounded by e−β. But since the spectral radius

of L̊φ∆,t
equals eρ(mt) and −ρ(mt) < β, we conclude that L̊φ∆,t

is quasi-compact. The mixing

property of T and the condition on H imply that in fact L̊φ∆,t
has a spectral gap on B∆. Thus the
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full set of results for hyperbolic systems with escape as summarized by Corollary 4.7 hold for this
class of potentials and the results project down to T̊ and L̊tϕH as described in Section 5.3.

Case 2: t ∈ [tH , 1)
In this case, ρ(mt;H) = −P(tϕ). No spectral gap for L̊φ∆,t

exists on B∆ since the spectral

radius of L̊φ∆,t
on B∆ = essential spectral radius of L̊φ∆,t

on B.
However, we may still consider the evolution of averages,

ψtn =
1

n

n−1∑
k=0

L̊k
tϕH

1

|L̊k
tϕH

1|L1(mt)

.

Theorem 6.6. Fix t ∈ [tH , 1). Let ηt be a limit point of {ψtnmt}n∈N. Then

dηt = ψtdmt with L̊tϕHψt = λψt,

for some ψt ∈ L1(mt) and λ ∈ [e−P(tϕ), 1), i.e. every limit point of {ψtnmt}n∈N is a conditionally
invariant measure absolutely continuous w.r.t. mt.

There are thus three regimes for limiting distributions for this class of potentials:

• t ∈ [0, tH): The transfer operator on the tower has a spectral gap. The open system exhibits
uniformly hyperbolic behavior: for a large class of initial distributions, a unified escape rate
and unique limiting distribution absolutely continuous w.r.t. mt exist.

• t ∈ [tH , 1): No spectral gap for the transfer operator on the tower; however, all limiting
distributions are absolutely continuous w.r.t. mt.

• t = 1: The only limiting distribution is δ0.

6.3 A Physical Invariant Measure on the Survivor Set

In this section, we drop the Markov requirement on H. We consider the induced map S̊ = T̊ τ : Y 	
and the action of the induced transfer operator acting on BV (Y ) with induced potential,

Φt = t

τ−1∑
i=0

ϕ ◦ T i − τP(tϕH).

As before, ΦH
t denotes the punctured version of Φt. It is a standard result that since S = T τ is a

full-branched Gibbs-Markov map, that the associated transfer operator LΦt has a spectral gap on
BV (Y ).

Theorem 6.7. Fix t ∈ [0, 1]. For sufficiently small holes, the spectral gap for L̊ΦHt −P(Φt)
persists.

Thus the full set of uniformly hyperbolic results for the induced open system hold.

The proof of this result, omitted here, relies on the same strategy used in Section 4 by considering
L̊ΦHt −P(Φt)

acting on functions of bounded variation and applying the alternative perturbative

framework of [KL1]. We wind up with Lasota-Yorke inequalities of the form (4.3). Although S̊ has
countably many branches (intervals on which T̊ is smooth and monotonic), the number of distinct
images of these intervals is finite. Thus we can impose the same condition (H) as in Section 4.1 on
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the minimum size of the images of intervals of monotonicity for S̊ and this is satisfied for a sequence
of holes shrinking to a point. This, plus the analogue of Lemma 4.5, are the essential estimates to
proving the persistence of a spectral gap for L̊ΦHt −P(Φt)

on BV (Y ).

Now let Λt be the largest eigenvalue of L̊ΦHt −P(Φt)
, and let µ̄t define the associated conditionally

invariant measure for S̊. Define

νt(f) = lim
n→∞

Λ−nt

∫
Y̊ n
f dµ̄t ∀f ∈ C0(Y ). (6.4)

Theorem 6.8. In the setting of Theorem 6.7, the following hold.

(a) ν̄t is an equilibrium measure for the potential ΦH
t − P(Φt) on Y .

(b) ν̄t projects to an invariant measure νt for T̊ , supported on I̊∞.

(c) If Hε = (z − ε, z + ε), then as ε → 0, νt converges weakly to the equilibrium state µt for the
potential tϕ− P(tϕ) for the closed system.

Remark 6.9. This construction works and Theorem 6.8 holds for t = 1: ν1 → µSRB as ε → 0.
Thus we regain a notion of stability for the open system even in the case in which the limiting
distribution is singular.

We summarize our findings in this section with regard to the pressure of the invariant measures
we have constructed on the survivor set.

• If t ∈ [0, tH), then νt is an equilibrium state for the potential tϕH − P(tϕH), i.e.

hνt(T ) +

∫
tϕHdνt = P(tϕH) = P(tϕ) + ρ(mt;H) > 0.

• If t = tH , then νt is an equilibrium state for tϕH−P(tϕH) = tϕH , i.e. hνt(T )+
∫
tϕHdνt = 0.

• If t ∈ (tH , 1], then νt is not an equilibrium state for tϕH −P(tϕH) = tϕH and its pressure is
negative,

hνt(T ) +

∫
tϕHdνt =

log Λt + P (Φt)∫
τ dνt

< 0.

We end with some open questions for this class of open systems and the potentials we have
considered here.

(1) Is there a dynamical characterization of νt similar to (6.4) for t ∈ [tH , 1]?

(2) If we graph the pressures Pνt = hνt(T ) +
∫
tϕHdνt as a function of t for t > tH , how smooth

is this function?

(3) Is there some dynamical significance to the values of Pνt for t > tH?

34



References

[A] L.M. Abramov, The entropy of a derived automorphism, Dokl. Akad. Nauk. SSSR 128
(1959), 647-650. Amer. Math. Soc. Transl. 49:2 (1966), 162-166.

[B] V. Baladi, Positive transfer operators and decay of correlations, Advanced Series in Non-
linear Dynamics 16, World Scientific (2000).

[BBS] V. Baladi, C. Bonatti and B. Schmitt, Abnormal escape rates from nonuniformly hyperbolic
sets, Ergod. Th. Dynam. Sys. 19:5 (1999), 1111-1125.

[BK] V. Baladi and G. Keller, Zeta functions and transfer operators for piecewise monotonic
transformations, Comm. Math. Phys. 127 (1990), 459-477.

[BrK] M. Brin and A. Katok, On local entropy, Geometric Dynamics (Rio de Janeiro, 1981),
Lecture Notes in Math. 1007, Springer-Verlag: Berlin, 1983, p 30-38. Lecture Notes in
Mathematics, 470. Springer-Verlag: Berlin, 1975.

[BC] H. van den Bedem and N. Chernov, Expanding maps of an interval with holes, Ergod. Th.
and Dynam. Sys. 22 (2002), 637-654.

[Bi] G. Birkhoff, Lattice Theory, 25 3rd ed. A.M.S. Colloq. Publ., Providence, Rhode Island
(1967).

[BB] M. Blank and L. Bunimovich, Multicomponent dynamical systems: SRB measures and
phase transitions, Nonlinearity 16 (2003), 387-401.

[Bo1] R. Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc. 64 (1972), 323-331.

[Bo2] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture
Notes in Mathematics, 470. Springer-Verlag: Berlin, 1975.

[BDM] H. Bruin, M. Demers and I. Melbourne, Existence and convergence properties of physical
measures for certain dynamical systems with holes, Ergod. Th. and Dynam. Sys. 30 (2010),
687-728.

[BY] L.A. Bunimovich and Alex Yurchenko, Where to place a hole to achieve a maximal escape
rate, Israel J. of Math. 182 (2011), 229-252.

[Bu] J. Buzzi, Markov extensions for multi-dimensional dynamical systems, Israel J. Math. 112
(1999), 357-380.
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