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Abstract We prove exponential decay of correlations for the billiard flow
associated with a two-dimensional finite horizon Lorentz Gas (i.e., the Sinai
billiard flow with finite horizon). Along the way, we describe the spectrum of
the generator of the corresponding semi-group L, of transfer operators, i.e., the
resonances of the Sinai billiard flow, on a suitable Banach space of anisotropic
distributions.
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1 Introduction and statement of results

This paper completes, on a conceptual level, the study of decay of correla-
tions of planar dispersing billiard systems initiated by Sinai’s seminal papers
[40,41] in which he extended the ideas of Hopf and Anosov to the case of
piecewise smooth dynamical systems. Sinai’s breakthrough prompted several
works establishing ergodicity for more and more general systems. Yet, the
quantitative study of their mixing properties had to wait almost twenty years
until [9] established sub-exponential decay of correlations (and the Central
Limit Theorem) for the collision map associated to certain dispersing billiard
systems. The question remained if the discontinuities prevented exponential
decay of correlations or not. The question was settled in [13,31,44] where
exponential decay of correlations was established for a large class of discrete-

@ Springer



Exponential decay of correlations for Sinai billiard flows 41

time dynamical systems with discontinuities (including Poincaré maps for
the finite horizon Lorentz gas in [44], and more general dispersing billiards
in [13]).

These results for the billiard collision map did not settle the question of the
rate of decay of correlations for the billiard flow. It is well known that this
seemingly uneventful step is highly non trivial: In the case of smooth systems
it took 26 years to go from the proof of exponential decay of correlations
for Anosov maps [38,42] to the first results, by Dolgopyat, on exponential
decay of correlations for Anosov flows [21]. The first progress for dispersing
billiard flows was made by Melbourne [34] and Chernov [14], who proved
super-polynomial and stretched-exponential decay, respectively. The methods
of [14,34,44] employ some kind of countable Markov partitions. As pointed
out by one of the referees, two very recent works have successfully combined
Dolgopyat arguments with countable Markov partitions (in the spirit of [2,
8]) to get exponential decorrelations for (non-billiard) hyperbolic flows with
singularities: Burns et al. [10] for some Weil-Petersson flows and Aratjo
and Melbourne [1] for the Lorenz attractor. However, these works do not
constitute compelling evidence for dispersing billiard flows, the difficulties of
which come from the severe lack of smoothness of the foliations (which are
measurable, but not continuous). Indeed, in [1] the stable foliation is Holder
and consists of long leaves. The situation of [10] is even simpler, since a
very good description of the structure of the singularities is available, and the
foliation is rather regular. It seems much more difficult (at least to the authors
of the present paper) to implement Dolgopyat-type arguments with countable
Markov partitions to get exponential mixing for dispersive billiard flows. It is
thus natural to try a more direct line of attack, studying the transfer operators
on suitable spaces! of anisotropic distributions defined on the manifold, thus
bypassing non-intrinsic constructions.

The first exponential decay result for piecewise smooth hyperbolic flows
was obtained by [5] who used such a direct functional approach: They were
able to build on Liverani’s version [32] of the Dolgopyat argument for contact
Anosov flows and an anisotropic space construction from [4] to prove expo-
nential decay for a large class of piecewise smooth contact hyperbolic flows.
However, this class did not contain billiards, since the blowup of derivatives
at the boundary of the domain (corresponding to grazing orbits in billiards)
was not allowed. In parallel, [18] succeeded in adapting the anisotropic space
previously introduced for piecewise hyperbolic discrete-time systems by [17]
to allow for the blowup of derivatives at boundaries, giving a new functional
proof of Young’s [44] exponential mixing for the billiard map. (This function

1 Unfortunately, the spaces introduced e.g. in [6,22,24,25] for Anosov diffeomorphisms or
flows do not work well in the presence of discontinuities.
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space approach has recently been applied to a wide variety of billiard maps
and their perturbations [19,20].)

In the present paper, we exploit the fact that the billiard flow preserves a
contact form and combine the methods of [5] with the function spaces of [18]
to establish exponential decay of correlations (Corollary 1.3) for the billiard
flow associated with a finite horizon Lorentz gas. As a byproduct of our proof,
we obtain information on the resonances of the billiard flow (Theorem 1.4),
that is, the spectrum of the generator X of the semi-group £, given by the flow.
We warn the reader that, just like in [5,32], although we do obtain a spectral
gap for the spectrum of the generator X on an anisotropic Banach space B3, our
method does not show that the time-one transfer operator £ has a spectral gap
on B. (Note that X is closed but not bounded on .) The spectral gap of £ on
a (different) anisotropic Banach space was obtained by Tsujii ([43, Thm 1.1])
in the easier case of smooth Anosov flows.

One key technical hurdle we had to overcome, in order to carry out the
Dolgopyat cancellation argument from [5,32] in the dispersive billiard setting,
is the construction in Sect. 6 of a suitable approximate (fake) unstable foliation
for the billiard, see Theorem 6.2 for a detailed description of its properties. This
(a posteriori very natural) delicate construction is one of the main novelties of
the present work (see also Remark 1.1 below). Along the way we discovered
that using in addition the analogous fake stable foliation allows a much more
systematic writing of the Dolgopyat cancellation argument (Sect. 8). Note also
that we replace the C'*® estimates on the holonomies used in [5] by “four-
point conditions” (see condition (vii) and Lemma 6.6 in Sect. 6) which allow
one to control the C!*® norm of differences of holonomies ((8.43)).

Remark 1.1 The construction of Sect. 6 and in particular properties (i)—(viii)
there, can be easily used to prove the following interesting property of the
stable and unstable foliations of the billiard flow (which are only measurable):
For each small enough? > 0, there exists a set of Lebesgue measure at

most C r]%, the complement of which is foliated by leaves of the stable (or
unstable) foliation with length at least n such that the foliation is Whitney—

Lipschitz, with Lipschitz constant not larger than C 777%. (See Remark 5.3
on the improvement of this exponent). An analogous statement holds for the
billiard map. To our knowledge, this fact was not previously known. We refer
to [29] for related information on dynamical foliations of billiards.

The present work finally settles the issue of whether billiard flows can have
exponential decay of correlations. In addition, we obtain new spectral infor-
mation and we develop new tools. Many problems remain open (more general
dispersing billiards, higher dimensional billiards, dynamical zeta functions—

2 1t suffices to take 5 < L(S), where L is from Lemma 3.8.
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which would give another interpretation of the resonances—other Gibbs states
etc.), and we hope that some of the techniques in the present paper may be
useful towards their solution. Some limit theorems on the billiard flow can be
obtained from information on the Poincaré map (see [36] for the central limit
theorem?® and almost sure invariance principle, see [35] for large deviations,
see [37] for some Berry—Esseen bounds). Although the existing proofs [27]
of local limit theorems with error terms are based on a spectral gap for the
transfer operator £, we hope that a spectral gap for (suitable perturbations of)
the generator X of the flow will lead to e.g., a local limit theorem with error
terms, better Berry—Esseen estimates, and rate functions for large deviations.

We remark that the results of the present paper do not apply to the bil-
liard flow corresponding to an infinite horizon periodic Lorentz gas. Recall
that although the discrete time collision map for such billiards enjoys expo-
nential decay of correlations [13], it is anticipated by physicists [23,33] that
correlations for the flow decay at a polynomial rate.

The paper is as self-contained as possible, with precise references to the book
by Chernov and Markarian [15] or to the previous works [5] or [18], whenever
we use non trivial facts. Regarding operator-theoretical or functional-analytic
background, very little is expected from the reader, and we again give precise
references to Davies [16].

1.1 The main results (Theorems 1.2 and 1.4, Corollary 1.3)

We shall state our results in the setting of the Sinai billiard flow. A more general
axiomatic setting can probably be considered in the spirit of [20].

Let B;,i = 1, ...d, denote open, convex sets in the two-torus T? = R?/Z?2.
We assume that the closures of the sets B; are pairwise disjoint and that their
boundaries I'; are C3 curves with strictly positive curvature. We consider the
motion of a point particle in the domain Q := T2\ (Uf: 1 Bi) undergoing
elastic collisions at the boundaries and maintaining constant velocity between
collisions. At collisions, the velocity vector changes direction, but not magni-
tude. Thus we set the magnitude of the velocity vector equal to one and view
the phase space of the flow as three-dimensional.

We adopt the coordinates Z = (x, y, w) for the flow, where (x, y) € Q is
the position of the particle on the table, and w € S' (we view S' as the quotient
of [0, 27r], identifying endpoints) is the angle made by the velocity vector with
the positive x-axis. The quotient

3 Speed estimates can be found in [30].
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Qi={(x,y,0) | (x,y) €0, weS'}/ ~

is often used as the phase space for the billiard flow ®;, : Q — €, where
~ identifies ingoing and outgoing velocity vectors at the collisions, via the
reflection with respect to the boundary of the scatterer at Z € 9 Q. (It is then
customary to work with the outgoing—post-collisional—velocity vector at
collisions.) The topological metric space €2 can be endowed with Holder (non
differentiable) charts. It is thus more convenient* to work with the C2 manifold
with boundary

Q={(x,y,0) | (x,)€eQ, weS'}cT=T>xSs"

Fornonzero ¢, we may consider the time-¢ billiard flow ®; on €2¢. The time-zero
map P is the identity in the interior of ¢, and also at grazing collisions in €2y,
where the incoming and outgoing angles coincide. (Note that at (x, y) € 00
there are exactly two grazing angles, wg,(x, y) € [0, 1) and wg,(x, y) + 7.
These two angles divide the circle in the two arcs of ingoing, respectively
outgoing, angles.) For (x, y) € 90 and ™ a non-grazing incoming angle,
we have that the (reflected) outgoing angle w™ (i.e., so that ®¢(x, y, ™) =
(x, y, w™)) is different from w™. In particular, ®;(x, y,w™) = ®,(x, y, w™)
forsuch (x, y, ™) andall ¢ > 0, so that the time-# map is not injective. Similar
properties hold for @ a non-grazing outgoing angle, reversing time. The nature
of the Banach space norms defined below will ensure that these apparent flaws
in the flow do not create problems.’

The billiard flow is our primary object of study, but it will sometimes be con-
venient to use the billiard map (also called collision map), i.e., the Poincaré map
T : M — M of the flow on the union of scatterers M = ugleri x[-7, %]
Natural coordinates for the collision map 7 are (r, ¢), where r represents the
position on the boundary of the scatterer, parametrized by arclength and ori-
ented positively with respect to the domain Q, and ¢ is the angle made by the
outgoing (post-collision) velocity vector with the outward pointing normal to
the boundary of the scatterer. Let t(Z) denote the time when the particle at
Z € Qo first collides with one of the scatterers. (It is known that 7 is a piece-
wise 1/2 Holder function, see the proof of Lemma 3.4.) We assume that the
table has finite horizon, i.e., there exists Tpmax < 00 such that 7(Z) < typax for
all Z € Q. Since we have assumed the scatterers are a positive distance apart,
there exists a constant T,i, > 0 such that 7(r, ¢) > Ty, for all (r, p) € M.

4 In view of defining €2 stable curves which can touch the scatterers on their endpoints, c?
test functions (when considering ¢ functions on €, we mean differentiable in the sense of
Whitney, viewing €2( as a subset of the three-torus).

5 In particular strong continuity holds for the transfer operator £; associated to ®; for t > 0,
see Lemma 4.6.
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The billiard flow preserves the normalised Lebesgue measure (see e.g. [15,
Def. 2.23])
m = 27|0)) 'dxdydw, (1.1)

where | Q| denotes the area of the billiard domain. Our first result gives a
precise description of the Sinai billiard flow decorrelations:

Theorem 1.2 (Fine correlation structure for the Sinai billiard flow) Let ®; :
Qo — Qo be a finite horizon (two-dimensional) billiard flow associated to
finitely many scatterers B; with C3 boundaries of positive curvature and so
that the B; are pairwise disjoint. Then there exist a constant vp, > 0, and
for any v; < vup, a constant Cy > 0, a finite dimensional vector space F C
(Cl(Qo))* a (nontrivial) bounded operator 1 : C*(Q0) NCY(Q) — F and a
matrix X € L(F, F) so that for any ¥ € C'(Q) and f € C*(S0) N CO(Q)
we have®

'f(w e} q)t) f dm — / 1//6Xl1—1f dm < C1|f|C2(Qo)|w|C1(Qo) . e_Ult, vt > 0.

In addition, the spectrum sp (}?) C{zeC : —vup, < N() <0} U{0}, and
zero is a simple eigenvalue with contribution to T1(f) given by [ f dm.

A lower bound for vp,, given by Proposition 9.1 below, can be explicitly
traced from the proof of that proposition (it depends on the constants yp, and
Cp, from Lemma 8.1: we show there that yp, > ﬁ and Cp, can also be
made explicit, depending in particular on the hyperbolicity exponents (1.2), if
desired) but is rather small and not optimal. We refrain from stating the lower
bound for vp, which would be very unwieldy.

Given Theorem 1.2 it is immediate, by a standard approximation argument,
to obtain our main result of exponential decay of correlations for the Lebesgue
invariant measure of the billiard flow (1.1) and Holder test functions.

Corollary 1.3 (Exponential mixing of the Sinai billiard flow) Under the
hypotheses of Theorem 1.2, for any k € (0, 1) there exists 0 < Ugorr(K) < Upo
and Corr (k) > 0 so that for any ¥, f € C*(Q20) we have’

'/wo@)fdm—/wdm./fdm‘

< Ceon ()Wl o) | Flex q) - €@, v > 0.

6 For integer £, we set |f|cz(90) = Z£=0 SUPy o MaX k|=k |3kf(x)|, where ¥ is the partial

derivative associated to k = (kq, ko, k3) € Zi_ and |k| = ky + ko + k3, using the natural chart
on the torus.

7 Ifk € (0, 1), we set | flex (o) = SuPxeqq | f () +supyLyeqq W for the distance
on 2 induced by 3.
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In Corollary 1.3, we may take ¢ or f (or both) to be the velocity function
(which belongs to C* (£2p)), or the free flight function t (the piecewise Holder
function 7 can be approached by a function in C%(£2p), either by adapting the
proof of [18, Lemma 3.7] or by noticing that t belongs to a fractional Sobolev
space H g with ¥ > 0 and p > 2, and using mollification).

The proof of Theorem 1.2 will be completed in Sect. 9.1. Itis based on a study
of the semi-group of transfer operators defined by (a priori just measurably,
since ®; is not injective)

Lif=fod_,, t=>0,

acting on a suitable Banach space B (see Definition 2.12) of anisotropic dis-
tributions. Along the way, we shall obtain information on the “resonances”
of the flow, that is the spectrum (on B) of the generator X of the semi-group,
defined by Xf = lim, g L f;f , whenever the limit exists (see Sect. 5). To
state the corresponding result, letting C(r) denote the curvature at a point r
on the boundary I'; of a scatterer, first note that our assumptions ensure that
there exist constants 0 < Kpin < Kmax < 00 with Chnin < K(r) < Khax, for

all » € I';. Then set

Ao =1+ 2KminTmin, A = Ay ™. (1.2)

Ao and A are the hyperbolicity exponents (minimum expansion and max-
imum contraction) of the billiard map and flow, respectively (see [15,
eqs. (4.6), (4.17), (4.19)] for Ag). Our value for vp, satisfies vp, < %log A.

Theorem 1.4 (Resonances of the Sinai billiard flow) For any v.s €
(Do, }‘log A) there exists a Banach space B of distributions on Qg (with
the embeddings C' (20) < B — (C'(Q0))*) so that X is a closed operator
on B with a dense domain, and the spectrum sp (X) on B satisfies:

(a) The intersection sp (X) N {N(z) > —v.s} consists of (at most count-
ably many) isolated eigenvalues ¥ = {zj, j > O} of finite multiplicities.
(“Discrete eigenvalues of the generator.”)

(b) There exists 0 < vy < Upy < Uess S0 that sp (X) N {N(z) > —vp} =
{zo = 0}, which is an eigenvalue of algebraic multiplicity equal to one.
(“Spectral gap.”)

© sp(X)N{z e C : N2 > —vupy} = sp (5(\), where multiplicities
coincide. (“Resonances.”)

(Note that (c) implies (b), taking vy = vp,, but (c) does not imply (a), since
Uess can be taken arbitrarily close to ‘l—t log A. Note also that Theorem 1.4 does
not imply Theorem 1.2 immediately—we use [11]—since (b) gives a spectral
gap for X and not for any individual £;.) Claims (a) and (b) encapsulate
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Lemma 7.5, Corollaries 5.4 and 9.2, together with R/e\mark 5.3. It would of
course be very interesting to have examples where sp (X) # {0} and examples
where X \ sp (X) is not empty (even better, an infinite set).

Remark 1.5 (On hyperbolicity, transversality, and complexity) Billiards are
well known to possess families of invariant stable and unstable cones, and this
is of course crucial to get exponential mixing. For abstract piecewise smooth
and hyperbolic (or expanding) systems in dimension two or higher, it is also
essential in order to get a spectral gap that “hyperbolicity dominates com-
plexity,” and a corresponding complexity assumption is present e.g. in [5,44].
This assumption is well known to hold for billiards and is encapsulated (and
precisely quantified) in the one-step expansion (see e.g. [15, Lemma 5.56])
used by Demers and Zhang [18] for the discrete time billiard, and that we use
several times below (most importantly in Lemma 3.8). An additional essen-
tial ingredient in the piecewise hyperbolic case is transversality between the
stable (or unstable) cones and the hyperplanes® of discontinuities or singu-
larities. In the context of Sinai billiard maps, uniform transversality between
the stable cones and the boundaries of all homogeneity layers (a sequence of
hyperplanes approaching the hyperplane of grazing singularities, see Defini-
tion 2.5) is again a well known property. For the flow, the transversality is more
delicate, and in fact we make use of a weak transversality property through-
out (as a single example, we mention Lemma 8.2), yet it is neither easy nor
necessary to isolate a specific statement or definition embodying the notion of
weak transversality.

The paper is organised as follows: Section 2 contains definitions of our
norms (based on a notion of admissible stable curves W € W?, see Defini-
tion 2.7) and Banach spaces B and 13,, of distributions on ¢ (Definition 2.12).
In Sect. 3, we prove on the one hand some lemmas on growth and distortion
under the action of the flow ®,, in particular giving invariance of the class W*
of stable curves (modulo the necessary “cutting up” causing the complexity
evoked in Remark 1.5, and which is controlled by Lemma 3.8), and on the other
hand the key compact embedding statement 5 C B,, (Lemma 3.10). Just like
in [5,32], our spectral study of the generator X is based on an analysis of the
resolvent

R =Ed-X)"'" z=a+ibeC.

In Sect. 5, we obtain Lasota—Yorke type estimates (Proposition 5.1 and its con-
sequences Corollaries 5.2 and 5.4) on ‘R (z) which give (alittle more than) claim
(a) of Theorem 1.4. Since the resolvent R(z) can be expressed as the Laplace

8 In the language of [5] the transversality condition is relative to the lateral sides of the flow
boxes.
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transform (5.1) of the transfer operator £;, these Lasota—Yorke estimates fol-
low from estimates on the transfer operator proved in Sect. 4. The approximate
unstable foliation is constructed and studied in Sect. 6 and Appendix A. The
delicate Dolgopyat-type cancellation Lemma 8.1 which bounds

/ Y R(a +ib)"(f) dmwy
w

is stated and proved in Sect. 8 and Appendix B. Since the right-hand side of
this lemma involves the supremum and Lipschitz norms of the argument f, we
use mollification operators M, like” in [5] to replace the distribution f € B by
the function M (f). The operators M are introduced and studied in Sect. 7.
Finally, in Sect. 9, putting together Lemma 8.1 and Proposition 5.1, we first
prove the spectral gap (claims (a) and (b) of Theorem 1.4) of the generator X
and then, applying recent work of Butterley [11], we easily obtain Theorem 1.2
(and thus Corollary 1.3 on exponential mixing) and claim (c) of Theorem 1.4.

Notation We use A = C*!'B for A, B € Rand C > 1 to mean % < |A| <
C|B|. Let 0 < B < 1 be areal number and f be a real or complex-valued
function on a metric space (W, dy), then C(f) (or C"?V( f) for emphasis)
denotes the B-Holder constant of f and | f|oo (or |f|pow) for emphasis)
denotes the supremum of f on W.

2 Definition of the norms
2.1 Stable and unstable cones for the flow

We recall the (well known) stable cones for the map 7' and use them to define
stable cones for the flow ®,. We first need to introduce standard notation. In
the coordinates (x, y, w) and (r, ¢) from Sect. 1.1, the flow is given between
collisions by

(D[(XO, Yo, 600) = (xl‘v Yt, a)l‘) = (XO + 1 cos wQ, Y0 + t Sin @0, Cl)())

and at collisions by (x*, y*, w1) = (x7, y~, 0™ + 7 — 2¢), where (r, ¢) is
the collision point.

We will also work with the following coordinates in the tangent space.
Setting x and y to be unit vectors in the x and y directions, respectively, we
define

i = (cosw)X + (sinw)y, & = (—sinw)x + (cosw)y. 2.1

9 Note however that the Sobolev nature of the norms in [5] made the corresponding estimates
much easier than in the present work.
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The corresponding coordinates (dn, d&, dw) in the tangent space are called
the Jacobi coordinates for the flow. In these coordinates, the linearized flow is
given between collisions by [15, (3.26)]

Dz ®(dn, d§, dw) = (dn;, d&;, dw;) = (dn, d§ + tdw, dw)

and at collisions by (see [15, (3.28)]) (dn™,déT,do") = (dn~, —d&™,

—  2K(r) qe— L .
—dw™ — COS; d&7), where the collision is at the point (r, ¢).

A crucial feature is that the d&dw-plane perpendicular to the flow direction
is preserved under the flow. In addition, the flow preserves horizontal planes
(w = constant) between collisions. We will use these facts to introduce after
Definition 2.7 the family WW* of stable curves with which our Banach norms
will be defined.

For Z € Q x S!, let P*(Z) denote the point in M = (U;T;) x S! that
represents the first collision of Z with the one of the scatterers under the flow.
Similarly, denote by P~ (Z) € M the point of first collision of Z with one of
the scatterers under the backwards flow. Since P™(Z) and P~ (Z) lie in the
phase space for the map 7', we will sometimes refer to these points in the map
coordinates z = (r, ¢). In these coordinates, we have the following standard
choice of globally defined unstable and stable cones for the map. (See e.g. [15,

(4.13)].)

Tmin

d 1
C?:{(dl’,d(p)eRZZKminfd_(prmax‘i‘ }
, r

d 1
Cg={(dr,d§0)€R23—KminZd_¢Z_Kmax_ }
r

Tmin
We have (see [15, Exercise 4.19]) for any z = (r, ¢) € M

D.T (C¥) Cint Cf,U{0} D.T7'(C!)CintCy_,_U{0}. (22)

1)
To translate these cones to the Jacobi coordinates for the flow, we use [15,

eq. (2.12)] (note that ¥ there denotes ¥ = m/2 — ¢, with dy = —dg, see
also [15, eq. (3.19), p.51]), which yields

do=—-K(@r)dr +d¢ d& = cosedr — t(Z)dw, (2.3)

for a tangent vector (0, d§, dw), perpendicular to the flow at a point Z =
(x, y, w) that collides with the boundary at the point (7, ¢) at time t(Z), i.e.,
PT(Z) = (r, ). The slope of this vector in the d&dw-plane is thus
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dw 1

= cosg .
% Ko @

Flowing C? backward from the boundary yields the following family of stable
cones for the flow

1 dw
CS(2) = {(0 dé, dw) : — >
PES cos (P+(2)) =
Rrtye +T(2) 48
1
Z s aPT Y g } (2.4)
K(PH(Z))+Kmax+—

Tmin

Thus the stable cones flow backwards only until the first collision P~ (Z) and
then are reset.

Remark 2.1 Equivalently, in terms of 1/(wave front curvature), the cone
C*(2) =

cosp(P1(2)) dg cosp(P1(2))
K20 + Kt 2L 0% 40 = TR0 + Kn “Z)}'

{(0, dé, dw) : —

Analogously, using [15, eq. (2.11)] the unstable cones for the flow are
defined by flowing C' forwards,

1 1

coso(P—(Z) - }
K- )kt = 17 4

= =

c'(z) = {(0, d&,dw) :

&g

cosp(P~(2)) _
KPPtk T 7 ()

1
Tmin

where 77 (Z) denotes the time of first collision starting at Z under the back-
wards flow. Just like 7, the function 7™ is (piecewise) 1/2 Holder continuous.

Note that both families of cones are bounded away from the horizontal in
the £w-plane due to the finite horizon condition. Near tangential collisions
(t = cos@ = 0), both families of cones squeeze to a line (approaching the
vertical direction), but never at the same point: C*(Z) is arbitrarily close to
vertical just after nearly tangential collisions, while C*(Z) is bounded away
from the vertical at these points due to the fact that i, > 0. The roles of
C*(Z) and C"(Z) are reversed just before nearly tangential collisions. Thus
C*(Z) and C*(Z) are uniformly transverse in the phase space for the flow.

Our cones are planar and therefore trivially have empty interior in R3, con-
trary to the flow cones used in [5]. See also Remark 2.3. Like in [5] (see also
[12]), we get strict contraction only for large enough times:
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Lemma 2.2 Forany Z € Qq, and any t > 0, we have

Dz®,(C"(2)) € C*(P4(2)),

Dz®_((C*(2)) € C*(P_(2)).
In addition, if t > tmax then (slightly abusing notation, “int” refers to the
interior of the cone in the plane dn = 0) for any Z € Qq

Dz®,(C*(Z)) C {0}V int C*(®,(Z)), DzP_;(C*(Z)) C {0} U int C*(P_;(2)).

Proof First note that the planes 7. Zl Qo C Tz defined by dn = 0 are per-
pendicular to the flow and preserved by the flow, see [15, Cor. 3.12, (3.14)].
So we may restrict Dz ®; to these planes.

We consider the statements for unstable cones; the others are similar.

If0 < t < ©(Z), then the claim immediately follows from the definition
of the cones since Dz®;(C*(Z)) = C“(®;(Z)). This applies to any fac-

0
restricted to 7 ZJ- Qo.
For the action at a collision, using [15, (3.29)] again, (2.2) and the definition
of the unstable cone give (with Z~ and Z™ representing the moments just
before and just after collision, respectively)

tor |:1 i] between collisions in the decomposition [15, (3.29)] for Dz ®;

1 0 P . P
- [Z,C/Cow 1] (C"(Z7)) € {OpUint (C(Z)),
where we view the cones (and take interior) as subsets of 7. Zli Q0. There is at
least one collision factor in the decomposition if # > Ty,x, ending the proof.

O

2.2 Admissible stable and unstable curves for the flow

Following [18], aC! curve V in M is called a stable curve for the map T if the
tangent vector at each point z in V' lies in C. We call a Cleurve® W c Qpa
stable curve for the flow if at every point Z € W, the tangent vector 7z W to
W lies in C*(Z). An essential property of stable curves W is

#WNaQy) <2 (2.5)

10 Our curves W are diffeomorphic to a bounded open interval, in particular relatively open at
endpoints. However, we require the C" (r = «, B, 1, 2) norms of functions supported on W to
be bounded in the sense of Whitney on the closed interval.
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(where W denotes the closure of W) since either both the scatterer and the
wavefront corresponding to a stable curve are convex in opposition, or the
curvature of a stable curve is bounded away (for this claim, see e.g., the para-
graph containing (8.6)) from the curvature of the scatterer. Our definition also
implies that a stable curve W is perpendicular to the flow, which is essential
in the following remark:

Remark 2.3 (Checking that stable curves lie in the kernel of the contact form)
In the Dolgopyat estimate we will use that stable curves W belong to the kernel
of the invariant contact form «.

In'! the present billiard case, « = p dg (see e.g. [3, App. 4]), and since
the velocity p = v = (v1, v2) = (cos w, sin w), we have

oa=cosw dx +sinw dy,
sothatda = —sinodw Adx +coswodw Ady and
aANda=dxAdoAdy.

In particular, o coincides with the Jacobi coordinate (0,0, dn) corre-
sponding to the velocity (i.e., flow) direction (referring—again—to [15,
Cor. 3.12, (3.14)]), and the stable and unstable cones lie in the kernel of the
contact form «, as desired. Note that by definition of contact, there is no sur-
face tangent to the kernel of & on an open set (in fact, the maximal dimension
of a manifold everywhere tangent to this kernel is one).

Remark 2.4 (Putting the contact form in standard form) If we replace the
coordinates (x, y, w) € Q x S' by (w, &, ) € S' x Q where

w=w, &=—xsinw+ycosw, 7 =xcosw-+ ysinw, (2.6)

(defining 0 by the above), then inverting gives w = w, x = 1jcosw — £ sinw,
y = 7nsinw + & cos w, so that

oa=coswdx +sinody
= cosw[coswdij — fisinwdw —sinwdé — & coswd ]
+sinw[sinwdf +jcoswdw+ coswdE — £ sinwdw]

=dij—-Edw.

1 We use abold upright symbol d to denote the exterior derivative. This should not be confused
with the d used for coordinates in a vector (dr,d¢), (dn, d§, dw), adopted from [15].
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Therefore, the contact form o takes the standard form ag = d7 — éd w in
the coordinates (w, é, ). Note that the change of coordinates (2.6) in the
phase space of the flow is the same as the one used to construct the Jacobi
coordinates (dn, d§, dw), except that (2.1) corresponded to changing variables
in the tangent space. So there is no contradiction between the fact that &« =
d 77—& d w and the fact that & vanishes on those vectors so that di = 0. (Indeed,
vectors which are perpendicular to (1, 0, 0) in (dn, d§, dw) coordinates are
perpendicular to (cos w, sinw, 0) in (dx, dy, dw) coordinates by definition
of dn. Now given the definition of &, we have (in (dx, dy, dw) coordinates),
a(v) = coswdx(v) +sinwd y(v) = (cosw, sinw, 0) - v, so that «(v) =0
if and only if v is perpendicular to (dn, 0, 0).)

In Sects. 6 and 8 (analogously to what was done in [5]), we will need
coordinate charts and local coordinates (x*, x*, x) such that at the origin of
such charts, (1, 0, 0) lies in the unstable cone, (0, 1, 0) lies in the stable cone,
and (0, 0, 1) is the flow direction, while

o =dx" —x*dx".

(We call such charts cone-compatible Darboux charts.) The above does not
seem to hold for the coordinates (w, § , 17) (recall the conditions on the slope
dw/dE& defining C* and C*), but it can be achieved by applying a “symplectic”
change of coordinates, as in [5, Lemma A.4],

w = Ax* + Bx", &= xs—l-Dx”
AC
7=x"+ (xS) +apxixt 4 22 (xd) ).

with AD — BC =1, for A, B, C, D real-valued functions. This is possible,
since inverting the above gives

x* = Dw — BE, x”:—Cw+A§
0 ~ |:A s .U :|
XU =1 = ()+ADxx+ ())

and wemay find A > 0,B > 0,C <0, D > 0, with AD — BC =1 so that
(D, —B) lies in the stable cone while (—C, A) lies in the unstable cone. In
order to be able to choose the functions A, B, C, and D (and thus the charts)
in a C? way, we shall discard small neighborhoods where the cone directions
do not behave in a nice way. This will be performed in Remarks 6.1 and 8.3.

The homogeneity layer decay rate k% with x = 2 in Definition 2.5 below
is standard in the literature. Letting ¥ > 1 tend to 1 gives better estimates, as
we explain in Remark 5.3.
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Definition 2.5 (Homogeneity strips) To control distortion, we define the usual
homogeneity strips for the map by

Hy = {(r,¢) e M:m/2—1/k> < <7/2—1/(k+ 1)?} (2.7)
for k > kg, and similarly for H_; near ¢ = —m /2. We also put
Ho={(r,¢) e M: —/2+1/k3 < ¢ <7m/2—1/k}}.
Finally, we set for |k| > ko
Sk=1{(r,9) : lp| =7/2— k%), and S = Ujjk,Sk-
A subset Z of M is called homogeneous if Z C Hy, for some k1 € {0} U {k >
ko}.

Definition 2.6 (Singularity sets) We define S = oM = {|¢| = 7/2}, and,
inductively, for n > 1, the iterated singularity sets

Sp =81V T_I(Snfl)v Sn= S—(n—l) U T(S—(n—l))-
The extended singularity sets are defined for n > 0 by
SH=8,u(U_ ™), S¥ =8_,U(U_,T"S).

Recall that S_, \ Sp consists of finitely many smooth unstable curves
while S, \ Sp consists of finitely many smooth stable curves, see [15,
(2.19), (2.27), Proposition 4.45, Exercise 4.46, (5.14), (5.15) Sect. 5.4].

Definition 2.7 An admissible stable curve for L > 0 and B > 0 is a subset
W of Qo, satisfying the following conditions:

(W1) W is a stable curve for the flow. (This implies that P (W) is a stable
curve for the map, by definition of the stable cones. If P~ (W) intersects
n > 1 scatterers, then P~ (W) is a union of n stable curves for the map,
using P~ (W) = T~ (PT(W))).

(W2) W has length at most L and is C?, with curvature bounded by B > 0.
for the map T (in particular, cos ¢ # 0 for any (r, ¢) € PT(W)).

If in addition P+ (W) is homogeneous, then W is called homogeneous.
We denote by W?* the set of all admissible stable curves for fixed L =
Lo and B = Bg, where L is chosen in Lemma 3.8 below (determined in

particular by the complexity condition for the map, see also Definition 3.1)
and By is chosen after Lemma 3.2. The set WW* is not empty. In fact by simply
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flowing a homogeneous stable curve for the map backwards under the flow,
we may construct homogeneous flow stable curves W. Unstable curves and
(homogeneous) admissible unstable curves are defined similarly.

Definition 2.8 (Distances dyys (W, W») between stable curves) Let Wi, W, €
W be two stable curves. If there does not exist any unstable curve Wy,
(for the flow) so that W1“72 N W and Wl’" » M W3 are both nonempty, we set
dyys (W1, Wa) = oo.If there exists '? such a curve W]’" »» Writing the projections
PT(W;) as graphs PT(W;) = {(r, ¢;(r)) : r € I;} over some interval I;, we
define dyys (Wi, Wo) = |11 A L] + |¢1 — §02|cl(llml2), where A denotes the
symmetric difference of two intervals, and |@|c¢ n= Z£=O sup; | D ol

Note that this distance stated in terms of the projected curves is the distance
used in [18] between stable curves for the map (with the small difference that
the curves there were assumed to be homogeneous). For future reference, we
denote this distance between projected curves by dyys (P (W), PH(W)).

Remark 2.9 Our distance between W; and W, is based on PT(W;) and
PT(W>), so if Wi and W, are two halves of the same stable curve split at
a single point making a collision, then the distance between them is infinite
in our norms since P (W;) and P+ (W>) lie on different scatterers (or the
opposite side of the same scatterer, but then the distance is still of order one).

Definition 2.10 (Distance d (Y1, o) between test functions) Let 1 and v
be supported on stable curves W; and W,, respectively. Since P+ (W;) is
represented by the graph of ¢; over I;,let Gw, (r) = (r, ¢; (r)) denote this graph
and Sw;, (r) = ®_;() o Gw, (r) denote the natural map from /; to W; defined
by the flow. We use this map to define the distance between test functions by
d(W1, Y2) = [Yr10Sw, —yYno SW2|CO(11ﬂ[2) when 1N 0. If LN, =0,
we set d (Y1, ¥2) = 00, i.e., we simply do not compare these functions.

(The notation for Sy, and in particular the map ®_;(, used in the definition
above hides the change of coordinates from (r, ¢) to (x, y, w). The corre-
sponding Jacobian is a product of the Jacobian of the flow between collisions
and that of the change of variables. See Sects. 3 and 4.)

2.3 Thenorms | - |y, |l < llss Il * lls || - llo, and the spaces B and 13,

Given W € W* and 0 < B < 1, we define the Holder norm of a test function
U by [Yleswy = ¥ lcow) + Cgv (). Letting C' (W) denote the set of contin-

12' This holds for example if W N Wy s @. It does not hold if Wy = &;(W)).
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uously differentiable functions on W, we define the spaces C#(W) to be the
closure of C' (W) in the | - |¢5(y, norm.!3
Now!* fix 0 < o < 1/3. For f € C'(€p), define the weak norm of f by

[flw = sup  sup /flﬂdmw,
WeWws yeC*(W) JW
[¥lcew)=1

where dmy denotes arclength along W.
Now choose 1 < g < oo and’® 0 < B < min{a, 1/g}. For f € C/(Qo),
define the strong stable norm of f by

I flls = sup sup / S dmy.
wews 1//€C/3(W) w
(WIY | op gy <1

Choose 0 < y < min{l/q,a — B} < 1/3. Define the unstable norm of f
byl6

fl”l de1 - foz dez .
Wi Wa

I fllu =sup  sup sup &7
e>0 W, WheW’s  v;eC¥(W;)
dyys (Wi, W2)<e [iilco (w,) <1
d(r1,¥2)=0

We define the neutral norm of f by

[ fllo= sup  sup f 0 (f o @)li=0 ¥ dmwy.
Wews eC*(W) JW
[Ylcew)=1

Finally, define the strong norm of f by

1f 1B = IIflls + cull £l + 11 fllos

13 This space CP(W) coincides with the “little Holder space” noted be, co in [39,
Prop. 2.1.2, Def. 2.1.3.1] obtained by taking the closure of C*° in the | - |C/9(W) norm, it is
strictly smaller than the set of all Holder continuous functions with exponent 8, but contains all
Holder continuous functions with exponent 8’ > B.

14 The value 1/3 is determined by the choice (2.7) of homogeneity layers, see Lemma 3.5.
Replacing K2 by kX for x > 1 replaces theboundw < 1/3bya < 1/(x + 1).

15" In view of (4.5), it will be natural to further restrict to those S which satisfy in addition
B=1-1/q.

16 1n previous works, d(, ¥2) = 0 was replaced by dg (Y1, ¥2) < & where 8 > 0 and the
distance used the C# instead of the C* norm. The two formulations are equivalent by the triangle
inequality, using the strong stable norm, and since d (1, ¥2) = 0 implies dg (¥, ¥2) = 0.
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where ¢, > 0 is a constant to be chosen in Sect. 5.
We will prove in Lemma 3.9 that there exists a constant C so that for any
fec(Q)

118 < Clfletqy)-

In the other direction, we relate our norms to the dual of Holder spaces. For
0 <r < landany f € L°(Q), set

| flerys = sup {/ fordm € C(Q0o), 1V¥lerq = 1} <00, (2.8)

where C” (€2) is the closure of C! for the C" norm (little Holder space). The
following estimate follows from the role of 0 < f < « in our definition (the
proof is given in Sect. 7).

Lemma 2.11 (Relation with the dual of C" (2g)) There exists C > 1 so that
| flicx@on* < Clflw, | flesapy < ClIflls  Vf € Qo).

We introduce the subspace CY of those continuous functions on Q0 which
can be viewed as continuous functions on the quotient space 2 = ¢/ ~:

C2 =C%Q) ={f eC%Qu) | f(Z)=f¥)ifZ~Y}. (2.9)

Itis well known that @, is continuous on the topological metric quotient!” space
Q see e.g. [15, Exercise 2.27]. This implies that if f € C% then fo®_; € C°
for all # € R. We can now introduce our main Banach spaces:

Definition 2.12 (Banach spaces B,,, B) Let B, be the completion with respect
to | - |y of the set {f € CO | | flw < o0}. Let B C B,, be the completion for
the norm || - ||z of

{Lif1t=0, fecnC* Q). (2.10)

The apparently contrived definition of 5 will ensure joint continuity of
(t, f) = L;(f) in Lemma 4.6, adapting [5, (3.9)—(3.12)].

Lemma 2.11 implies that B C (C#(£20))* and B,, C (C*(0))* (defining
(C")* to be the closure of C! functions f for the (C")* norm), while Lemma 7.5
implies that C'(Q9) c B. Clearly, B C B, (we shall see in Lemma 3.10

7" The requirement || f||o < oo essentially implies that f is in some kind of Sobolev space
with positive exponent in the flow direction, thus continuous almost everywhere on the quotient
. We shall neither prove nor use this.
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that the embedding is compact). The injectivity of the various embeddings is
summarized in Lemma 3.9.

Note for further use that, by the group property of the flow, f o @445 —
fo®,is = (fo®sis— fods)od, forany f € C°, so that, whenever both
sides of the identity below are well-defined,

3 (f 0 P)li=rts(Z) = (B f © Pt)|i=s 0 Pr(Z). (2.11)

3 Preliminary lemmas

In this section, we establish some basic facts about expansion and control of
complexity and prove several key properties of our Banach spaces.

3.1 Growth and distortion

When we flow a stable curve W backwards under the flow, ®_;(W) may be
cut by singularity curves or undergo large expansion at collisions. For fixed
t > 0 and Z, the ¢-trace of Z (on the collision space M, up to time ¢) is the set
{P(Z) N M, s € (0, 1]}). (Note that &_,(W) has a cusp at Z if the ¢-trace of
Z contains a tangential collision). Recall [15, p. 76] that the trace of £ C Qg
is simply P (E).

Definition 3.1 (The partition G;(W)) Fort > 0 and W € W?*, we partition
®_, (W) as follows. 8 First, we partition ®_, (W) at any points whose ¢-trace
intersects either the boundary of one of the homogeneity strips Hy or a tan-
gential collision point {¢ = £m/2}. Second, if any component defined thus
far was subdivided at a previous time s, for 0 < s < ¢ due to growing to
length greater than Lg, we continue to consider ®_;(W) to be subdivided at
the image of this point under ®;_;. Finally, if a component reaches length
= Lo, we subdivide it into two curves of length Lo/2. The countable col-
lection of components of o_ (W) defined in this way is denoted by G;(W).
If one of the elements of G;(W) is in the midst of a collision at time 7, i.e.,
if this component intersects the boundary of one of the scatterers (such an
intersection can contain at most two points, since both the scatterer and the
stable curve (a diverging wavefront under the backwards flow) are convex in
opposition, recall (2.5)), then we split this component into two or three pieces
temporarily: one or two curves consisting of points that have just completed a
collision and one curve consisting of points that are about to make a collision.
This refined set of components is denoted by G;(W).

18 Whenever we partition a curve into finitely or countably many subcurves, we drop the (at
most countably many) division points.
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Note that fors > 0,if W; € @(W), then ®_,(W;) is a union of elements
in G, (W). However, if W; € G;(W), then ®_;(W;) may not be a union of
elements of G, (W) if W; was part of an curve undergoing a collision at time
¢t which has since completed its collision without crossing any boundaries
9\f homogeneity strips. In this case, ®_;(W;) is contained in an element of
Grys(W).

The following lemma proves the invariance of the family WW* under ®_;,
t > 0. While the ideas in the proof are by now well-known, we include the
lemma since we are not aware of a published proof that includes the family
of flow-stable curves YW* we have introduced here. Our proof follows the
approach of [15, Sect. 4.6], which contains many of the ideas we will need.

Lemma 3.2 (Invariance of stable curves) For W € W* andt > 0, let G, (W) =
{W;}i. Then W; € W for each i.

Proof Dueto the inductive definition of G, (W) and the invariance (Lemma 2.2)
of the stable cones, each element W; satisfies condition (W 1) required for W*.
The one point to prove is (W2): The curvature of such curves remains uniformly
bounded for all times. At collisions,

dot do~ 2K()
= +

det  de&—  cosg’

(cf. [15, eq. (3.33)]), and this quantity represents the curvature of the wave
front (a stable curve W projected onto the xy-plane). Yet the expansion in the
o direction is of the same order, so as we will show below, the curvature of W
in R? remains uniformly bounded, even near tangential collisions.

We begin by parametrizing a stable curve W approaching a collision (under
the backwards flow) by points Z; = (x5, ys, @) and define Zg; = &_,(Zj).
The points Z,; fill a 2D surface in €29 and we choose the interval of ¢ to be
large enough that we follow W through precisely one collision. We assume
that ®_, (W) is still smooth after completing the collision.

We will denote derivatives with respect to ¢ by dots and those with respect to
s by primes. Define u = —x’ sin w 4 y’ cos w. Then since (x', y’, ®’) remains
perpendicular to the velocity vector, (cos w, sin w, 0), we have

u> = () + () and u' = —x"sinw+ y’ cosw. (3.1)

We will need the following relations, which follow from [15, egs. (4.25), (4.26)],

/ 1 1 ZdB
o =uB and o' =uB+u E, 3.2)

where B = dw/dé& represents the curvature of W projected onto the xy-plane.
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We will denote the curvature of W in R3 by «. By definition,

5 (w/y// //)2 + (a)/ " //)2 + (x/ "o y/x//)Z
K® = .
((x)? + ()’/)2 + (@)?)3
Notice that the arclength factor satisfies (x")? + (y")? + («)> = u?(1 + B?),

by (3.1) and (3.2). We consider each term in the numerator separately. For the
first term, using (3.1) and again (3.2), we let Bg denote d B/d§ and write

@'y —yo” = B(—x'sinw + y' cosw)y” — y'(u' B + u®By)
= B(—x'y"sinw + y'y” cos w)
+ (y/x"sinw — y'y” cosw) B — y'u” B¢

= Bsinw(y'x” —x'y") — ng.
A similar calculation for the second term yields,
'x" —x'w" = Bcosw(y'x” —x'y") — x'u®Bs.

Substituting these relations into the expression for x> and using again (3.1)
and that x’ cos w + y’ sinw = 0, we obtain k% =

B2(sin’ o (y'x" — x'y")? + ()2u' B + cos?  (y'x" = x'y")?) + () 2ut B + ('Y = y'x")?
()2 + (N2 + (0)?)?
_ BH(x'y" — y'x") + u® B} B2 B}
6(1+B2)3 = (1+32)2+(1+32)3’

where in the last equality, we have used the fact that the curvature of the planar
wavefront satisfies 32 (x'y" — y'x")? /u® by definition. The first term in
the expression for «? is bounded by 1/4 for all B € R. The second term is
bounded above by Bgz/B6 and we use [15, eqgs. (4.36), (4.38)] to conclude

that Bg/ B? remains uniformly bounded for all time, even after undergoing
collisions arbitrarily close to tangential. O

A corollary of the above proof (in particular [15, eq. (4.38)]) is that there
exists a constant By > 0 such that if W is a stable curve with curvature less
than By, then each smooth component of ®_;(W) also has curvature less than
By. We fix this choice of By in the definition of W*.

If W is a flow-stable curve, Z € W, and ¢t € R, we denote by Jy ®;(Z) the
Jacobian of ®; from W to ®;(W), at Z, with respect to the arclength measure
on W. Similarly, if n is an integer then Jyy 7" (z) denotes the Jacobian of 7"
from the map-stable curve U to T"(U), at z € U, with respect to the arclength
measure on U.
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Lemma 3.3 There exists Co > 0, suchthatforall W € W*, allt > 0,all W; €
G/(W), and all Z € W;; the Jacobian Jw,®,(Z) = Cy" Jp+w, T"(P*(2)),
where n is the number of collisions of P (Z) before time t.

Proof Set V; = ®;W;. Since Jy, ®_;(®;Z) = (Jw, O, (Z) 7L, itis equivalent
to estimate Jy, ®_;.

First we show that for V € W?*, the expansion from P+ (V) to V given by the
inverse of the flow from Z € V to P* (V) is of order 1 even though P (V) may
not be homogeneous. (The proof of this is a refinement of [15, Exercise 3.15],
taking advantage of the fact that we only consider stable curves).

For Z € V, setting PT(Z) = z = (r, ¢), we let Jp+(y)P_(z) denote the
Jacobian of the map from P* (V) (in (r, ) coordinates) to V (in (x, y, w)
coordinates) under the backwards flow. Let dz = (dr, d¢) denote the image
of a vector dZ = (0, d&, dw) € C*(Z). Recalling (2.3), and since ||dZ||* =
(d€)? + (dw)?, we obtain

2 _ 2 do\* do\?
ldZ|“ = (dr) cosg + T (2)K(r) — ‘E(Z)d— + (K@) — — .
r dr

(3.3)
On the one hand, (3.3) implies |dZ|> < C|ldz||*, where C is a constant
depending on Kiax, Tmax and 1/Tmin, since (dr, dp) € C3. On the other hand,

since ‘;—‘f < 0, we get that [|[d Z]]* >

2 2
(dr)? (K(r) - d—‘”) > (dr)® [K(r)2 + (d—w) }
dr dr
= K(r)*(dr)?* + (dg)* = min{K2, , 1}||dz|?,

proving the claim.

Next, we fix Z € V; as above and decompose its past orbit as follows, let
z0=P"(Z)and z_; = T_lz_i+1 fori =1, ...n, where n is the number of
collisions between Z and ®_;(Z). Then, letting d Z(p denote a vector tangent
to V at Z perpendicular to the flow and dZ_; denote its image under DP_,,

we have
ldZ_ I NldZ_¢| lldz—n|l lldzoll

ldZoll  lldz—nll lldzoll dZoll’
where dz; represents the image of dZy at z;. The first and third factors
above are of order 1 by the previous claim. The middle factor is pre-
cisely Jp+(VI.)T_”(P+(Z)). Now since Jy, ®_,(®,Z) = (Jw, ®,(Z))"! and
Jp+n T (PH(®,Z)) = (Jp+wyT"(PF(Z)))~, the lemma is proved. O

Jy, ®_(Z) = (3.4)

The following lemma will be the key to the bounded distortion Lemma 3.5.
(Note that the exponent 1/2 is intrinsic to the billiard and cannot be improved).
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Lemma 3.4 Forany W € W?, let Sw(r) = ®_;() o Gw (r) denote the map
from Iy to W defined at the end of Sect. 2.2. There exists C > 0, depending
only on the table and choice of Lo and By, such that |1n J Swlevzy) = €

and | In JSV_Vl leizwy < C, where JSaEV1 denotes the Jacobian of S;—Lvl.

Proof As in the proof of Lemma 3.3, for Z € W and z = P1(2),
let Jp+w)®_7(z)(z) denote the Jacobian of the map from PT(W) to W
under the backwards flow. Then for » € Iy with z = Gw(r), we have
JSw(r) = Jp+w)P—1r(2)(2)JGw (r).

First note that (as in [18, eq. (3.18)]),

d 2
1JGw| = 1+( 5:V) <C, :=\/ + (Kmax + 1) - 35

Also JGw > 1 and since by (3.3) and the estimates following,
Jp+wy®—1(z)(z) is uniformly bounded above and below away from zero,
the C° bound is proved. We proceed to estimate the Hélder constant. Since
JGw isC! using (3.5) and the fact that W has bounded curvature, it remains
to estimate C'/2(In Jp+wy®P—1).

Let Zy,Z, € Wandsetz; = (rj, ¢j) = P+(Zj), j = 1,2. Using again
(3.3), we have

a Jp+w)(P—r(z)(z1) _ |dzo|
Jp+ oy (P—r(2,)(22)) |dz1]
2 2
(dr)? [(coswl +T(ZDK) — T(Z)E) + (Ko — ) }
+ =1In
2 2
(dr>)? [(eos 02+ T(ZK () — T(Z) 92 ) + (K2) - 42)

(3.6)

where dz; = (drj, dg;) denotes the tangent vector to P T(W)atz j- Without
loss of generality, we may set dr; = dr, = 1. For the first term on the right-
hand side, we have

Ll 1 <1 + (dg2)?

2 \ 1+ (dg)?

1
n ) < z(dgy —do1)(der +dy1) < Cd(z1, 22),
|dZ]| 2 2

where in the last step, we used that d¢1, dg> are uniformly bounded by def-
inition of C? as well as the fact that Id‘pl - d¢2| < Cd(z1, z2) since PT(W)
has umformly bounded curvature. Usmg agaln (3.3) and the fact that W has
uniformly bounded curvature according to (W2), we get Cdw(Z1, Z3) <
d(z1,22) < C Ydw(Z,, Zy), for some C > 0.
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Now we turn to the second term on the right-hand side of (3.6). Since
Jp+w)y®—1(z)(z) is bounded away from 0 and all the functions appearing in
the numerator and denominator of the right-hand side are uniformly bounded,
it suffices to consider the differences in each function of the right-hand side
separately.

It is easy to verify by direct inspection (using that our billiard has finite
horizon, while PT(Z;) and P™(Z;) lie in a connected component of the com-
plement of the singularity set for 7 in M, and the curvatures of the scatterers
are bounded above) that!®

1T(Z1) — ©(Z2)| < Cdw(Z1, Z2)'/>. 3.7)

Since K and cos ¢ are smooth functions of r and ¢, the differences in K and
cos ¢ are Lipschitz in dw(Z1, Z») as well. Putting these estimates together
and using again that dy (Z1, Z2) < C~'d(z1, z2), we have that the Holder
constant C'/%(In Jp+wy®—¢) < C for some C > 0, independent of W.

The estimate for the inverse follows similarly, using the fact that J Sg,l =
(JSw)~" o Sy, and exploiting d(z1, 22) < C~'dw(Z1, Z). o

In the following distortion bound, the exponent 1/3 is a consequence of our
choice of decay 1/k? for the homogeneity layers.

Lemma 3.5 (Bounded distortion) There exists Cq > 0, such that for all W €
WE 1 >0, and Zy, Zy € Wi € Gi(W),

J 4 D, (Z 1) 1/3

' T @1 (Z2) 1‘ < Cadw,(Z1, Z3) "

Proof Fixing W € W* andt > 0, if ®_3(W), 0 < s < ¢, has undergone no
collisions then the required bound holds trivially due to the linearity of the flow
between collisions. On the other hand, if ®_;(W) has undergone a collision,
then W; is a homogeneous stable curve by construction of G, (W).

Let n denote the number of collisions from W; to ®,(W;). We will use (3.4)
in order to leverage the bounded distortion enjoyed by the collision map 7. We
begin with the first factor, which gives the Jacobian of the map from P+ (W;)
to W; and is Jp+w,) ® ¢ (z)(2) in the notation of the proof of Lemma 3.4. This
is log-Holder with exponent 1/2 by that lemma.

Comparable estimates hold for the last factor in (3.4), which repre-
sents the Jacobian of the map from P+ (®;(W;)) to ®;(W;). Finally, since
PT(®,(W;)) = T"(PT(W;)), the middle factor in (3.4) enjoys bounded dis-
tortion along stable curves with the Holder exponent of 1/3 [15, Lemma 5.27].

19" The factor 1 /2 here is intrinsic and not related to the quadratic decay choice in (2.7).
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Notice that for the stable Jacobian of the map to enjoy bounded distortion
at the last iterate (from 7"~ 1 (Pt (W;)) to T"(P+(W;))), it is essential that
T"~1(P*(W;)) be a homogeneous stable curve, but not that 7" (P (W;)) C
Pt (W) be homogeneous. This is because Jrn=1(p+wy) T (z1) 1s proportional
tocos ¢(z1), notcos ¢(7T (z1)). Combining the estimates for these three factors
completes the proof of the lemma. O

Recall the hyperbolicity constant A for the flow from (1.2). The following
elementary lemma is one of the keys to exponential mixing:

Lemma 3.6 (Exponential decay of stable-Hdlder constants under the flow)
Forany (0 < k < 1there exists C1 > 0so that forany W, for each ¢ € C*(W),
allt > 0, and all W; € G,(W),

Cly (W 0 ;) < CLAT™CE, ().
Proof This will be a consequence of Lemma 3.3, since for Z;, Z, € W;,

Y 0@ (Z1) =Y o ®i(Z2) _ o Pi(Z1) = ¥ o ®i(Z2)| dw (P:e(Z1), Pi(Z2))"
dw,(Z1, Z2)* dw (P (Z1), ®:1(Z2))" dw,(Z1, Z2)*
< Cy(Y)ICA™,

where n represents the number of collisions undergone by W; by time ¢ and we
have used that Ag is the minimum expansion factor for the map [15, (4.19)].
The lemma follows since Lrnijj —1<n< Lfnth + 1. O

We next present a growth lemma®® adapted from [18, Sect. 3.2] which is
a direct consequence of the one-step expansion [15, Lemma 5.56]. Recall Lo
from the definition of WW*.

Definition 3.7 (Z;(W))For W e W’ and t > 0, let Z;(W) be tl}gse elements
W; € G,(W) such that ®;(W;) is contained in an element V' € G, (W) with
Vi < Lo/3 forall 0 < s < t. (The curves ®,(W;) corresponding to Z,(W)
are repeatedly cut by the singularities of ®_; without ever growing to size
Lo/3 before time ¢).

Lemma 3.8 (Modified growth lemma) For any A € (Aa 1/ fmax 1y, if Lo is
small enough, then there exists Cy > 1 such that for all 1 < qo < 09,
W eW* andt > 0,

1/q0
(a) ZW,GI,(W) ||W||l/q0 | Jw, @t lcow,) < Cortd=1/q0).

20 1 Step 1 of Sect. 6, we shall apply a growth lemma [15, Theorem 5.52] directly.

@ Springer



Exponential decay of correlations for Sinai billiard flows 65

AREY
(b) ZW,GQ;(W) |W||1/qo [ Jw; @1lcow,y < Ca.

Proof By Lemma 3.4, there exists C3 > 1 suchthat |W;| = C;El [PT(W;)|. We
next invoke the one-step expansion for the map from [15, Lemma 5.56]. Using
[15,(3.31),(5.39),(5.36)], (since B; = 1/(z9+ I/B(J)r), we have B} Tmin < 1),
we set I:o = C3_1L0 and for Ay € (A_l, 1), choose Lo < tmin/4 sufficiently
small that the one-step expansion for the map satisfies

T Vil
=
Vil

sup MM, (3.8)

IVI<Lo i

where V is a (not necessarily homogeneous) map stable curve, V; are the

homogeneous components of 77!V, and | - |, denotes length induced by
the adapted metric defined in [15, Sect. 5.10]: For a tangent vector (dr, d¢),
de

K dr
2
d
v (Tf)
the given point.

Fix n and consider curves W; € G;(W) undergoing n collisions between
®,(W;)and W.Then P (W;) is contained in an element of G, (P*(W)), where
Gn(PT(W)) are the connected homogeneous components of 7" (P1(W)),
defined inductively as in [18, Sect. 3.2]. If W; does not have an endpoint on
a scatterer (i.e., is not in the midst of a collision), then the correspondence is
one to one. If W; is part of a longer element making a collision, then there are
at most two such W; for each element of g,,,(P+( W)), due to the fact that at
most two points of a diverging wave front can be in contact with a scatterer at
one time (this divides the curve into at most three pieces, but note that in this
case, two of the three will have made n collisions, while one of the three will
have made n + 1 collisions, and so will be grouped in the (n + 1)th generation,
Gnr1(PH(W)).

Since the expansion rates for the flow are comparable to those for the map
by Lemma 3.3, and we have just seen that there are at most two components
of G,(W) for each component of the corresponding partition G, (P (W)) into
homogeneous components of P+ (W) for the map, we will use the analogous
estimates for the map from [18] to prove the growth lemma. The added com-
plication here is that the components of G; (W) may have undergone different
numbers of collisions and so they belong to an assortment of generations for
the discrete time map.

Fix W e WS, and W; € G,(W) fort > 0.Let V = PT(W) and V; =
P (W;). For (a), by [18, (3.2), (3.3), Lemma 3.1] (choosing §; = ZO/B in the
notation used there), there exists C > 0 such that for any n € N,

define ||(dr, do) ||« = l(dr, dp)||, where K denotes the curvature at
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> T ooy < CA (3.9)
VieZn(V)

where §k (V) are the smooth components of T—k(V) defined in the beginning
of the proof and I (V') denotes the set of smooth components V; of 7™ (V)
such that 7/ (V;) never belongs to a curve in g,, j(V) that has length greater
than Lo/3 for 0 < j < n. Since the number of collisions undergone by each
W; before time ¢ may vary, we denote by Z; , (W) those components of Z, (W)

which experience n collisions by time 7. Note that LﬁJ —l1<n< Lﬂi—mJ +1
Thus by (3.9) and Lemma 3.3,

\J"nimJ+l
> Ww@leogy = ), 2w @i,

Wi €Z; (W) e L J | Wi€Zin(W)
Tmax

L%ﬁinJ+l

<2C) Y. CAl <™

_ t
n_LfmaxJ_l

proving part (a) of the lemma for 1/gp = 0 with A = A}/ fmX Part (a) of the
lemma for 1/gg € (0, 1] follows by an application of the Holder inequality, as
in [18, Lemma 3.3]:

1
|W; |90 |W;|
1w Peleoqw;y < > WUW, Dy lcow
Wi €Z, (W) |W|"0 Wiecl, (W)
1—L

90
Z |JW,- CDZ|CO(Wi)
WieZ, (W)

(14 i (g T

IA

where we have used that |Jw, ®¢|cow,) < (1 + Cd)% by Lemma 3.5,

and Y, 10001 <

To prove part (b), we shall adapt the argument of [18, Lemma 3.2]. First, we
subdivide the time interval [0, 7] into times fx = t—kTmin, k = , Lt/ Tminl -
Using these subintervals, we group the components W; € gt(W) into “most
recent long ancestors,” defining sets Ly (W,t), k = 0,..., [t/Tmin], and

grouping in A;(U) those W; € G;(W) so that U € Li(W,1), as follows.
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For each W/ € G,(W) and each k, we have @y, (W/) C W][." for some
W;" € @k (W). It W]t." is undergoing a collision, we can adjust #; (for that th."

only) by adding a small time 16 (k, Wl.’)l < Lg so that W;"M € g,k+g(W) is an
admissible stable curve. Note that even with this small correction, the times?!
tr are still at least Ty, /2 apart since L has been chosen < Ty /4. We say that
such a curve W;" is the most recent long ancestor of Wf if |P+(Wj’.")| > Lo/3
and k > 0 is the least such k with this property for W/. In this case, we
puti € At(WJt.k) and j € Li(W,t). If no such k exists, then by definition,
W! € Z;(W) (that we denote by i € Z,(W) for simplicity). Using this group-
ing, we estimate,

[/ Tmin]
Z [ Jwe Prleoqwry = Z Z Z | Jwy Ptleowp)
Wi[eQ,(W) k=0 jeLy(W,t) i€A1<Wt-k>
J
+ Z |JWith>[|CO(WiI)-
i€, (W)

The sum over Z;(W) is exponentially small in 7 by (a), so we focus on the
1

sum over k. For each WJ.T, we have [Jy: ®lcoqyry = .|JWi[<I>kfmi?|C0(Wir)

|JW;k Dy, | 0 (sz_k). Thus, using part (a) of the lemma from time #; to time ¢,

2 Mwr®ileoqwy = Wy @uleoyny 2 g hlen )
J J
ieA,(WJ’.") ieA (W)
<|J 4® C )\ Jeemin,
_| ij tk|CO(W;k>

Tk
) . . |y (W)
Using this estimate, plus the fact that |]W_;k CID,k|C() (W;k> < Cy —‘ Wj[."l =

CL, ! | Dy, (W]t.k)| by bounded distortion (Lemma 3.5), we have

L#/Tmin
-1 t kmin
S ey = Y X CLy e (WO 4 C
Wl eG (W) k=0 jeLy(W,1)

For each k, the sum over j is at most |W| since U; ®,, (th.k ) is a disjoint union,
and the sum over k is uniformly bounded in ¢, proving part (b) for 1 /g9 = 0.
Part (b) for 1/go > 0 now follows from a Holder inequality as in part (a). O

21 We write 1 for 1 + 8(k, Wl.’ ), for simplicity.
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3.2 Embeddings of smooth functions in B. Compactness of B in B,,

Recalling CY from (2.9), it is convenient to introduce two auxiliary Banach
spaces:
The space B is the completion with respect to || - || 3 of

{f €C%Q0) | Iflls < o0). (3.10)

The space B is the completion with respect to || - ||z of

{fecllfls <oo}. (3.11)

These definitions ensure that B ¢ B% and C° N C' ¢ BY. Also, B nC°
is dense in B% and similarly for B,,. This will allow us to define transfer
operators £; f = f o ®_; on BY, by density and the Lasota—Yorke estimate
(Proposition 4.1), bypassing the use of analogues of the spaces C# (T W)
in [18]. (In view of [18, Lemma 3.7] for the discrete time billiard, one can
expect that B = BY  but this will not be needed.)

We establish relations between our spaces B and B,, and smooth functions
on £2p.

Lemma 3.9 (Embedding smooth functions) The following continuous injec-
tive embeddings hold

Qo) — B°, c®°nclQy) — B2 < B,, B Q)"
B (C'(Q0))*, and C° NC*Q0) — C'(Q) — B By.

The proofuses 1/g < 1,8 < 1/g,and y < 1/2.

Proof First we show that if f € C'(Qp), then f € B° and in particular,

1£l5 < CIflet o) (3.12)

for a uniform constant C. This immediately implies that if f € C!($2) NCY,
then f € BY.

To estimate the neutral component || f||o, fix W € W* and ¢ € C*(W)
with |Y|ce < 1. Then, recalling (2.5) and the notation in (2.1), we have

f at<fo<1>,>|,:owdmw=/ VFoiy dmy
w w
< IVS - Alool¥ ool WI = Lol fler -
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To estimate | f |5, fix W € W* and ¢ € CF(W) with [W |9 | |y < 1.
Then

fW P dmy < |flool¥ 1o W] < | f1soLl12.

Finally, we estimate | f||,. Fix ¢ € (0,1) (if &¢ > 1 we may bound the
relevant quotient by a constant multiple of the weak norm) and Wy, W, € W*
with dyys (Wi, Wp) < e. Fori = 1,2, let ¢; € C*(W;) with |‘/fi|C“(W,-) <1
and d (Y1, y2) = 0.

By definition of dyys, the trace curves PT(W;) and P+ (W,) are defined
over a common r-interval /, apart from at most two endpieces which have
length no more than €. Let Uy C Wy, Uy C W; denote the curves for which
PT(Uy) and PT(U,) are defined as graphs over /. Denote by V| and V, the
(at most two) pieces which are not defined over /. Without loss of generality,
we may assume Vi C Wy and Vo C Wa. Now,

iy dmw, — o dmy, = fvdmwy, — | fydmy,
W1 W U Uy

+ | fodmw, — | frdmy,.
Vi V2

We use the fact that |PT(V;)| < & to bound the estimate over the unmatched
pieces,

= Vill floo = Célfloos

'/V, fidmy,

where the constant C depends only on the Jacobian of the map from P (V;)
to V;, which is uniformly bounded by the proof of Lemma 3.4.
Next, we estimate the contribution from the matched curves U;,

foidmy, —/ fadmy, = / (fY1 = (f -¥2) 0O - JO)dmy,
Uj Uy U

< |Ullf¥1 = (f-¥2) 0O - IO|coy,),

where © is the map from U to U defined via the trace curves: ® = Sy, 0S 51] ,
where Sy, (r) = ®_;() o Gy, (r) : I — U, is defined as in Lemma 3.4. Note
that since d (Y1, ¥») = 0, we have {» o ® = | on U;. Thus to estimate the
sup norm of the difference above, it suffices to estimate | f — f o ©|co(y,) and
|1 — JOlco(y,)- Note also that J© is bounded by Lemma 3.4, so this factor
contributes only a bounded constant to our estimate.
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Now since the distance between P*(U;) and PT(U,) along vertical seg-
ments is at most ¢ and since the Jacobians of Sy, and S{,zl are uniformly
bounded by Lemma 3.4, we have d(Z, ®(Z)) < Ce, for Z € Uj. Since
f €C'(Qo), wehave | f — f o ®leogy,y < | flere.

It remains to estimate |1 — J®|co(y,). Using the notation of Lemma 3.4 and
denoting by 71 and 1, the first collision times starting on U; and U,, we have

7O = (Uprp®-—) 0 (G 0 851 ) - (1Gu, 0 55)) - (VG 0 @r)) - (U @)
_ Upryn®-n) 0 Guy 0 Sy JGy, 0 Sy,
(Jp+w)P-r) 0 Pry JGy, o Sall '

(3.13)
For Z € Uy, the points Gy, o Sljll (Z) and @, (Z) lie on the same ver-
tical line in (r, ¢) coordinates; thus the contribution of K in the analogue
of (3.6) vanishes. Hence, adapting (3.6) and the following lines (using

1(2) = 12 (50,57, (@) | = €&, we have

Tpsy) P, (GUz ° 5511)
sup |In
U ‘IP+(U1)CD—‘L’1 (cbtl)

for some uniform constant C > 0. Also, by (3.5) and using ¢ (r) and ¢, (r) to
denote the functions defining P+ (U;) and P+ (U,), we obtain the following

bound on /:
JGy, (S 1 dpr\2 doin2
ln—Uz( u) = —|In 1+(ﬂ> —1In 1+(ﬂ>
JGy,(Suy) 2 dr dr
o (dﬂ)z_ <@)2
-1
1+ ]len d}’ dr

by definition of dyys (Wi, Wa). By (3.13), these two estimates imply |1 —
‘]®|CO(U1) < C81/2.

Putting together the estimates for matched and unmatched pieces and divid-
ing by &7 yields

eV < Ce' | floo + Ce 27| florqy)-

S dmw—/ fv2dmy
W,

Wi

(Recall that y < o < 1/3.)
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The above estimates imply || fllg < C|flc1(q) for a uniform constant C,
as claimed. This implies continuity of the embeddings C'(Q0) — B° and
% NCY(Qo) — BY. Injectivity is obvious.

As for the embedding B < By, continuity follows from the fact that
[“lw < |- ls, while injectivity follows from the definition of the spaces C* (W)
and CP (W) as the closures of C' (W) in the respective Holder norms. Similarly,
the embedding B — B, is continuous and injective by the same observations.
The embedding C!(Q9) — B is the content of Lemma 7.5, while injectivity
is again obvious. Finally, continuity of the embeddings B — (C#($0))* and
B — (C'(Q0))* follow from Lemma 2.11, while injectivity is proved in
Lemma 7.1, using 8 < 1/q. O

We close this section with the following compactness result.

Lemma 3.10 (Compactembedding) The unit ball of B is compactly embedded
in By.

Recall that 8 < «. Like in [18], the proof also uses ¢, > 0.

Proof Recalling (3.11), it suffices to show that the unit ball of B, is compactly
embedded in B,,. The general strategy of our proof will be to create, for each
¢ > 0, an e-covering of €2 by finitely many curves W; in WW* and an e-covering
of C%(W;) by finitely many functions v; so that the weak norm of any f € B
with || f|lg < 1 can be uniformly approximated by measuring it against the
finitely many functionals defined by |, w, [ W) dmy,.

We may assume without restricting generality that there exists £ so that
PT(W) € Ty x [-m/2, /2], i.e., we argue one scatterer-component QWO =
(PH~N(y x [—m/2, /2]) at atime. Let 0 < & < 1 be fixed. We split Q)
into two parts, the good set

A, e) = (PH '\ {—n2+e<p<m/2—ehNQY,

and the bad set B(¢, &) = Q© \ A(£, ¢) (that is, e-close to tangential colli-
sions). The image under P of stable curves are graphs of decreasing functions
ow with absolute value of the slope larger than Kin > 0 and with uniformly
bounded second derivatives. If W C B(Z, ¢), then since P (W) is transverse
to the boundary of the scatterer, it has length O (¢). Since the expansion from
PT(W) to W is of order 1 for a stable curve by Lemma 3.4, there exists
C = C(Q) so that any admissible curve W C B(¥, ¢) has length at most Ce.

Let f € CO with | f|lg < 1. First, we estimate the weak norm of f on
curves W € B(¢, €). If [{|ce(w) < 1, then, using the bound Ce on the length
of W,

/W fodmy < I FIsIWIMV9 W op oy < CHYeV9 £l (3.14)
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In order to study curves W € A(¢, ), we need some preparations.

Letting 61 (Lg) and B (Bp) (uniform in €) be as in the proof of Lemma 3.8,
for any map-stable curve V.€ W¥(T) N PT(A(¢, ¢)) of length < §; and
curvature bounded by By, the surface

VO = {0, (r,ov(r) | r €ly,0 <t < T_(r, v (r))}

(where V is the graph of ¢y defined on Iy, and t_(z), for z € M, is the
smallest # > 0 so that ®_;(z) € M) is foliated by admissible flow-stable
curves W so that PT(W) C V. Indeed, if Z € VO, there is a unique curve
W = W(Z, V) c V?containing Z and so that W is everywhere perpendicular
to the flow. We take W maximal with these properties, noting that the endpoints
of W either (1) project to endpoints of V; (2) lie on a scatterer, i.e., are of the
form

Dt oy ) (1, v (1)), (3.15)

or: (3) undergo a grazing collision under the flow in forward time. Such a
curve W is C? and flow-stable by construction, it satisfies the admissibility
requirements for Lo and By, if §; and B; are small enough. (Note that for
any flow stable curves W) # W, C VY we have dyys (W1, Wh) = o0.) All
such curves W are constant-time flow translates of one another, except near
collisions, where some shortening of the curve, due to the variable collision
times, may occur. Conversely, if W C A(¢, €) is an admissible flow curve
for Lo and B, then W belongs to the surface (Pt (W))?, which is foliated by
flow-stable curves, admissible for §,(Lg) and B, (By), uniformly in ¢.

On a fixed r-interval I, the set of functions {¢y} for map-stable curves
V € W*(T), defined on I is uniformly bounded in C? norm and therefore
compact in the C! norm. There exists a finite set of admissible map-stable

curves {Vl/ }l.I’?: 1 C PT(A(L, £)) so that for any flow-stable admissible curve

W C A(L, ¢) there exists i with c?ws(Vl.’ , PT(W)) < ¢. Therefore, since the
stable and unstable cones C* and C* are uniformly transverse, and are both
orthogonal to the flow direction, we may choose a finite set of admissible map-

stable curves {Vi}il’“’:1 C PT(A({, ¢)) so that for any flow-stable admissible
curve W C A({, g), there exist:

(i) an index iw so that dyys(PT(W), Viw) < €, and a flow-unstable curve
W with W* N W # @ and W* NV £ 0,

(ii) a flow-stable curve W' C V) with W* NV € W' and dyys (W, W') <
C /e, for some uniform C > 0.

Item (i) above is obvious, as is the existence of W’ with W* N Vl(v)v eW C VI(JV

in item (ii). To prove the bound on the distance between W and W’ in
(ii), first note that the tangent vectors to PT(W") lie in the map-unstable

@ Springer



Exponential decay of correlations for Sinai billiard flows 73

cone by forward invariance of the unstable cones, and that PT (W) inter-
sects both V;,, and PT(W). By choice of the index iy, the length of the
segment in PT(W") connecting PT(W) to V;, is at most Ce. Since W"
intersects both W and W’ and the length of unstable curves is expanded
going forward, it follows that the length of the segment in W* connecting
W and W’ is at most Ce as well. Finally, the fact that PT(W’) C V;, and
c?Ws(P+(W), Viw) < &, together with the 1/2-Holder continuity of 7, implies
that the distance dyys (PT(W), Pt(W’)) (which is due only to the endpoints-
discrepancy) satisfies dyys (PH(W), PT(W')) < C. /e (recalling (3.15)) as
required.?

We next decompose each V; corresponding to collision times to handle the
shortening of the curve due to the variable collision times mentioned above.
We let M, = [¢71],

T min = Min 7_(r, @y (1)),

Tim = Timin +mM,  (max t_(r, oy (r)) — Timin), m =0, ..., M,.

Note that 7; min 18 the first collision time when flowing V; backwards. It is not
enough to flow V; back until this first collision: If W is a stable curve with
PT (W) e-close to V;, the curve W may be in fact very far from any of the
curves spanned by V; up to time —1; min (for example, if a little piece of V;
hits a nearby scatterer under the backwards flow, but most of the rest of V;
continues without collision for some time). Still, there is a subcurve Vl/ of V;,
differing in length?? by no more than ¢ from V;, such that V/ does not hit this
close scatterer, and the backward translates of Vl.’ contain a stable curve which
is close to W and connected with W by an unstable curve. By the triangle
inequality, V! and P (W) differ by no more than 2é).

Let us now formalise the above discussion: We construct nested curves by
setting V;o =V, = {V; N r__l[r,-,o, o0)} and, form =0, ..., Mg,

Vi = {Vi N = tim, 00)} C Vi1,

(If any of the V;,, is disconnected, we subdivide it into its finitely many
connected components, without making this explicit in the notation for the
sake of conciseness.) Finally, in each V;, we choose a point v; , so that
T—(Vim) = Tim-

Then, there exists a nonnegative real number ®, = O (¢), and a finite integer
N, = 0(@;1), such that®* the set of flow-stable curves

22 The bound < /€ can perhaps be improved to < Ce by making a special choice of W¥.
23 By construction of the family V;.

24 We do not claim that I, Ng, or @;] are bounded uniformly in ¢.
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{W (CD,@ (Cb—r Wim) 5= (Ul m) ), Vi m) )

i=1. ... 1. m=0 ... My.n=0,. .N.—1. ee[o,(ag]}

forms an +/e-covering of the admissible flow-stable curves W* l(A(e,e)) in the
distance dyys, which follows by applying items (i) and (ii) explained above.
By definition, the uniquely defined C! functions fim.n.0 0N Vi so that

Wi,m,n,@ =W (‘13—9 od_; s im), Vi m) is given by

Qi o oy (1) = Sismono(r)

satisty 4 m.n.0 — limn.0 = 0.
Set Limn = Ei,m,n,O, so that Wi,m,n =W (CI) T (im) 3 (Ut m)s Vi m)
given by

Dty (15 0V, (1) =2 Simn (1),

Let |I"¢| denote the arclength of 'y, and define S% to be the circle of length
|T¢|. Since any ball of finite radius in the C% norm is compactly embedded in
C#, we may choose finitely many functions v j € C¥ such that { v j JJ.; | forms

an e-covering in the C# (S%)—norm of the ball of radius CCy in C* (Sé), with
Cy the constant depending on Kax, Tmax, and 1/7min from Lemma 3.4.

This ends the announced preparations for the case W C A(Y, ¢).

From now on, fix W = Sw(Iw) € W|awe), and ¢ € C*(W) with
|Vlceqwy < 1. We view Iy as a subset of Sl Let ¥ = v o Sy be the
push down of ¥ to Iw. By definition, Sy (r) = ®_4, - Gw (r) with Gw the
graph of the function ¢w. By the proof of Lemma 3.4, the Jacobian of Sy is
bounded by Cy, and we have

[Vlce (1) < CCo.

Choose 1ﬁj € C"‘(Sé) so that |y — &jlcﬁ(lw) <e.

Take i, m, n, and 6 so that dyys (W, Wi,m,n,g) < Je. Define ¥ imn =
¥joS; . , tobe the lift of ¥ to Wy . Note that [} j m.nlcew,,,..) < 2CCo,
again by Lemma 3.3.

Then, normalizing ¥ and ¥ ; m.n by 2CCy, and letting Jw.;imno =

JW; u.. ®—o be the Jacobian of the map S, m.n. O Sl n11 n = ©_g from Wi,

to Wi m.n.0, we decompose
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fyvdmy — / fYiimndmw,,, ,
%

i,m,n

wde - /~ f(lﬁ] ° Si?nli,n,g)dmﬁ}imnﬁ
Wiim.n.o o

+ / [(fo Sl m,n,0 © Sz_m n)wj,i,m,nJW,i,m,n,O _fwj,i,m,n] dei,m.n )

h (3.16)
where |Jw i mn0—1csw,, ) < Cé,sothat we can use the triangle inequality
and || f||s to eliminate Jw ; m n.¢ in the last term of (3.16). Next, recalling the
group property (2.11), we estimate the remaining difference in the last term of
(3.16),

f (f o (D_Q - f)l//j,i,m,m dei.m,n
- o
= / / 8g(f ] bes)l//j,l‘,m n dsdez m,n
i,m,n 0
%
— / / ar(.f © cDr)lr:O © q)—swj,i,m,n del m, nds
0 Wi,m,n

6
= / / 8r(f © (Dr)|r:0 1pj,i,m,n o @y JdLS(W,-,m,,,)ch
0 JO_s(Wimn)

< Ol f oV jimn © Pslea @, (Wi ) IOy (Wi ) Pslce @y (Wi n))
< Cell fllo,

where in the last line we have used the smoothness of the flow between colli-
sions to bound both the Holder norm of the test function and the Jacobian of
the change of variables.

Finally, for the first term on the right-hand side of (3.16), we again use
the triangle inequality and || f|s to replace v ; jo Sl m.n.p DY a test function
Vi, jmn,e Withd (W, ¥; j m.ne) = 0 and use the unstable norm of f to bound
the remaining difference of integrals. Putting these estimates together yields,

/W Sy dmy _/ f‘//j,i,mnde, mon

im,n

< &1 fllu + &l flls + £l £10)2CCo.

Recalling that 2y < 1, we have proved that for each 0 < ¢ < 1, there
exist finitely many bounded linear functionals ¢; j ., With £; ju n(f) =

f f% i,m ndel mon such that

lmil
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| flw < max G jmn(f) +2CCo((eY 4 &)1 f s

i<leg,m=<Mg,j<Je,n<Ng—1

+ "2 £l + €l fllo)
<max¥; jmn(f)+ C'e; ' flls.

Since ¢, > 0, this implies the required compactness. O

4 Lasota—Yorke-type bounds and strong continuity for the semi-group
Ly

The transfer operator for the flow is defined on> C? (recall (2.9)) by £; f =
fo®_, fort > 0.(Inparticular, £y is the identity on C° .) Letting m denote Rie-
mannian volume on ¢, we also have £; f = fod_, forany [ € L! (R0, m),
since ®; preserves m. The Banach space B is not contained in C°, or L'(m).
However, we have that C% NBY is dense in the auxiliary space BY by definition
(3.11). In this section, we will prove the following proposition (recall B° from
(3.10), and the constants A = A(l)/r"lax > 1 from (1.2) and A € (Aal/r““‘", 1)
from the growth Lemma 3.8).

Proposition 4.1 Recall that B < a and y < min{a — B, 1/q}. There exists
C > 0 such that forall f € C°N B and t > 0,

L0 flw < CIf s (4.1)
1L flls < CA™P 4 207VD0 £l + Ly £ 1, 4.2)
1L fllo < Cll £ llos 4.3)
ILe flle < CE¥ AT fllu 4 Cllfllo + ClLF N (4.4)

If we assume in addition B < 1 — 1/q, and if we allow C to depend on Ly,
then (4.2) implies

1L flls < CATP £lls + Clf L. (4.5)
Recall that || - ||, will appear with a (small) factor ¢, to be introduced later
in the norm | - ||z. Even with this weighting the above bounds (just as in

[5,32]) are not honest Lasota—Yorke bounds because of (4.3), which is neither
a contracted term nor compact. Integration with respect to time in the resolvent
R(z) will yield the true Lasota—Yorke bounds of Proposition 5.1.

It follows from the above proposition that for any f € C2 NB% c ¢ N B°
and any ¢ > 0, the image £, f, which is defined as an element of CY, still
belongs to BY and satisfies | £, fllz < C|l f 5. Since C° N B is dense in

25 Defining the transfer operator on L°° leads to problems since an element of L is not in
general well-defined on a stable curve W.
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B° the operator £, can be extended to a continuous operator on B2 for any
t > 0, and indeed Proposition 4.1 holds for all f € B°. Since B ¢ B2, we
get, noticing that the set in (2.10) is £;-invariant for all 7:

Corollary 4.2 (Continuity and bounds on B) The operator L; is continuous
on B for any t > 0, and the bounds in Proposition 4.1 hold for all f € B.

The family of bounded operators £; on B satisfy:

(i) Lo is the identity on B and thus on B;
(ii) Forany 0 <t,s < oo we have £; o Ly = Li44.

In Lemma 4.6 (stated and proved Sect. 4.3), we will show thatforany f € B
lim £ =f,
lirm £ (fH=r

with convergence in 3. This implies the third condition required for a one-
parameter semi-group of bounded operators (see [16, Sect. 6, p. 152]), that

(iii) the map (¢, f) — L;(f) from [0, 0o) x B to B is jointly continuous.

Note also that £; is bounded on B,, (same argument as above). In fact,
Lemma 4.7 in Sect. 4.3 will show that £; is Lipschitz when viewed as an
operator from B to By,.

In Sects. 4.1 and 4.2, we prove Proposition 4.1. Section 4.3 is devoted to
Lemmas 4.6 and 4.7. We shall use several times without mention the key
observation (recall (2.5)) that a stable curve W € W?*, and more generally any
W; € G;(W) for t > 0, may intersect d€2¢ in at most two points.

4.1 Weak stable, strong stable, and neutral norm estimates for £;
We start with (4.1). Let f € CO°NB°, W € W* and ¥ € C*(W) such that

|V lcewy < 1. Fort > 0, we write,

[ ervamp="3 [ ooy oeamy

WieG (W)

< Y fluldw ®lexqwy | o @ileaqwyy. (4.6)
WieG (W)

where we have used the definition of the weak norm on each W;. Since o < 1/3,
the distortion bounds given by Lemma 3.5 imply that

[Jw; @:lcew;y < Caldw, Prlrow;)- 4.7)
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By Lemma 3.6, we have [ o ®;|ce(w;) < C1|¥|ce(w). Using these estimates
in Eq. (4.6), we obtain

[ crvamy < Cifl Y Uwilisny < Clfl @8)
w

WieG (W)

where in the last inequality we have used Lemma 3.8(b) with 1/go = 0. Taking
the supremum over all W € W* and ¢ € C*(W) with [{/|cew) < 1 yields
4.1).

We next prove (4.2). Let f € C°NB°% ¢ > 0, W € W¥, and let {W!} denote
the elements of G,(W). For ¥ € CP(W), with |W|1/‘1|1ﬁlcﬂ(w) < 1, define
¥ =Wt [t ¥ o @; dmy . Using Eq. (4.6), we write

/Wﬁtfl/fdmw = Z/W [ Iy @ (fo®i—y;) dmy +; /WthWi,cb,de.

4.9)
To bound the first term of (4.9), we first estimate [ o &, — ¥, les (wy-

Since 1, is constant on W/, we have ng (Yod; —;) < ClA_’g’Cﬁ,(W) by

Lemma 3.6. To estimate the L° norm, note that ; = v o ®;(Z;) for some
Z; € W!. Thus for each Z € W/,

[V 0 @i(Z) = Wil = 1 0 ®(Z) = W © Pe(Z))| = Clpy (0 D)W/ I/
< e, anar.
These estimates together with the fact that |W| 1/a ¥ lcswy < 1, imply
¥ 0 @ — Vilesawny < CATP Wleswy < CATPIWITV2 (4.10)

We apply (4.10), the distortion estimate (4.7) and the definition of the strong
stable norm to the first term on the right-hand side of (4.9),

Z/W, f I @0 (W 0 & — ) dmy

1
|Wit| /q

<C)y ||f||sW|JW;<I>z|Lw(W;)A—ﬂ’
i

4.11)

< C'ATP £ s,
where in the second line we have used Lemma 3.8(b) with go = q.

_ For the second term on the right-hand side of (4.9), we use the fact that
1Y < IW|~V4 since [W|4 || sy < 1. We group the curves W/ € G,(W)
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according to most recent long ancestors, as in the proof of Lemma 3.8. As
before, ty = t — kTmin, K = 0, ..., |#/Tmin], and each Wl.’ belongs either to
A,(W;") for some th." € G, (W) or W/ e Z(W).

Using this grouping, we estimate the second term in (4.9) by

> :|W|—W/ f Iy ®; dmy
X w! !
1 1

[2/Tmin

)OO DD IWI‘”‘ffW;wa;dwmw

k=0 jeLk(W’t)iEA (Wtk)

+ > |W|—1/4/ Flwi @ dmyy.

i€z, (W)

We estimate the terms in the sum over k using the weak norm and the terms
corresponding to Z; (W) using the strong stable norm,

L7/ Tmin]

|yt @[ ooyt
Z|W|*1/‘1/‘ f JW¢d>t dmy < C Z Z Z JW

i k=0 jELi(W.0) jcp, (W ‘)

l/q

+C Y |W|1/q L 1w e oo (-
i€, (W)

(4.12)

In the first sum above corresponding to k£ > 0, we have as in the proof of
Lemma 3.8

wi Pelzoewry = 1wt PheaminlLoe wi) Myt Pocl oo e
Thus using Lemma 3.8(a) for 1/go = 0 from time #; to time ¢,

[#/Tmin]

Do D WYy e

k=0 jeLi(W.t) ;e (W )

[/ Tmin]
Z Z | yyie P |LOC<W’-") Wi Z | Twi Phemin| L2 ()
k=0 jeLp(W,r) ! ! ieA,(W[-k)
J
1 L7/ Tmin | |Wt'k|1/q k
—1/49 J Tmin
<CL, Z Z W“W;k thleoc(W;k))\ ,

k=0 jeLy (W, (4.13)
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since |W][."| > Lo/3. Since each Ly (W, t) C G, (W) by definition, the sum
over j is bounded independently of k and ¢ by Lemma 3.8(b). The sum over
k is also bounded independently of ¢. Finally, for the sum corresponding to
Z;(W) in (4.12), we use Lemma 3.8(a) with go = ¢q to get

AR
A
ieZ;(W) | |

Putting this estimate together with (4.13) in (4.12), we obtain

< LY\ fly + ClIF A0,

Z|W|—1/q

i

/ , f JWicht de
W:

1

(4.14)
Finally, combining (4.11) and (4.14) with (4.9) yields

/ L fydmy < C (A—f" + xf“—l/‘f)) I flls + CLgl/’f|f|w. (4.15)
w

Taking the supremum over W € W* and y € C# (W) with |W|1/q|w|cﬁ(w) <
1 proves (4.2).

We prove (4.3). Let f and ¢t > 0 be as before. Fix W € W?® and ¥ € C*(W)
with |/|ce(wy < 1. Then for f € C°(Q0) N BY,

/W 3y (Lo f) o By) yo Y dimy = /W@s (f 0 ) ls=0 0 D_y) ¥ dmy,

where we used the group property (2.11). Now,

fw(as (f 0 ®s) [s=0 0 ;) ¥ dmw

= > | @ (fo®) =) Jw,® Yo D dmy
wieg(w) Vi

<Y U llolw; @ilex i[9 © Dileeqwyy < ClIfllo

1

where we estimated the Holder norms of the functions as for (4.1) and used
Lemma 3.8(b) to bound the sum. Taking the appropriate suprema over W and
Y proves (4.3).
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4.2 Unstable norm estimate for £,

Fix f,t,and W asin the previous subsection, lete < 1, and consider two curves
W w2 e W with dyys (WY, W2) < e. For t > 0, we will use the collision
map to partition ®_, (W) into “matched” pieces U f and “unmatched” pieces
Vie, ¢ = 1,2. Define VT’f = Pt (Wie) for each Wl.e € G/(WY and W' =
PT(WY). Note that Wie € gn(VT/Z) (defined in the beginning of the proof of
Lemma 3.8) for some /Tmax < n < t/Tmin. We recall the mgtchi~ng of stable
curves for the map used in [18, Sect. 4.3]. Note that st(Wl, Wz) < ¢ by
definition of dyys.

Recall from Definition 2.6, So = {(r,¢) € M : ¢ = +m/2} and S@n =

Ti (So U Ug>k,0Hy) denotes the extended singularity set for 77", where

we 1nc1ude the boundaries of the homogeneity strips to ensure applicability
of Lemma 3.5. Let w be a connected component of w! \ SH To each point
z = (r, ) € T "w, we associate a vertical line segment y, of length at most
C A" e such that its image 7"y, if not cut by a singularity or the boundary
of a homogeneity strip, will have length Ce. By [15, Sect. 4.4], all the tangent
vectors to Ty, lie in the unstable cone C*(T'z) for each i > 1 so that they
remain uniformly transverse to the stable cone and enjoy minimum expansion
given by the factor CAi

Doing this for each connected component of W' \ SH ~,» we subdivide
w! \ S@n into a countable collection of subintervals of points for which 7"y,
intersects W2 \S™ and subintervals for which this is not the case. This induces
a matching partition on w2 \ S@n

We denote by Vf the pieces in 77" W¢ which are not matched up by this
process and note that the images 7" VZ occur either at the endpoints of Wt or
because the vertical segment y; has been cut by a singularity. In both cases, the
length of the curves 7" VE can be at most Ce due to the uniform transversality
of SEH” (see [15, Prop. 4.41]) with the map-stable cone C; and of C} with CY.

In the remaining pieces the foliation {7" Vz}zeT —n{y1 provides a one-to-one
correspondence between points in W! and W2. We further subd1v1de these
pieces in such a way that the lengths of their images under 7' are less than
Lo for each 0 < i < n and the pieces are pairwise matched by the foliation
{y.}. We call these matched pieces U f Possibly changing the constant Lg/2
to Lo/ C for some uniform constant C > 1 (depending only on the distortion
constant and the angle between stable and unstable cones) in the definition of
gn(w ), we may arrange it so that UE C We " for some WE "e gn(We) and

V,f C Wf """ for some W "e Qn(WE) forall j,k > 1and £ = 1, 2. There is
at most one ﬁf and two Vf per Wf = Q,,(We).
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In this way, we write Wt = u;r" Uf) U ;T 17[.[). The images T" Vf of
the unmatched pieces must be short while the images of the matched pieces
U ¢ may be long or short.

Returnlng to the components of ®_ (W) for the flow, G, (W*), note that if
W‘Z is not part of a curve in Q,(We) undergoing a collision at time —¢, then
P+ (le) is a union of at-most one matched and two unmatched curves U f and
V,f as described above. We may thus define U f as the subset of Wie such that
PY(U f) =U f and V,f as a connected subset of Wf such that P+(V,f) = V,f
If Wf is part of a curve in @(We) undergoing a collision at time —¢, then
P+(Wi€) may correspond to only part of a curve U f and at most two V,f as
described above. However, we will still consider those pieces as matched or

unmatched as defined.
With the above matching, dyys (U LU 2) may be infinite since there may

not be an unstable curve connectlng the two. However, there i1s an unstable
curve W“ for the map connecting U I and U U2. Note that W” is the trace of

an unstable curve for the flow WJ“ Wthh has nonempty 1ntersect10n with Ujl.
Although WJ'.‘ may not intersect U2, the weak unstable manifold containing
W]’.‘ does intersect UJ?, since P (Wj”) npt (sz) intersect. Thus there is a
time s; so that

®,, (U}) WY 0. (4.16)

For ¢ on W with [¢|caqye, < 1 and d(y1, ¥2) = 0, with the above
construction we must bound

=

‘/ Lihyy dmy —/ Lih Yy dmy
wl w2

> /VklfJszQD, Yoo ®; dmyy

>

/lfJUJ;CD, wloCD,de—/szU]gCD,wzoCD,de .
U: Us
J J

(4.17)
We do the estimate over the unmatched pieces V,f first using the strong stable

norm. To do this, we group the VE according to when the associated vertical
segments were most recently cut as follows (notice that we may just as well
define the vertical segments y; on T~ nW2 ason T"W'). Forz € T™"W¢,

let y/ denote the component of T/, still connected to T/ ~" W. Define

AL = {k : (Uzevzyzn i 1) n (SlH \sgﬂ) £ (f and

€ [0, n — 1] is minimal for this property} .
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Let S be the singularity curve which intersects ( et 2o i- 1) for some k €

A(i). Then T'S is an element of Sﬂ_ﬂl and since the curves yzn_i have length
at most CA i, by the uniform transversality of stable curves with curves in
511_411, we have |T”_’V,f| < CsAO_i.

Next we subdivide the interval [0, 7] into times ¢; = f — jTmin/2, j =
0,...,2 Lfnth For each k € A‘(i), there exists at least one Jx such that

D i tnin/2 (Vk) is not undergoing a collision (due to the choice Lo < tpin/4
from Lemma 3.8), and PT(® krmm/Z(V ) = T V,f. It follows from

Lemma 3.4 that |d>]kfmm/2(Vk)| < CeAy l

In addition, the ith collision must occur at atimes € [|iTmin), LI Tmax] + 1]
so that the number of 7; corresponding to a fixed i is bounded by a uniform
constant times i. Now for k € AL(i),

. f JVkZ@t 'K/fg o cD[ de
V

k

:_/¢ %kamm/Zf d’kamm/Z(Vk[)q)tjk Yy o thjk dmw

kamm/z(v

< ClL jermin/2 F s 1@ /2 (VOI 9 T,

1 —i/q
< CUFIEM A (1) Pk 1502

JkTm /Z(V]f)q)tjk |Cﬂ

(4.18)

where we have used (4.2) to bound ||£j,,../2 fls, Lemma 3.6 to estimate
| e o q)tjk les < C1l¥elcewey, and (4.7).

In order to sum over the relevant £ and k, we fix i, define J (i) to be the set
of j possible for the ith collision and K (j) to be the set of k for which ji = j.
Thus using (4.18), we estimate

VkECDt '(pg e} CI)[ de

1 —i/q
<CIfIe Y0 30 D0 A )Pyl (@), a(v)

Ci jel()keK(j)

< Clflse1>" 3 Ay < Clifllsee Zu\—’/q < ce' | £,

i jeJ()

(4.19)
where for the sum over k, we have noted that ® ;. /2(V,f) CPy (Wb, and
we have applied Lemma 3.8(b) with 1/go = 0, since there are at most two
such curves corresponding to each element of G, (WY); for the sum over j, we
have used the fact that #J (i) < Ci for some C > 0 depending on Tpax/ Tmin-
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Next, we must estimate the second term on the right-hand side of (4.17).
Recall that U f =PT(U j‘f) can be represented as the graph Gf. (r) = (r, pge(r))
‘] ~
of a function over some r-interval /;. By the definition of matched pieces, U 11
and (712 are defined over the same interval /;. Let § jl (r) =®_;4)0G }(r)
denote the (invertible) map from /; to U} and SJZ. =®_;4)0 Gg. (r) denote
the map from /; to s, (UJZ). For each j, define

$j =Jy1®; Y10 Po Sjo(spH~.

The function ¢; is well-defined on sz, and recalling s; from (4.16), we esti-
mate,

/fJU1¢t¢10¢z—/ fIp2 @ Yo 0 @,
u! j U7 J

[ ragecmea— [ ro
Uj ! @5 (U})

=<

+

_l’_

/ qu><,U2<Dt—s' 1/f20<bz—s,- —/ fJU;CID, Y20 &
q;sj(UJZ) SjpT J ’ UJZ J

(4.20)

We estimate the first term in Eq. (4.20) using the unstable norm. Lemma 3.6
and the distortion bounds given by (4.7) imply that

Ja®; -y 0 d <cC ‘J ® ‘ . 421
‘ U} t ‘//‘1 o Py C“(U}) = U} 4 LOO(U}) ( )
—1
Similarly, since SJI. o <S]2> < C by Lemma 3.4, we have
Cl
-1
1 2 n

|¢]|CQ(U]2) S ‘JUJI CDI . '(pl [e] CDZ Co((UJ]) SJ o (S]> Cl S C ‘JU}T ‘LOO(UJI) .
By the definition of ¢; and d(-, -),

1 2

d (JU} @if0 0 9;) = ‘[JU} o fos)—¢;0S; oy~
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To complete the estimate on the first term of (4.20), we need the following
lemma:

Lemma 4.3 (Lemma 4.2 of [18]) There exists C > 0, independent of n, W1,
and W?, such that for each j,

dyys <ﬁ}, ﬁjz) < CAy"ne =:¢.

Since P (dDSj <U]2>> = ﬁjz’ it follows from the definition of dyys that

dyys <U}, <I>sj (UJZ)) < g1 as well. In view of (4.21), we renormalize the
test functions by R; = C|Jy;1®;|coy1)- Then we apply the definition of the
J J

unstable norm with €1 in place of . Thus,

SN[ rpeonoe—[ s
7o oy (U)

1 _
< Ce" N N Y I @l ooty < CILS ut? A7 67
J ( J)
J

(4.22)

using the fact that LﬁJ <n < LrntﬁJ + 1 and the sum is bounded by

Lemma 3.8(b) for 1/gp = O since there is at most one matched piece U ]1

corresponding to each curve Wl.1 e G(Wh.
Next we estimate the second term in (4.20) using the strong stable norm.

As,(U}) / <¢j B Jq’sj(Uﬁq)f—w Y2 o CDz_sj)

< 111y, UDIY | = T, 2@, Y20 By,

ch (@5, W)
(4.23)

-1
Using the fact that ‘S}|cl (Sf) . < C and |y o CI>,|C,9(U}) <

Cl¥leswry < C, we split the estimate on the norm of the test function,

“pf' oy wp P V20 Py CP ;W)

1 2
= ClUy®ios) - Jo, @2y ®is; © S} ‘Cﬂ(lj)

+C ‘J% w2 Py,

Hepay
(4.24)

od, 08— od, , oS8?
Cﬁ(<1>sj(U_,3)) )1/f1 108; — VY20
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We will use the following lemma (which is the analogue of [18, Lem-
mas 4.3 and 4.4]) to estimate the two differences above.

Lemma 4.4 There exists C > 0 such that for each j > 1,

1 2 1/3—-8.
@ [Jp1®io St =g 3 ®s; 08| = Clp®ilcogne P

ch(1;)
1 2 —
(b) ‘wl 0 ® 08! —Yro® 08 |cﬁ(1j) < Cevb,
Proof (a) Let Gye denote the graph representing wt = PH(W*) and S*
denote the map from /¢ to Wt ¢ =1,2.Then <I>,oS} = SloG;Tlll oT" oG,
J
so that

—1
J oS =7 (S oGh) o (10 Gﬁ}> IGT" oGy IG - (vs1)

(4.25)

and a similar expression holds for J (U2> ®;_s;. All Jacobians except for
sj\"

Ji1 T" are uniformly bounded by Lemma 3.4 (note that S o G%/ll is the natural
J

flow map from PT(W') to Wh).
Fixing r € I}, by [18, eq. (4.16)], we have

13

€
LOO(U})

JpT" o G (r) = JgT" 0 Gia(r)| = C U T™
J J J J J
Also, |JGg1(r)—J G2 (r)| < Ceusing(3.5) andthefactthatjws(ﬁ}, (7}) <
J J
e. Now,

'(JSJI->_1(r)— (1) ) = e |15} — 1530,

JSjl. (r)Jsz.(r)

and since by Lemma 3.4, J Sf is bounded away from 0, we can focus on

the difference. Now in the notation of Lemma 3.4, J Sf (r) = JgP_ir)
J
(G it (r)> JGe(r), and as already noted, the difference of J G ¢ is bounded
J J J

by &. Thus we focus on the difference involving Jge ® ;) (G L (r)). Letting
J J

z2¢ = Ge(r) = (re, o) and (drg, dgg) denote the tangent vector to ﬁf at zg,
J
we have by (3.6)
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Tg1 @—r(z))(21)
1 -
T2 ®—r(2,)(22)

1
=—1In

2
(dr1)? [(coscm +T(ZDK(r) — r(zl)‘j,‘f;) (ke - %) }

-,
(dr)? [(cos 02+ T(ZK () — T(Z2)42)2 + (K(r) - 42) }

where 7y = PT(Zy), Z; € U}, Zy € Oy (Z3). Once again, we pair cor-
responding terms and estimate the differences. We have d(z1, z2) < ¢ and

|‘0%1 —‘fi%l <Ce sincec?ws (17]1 ﬁ}) < e. This leaves only |t(Z1) — t(Z3)|

to estimate. Since by definition of dys, there is an unstable curve connecting
U} and Dy, (UJZ), we have d(Z1, Z») < Ce andso |1(Z))—1t(Z2)| < Cel/2.

Finally, note that J (S Lo G_~11> = Jij1 ®_; and so satisfies the same esti-

mate as above. Since d (T” o GUl(r) T"oGg 2(r)) < C¢ by the uniform

transversality of the foliation {T" y.}, the triangle inequality together with
Lemma 3.4 yields that this difference is also bounded by Ce'/?.
These estimates together with Lemma 3.3 yield by (4.25),

81/3.

1 2
Ty @10 S}0) = Ty 3y @1, 0 SHO)| = € |2y .
J

Now since both Jacobians satisfy bounded distortion along stable curves
with exponent 1/3 by Lemma 3.5, we use the Holder interpolation from [19,
Lemma 4.3] to conclude the proof of part (a) the lemma.

(b) Fix r € I; and set z, = vf(r), Zy = Sf(r), ¢ =1,2. Also, let Y; =
®;(Z1) and Y, = @;_5,(Z2) denote the images of Z; and Z; in W and W2,
respectively. Now,

Y10 ®;081(r) — Y20 Dy, 083 (r)| = [Y1(Y1) — va(Y2).

Let r’ denote the arclength coordinate of w, = P71 (Y3) and set w; = P1(Y}).
Note that w; does not have the same arclength coordinate as w; since the
billiard map does not preserve vertical lines. Using the same notation as in
part (a), let w; = Gy (r’) and Y| = S1(r") denote the lifts of ' to PH(W1)
and W', respectively. Since w} and w lie on the same vertical segment and
dys (PH(Wh, PT(W?)) < &, we have |lw] — ws| < e. Also, since z; and
77 line on the same vertical line segment, the segment connecting w; and w
lies in the map unstable cone and so is uniformly transverse to the stable cone.
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Thus |w; — wy| < Ce and so by the triangle inequality, |w; — w’ll < Ce. It
then follows from Lemma 3.4 that d (Y1, Y{) < Ce. Putting these estimates
together, and using the fact that [y o S I Yo o 52| = 0, we estimate,

10 @10 5}() = Y20 @y, 0 S30)|

< [v1 () = v (V)| + |1 (Y1) = v2(12)]
<cd (11, Y))" < Ce.

Finally, since i1 and v, are Holder continuous with exponent «, we again
use the Holder interpolation from [19, Lemma 4.3], to conclude part (b) of the
lemma. O

With Lemma 4.4 proved, (4.23), and (4.24) complete the estimate on the
second term in (4.20). Indeed, we have

2

Ly.(Uf) f (¢] - Jq>sj (UJZ)CDZ—S]) Yoo CD[—S]'
5j

< D ClL sl UDI T2 i oy 67
J
< Clflse* ",

(4.26)

where again the sum is bounded by Lemma 3.8(b) (using that |y, (UJZ)| is

comparable to IU?I).

It remains to estimate the third term in (4.20), which we do using the neutral
norm. For this, we first state and prove a needed bound on the times s; from
(4.16),

Lemma 4.5 There exists C > 0 such thats; < C el/2 for each j.

Proof We first show that the collision times of U! and U? remain close
throughout their orbits until time ¢. Let n denote tfle number of collisions
from time O to time ¢.

Let Z € @, (U}), Y € & (U/Z) be two points such that P*(Z) and

P (Y) are connected by one of the curves 7" (y,) defined during the matching
process at the beginning of this section. Since dyys(W!, W?) < &, we have
d(PT(Z), PT(Y)) < Ce and d(Z,Y) < Ce, for some uniform constant
C > 0. Now
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n—1
T P2 — T (P = Y e (T PR (Z) — (T PH(Y))
i=0
n—1
<> CcayPa(Pt (), PH(Y)'? < 2,
i=0

due to the 1/2-Holder continuity of 7~ (analogous to (3.7)) and the uniform
expansion along unstable curves. Since |t(Z) — t(Y)| < Cd(Z,Y)'/? <
Ce'/? and since t = 1(P_,;(Z)) + t"(PT(Z)) — 7(Z) with an analogous
expression for ¢ in terms of Y, we conclude that [t(®_;Z) — 1(D_,;Y)| <
Ce!'/?. Thus it must be that d(®_,Z, ®_,Y) < Cel'/2,

Since @y, (UJZ) and U Jl are connected by an unstable curve of length Ce, if

we choose Y in the above analysis to be the point in sz whose translate by s ;

belongs to this unstable curve, then the triangle inequality yields s; < C g2,

proving Lemma 4.5. O

We may now estimate the second term in (4.20):

fJ 2¢l‘—'w20q>[—"_/ f.] ZCD;WZOCD;
‘/q)xj (Uj2) q)S] (Uj) Sj Sj sz Uj

5
= f as/ qu>S(U2)q>t—s l)[/2 o®,_ds
0 @, (U7) g

5
- / aS/ fo®y Jya®, Y 0 B, ds. (4.27)
0 U} J
Thus, recalling (2.11), (with s; < C4/€ by Lemma 4.5),

Sj
/ / O5(f o @g)J 2P Y o &y dmy ds
o Ju? J

Sj
:f fzar(fqur)lr:OOq)s ']UZCDI 'lp OCI)[ de ds
0 U: J
J

=< Csj||f||0|JUJ2<DI|LOO(U})s (4.28)

where once again, we have used Lemma 3.6 and (4.7).
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We use Lemma 4.5 together with (4.27) and (4.28) to estimate the third term
in (4.20),

2

~/‘;>g.(UJ2) f«]d>sj(UJ2)th—Sj Yo CI)[_Sj - /sz fJszq)t Yy o
5j

< C |2 @7 0o

= 2 Cllfllos V2 @il
J

< ce'? £lo,

where again we have used Lemma 3.8(b).
Now we use this bound, together with (4.19), (4.22) and (4.26) to estimate
4.17)

< Clfllsea+Cl fllut? A~ ¥

‘/ ﬁffwldmw—/ Cof Y dmy
wl w2

+CISse* P+ Cll flloe .
(4.29)
Since y < min{l/q,a — B} < 1/3, we divide through by ¢? and take the
appropriate suprema to complete the proof of (4.4).

4.3 Strong continuity of £; on B

To complete this section, we state and prove the announced lemma on the
regularity of t — L;. (See also the variant given in Lemma 4.7 below.)

Lemma 4.6 (Strong continuity) For each f € B we have lim, g ||£; f —
flz=0.

Proof First we prove the statement for f € C% NC2(9), then we extend it to
general f € B. We fix f € C% NC?*(Q) and consider each component of the
norm separately.

To estimate the strong stable norm, fix W € W* and ¥ € CP(W) with
|WI'913| e w) < 1. Then,

t
[ @r=pwamy=[ [accpdsvan.
14 w Jo
As usual, by the group property (see (2.11)), we have

O (Ls [) =0, (foP)lr=00 Py = (V- Nod_y=L(Vf-7), (430)

26 Note for any curve W and any x in W, the point ®;(x) only hits €2 at finitely many times
s, recall also that f € C2.
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where 7 denotes the unit vector in the direction of the flow. Since Vf - 7 €
C'(Q0) c B (itis notan element of C° or BY in general, but this is immaterial)
we can apply (4.15) to estimate,

/(Ezf—f)llf dmy
w
t
=/0 /W LoV f g dmwds < CLUIVF - Alls + IV f - lu),

where (3.12) gives |V f - Alls + IV - filw < |V - fileoq- Taking the
supremum over W and ¢ yields the estimate on the strong stable norm,

1L f — flls < CHV f - leocay)-
To estimate the unstable norm, fix ¢ > 0 and let Wi, Wo € W?* satisfy

dys (Wi, W) < e.Take ¢; € C¥(W;) with [|ce(w) < 1andd (Y1, ¥2) = 0.
Then using again (4.30) and (4.29), we have

/ (Lof — v dmy — / (Lo f — F)v dmy
Wi Wa

t t
_ / / 05 (Ly f)ds Y1 dmy — / / 35 (Ls f)ds W2 dmiy
Wy JO W, JO

t
=/ (/ LoV Ry dmw—/ ﬁs(vf'ﬁ)vfzdmw)ds
0 Wi %]

<tC(IVFf-illse" + 1V f - llue” +IV S - Allse® P HIV S - iilloe'?).
Dividing through by &” (recall that ¥ < 1/3), recalling (3.12), and taking the
appropriate suprema yields the bound || £; f — fllu < Ct|V f - 7)|c1(q)-

Finally, to estimate the neutral norm, we fix 0 < |rg] < 1, W € W’ and

Y € C*(W) with |{|ce(w) < 1. Then using (4.30) and the neutral estimate
(4.3), we have,

[ s = 100 mo v dmy

t
=/ a((/ £S<Vf-ﬁ)ds)o<1>r)\ ¥ dmy
W 0 r:O

t
- / / 0 (Ls(Vf - ) 0 @)y ¥ dmw ds < CtIVf - illo.
0 JW
Taken together, the estimates on the three components of the norm imply
the bound |, f — flig < Ct|Vf - ﬁlcl(QO), which proves the lemma for
feC*Q)NCo.
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For more general f € B, we proceed by approximation. By the definition
of B, in particular (2.10), we can approach any f in B by a sequence, L;, (h,)
with &, € C2(Q20) N CY and 1, > 0. Then we write

Li(f) = f=Li(f = Liyhn) + Lo, (Li(hp) — hn) + (Lyhn — ).

By Proposition 4.1, there exists C so that || £, f|lzg < C|| fllg forall f € B C
BY. Thus the first and last term on the right-hand side above tend to zero in B
as n — oo, uniformly in ¢. Finally,

L2, (Le(hn) — h) |l < CILi(hn) — B,
so that it suffices to see thatlim, o || £; g — glls = O forany C? function g € C°,

which is precisely what we proved above. O

To apply the results of Butterley [11] to prove Theorem 1.2, we will use the
following lemma.

Lemma 4.7 There exists C > 0 such that |L,f — fly < Ct| flg for all
t>0andall f € B.

Proof Let f € C2(Qo) and fix W € W* and ¥ € C*(W) with ¥ lceqwy < 1.
Then using the group property as in (2.11) and changing variables,

t
/(Ezf—f)\/fdmw=/ / 3,(f o D_y)¥ dmyy
w W JO

t
= / / 0, (f o ®p)lr=0 0 ®_s ¥ dmwyds
0 w
(>
O w,eg,(w)

<tifllo Y. ¥ o PsleaqwlJw, Psle=(w)
WieGs (W)

= Ctll fllo.

/ 0 (f 0 ®p)lr=0 ¥ o Py JWi D, dmyds
Wi

where we have used Lemma 3.6 and Lemma 3.8(b) in the last line to bound
the sum independently of s. Now taking the supremum over W and v yields
IL: f — flw < Ct| fllo, and taking the supremum over f with || fllg < 1
proves the lemma. m|

5 Quasi-compactness of the resolvent R (z), first results on the
spectrum of X

In this section, we use the control over L, established in the previous section
to deduce the quasi-compactness of the resolvent acting on B and obtain the
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first spectral properties of the generator X. We begin by defining the generator
X of the semi-group acting on elements of 5,

Xf =lim Etf—_f
t}0 t

The domain of X is defined as the set of f € B for which the above limit
converges in the norm of 3. By Lemma 4.6, the operator £, is strongly con-
tinuous on B which implies [16, Lemmas 6.1.11, 6.1.14] that X is a closed
operator, with domain dense in B. (Indeed by Lemma 7.5, the domain of X
contains C2(£20)). This allows us to define the resolvent R(z) = (z/d — X)~!.
Forz =a +ib, a > 0, the resolvent R(z) has the representation,

o0
R f = / e L, f dt (5.1)
0
and is a bounded operator on 5. By induction, the iterates of R(z) thus satisfy
00 t”_l
R@"f :/ e YL, f dt. (5.2)
o (m—1!

We will use repeatedly the fact that for any z € C with Re(z) > 0,

00 t"_l
/ e dt
o @m—DND!

Recall the hyperbolicity exponents A > 1 from (1.2) and A from the growth
Lemma 3.8 In Sect. 5.1, we will prove the following proposition.

< (Re(2)™". (5.3)

Proposition 5.1 (Lasota—Yorke inequalities for R(z)) Recall that y <
min{o — B, 1/q}. For any

1>2>max{A™F, A7, A=y

there exists C > 1 such that for all z € Cwith Re(z) = a > 0, all f € B and
alln > 0,

IR@)" flw < Ca™| flu (5.4)
IR@)" flls < Cla =A™ flls + Ca™| flu (5.5)
IR@" fllu < Cla—mX) | fll+Ca" | flls +Ca™"[ fllo (5.6)
IR)" fllo < Ca'™"(1 + a1z f - (5.7)

From this proposition, we deduce below a bound on the essential spectral
radius of R(z):
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Corollary 5.2 (Spectral and essential spectral radii of R(z)) Let X < 1and
C be as in Proposition 5.1. If the constant c, defining the norm in B is small
enough (depending only on C from Proposition 5.1) then, for any z = a + ib
with a > 1, the essential spectral radius of R(z) on B is bounded by (a —
In %)=, while its spectral radius is bounded by a™"

Remark 5.3 (Optimal strip) Since our choice of homogeneity layers gives ¢ <
1/3, it is easy to see that the optimal choice for our parameters in view of
Corollary 5.2 is

1
q
giving a Banach space B for which we can take A > A~!/% arbitrarily close
to A~1/6. By choosing homogeneity layers kX with x > 1 arbitrarily close
to 1 (see footnote 14), we can consider the space B3 associated to 1 /g = 1/2,

B = 1/4, a < 1/2 arbitrarily close to 1/2, and y < 1/4 arbitrarily close to
1/4, so that we can take & > A~'/4 arbitrarily close to A~!/*. (This seems
to be the optimal?’ strip, since for a piecewise hyperbolic symplectic map
or hamiltonian flow we expect A~Y2 in view of [17, Remark 5.9], and the
further square root appears natural in view of the billiard singularity type, see
Lemma 3.4). To get exponential decay of correlations (Corollary 1.3), we shall
need to consider in Sect. 9 a Banach space B C B corresponding to 8 > 0 very
small, and 1/g < 1 very close to 1 (we may take o« < 1/3 and take smaller y if
needed). However, the non-essential spectra of R on the Banach spaces B and
B corresponding to these different parameters coincide (see e.g. [7, App. A,

using that the spaces B c Bare continuously embedded in (C'/#(€20))*, while
their intersection 3 is a Banach space dense in B, recalling (2. 10)) o) the final
spectral result also holds on the space B foré = %, o= %, B = 6, y = 6 Note
finally that the choice of homogeneity layer decay also affects the constants in
the approximate foliation constructed in Sect. 6 and used to prove Lemma 8.1
and thus Theorem 1.2 and its corollary. The choice of homogeneity layers
made there is independent from the one used to get Corollary 5.2, and in any
case taking 1 < x < 2 close to 1 will in fact give a better exponent for the
foliations in Sect. 6 and Remark 1.1.

Proof of Corollary 5.2 Fixing z = a + ib with a > 0, we choose n > 1
minimal so that 2C/(1 —a~'In1)" =: v < 1, where C is from Proposi-

27 In particular, taking other values than the “Hilbert-space” choice ¢ = 2 does not help here.
However, for the proof of Proposition 9.1, it is crucial to let g tend to 1.
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tion 5.1. If a > 1~, we have 0 < ¢, < (1 —a™! ln):)_”, if ¢, > 0 satisfies
cu < (1 —a~'InX)™", with n fixed as above. Now,

d"IR@)" flg = a"IR@)" flls + cud" IR@)" f lu + a"IR)" flo
<CU—=a ") fls+Clflw+ecaCA=a " InR) ™" fll.
+cuCll flls + cuCll fllo + Ca(l +a="z)| flw

<2C(1—a "D f s + cull Fllu + 11 £llo)
+ C +lzl + D) flw
< v Iflls+CA+ Izl + a)| fluw-
(5.8)
By a classical result of Hennion [26], this, together with the compactness of
the unitball of Bin B,, (Lemma 3.10), implies that the essential spectral radius
of R(z) on B is bounded by (a — In1)~!, while its spectral radius is bounded
by a L. O

As a consequence of Corollary 5.2, we get our first result on the spectrum
of the generator X (see also Corollary 9.2):

Corollary 5.4 (Spectrum of X) Under the assumptions of Corollary 5.2, the
following holds: The spectrum of X on B is contained in the left half-plane
Mz < 0, and its intersection with the half-plane {z € C | Rz > In A} consists of
at most countably many isolated eigenvalues of finite multiplicity. In addition,
the spectrum on the imaginary axis consists in a finite union of discrete additive
subgroups of R, and if b € R then Xy = iby for v € B implies € L*°,
while X\ = iby for ¥ € L' implies € B. Finally, X has an eigenvalue of
algebraic multiplicity one at 0.

Proof The arguments are standard, seee.g. [5, Lemma 3.6, Cor. 3.7]. A nonzero
p € C lies in the spectrum of R(z) on Bif and only if p = (z — ), where /5
lies in the spectrum of X as a closed operator on 3 (see e.g. [ 16, Lemma 8.1.9]).
For such a pair (p, p), is easy to check that, for any k > 1 and any ¢ € B,
we have (R(z) — p)X(¥) = 0if and only if (X — 5)K(y) = 0, so that p is an
eigenvalue of R(z) of algebraic multiplicity mg, 1 < mo < oo, if and only if
p is an eigenvalue of X of algebraic multiplicity mq. The first two claims then
follow from Corollary 5.2.

It remains to study the spectrum on the imaginary axis. First note that if
X(p) = iby for b # 0, then R(a + ib)(y) = a lw Another simple
computatlon usmg [16, Theorem 6.1.16] (noting that Tﬂt = bt Y satisfies

8t1ﬁt lt=s = X(Ws) so that »Ct(WO) Wt) gives
Vo d, =e Py (5.9)
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In the following, we will use two properties of B: First, there exists a set
D C L°°(2p) dense in B (see (2.10) and use that £, is a contraction in L°°,
i.e., |Li¥]oo < |¥]oo)- Second, if ¢ € Band [ ¢ dm = 0 forall p € C2,
then ¢ = 0 (due to the embedding properties in Lemma 2.11).

We next show that v € L® if o &, = ¢~?"1) for b € R. We already
observed that this implies R(a+ib) () = a~'¢. Next, let {¢;}X |, oy = a7,
be the finitely many eigenvalues of modulus a~!' of R(z). By the spectral
decomposition, [28], we can write

K
RG@) =Y 1612 + Ni@]+ Q). z=a+ib, (5.10)
i=1

where the operators I1;(z) and N;(z) are finite rank, the IT;(z), N;(z), and
0(z) commute, with IT;(z)? = I1;(z), [1;(z) Q(z) = N;j(2)I1;(z) = 0, for
i # j, 0ij(z)Ni(z) = N;(2), and, if N;(z) # 0, there exists d;(z) € N such
that N; ()% @+ = o while Nj(z)%® £ 0. In addition there exist C(z) >
0 and po(z) < a~! such that [|Q"(2)|| < C(2)po(z)". (We suppress the z
dependence when no confusion can arise). We next show that N;(z) = 0 for
alli € {1, ..., K}. Assume otherwise, then, for any n > 1, we would have

K di(z)

R()" ZZ< ) L QN+ Opo(a)"),

which, setting d = min; d;, would immediately imply that there is ¥ € B for
which [|R(2)"¥| = C(z)a "n%?, contradicting (5.4). Accordingly, (5.10)
implies limy,—, o0 © S a*R(z2)F = My(z). Let Yo € D, then for k > 1,
using that £; preserves volume,

' ' ' 00 tk—le—at
a"R(z) (1/10)) <a / —— Y00 Plec df < [Y0loo-  (5.11)
o0 o (k=1

Hence, for each g € D and ¢ € C*,

'f 1 (2) (o) - wdm‘ = [Yoloolelp- (5.12)

This implies that TT; (D) C L. Since the range of T is finite-dimensional, it
follows that IT; (z) is bounded from B to L°°, proving our claim that ¢y € L*°.

We next check thatif ¥ € L'\ {0} and R(a + ib)(y) = a~ 'y for b € R,
then ¢ € B. Consider a sequence {y,} C C* converging to v in L'. Then
the limit
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1 .
Jim ~ a*R@ W), z=a+ib,

always exists, and it is zero if a~! ¢ sp (R(z)), while it equals IT;(z) () if
ale sp (R(z)), where I1;(z) is the eigenprojector associated to a~!. In the
first case, for each ¢ € C2,

fovs

<3£I%>nlinéozz e 1),|w8—w|y 190 ®(1)]oo di
< 1im [ — g1 - lploo = 0.
e—0

We would then have ¥ = 0, a contradiction. Hence a ™!

by the same computation as above

is an eigenvalue, and

< [Ye —¥lp - @loo- (5.13)

‘ / W — ()P dx

Since IT;(z) is a projector, ITj(z) = Y, Ui () [ (2)1(-), where Y (z) €
BN L, the £ (z) belong to the dual of B, and £, (1%) = Jy;. Then (5.13) shows
that £, (¢) is bounded uniformly in €. We can then extract a subsequence ¢
such that I'Ty (z) (V¢ j) is convergent. Thus, 1 is a linear combination of the &k,
concluding the proof that Y € B.

We next use the facts about ! and L™ to show the discrete subgroup claim.
If X (Yx) = ibpyry, with ¢ # 0 for k € {1, 2}, we have 1, Yo € L™, and

R@) W) = /0 e (Y10 )(Y20Py)dt

o0
— wle/ e—zl‘-i—i(b]-i-bz)l‘dt
0
= (z—ib; —iby) "Y1 vn. (5.14)

Clearly, ¥ = Y12 € L'\ {0} and R(a + iby + iby)(¥) = a~ 'y, so that
¥ € B. Then, (5.14) implies that either Y1y, = 0 or iby +iby € sp (X). A
similar argument applied to ¥; shows that —ib; € sp (X). Thus |k 12 belongs
to the finite dimensional eigenspace of the eigenvalue zero and {imby},,c7z C
sp (X). This ends the proof of the subgroup claim.

Finally, if A is a positive measure invariant set, then Id4 € L (which
belongs to B by the argument above) is an eigenvector associated to zero,
and if ¢ is an eigenvector associated to zero (we can assume without loss of
generality that i is real) then {3y > A} are invariant sets, that is, ¥ must be
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piecewise constant (otherwise zero would have infinite multiplicity). In other
words the eigenspace of zero is spanned by the characteristic functions of the
ergodic decomposition of Lebesgue. By ergodicity of the billiard flow, zero is
a simple eigenvalue. O

5.1 Norm estimates for R (z)

In this subsection, we prove Proposition 5.1. Fix 1 > x> max{A‘ﬂ, A7,
A=y,

Now taking W € W* and ¥ € C*(W) with |[{/|c«(w) < 1, we have by (4.8)
and (5.3),

<Cl|flwa™",

o0 n—1
‘f R(z)"fwdmw1=‘/ fﬁffwdmw Mt
w o Jw (n—1)!

which proves (5.4).
Similarly, taking ¥ € CP (W) with |W|"/4 ||y < 1, we have by (4.15),

[ rersvam|=|[" [ v amy e ar

/ [CAT + 20D £l + Ll

n—l

—1¢

7611‘ dt
< Cla—i)™"|flls+Ca™|flw,

where we have again used (5.3), proving (5.5).
To prove (5.6), fixing ¢ > 0 and taking Wy, Wy with dyys (W1, Wh) < e,
and ¥; € C*(W;) with [|cew,) < 1 and d (Y1, Y2) = 0, we estimate

g7’ R@"f yrdmw — | R@"f ¥ dmw‘
Wi W
00 n—1
= / ! e deT ( Lif Y1 dmy — Lif ¥ dmw) dt
0 (l’l - 1)' Wi Wr
[e'e] n—1
< / ! e CANNfllu + CUfllo + NI flls)dt
o (-1

<Cl@@—-1)™|fllu +Ca (I flls + I fllo),

where we have used (5.3) and (4.4). Taking the appropriate suprema proves
(5.6).

We prove the neutral norm estimate (5.7). Let W € W* and v € C*(W)
with [{|ce(w) < 1. Using the definition of the neutral norm, we write for
feBNCHQ),
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/W 8, (R@)" f) 0 ®y)s—o ¥ dmy

e’} n—1
_ / / 3, (Lo f) 0 y) ls—odt Y dmyy
(n — 1)‘

f f (n—1)! _ZZBS(fOCD—st:t dt ¥ dmy

__/(tnz—an_l)—ztfﬁ o
—Jo n-2) @m-1 ¢ W (f ¥ dmy dt,

where in the last line we have integrated by parts and used the fact that £; f =
f o ®_;. Finally, recalling the weak norm estimate (4.8) for the integral on W
and using (5.3) to integrate with respect to d¢ yields (5.7). This ends the proof
of Proposition 5.1.

6 Construction of approximate unstable Lipschitz foliations

Fix a length scale 0 < p < Lg. For any homogeneous flow stable curve
W e W?* such that

(@) d(W,0Q0) >2Cqp and (b) P (W) C Hy,,

where C; > 1isdefined by (6.1) and ky satisfies?8 ky < Cp_l/ 5 and for any
» > 0 and any x¥ such that &, (W) remains at least Cy p away from a collision
for all || < |x°|, we shall construct in Theorem 6.2 below a surface Fyx0
containing ®,0(W) and transversal to the flow, and a transverse foliation of
a two-dimensional neighborhood of W in ¥, .0 by (one-dimensional) curves
y so that each y is a flow-unstable curve, and so that ®_,(y) is an unstable
curve for 0 < ¢ < x and “most” curves y.

But first, we need to define good local coordinates (making precise
Remark 2.4):

Remark 6.1 (C* cone-compatible Darboux charts) Let W satisfy (a) and (b)
above. For any Z € W, by (b) we have cos p(P1(Z)) = Cp*/ for some
C > 0. Similarly, if Z' € Qg satisfiesd(Z, Z') < C4p, wehave t(Z') > Cyp
and cos p(P*(Z")) > Cp?/> since P*(Z’) lies either in Hy,, or Hy, +i.
Thus it follows from (2.4) that the width of the stable cones at Z and Z’
has angle at least of order p%/°, and the maximum and minimum slopes in
C*(Z) and C*(Z') are uniformly bounded multiples of one another. Similar

28 The exponent —1/5 comes from our choice of homogenelty layer (the length of the fiber,
k2 jyo must be less than the width of the strip kW ); this choice will impact the exponents
throughout this section, without further notice.
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considerations hold for the unstable cones. Thus, fixing Z € W, we may
adopt local coordinates (x*, x*, xo) in a c1 p neighborhood of Z, as introduced
in Remark 2.4, for which the contact form is in standard form and Z is the
origin. By the above discussion, the charts effecting this change of coordinates
are uniformly C2. The constant ¢; > 1 is chosen large enough that the box
{(x*, x5, x%) : x% € W, |x"| < 2p, |x° < 2p} is well-defined in these new
coordinates, and if necessary, C, is increased accordingly.

Adopting such local coordinates x*, x*, and x° such that W = {(0, x*, 0) :
x* € [0, |W]]}, for each fixed 0 < @w < 1/35 and » > 0, and each x? so that
d(®,(W), 0R2¢) = Cyp forall |t] < |x0|, Theorem 6.2 will provide a surface

F={Fx", x*) = (", G(x", x%), H(x", x%) +x9:x* €0, W1, x"* € [—p, pl}

transversal to the flow ®; and so that the curves x* > yps(x*) =
(x", G(x*, x%), H(x", x*) + x°) are pairwise disjoint, satisfying additional
requirements. (We write y € F and view F as foliated by the curves y = y,s;
in particular, VZ = (0, x%,0) € W, the curve yz := y,s is the unique y € F
such that y N W = {Z}).

Theorem 6.2 Assuming conditions (a) and (b) above, for each fixed 0 < @ <
1/35and » > 0, and each x0 5o that d(®,(W), Q) > Capforall|t| < |x0|,
it is possible to construct F = F,, o sothatit satisfies the following conditions,
for a constant C depending on @, but independent of p, x, x°, and W :

(1) 0w H = G, which implies a(0,uF) = 0, i.e., each y € F lies in the
kernel of the contact form «. In addition, each y € F is an unstable
curve (in particular, (1, 9xu G, 9,u H) € C* and |y | < Lo)with|y| > p.

(i) For all x* € [0, |W|] we have G(0, x*) = x* and H(0, x*) = 0.

(iii) Let A, denote the set of Z € W such that the x-trace of ®_,(yz)
contains no intersections with the boundaries of homogeneity strips or
tangential collisions. Then for any Z € A,, we have ®_;(yz) € W"
forall0 <s < .

1v) mw (W \ Ay) < Cp.

(v) C7' < 105G || < C, which implies |9ys dxu H|oo < C by (i).

(Vi) 0540 G € CO and |0,udys Gloo < Cp /3.

(vii) The following four-point estimate holds:

|3st(x”, xs) - aXSG(x”, ys) - Bst(y", XS) + ast(yu’ ys)|
- Cp74/5,11w/15|xu_yu|177w|xs_yslw_

(viii) |9y H|po < Cp and |dys H|ow < Cp®3~16@/15,

@ Springer



Exponential decay of correlations for Sinai billiard flows 101

The rest of the section is devoted to the proof of the above Theorem. We
will first (Sects. 6.1-6.4) construct a foliation with the (analogue of the) above
properties in a neighborhood of P (W) in the phase space M of the billiard
map and then (Sect. 6.5) describe how to lift it to W to get a foliation for the
billiard flow. We denote analogous objects for the map-foliation by F, G, A,,,
etc.

Before carrying out this construction, we mention a remark which will be

useful below:
Remark 6.3 (Taking the exponential of a four-point estimate) We claim that
if (ii), (v), and (vi) hold, then to show (vii) it is enough to prove (vii) for the

function log ;G (up to changing the constant factor). Indeed, using (ii), first
observe that (vii) for log d,s G at x" = 0 gives

1log s G (y", x*) —log s G (y, y*)| < C2p~ ¥/~ Ha /15y =T s ysj@
< 2C2p1/57116w/15)|x5 _ yslw’

since |y*| < p. Thennote that forany Co, > 1,thereisaconstant C’ depending
only on Cy so that, if a function g(x“, x*¥) satisfies |g|co < Coo, and

sup |g(x", x%) — g(x*, y*)| < Cslx* — y*|7,

xLl

sup [g(x", x%) — g(y", x| < Cyulx" — y"|,

xs
and
lg(x", x*) —g(x", y) —g (3", x)+g (", y)| < Cuslx" —y* 7777 x5 — %17,
with C,Cy < CooCyy, then

lexpg(x*, x*) —expg(x", y*) —expg(y", x*) +expg (v, y')l
< C'Culx" = y "7 |t — 3|7
Indeed, first write expg = Y 1o g*/(k!). Then note that an easy induction
gives [g(x", x")F — g(x*, y*)*| < 247 1CET T Cylae® — y°|7 and [g(x", x)F —

gy, xH¥| < 2k=1ck1C, |x" — y*| for all k > 1. Finally, the trivial formula

aa' —bb' —cc’ +dd' =cld —b - +d)+@a—-b—c+d)d
+@—c)a =b)+@-b®b —d),
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implies

|g(xu’ xS)k _ g(xu’ y.v)k _ g(yu’ xS)k + g(yu, yS)k|
S 2k—1clgo—lcus|xu _ yu|l—7w|xs _ ys|w’

forall k > 1. To conclude, use Y .o 2671 CET! k! = (2Co0) €2 C.

Now apply this bound to g = log d;s G with C4, derived from (v), Cy =
CElpl/5=116w/15 0 — c*1,=4/5 from (vi), and C,y = CE1 p=4/3—11/15
Then C,C; < CxC,s whenever w < 1/35.

6.1 Constructing the regular part of the map-foliation, (iii—iv)

We construct the analogue A, for PT(W) of the domain A, by putting a
transverse foliation on curves P (W;) for W; € G, (W) (recall Definition 3.1)
and pushing it forward to PT(W). Let W; € G, (W). This fixes n = n(W;)
such that 7" (Pt (W;)) C PT(W).

Using (a), we choose a uniformly C? foliation of curves {¢} lying in
the unstable cone for the map and transverse to P (W;) of length |[¢| =
k%vp/lje” T"(z¢)|, where zp = PT(W;) N ¢, J,/T" is the (unstable) Jacobian
along ¢, and ky is the index of the homogeneity strip containing P (W). We
call this foliation {€},c p+(w,) a seeding foliation. Those curves £ on which T"
is smooth (in particular, avoiding intersections with the boundaries of homo-
geneity strips) create a transverse foliation of map-unstable curves y = T"({)
over the subset A, of P+(W) such that 7/ (¢) is a homogeneous unstable
curve foreach j =0, 1, ..., n. We now estimate the size of A, in PH(W).

If T/ (¢) is a single homogeneous curve, then it has length

T/ (O = CF Ky p/ I35, T (T (20)), (6.1)

where

Ca(j) = 1+ Cysupd(T7 (x), T/ (y)'/3,
X,y

with Cy is the distortion constant from Lemma 3.5. Slightly abusing notation,
we replace Cy by max{Cy, max; Ca(j)}, observing that Supy y d(T/ (x),
T/ () 1/3 isbounded uniformly in p, W and x. Consequently, |y | = |T" ()| =
le k%v 0.

We note that by property (b) above regarding the homogeneity strip into
which W is allowed to project, we have k%v p=<C kv_v3 , so that there is no need to
cutany curves 7" ¢ thathave not already been cut previously attime 1, .. .n—1,
since they will automatically lie in a bounded number of homogeneity strips
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and so enjoy bounded distortion with a (properly adjusted) distortion constant
C,. Since the expansion in one step at x is proportional to the reciprocal of
cos ¢(Tx), and this in turn is proportional to the square of the index of the
homogeneity strip containing 7 (x) (see [15, eq. (4.20)]), it follows that the
unstable Jacobian at the last step is proportional to k2,, in other words

Ky /T4, T(T" " 20) < Cy. (6.2)

The set of cuts appearing in forward iterates of £ is the extended singularity
set S,Hjl from Definition 2.6. The growth lemma from [15] we shall apply below
estimates the measure of the subset of W; for which the corresponding ¢ are
cut by considering the iterate j at which the cut is made, and estimating the
length of TJ(W;) that has had its 7/ (¢) cut. For this, we claim that we need
only look at the sets Sy, S—1, and the boundaries of the homogeneity strips
(and not any of their iterates): Notice that if a curve S is in S; \ Sy, it has a
negative slope (is a stable curve). Its image under 7', if it does not belong to S,
belongs to S_; \ Sp and so has a positive slope (is an unstable curve). There
are exactly two “images” of curves in Sj \ &y, one coming from each “side”
of the curve which goes to a different scatterer.

We make cuts at time j when either (1) T/ (£) crosses the boundary of a
homogeneity strip; or (2) T/~!(£) crosses a curve in S| whose image belongs
to S_1\ So. (These are the only two possible cases: If TJ=1(¢) crosses a curve
in §1 whose image belongs to Sp, then in fact TJ(¢) will cross the boundary
of a homogeneity strip; and this is case (1).)

For (1), the boundary of the homogeneity strip is horizontal (in the global
(r, ) coordinates), so the stable curve T/ (W) is uniformly transverse to it.
Thus the length of T/ (W;) that has its 7/ (¢) cut is at most a constant times the
length of TJ(¢). Here itis important that T7(W;) is transverse to the boundary
of the homogeneity strips and not whether T/ (£) is, although in fact, they both
are.

For (2), although S; is made of stable curves (with negative slope), we
do not cut 77~1(¢) when it lands across this curve (note that at time j—1
the derivatives are still comparable along 7/~ (¢)—there is no problem with
smoothness or distortion at this step). We cut at the next step, when T/-1(0)
maps to TJ(¢), which now has two (or more) connected components. The
subset of 7/ (W;) which is missing part of its foliation {7/ (£)} is the subset of
TJ(W;) whose T/ (£) intersects this singularity curve in S_; (the image of the
curve in Sy at time j — 1). Again, it is the uniform transversality of S_; \ Sp
with the stable curve T/ (W;) that guarantees that the length of TJ(W;) that
has had its 7/ () cut is at most a constant times the length of TJ(¢).

Thus, there exists a constant Cy, depending only on C,; and the uniform
transversality of stable curves and extended singularities (as explained above),
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such that if the intersection of 77 (¢) and T/ (P (W;)) lies at a distance at least
Cop/ I, ZT"—J'—l(szg) from the endpoints of 7/ (P*(W;)), then T/ (¢) is
notcutattime j, j =0, 1,...n— 1. (Recall that we do not cut at the last time
step n when we arrive back at P (W) because we assumed that P (W) is
already a homogeneous stable curve.)

Setting i = n — j and letting r_;(z) denote the distance from T7(z) to
the nearest endpoint of the connected homogeneous components of T=H (W)
belonging to G; (W), we conclude that if 7"~ (¢£) is cut at time i, then r_; (z) <
CopAy i+1 \where 7 is the point of intersection of 7"~ (¢) and T~/ (W), and
Ag > 1is deﬁned above (1.2). Thus

n—1
PrONE, < |Jlze Pram ri@ = copa 1}
i=0

Using the growth lemma [15, Theorem 5.52 and Exercise 5.49], there exist
constants C > 0, Ao < 1, such that for all £ > 0,

mp+w) (r—i (2) < &) < C(hoAo) mp+wy(ro(z) < eAy’) + Ce| PT (W)
< 2Cerh + Ce|PT(W)|.

Applying this bound with & = Cop Ay i+1 and summing over i, we estimate,

n—1
mpany(PTW)\A) <) ClpAg™ gy + Cong ™ [PHW)| < C7p.
i=0

This implies the analogue for A, of item (iv) of the foliation.

6.2 Smoothness of the regular part of the map-foliation, (v—vi-vii)

We proceed to check the regularity of the parts of the foliation {£:} ;w5
which survive uncut until time 7.

Let W; < P*(W;) denote the maximal subcurve of PT(W;) so that
{T”ZZ}Z W, = {Vx}, T, is not cut. Let k; denote the index of the homo-

geneity strip containing 7"~/ (W;). Since the foliation is not cut at step j
and has length given by (6.1), there exists C > 0 (depending only on distor-
tion and uniform transversality of the unstable cone with the boundaries of
homogeneity strips) such that for any £ so that z, € W;,

(CJ;; 5 THT 1 2y)

k%vp

J;” JgTj(Tn_jZZ) - / I
(6.3)
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Now let Vo = T"(W;) ¢ PT(W) andlet V denote a map-stable curve such
that the surviving foliation {y} associated to W; via Vj, intersects every point
of V. Lethy : Vy — V denote the holonomy map defined by the foliation
{r}

Set V* = T7"V and note that since the surviving foliation intersects every
point of V, it follows that V" lies in the same homogeneity strip as W; and
the seeding foliation of unstable curves {¢} intersects every point of V", Let
hy» denote the holonomy map from W; to V".

The lemma below is a refinement?® of [15, Theorem 5.42] for the Jacobian
Jhy. (We shall use it below to obtain claim (vi), after relating the Jacobian
with d,s G in appropriate coordinates.)

Lemma 6.4 (Bounds on the Jacobian outside of the gaps) There exists C > 0,
independent of W, p, and x, such that for any x € Vj,

JéOT_n(x)Jh (T—n )
BTGt

< C(dx, H)p 2 ky? + gy (x, ).

|In Jhy (x)] = |In

where x = hy (x), Ji,T™" denotes the (stable) Jacobian of T™" along V, and
¢y (x, X) is the angle between the tangent vector to Vy at x and the tangent
vector to 'V at X.

Proof We begin by writing,

n—1
In Jhy (x) =In thn(xn)+Zln J;,jVOT—l(x]) InJy_;, T~ (%)),
j=0

where x; = T~ f(x)andxj_T (%), j=0,1,

Lettlng xj=(rj,0),K;j =K@, 1 = t(xj) and similarly for ¢;, IC
and 7; j» we have the time reversal counterpart to [15, eq. (5.24)],

In J; iV _l(xj) = —Incosg;i; +In (cosgoj +7i (K + |Vj|))
+%ln( VJH) Lin (1 +v§), 6.4)

29 The analogous time reversed counterpart from [15] would be | In Jhy (x)| < C(d(x, X) 1734
¢y (x, X)). Here, we leverage the fact that we require the transverse foliation to survive for only
n steps (not for all time) in addition to the fact that the surviving curves must be long in the
length scale p, to improve the exponent of d (x, X) to 1, at the cost of having the constant depend
on p.
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where V; < 0 represents the slope of the tangent vector to T=I (Vo) at x e
Using the analogous expression for In J;, jVT_l()E ;) and letting ¢, denote
the curve of the initial seeding foliation containing x,, we first compare,

[j+1— @j+1l
COSYjt]

2

|Incosgjii —Incos@jqq| < C it

<Cd(xjy1,Xj41) k

4 2/3
1
d(x, %) (f%wflz,, it (Xj+1>)
Ti+ (xj41) ké[f3p2/3
d(x, %) - d(x,X)

4/3 : 13 =7 2/3;2 AJ/3°
kuf ;02/3 (‘];t"n—_/—lgn T]+1(x,/+l)) P / kWAO

- u
Jrn—f—len

<C

where we have used (6.3) in the second line, and A was defined above (1.2).
(We refer to the explanations above (6.2) regarding the factor k%V.) The other
terms appearing in (6.4) are bounded and differentiable functions of their
arguments, except possibly 7;, but for this we have

ITjr1 — Tjp1l < C@(x), X)) +d(xj1,. Xj41)) < C'd(xj, %))
(see [15, eq. (5.28)]). This combined with the previous estimate yields,
‘ln J;_j

—1
VOT (x;) —In J;—J'V

< € (dr, DA (0P +1) 495+ 9.

T—l(;zj)(

where ¢ ; is the angle formed by the tangent vectors to T/ Vyatx j and TV
at x; (in particular ¢g = ¢ (x, X).
Now it follows from [15, eq. (5.29)] that

#; = C (d0e. Ay +dong’).

and summing over j completes the required estimate on the difference of
Jacobians.

Finally, we estimate In Jhy»(x,). Since the holonomy hy» : W; — V"
corresponding to the seeding foliation is uniformly C?, its Jacobian is a C!
function of the distance and angle between the two curves. Thus using again
[15, eq. (5.29)],

| In Jhyn ()| < C(d(xn, Tn)+d (i, ¥0)) < C (dx, D)nAg" +¢ (x, H)Ag") .

Combining this with our previous estimate completes the proof of Lemma 6.4.
O
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We adopt smooth local coordinates (x“, x*) € M to write the foliation
7 = (&%, G(x*, x%)), where x* and x* range over the relevant intervals. The
curve Vg corresponds to {(0, x%) : x* € [0, | Vp|]}, and (this is the first condition
of (ii) for the map-foliation)

G0, %) = x5, (6.5)

This is the canonical straightening map of the foliation G, with respect to the
point (0, 0), i.e., the map sending the horizontal lines of R? on the leaves of
the foliation, preserving vertical lines and equal to the identity on {0} x R. In
other words,

F(“, %) = (&%, G(x“, 1))

where G (¥, X*) is the first component of the point on the vertical through
x“ on the leaf going through (0, x*), with G(0, ¥*) = X°. Geometrically,
= G(E", x%) is the holonomy hg_, 5« of the foliation between the vertical
transversals at 0 and X“, so that dzs G (X“, X*) is the Jacobian of this holonomy
between verticals. The image U under DF of the horizontal vector field is
tangent to the foliation, and has first component equal to one, i.e., U (x*, x*) =
(1, u(x*, x%)), with u(F(x*, %)) = 0z G (F", °).

We next use Lemma 6.4 to derive the smoothness properties (v)—(vi) of
this foliation. Write V = {(v(x°®), x*)} for some smooth function v. Taking
V = V,in Lemma 6.4 to be the (purely vertical) curve defined by v(x*) = ¢ for
some constant ¢ (which we can do since the map-unstable cones are globally
defined, i.e., they have a uniform width), we have by the above discussion,

Jhy (0, %) = 85 G(c, X¥). (6.6)
Since X = hy (x) implies d(x, X) < Ck%,,o, we have
d(x, %)p Pk < Cp'l3. 6.7)

Thus Lemma 6.4 implies that dzs G is bounded independently of p (both above
away from infinity and below away from 0), proving the analogue of (v) for
PT(W).

The next lemma establishes the analogue of (vi) for G.

Lemma 6.5 95:95sG € C° and there exists C > 0 such that [954 055 G | oo <
Cp=23k, 2.

Proof Since we have chosen a smooth change of coordinates, angles in (r, ¢)-
coordinates are transformed smoothly to (x“, x*)-coordinates. Thus for the
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family of vertical stable curves V., we have ¢y, (x, X) varying as a smooth
function of d(x, X).
We have

d5udzs G (c, ¥*) = 3. Jhy, (0, X°).

First we prove the bound on |35« 935 G|so. As before, let Vi =T7"V., and
let hy» denote the holonomy along {y} from V' to V. Note that

Thve,

= Jh n n ., 68
Thy: (7RG (6.8)

1 n n S
where hyn, ve s the holonomy map from V;' to V', 5. For each x”,

IthM(O ) — Jhy, (0, %)

—n O’ =S
== s — ( X’ )_' thn (T_n(O, )ES))
Ty, ct5 n(hVCH (0, x%)) s
T7"(0, x%)
_ Vo P
v T_"(hvc((), %)) Jhy(T77(0, x ))‘
_”(() )EY)

= Jhy«(T7"(0, x°
”(th(O ) va(T77(0,x7%))

T~ (hy, (0, ¥*))
J; Ty, (0.5%))
< Csp~ 2/3k‘;,2,

Jhyp yn (T7"(hy, (0, x%))) — 1

where in the last line, we have used the smooth dependence of ¢y (x, x)
on d(x, x) and replaced the factor d(x, x) from Lemma 6.4 by § since the
estimates of that lemma hold for the holonomy between any two stable curves
connected by the foliation {y}. (To bound the first factor via Lemma 6.4, we
also used that |c| < k%,p so that | 4+ cp™2/3ky,? < C.) Thus 35195 Glos <
Cp~? 3kW , proving the required bound.

To see that in fact 9z« 955 G is continuous, write

35405 G (c, ¥*) = 0, JhVL(O x%)

T="(0, ) )
=0 —”(hv 0.3 )) hy (T7"(0,x%)) ). (6.9)
VC e\

Since the seeding foliation is uniformly C?, the Jacobian J hyrisaC ! function
of its base point and the angle ¢ (x,, X;;) between the stable curves V' and V"

@ Springer



Exponential decay of correlations for Sinai billiard flows 109

at the points x, = 77"(0, x*) and x; = T~"(hy,(0, x*)), respectively. Thus
we need only consider the dependence of ¢ (x,, x5) on c.

Since we have adopted a smooth change of coordinates, the angle ¢ (x,, X;;)
is a smooth function of the difference in slopes V(x,) — V(x5;) of the stable
curves Vy and V" in (7, ¢) coordinates, at the points x, and X, respectively.
By the time reversal of [15, eq. (3.39)] we have V = B~ cos ¢ — K, where B~
is the curvature of the wavefront just after impact (under the backwards flow).
Thus,

de (V(xn) =V (%5)) = 0K (X5) + 9. cos ¢ (X5) B~ ()
+cos g (X5) 9.8 (x5) . (6.10)

Moreover, the curvature of the wave front B~ (X¢) can be expressed recursively

as
2K (%5) B~ (%)

B (&) = oo () TG B () 6.11)

where i; =7/ (hy,_(0, x%)). Since our scatterers are C 3,KisC! soevery term

appearing above is a locally C! function of its argument composed with 7~/
for some j =1, ..., n, except possibly B~ ()Eflf]). Note that this is also true
of 7, even though the derivative of 7 (x) has a term involving (7T x)/ cos(T x).
To deal with B~ ()E,i 1 ), simply apply relation (6.11) recursively with the chain
rule to deduce that B~ ()Zﬁ ) is continuously differentiable with respect to c if
B~ (JZ(C)) is. But this last statement obviously holds since the curves V, are
vertical segments in (x“, x*) coordinates and the change of coordinates is
smooth.

Differentiating with respect to ¢ in (6.10) and using the chain rule together
with the above observations yields a continuous function (which we need not
compute) times the unstable Jacobians J;‘XOT*] (hy,(x0)), where y,, is the
unstable curve of the surviving foliation passing through xg. This last factor
is also continuous in ¢ since T is locally C2.

Next we turn to the factor J‘S,CT_” (hy, (0, x%)) in (6.9). This is simply the
product of factors of the form,

oo () ) e <)

cos ¢ ()EJC.H)

j=0,1,...n—1, using (6.4). All functions appearing here are again (locally)
smooth functions of their arguments so that as above, differentiating with

respect to ¢ and using (6.10) once more for 9.V (i;), yields a sum of con-
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tinuous functions times unstable Jacobians of the form J)é‘x T (hy, (x0)),
0

which are again continuous. This completes the verification of the continuity
of dz4dzs G (c, X*) and thus the proof of Lemma 6.5. m|

Although the Jacobians of holonomy maps corresponding to billiards are
not necessarily Holder continuous (see [15, p. 124]), we shall next see that the
holonomy we have constructed here does have Holder continuous Jacobian,
leveraging the fact that the surviving foliation must have length p, as in the
proof of Lemma 6.4.

Lemma 6.6 (Holder continuity of the Jacobian of surviving foliation) Let {y}
be the surviving foliation transversal to Vg introduced just before Lemma 6.4.
Fix C" > 0 and consider the set of stable curves Vy, Vo € W* which are
connected by the transverse foliation {y} and such that the angles between V|
and Vy satisfy, ¢ (x,hip(x)) < C'd(x,hjp(x)) for all x € Vi, where hy; is
the holonomy map from V| to V,. We require that Vi be in this family. For any
0 < @ < 1/15, there exists C > 0 such that given two such Vi, Vo € W9, we
have

Jhpp (v (x%), x%)
n————
Jhpp(v1(39), y%)
< Cd(x*,7)7d(Vy, V2)! = max {k;vz(2+5w)/3p_2(l+w)/3, k;v82w/3p_38w/3] ,

where V1 is the graph of the function vy, and x°, y* are in the domain [0, |Vy|]

of v1.

The proof of the above lemma is in Appendix A. In view of (6.6), (6.8), and
Remark 6.3, Lemma 6.6 gives the analogue of the four-point condition (vii)
for the billiard map.

6.3 Interpolating the map-foliation across the gaps, (vi)

We will fill in the gaps in the surviving foliation by interpolation, to obtain a
full foliation in a k%v,o neighborhood of P (W). More precisely, we will first
obtain bounds on the Lipschitz norm of the tangent vector 9, F to the foliation
across the gaps. Interpolating linearly between the Jacobians, following [3,
App. D] (see (6.3)) these bounds will then give the analogue of (vi) for the
map, while the analogue of (vii) for the map will be discussed in Sect. 6.4.

First, if there are gaps at the endpoints of P* (W), we may trivially extend
the surviving foliation smoothly across these gaps since no interpolation is
necessary.
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Gaps are created by the intersection of 7"~/ (¢£) with a singularity curve or>°

with boundaries of homogeneity strips, since to not be cut under the original
scheme means to lie in a single homogeneity strip. Some gaps are created by
an intersection with the boundary of a single homogeneity strip. If we choose
not to cut those curves 7"~/ (¢£) which cross these two homogeneity strips,
we will just be considering unstable curves that lie in two adjacent strips.
The expansion and contraction factors along these curves still enjoy bounded
distortion, with a slightly larger distortion constant. We fill these gaps by not
cutting the transverse foliation at time n — j.

The parts of the foliation that cross more than two strips will belong to the
gap near S for which all curves are cut. For that gap, we linearly interpolate
between the surviving curves at each end of the gap at time 0, and for this we
shall estimate the Lipschitz constant of the interpolation.

If 7=/ (P*(W)) lands in a neighborhood of S it may cross countably many
homogeneity strips. Since we enforce a definite length scale for the transverse
foliation, this means that the foliation is cut in all homogeneity strips above a
certain index (depending on the length of T"~J(¢)). So we can consider this to
be a single gap in our construction (even though T/ (P (W)) is subdivided
into countably many homogeneous curves).

With this construction, since x > 0 is fixed, there are finitely many gaps
in the foliation of P* (W), each gap containing one or more intersections of

PH(W) withacurveinS_,, n < LLJ +1.

Tmin

Now fix one gap and choose a segment Vg of P (W) with surviving foliation
on one side of the gap. This fixes n = n(Vp) as the number of iterates appearing
in the definition of the foliation on Vj. Let j be the least integer j/ > 1 such
that an element of 7/ /(So) intersects P (W) in the gap. (Note that j < n
must exist otherwise there would be no gap.) Thus Vj is contained in a longer
curve Vi C Pt (W) such that T=™ (V) is a homogeneous stable curve for
m =0,1,...,j— 1and which is cut for the first time at time — j. We prove
(vi) for the interpolated foliation by considering two cases.
Case 1. T4 (V})NSy # (0. This implies that T—J(V}) crosses countably many
homogeneity strips (77 (V) is not assumed to be homogeneous). At this step,
each y intersecting Vj is such that 7~/ () is a homogeneous unstable curve of
length k%v,o/J;f,j (?)Tj (z), for some z € T~/ (). This implies that the index
kj of the homogeneity strip containing this curve satisfies

2
3= ot ky p
J u I(2)’
T’ @

(6.12)

30 We use implicitly here that T/ (P+(W)) crosses an extended singularity line only if there
exists £ as constructed in Step 1 so that 7"~/ (£) crosses a singularity line.
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for some uniform constant C and any z € T (). (Compare with (6.3).) Thus
the length of the image of the gap in 7~/ (V) is of order kj_z. Since this is the

first time V| is being cut, Tt (v)) is still a homogengous stable curve so,
using the fact that the expansion from 7—/+1 (V) to T~/ (V}) in the gap is of
order k?, we conclude that for any x € V; the length of the gap in V is

e

=, T ). (6.13)

In order to estimate the Lipschitz constant of the foliation with which we
want to fill in the gap, we must calculate the largest possible angle between the
edge of the surviving foliation in V and the part of T7(Sp) crossing P (W).
Note that 7/ (Sp) is necessarily an unstable curve, and indeed, the tangent
vector to Sp is mapped into the unstable cone in one step.

Using [15, eq. (3.39)], we see that the image under DT of an unstable curve
has slope V) (in (r, ¢) coordinates) given by

Cos @1
VI = W + K1,

Vo+Ko
where objects with subscript O correspond to a base point x and objects with
subscript 1 correspond to 7'(x).
Let x = Sp N T~/ Vy. Now since the slope Vy(x) = 0 and ¢o(x) = 7/2,
the slope of the image of this vector after one step is given by

COSs @]

Vix) =K +
70

Let y denote the endpoint of 7~/ (V;) adjacent to the gap and let 7 denote
the unstable curve in the constructed foliation containing T/ (y). Recall that
y = T"(£) for some curve £ of the unstable seeding foliation of a neighborhood
of a curve W; € G,,(W); thus we do not make any assumption on the slope of
Ty = T"7J (), other than that it lies in the unstable cone at y.

Letting ¢}7(T(x), T (y)) denote the angle between T (Sp) and 7! (y) at
T (x) and T (y) respectively, we estimate,

@7 (Tx, Ty) < [Vi(x) = Vi) < IKi(x) — K1(0)]

cosgi(x) cos ¢1(y)
cos ¢o ()
w(x) T0(y) + Vo) +Ko(»)
1

< |K(Tx) = K(Ty)| + |cos p(Tx) —cos p(Ty)|

min
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1 1
+coso(Ty) ‘— - —
T(x) T(y)
+ (Ty) :
cosp(Ty — .
0 )+ neen

The first two differences above are bounded by a uniform constant times
d(T (x), T (y)), which s of order kj_4. Asbefore, [t(x)—t(¥)| < C(d(x, y)+

d(T(x),T(y)) <C'd(x,y) < C/kj_z. Finally, the last difference is of order

cosp(y) = ij_z. Putting these estimates together, we obtain
¢77 (T(x), T(y)) < ij_4 + ij_2 cosp(Ty). (6.14)

The quantity to be estimated is %)TTJ]((;)))) This will yield the Lipschitz
constant of our interpolated foliation in the gap. To do this, we note that [15,

eq. (5.27) and following p. 122] imply

o7 (T (x), TV (y)) = Qj + cos (T (y)) Q1

+ cos (T (y) ¢7 T/~ ). T/~ (»)
cosp(T7=1(y)) (I (T7=T(y)) BT (T y)) (147 (TI~Tx) BT (T7 1 (x)))’

where B denotes the post-collisional curvature of the unstable wavefront
and the functions Q, Q,_; satisfy |Q;| < Cd(T/(x), T/(y)) and |Qj_;| <
Cd(T/~'(x), T/~(y)). Proceeding inductively and recalling the expressions
for the stable and unstable Jacobians given by (6.4) and (A.4), we obtain the
following expression for the difference in angles,

j—=2
y j i Jj—m j—m j—m Jj—m—1 j—m—1
¢ (T/x, T/y) < C E : d(T/™"x, T/ "y)+cos o(T/ " y)d(T x, T )

u j— S —, /
JT,,H.)7 T(TT=my) g T="(T7y)

m=0

i o7 (Tx,Ty)
u i—1 K3 —j+1 7 .
JTlij?Tl (Ty)JVOT JTH(TTy)

(6.15)
For each m in the sum we have the following two bounds: For the first term in
the numerator, (77" (x), T/~"(y))/Jy, T~"(T'y) < Cd(T’(x), T’ (y)).
For the second term in the numerator, there is a gap in the expansion factors,

so we need to add the stable Jacobian, J;,m vOT*1 (T4=7( y)) as follows:
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cos (p(Tj_my)d(Tj_m_lx, Tj_m_ly)
JS T—m(Tfy)
< cos@(T/ ") (T x, T ) Jgyy T~ (TT 7" y).

Now since T/ 1(y) € Hy,.,, we have JS_mV T-YTi—"my) < Ck,%1+1
Also, in preparation for using (6.12), we note that

TN T W) = Ty T T ) IS T ()
< CJY’f_m);T”’(T] my)k;.

Tml

Putting these facts together and using (6.12), we estimate

cos (T/ =™ (yN)d(T/ ="~ (x), TI="=1(y))
Ty T () Ty T="(T ()

=iy
cos (T =" y)d(T7x, T y)Jj_y T~ (T7 ")
<
T T (LT »

ki 2d(T/x, T7y)

=C u m m 1
JTm iz Tm(TJi—my) m+
L kT, T ) Uiy T DRAI

Ju _Tm(T] —m ) k4v-1{3p2/3

=iy
< Cd(T/x, TJy)A m3 4/3,0_2/3.

Collecting this boqnd tog@ther with (6.13), (6.14), and (6.15), we obtain (note
that V™| = d(T/ (x), T/ (y))),

P . j=2 —4/3 —4 -2
¢V(Tf(x),Tf<y>)<CZ ky ki~ 4 cospTyk;

. . < +C . : -
d(TT(x), T1(y)) = APPp3 I TN T N(T T y)

_]V T ]+1(ij)
k 4
C k= cos p(Ty)
: + . .
Jp TINTy) I TN (Ty)

< CkV—V4/3p72/3 +
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Now using (6.12), we bound the last term by

2/3

k?coscp(Ty) _ cos(Ty) (J;_,PT(y))

JY TI-W(Ty) — : 13 43 55
T-iy (Ty) (J;fl,j);TJ“(Ty)> kuf 02/3

Finally using the fact that J7! j?T(y)) < C/cos@(Ty), we conclude

¢V (T'x,T'y) —4/3 _2/3

ATz T7y) <C+Cky ' p . (6.16)
This ends the proof of (vi) for the interpolation in Case 1.

Case 2. T~/ (V}) NSy = ¥. This implies that T—7+1(V)) lies on one side of a
singularity curve in S_ 1, and that one endpoint of 7~/ (V)) lies on a singularity
curve in Sy, but not on Sy. If V7 is such a curve containing a gap, then the
other side of the gap necessarily contains a curve satisfying the condition of
Case 1 above. Since the estimate of the angle difference carried out there was
a worst-case estimate (in fact, we started with an angle outside the unstable
cone, while in Case 2, the angle of the singularity curve in S_ will necessarily
be inside the unstable cone), the interpolated foliation across the entire gap can
only have a better Lipschitz constant since we are increasing the distance we
have to carry out the interpolation while not making the difference in angles
any larger.

Other curves in S_,, may also cross the same gap. But these additional cuts
can only make the gap longer, while again making the difference in angles no
worse. Thus they do not make the Lipschitz constant any larger than the bound
derived in Case 1.

We next show that the Lipschitz control (6.16) that we obtained gives the
L®° bound (vi) on the foliation, essentially following the construction from
Appendix D of [5] (the main difference is that we shall not use induction).

Let (0, x%), x* € [a’, b'], denote the stable curve P™(W) and the interval
[a,b], a < a < b < b, denote the interval on which the foliation must
be interpolated. The surviving foliation on both sides of the gap is given by
Va(@,5%) = (&, G4(X*, X%)) and (¥, ¥*) = (X%, Gp(x", x%)). Next, fix
® € C%([0, 1], [0, 1]) satisfying g(0) = @'(0) = @'(1) = 0 and (1) = 1.
Define J = (1 — ¢1)¢@’, where ¢ will be chosen later small enough to ensure
the interpolated foliation comprises unstable curves. Then Y(0)=vy(1)=0

andf&@z 1 —cy.
Define ¢(3*) = @ ()’;j_—;) and ¥ () = ¥ ()‘;j:;). It follows that ¢ (a) =
dzsp(a) = dzs@(b) = Y (a) = ¥ (b) =0, p(b) =1, fab Y =~U—-c)®—a).
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Now define for all x¥ € [a, b] and |x"| < k%vp,

i) S

— — _ bh—
B0, ) = (05 G, b) = + 85 Gy (7, a) ——
b—a b—a

U =Sy “u =Sy l;/’()ES) b —u
o(x", x%) = 6p(x", x°) —(l—cl)(b—a)fa Op(x", z) dz

) (1 =¥ (%)

5

o (@, %) = Gp(X", D)p(x*) + G4(X", a)(1 — ¢(F*)) +/ 0(x", z) dz.

The foliation in the gap is then defined by y (x*, x*) = (x*, o (x*, x¥)). With
these definitions, o (X%, a) = G, (X%, a) and o (X%, b) = Gp(x*, b). As shown
in [5, Appendix D], 7 € C'*1, and in particular, C~! < |9zs0| < C, proving
the analogue of (v) for the interpolated foliation; moreover, choosing ¢ small
enough guarantees that the curves of the interpolated foliation are unstable
curves.

To prove (vi), note that

Azudzso (X", %) = (e Gp (X", b) — 30 Gy (X, @)@ (%) + 0540 (F", X°).
(6.17)
Now, the second term on the right-hand side is bounded by the supremum
of the surviving foliations 0z« 975G, and 354955 G by a straightforward cal-
culation of 05«6, and this is bounded by Ck‘;,2 p~%/3, by Lemma 6.5.
To bound the first term on the right-hand side, we use our Lipschitz bound
(6.16). Note that G, (1, a) parametrizes the curve on one side of the gap, while
Gy(n, b) parametrizes the curve on the other. Equation (6.16) says

¢Ga@. @) Gy, ) _ a3 a3

dGaEa). Gy by~ " 7

where ¢ represents the angle between the two unstable curves at the given

points and the distance between points is measured along a stable curve con-

necting the two points. Since stable curves have uniformly bounded curvature,

this distance is uniformly equivalent to Euclidean distance on the scatterer.
Since 9z« G represents the slope of an unstable curve, we have

¢ (Gu(3*, a), Gp(3", b)) = |tan~ (3G o (", a)) — tan~ (3, G (X", b))|
1

= m@iuaaﬁu, a) — 0z Gp(x", b)|
1 7 (7 . (FU
= m@xuca(x ,a) — 0zuGp(x™, b)]
0
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for some z € R, and where K¢ denotes the maximum slope in the unstable
cone (recall that we have global stable and unstable cones for the map). This
estimate together with (6.16) yields,

|85 Ga (3", @) — 85 Gp(F", b)| < CKakyy > 07 23d(Gu(3", @), Gy, b)).

Now using this together with the fact that |¢/| < C(d(aa (x“, a), Gp(x", b)))f1
due to the rescaling, we estimate the first term on the right-hand side of
(6.17) by Ckv_v4/ 3,0_2/ 3. This completes the estimate we need for the L™
norm (vi) for the interpolated map-foliation. Continuity of dz«dzso follows
immediately from (6.17) since all functions appearing on the right-hand
side are continuous (using the continuity of dz:d5sG in the surviving foli-
ation by Lemma 6.5). The continuity extends to the boundary of the gap
since dzudzso (X, a) = b (X", a) = dzudzs Go(X*, a), and similarly for
agu 3,}?0’()2”, b)

6.4 Checking (vii) for the map-foliation interpolated across the gaps

In this step, we prove the analogue of Lemma 6.6 across gaps and in the part of
the foliation that has been filled by interpolation. This will give the four-point
estimate (vii) across the gaps. We begin by proving a lemma which will allow
us to control the Holder continuity of dzso defined by interpolation in each
gap, specifically that the average slope of the interpolated foliation across the
gap and the derivatives dzsG on either side of the gap are close in the length
scale of the gap.

Lemma 6.7 Let P (W) be a stable curve parametrized by X* € [a’, b'] as in
Sect. 6.3 and suppose the interval (a,b) C [a’, b'] is a gap in the surviving
foliation pushed forward n steps. Then there exists C > 0 such that for any
X with |¥4| < k3, p,

Gy b) —Gu® @) | _

— Cp=31/105)4 _ p|1/7,

3G (X", a)

A similar bound holds for 3z G, (X*, b).

Lemma 6.7 is proved in Appendix A. It allows us to prove the four-point
estimate on the interpolated foliation in the gap. Leta < x¥* < y* < b, and
—k%v p<x"t <y < k%v p be the coordinates of arbitrary points in the gap.
For our first estimate, the estimate on dz« dzso from Sect. 6.3 allows us to write,
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|0gso (&, %°) — 00 (X", °) — 9o (3", X*) + dzs o (5, V)

LU

Y
/_v aiuaj:O'(Z,ys) — a)}uajSO'(Z,)zu) dz
xu

< Cky P p=23 7 — 3. (6.18)
We will use Lemma 6.7 to produce a second estimate on the four-point differ-
ence above. In the following calculation, for brevity, we set M, = G,(x%, a),

My = Gp(x", b), M, = 33 G4 (X", a) and M, = 05 Gp(X", b). According to
the definition of o, we have for x* € [a, b],

Oz 0550 (B, B°) = (Mp — Mo)@" (%) + 055600 (F, %)
b
v @) _
— 0= /a 6o(x", z) dz.
In addition, using the definition of 6,

Do (7, &%) = M=Me (1 _ (50 ))—( MyE=a 4 ) b= a)u/(if) and

b
/90(X,Z)dz—/ M’”+M;;;;dz—f (Myi= + M=) v (2 ds
a a

= () e [ (5t )y e
a

Now combining these expressions, and recalhng that by construction ' =

b—a)"'¥ and 9" =" (b —a)2 (lcll)pw,wehave

D s 0 (£, 7) = (M — M) (&) + 2=Ma (1 — (2

— (M52 4 M)y

b
UMEs — M’ b=
- = cl))zb —a) |:(Mb+M) _A (Méz—{; +M ab— 2)"0@) dz:|
¥ (&) [Mb—Ma My+M,

M;, M,, s
= i [t — Mg |+ M1 -y )

V&) / bz ¥ () E— ’ b—x
+ 5= [/ (My5=6 + My 3= a)(l—c,)(b—a) dz — (Mb);—(jl + M, 5= )]
a

=@®+®+0O.
To estimate @, we use Lemma 6.7 to conclude that both M/, and M 1/7 are close
to b M“ , so that
|®] < %26’/)_31/10%61 — b|1/7 < C/p—31/105|a . b|_6/7,
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For ®), we again use that |M;, — M| < 2Cp~31/10514 — p|1/7 by Lemma 6.7,
so that

®] < C'p=31/105) _ p|=6/7,

Finally, to estimate (©), note that the first term inside the brackets is the average
value of M éﬁ + M, L/Ié’%é with respect to the smooth probability measure
having density %. Thus there exists y* € [a, b] such that this average
value equals the function value at y*.

W |y P —a ) b—3° /¥ —a I b—5"
|©| — b—a Mbb—a +Mab—a _( b b—a +Mab—a)

—a

_ %%lMé M < Cp=31/105|4 _ p=6/7,
where we have again used Lemma 6.7 to bound the difference |Mz/; - M.
Collecting our estimates for @, ® and ©), we have the following bound,

|8zs dgs 0 (X, ¥%)| < Cp3V/191q — p|=0/7, (6.19)

Now we return to the four-point estimate for dzso. Grouping the terms
according to their unstable coordinates and using (6.19), we estimate,

00 (X", &%) — 0w o (&, 3°) — 0rso (3", X°) + deso (3", )|
< Cp—3l/105|‘)—js _ )zslla _ b|_6/7

< Cp—31/105|)—)5 _ £S|1/7'
Putting this estimate together with (6.18), we see that the four-point difference
is bounded by the minimum of these two quantities; let us call them X and Y.

But if a quantity Q satisfies0 < Q < X and0 < Q <Y, then
Q — Q1—7w Q7w < X1—7af Y7w
provided 0 < 7z < 1. Using this we obtain

00 (B, 5°) = B0 (B, §°) = B0 (5, &) + 00 (7, 5°)]

< Ckv—v4/3+28w/3p—2/3+13w/5 1—7w'|

ys — 5 w’

(6.20)

which completes the required four-point estimate in the gap for the foliation
on the scatterer.

Up to this point, we have proved the four-point estimate both in the gaps

in the current subsection and within each interval containing a surviving part

|y — x|
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of the foliation in Lemma 6.6. However, this is not sufficient to prove a uni-
form four-point estimate along the whole of P+ (W) since, given two stable
coordinates x*, y* with multiple gaps between them, we would have to apply
the triangle inequality once for each gap. Since the number of gaps grows
exponentially with n, the Holder control established by the four-point esti-
mate would not extend uniformly across P*(W). To remedy this situation,
our next lemma proves a bound analogous to Lemma 6.6 across gaps in the
surviving foliation.

Lemma 6.8 (Holder continuity across gaps) Let PY(W) be a stable curve
parametrized by x* € [a’,b'] as above and suppose the interval (a,b) C
[a’, b'] contains one or more gaps in the surviving foliation pushed forward
n steps. Fix C' > 0 and consider the set of stable curves Vi, V, € WS
which are connected by the surviving foliation on either side of the gap such
that the angles between Vi and V, satisfy ¢ (x,hjp(x)) < C'd(x,hjz(x))
for all x € Vi, where hiy denotes the holonomy from V1 to V,. We require
that PT(W) be in this set. For any 0 < w < 1/20, 3! there exists C > 0,
independent of W and n, such that for any two such curves Vi, Vo and two
points, xa = (G(x*, a), a), xp = (G(x", b), b) € Vi, we have

Jhia(x,) 5 _a/5_ _
nﬁ < Chy?p~ 371250 (x5, My (x0)) ' 7 a — b|7.

Proof Using similar notation to Sect. 6.3 (and the proof of Lemma 6.7), let
J + 1 denote the least integer j* > 1 such that an element of T/'(Sp) intersects
PT (W) in the subcurve defined by (a, b). This implies in particular, that the
surviving parts of the foliation containing x, and xp lie in the same homogene-
ity strip for the first j interates of 77! Let Vl.j =T77V;,i = 1,2, and let
h_; denote the holonomy map from Vlj to VZJ . Then,

Jhi2(xg) J‘S/IT_‘/(xa) N J‘S,IT_j(xb) Th_ (T I x,)
n =1n - — . n - .

Jhiz(xp) Ty, T=I (h12(xa)) I3, T~ (2 (xp)) Jh_;(T=ixp)
(6.21)

Since T~ (x,) and T~ (x}) lie in the same homogeneity strip fori =0, ... j,
the difference of the first two terms in (6.21) can be estimated in precisely the

31 Equation (6.23) below shows that we can get away with @ < 1/15, up to using a more
complicated expression for the upper bound.
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same way as the difference of Jacobians in (A.1) in the proof of Lemma 6.6.
Thus fixing @ < 1/15, there exists C > 0 such that

. I3, T (xa) w Ty, T~ (xp)
Ty, T~ (hi2(xa)) Ty, T~ (hi2(xp))

< Cla = b7 d(xq, i (x)! =7 max {37107/ p=200m/3 g 8213 =38 /3
(6.22)

Next we estimate In Jh_j(T*jxa) using (A.11). Let x; = T (xa), x0 =
xq and X9 = hyz(x,). Due to (6.22), we cannot use an estimate with a factor
better than |a — b|” and since w < 15, we do not convert the full power of
Jj‘f, iz T/ (x ;) in the denominator of the bound in (A.11) using Sublemma A.1.

Rather, we convert Jj‘f,j);Tj (xj)35w/9, after noting that 35w /9 < 7/27 <
3/5. Thus,

X Y w 1,4/5
— bl d (xo, — b7k
InJh_j(x)) < C( d(xo, Xo)la — b (x0, Xo)la — b|" ky )

p2/3+26w/9k“¥3+70w/9 p2/5+26w-/9k;?w/9k€v/5—70w'/9

< Cd(xg, %) "7 |a — b|™ (kva4/3752w/9p72/3717w/9 + k@2/5+2w072/5717w/9>7

where in the second term on the first line we have converted the remaining
power of J;_ iz T/ (x j)to k%s_mw/ ? to cancel the power of kw in the numer-
ator of that fraction; and in the second line we have used d(xq, Xg) < k‘zv 0.
A similar estimate holds for In Jh_ j(T_j (xp)). This estimate together with
(6.22) in (6.21) yields four factors involving kw and p. In anticipation of
Sect. 6.5 and to simplify these terms, we factor out kv_v2 from each term and

convert the remaining powers of ky using the inequality, ky < p~'/>. The

factor involving p in our bound for In % is then,
max {p—2/5—36w/5’ p~H5- 1w /15, p—18/25—103w/45} ’ (6.23)
—4/5

where we have dropped one of the terms, p , as being clearly less than the
middle term above. Unfortunately, the remaining three exponents intersect for
@ < 1/15, so there is no clear maximum in this range; however, if we restrict
to 0 < @w < 1/20, the middle factor is the largest so we may drop the other
two, completing the proof of Lemma 6.8. O

Finally, we use Lemma 6.8 to extend the four-point estimate uniformly
across gaps along the whole of P+ (W). If we are given two stable coordinates
x%, % corresponding to surviving parts of the foliation between which there
may be multiple gaps and multiple bits of surviving foliation, Lemma 6.8
immediately implies the four-point estimate holds between x* and y*. Now
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suppose x* and y* belong to different gaps in which the foliation has been
interpolated. Then using (6.20) we have a four-point estimate from x* to the
edge of its gap closest to y*, call that stable coordinate a; similarly, the four-
point estimate holds from y* to the edge of its gap closest to x*, call this stable
coordinate . Now from a to b there may be multiple gaps, but by Lemma 6.8,
the four-point estimate holds from a to b and so by the triangle inequality, it
extends from x* to y*. Notice that decomposing the distance from x* to y* in
this way, we only have to add three terms, using the triangle inequality twice,
making the estimate uniform on all of P (W). Similarly, we need only use
the triangle inequality once to obtain the four-point estimate given x* in a gap
and y° in a surviving piece of foliation or vice versa.

6.5 Lifting the map-foliation to a flow foliation, checking (i—viii)

In this step, we lift the map foliation {y} to W.

Given a curve y in our foliation, we want to define a “lift” of y to a curve
y € W" which intersects W in a point and such that P™(y) = y. Adopt-
ing the coordinates (x“, x*, x%) defined by Remark 2.4, we want to find a
parametrisation y (v) = (x*(v), x*(v), x%(v)), with v € I, an interval, which
has the desired properties. Note that the functions x* (v) and x* (v) are uniquely
determined by the projection PT (W) (they do not depend on x°) so the only
degree of freedom is in x%(v). However, since y must lie in the kernel of the
contact form, we must have dx? — x*dx* = 0, i.e., (x°) = (x*)" - x*. This,
together with the initial condition that x°(0) must be an endpoint of y uniquely
determines y.

Now according to Lemma 3.4, the map from P (W) to W is C'T1/2 with
uniformly bounded norm (not depending on ky ). Thus the measure of A, in
PT (W) is comparable to the measure of A, in W, proving item (iv). Items
(i)—(ii) follow directly from the definition of {y} and the construction of {y},
recalling (6.5).

In order to determine the smoothness of the lifted foliation, we must con-
sider the action of lifting y off the scatterer in the unstable direction as well.
In the unstable direction, the curves y undergo a contraction on the order of
1/J ;,1 ; T~ k‘f. Using the usual distortion bounds together with the expres-

sion for the Jacobian given by (6.4), we see that

JE  _T(x)
n < cd(x, )k,
‘]Tfl};T(y)

for any x, y € y and a similar estimate holds between different curves by
estimates similar to those used in the proof of Lemma 6.4. Thus the Lipschitz
constants of the foliation increase by a factor of k%,v < Cp~2/5.
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For y on the domain A,,, we have | O5u a,;@ < C,o_2/3kv_v2 by Sect. 6.2, so
that |8,49,s G| < Cp~%/3. On the complement of the domain A, the Lipschitz
constant of the projected foliation is bounded by C + C k;v4/ 3p‘z/ 3 by (6.16)
in Sect. 6.3. Thus the Lipschitz constant of the lifted foliation is bounded by
Cky, + Ckff p ™23 < Cp~*/3, which yields item (vi) of the foliation. We can
then integrate d,udys G to obtain the uniform bound on d,s G needed for item
(v) of the foliation, recalling (ii).

Finally, using (6.20) and Lemmas 6.6 and 6.8, and collecting the relevant
terms, we see that the constant in the right-hand side of the four-point condition
(vii) for the Jacobian is at most

4/5 —2/5-36w/5 _—4/5+3Tw /15

0 p

p74/5711w/15}.

max { o
If we restrict to @ < 1/20, the last term above is the largest, completing the
proof of (vii).

Finally, we turn to condition (viii). Note that since y lies in the kernel
of the contact form, we have H(x", x%) = f(f ’ G(z,x%) dz. In particular,
s H(x", x%) = fox ’ 0xsG(z, x%) dz, so that since dys G uniformly bounded,
we have |0y H |0 < Cp.

Next, we note that due to the normalization W = (0, x%, 0), we have
dysG(0,x%) = 1 for all x* € [0, |W]]. Thus using the four-point estimate
(vii) for G at the points (x*, x*), (x*, ¥*), (0, x*) and (0, ¥*), we have

|8xSG(xu,XS) _ ast(x”, yS)l E Cp—4/5—11w'/15|x5 _ yS|ZU|xl/t|1—7w"

This implies immediately that |9ys H |cw < Cp®3~16@/15 \which completes
the proof of (viii).

7 Mollification operators and embeddings

In this section we prove some relations between our Banach spaces and
standard spaces of distributions, and establish several key inequalities which
indicate that mollification operators provide good approximations in the norms
we have defined. We begin by proving Lemma 2.11, relating our norms to the
dual spaces of continuous functions.

Proof of Lemma 2.11 We will prove that

| flcaoy < Clflw  Yf € C%S) (7.1)

for some C > 0. The analogous inequality for the strong norm, | f'{¢s(qy))+ <
C| f s, is proved similarly.
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For f € C%(Q) and ¥ € C¥(Rp) with |/|ce(q, < 1, we must estimate
fQO f ¥ dm. To estimate this, we decompose Lebesgue measure over the
Poincaré section M defined in Sect. 2.

Our first step is to decompose M into boxes foliated by a smooth family of
homogeneous map-stable curves. (For the present lemma, it would be enough
to consider a smooth family of map-stable curves, the further decomposition
into homogeneous curves is useful in view of the proof of Lemma 7.3 below.)
On each connected component Hl ; of Hy, k > ko, we define a smooth foliation
{Ve}eek, ; of map-stable curves; indeed, we may choose a foliation of straight
line segments due to the global stable cones for the map. Using this foliation,
we desintegrate the probability measure m = ¢drdg into ¢’'dm v.d&, where c
is a constant depending smoothly on the angle between the foliation of stable
curves and the boundary of Hl, and my is arclength measure on the curve V.
On the set Hy, := M \ Ui~k Hi, we perform a similar decomposition, after
first subdividing the space into boxes B; which are foliated by parallel stable
line segments of length at most L.

Next, we lift this decomposition to €2¢. For k > ko, define

H)™ ={Y € Qy: PT(Y) € Hy),

and H,?O_ = Q0o \ U=k H,?_. Over each box B; define the flow region Blp_ =
{Z € Qp: P+(Z) S B,‘}.

In each Blp_ or H,?‘, we represent Lebesgue measure as>? ¢ cos pdsdrde,
where r, ¢ range over the box B; or strip Hj and s ranges from O to the
maximum free flight time under the backwards flow of any point in the box
B;, which we denote by ‘L’r;a& ;- For each s in this range and each curve Vg, let
Wg = ®_;(5)(Ve), where the function 7 (s, z) is defined for z € V¢ so that Wg
lies in the kernel of the contact form. Note that for s < L, it may be that some
points in V¢ have not yet lifted off of M. For such small times, Wg denotes only
133

3

those points which have lifted off of M and so may be the union of at mos
two flow-stable curves. Also, for s > i, it may be that part of ®_; ) (Ve)
has made a collision with a scatterer. In this case, again, Wg denotes only those
points which have not yet made a first collision. Thus, using the disintegration
of m described above, ccos pdsdrde = cos <p(P+Z)pg (Z)deEs (Z)dé&ds,
where £ € Ej; and (using that the disintegration factor ¢’ from the third
paragraph of the proof is smooth) | pg |1 W) < C, uniformly in &€ and s. Now,

32 The projection on the scatterers of Lebesgue measure is the T'-invariant probability measure
1o = ccos pdrdg, where ¢ is a normalization constant.

33 Just like for (2.5), see the paragraph containing (8.6).
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ZZ /(;Tn:ax,i /E

k>ko i ki

‘ [ ro dm‘ - |, 70 pecos o(P®) dmydsas
Qo Wg &

Ir;ax,[
=X [ i lulclesng s o ewqu ey dids.
k>ko i *0 Epi
ZK0O
(7.2)

Now | cos ¢coq,) < Ck=2, while for y, z € Ve C Hy,

lcosp(y) —cosp(2)] < |y —z|*ly — 2" < |y — z|“Ck 1),

Since o < 1/3, the Holder constant of cos ¢ is bounded by Ck~? as well. Since
Pt is C! along stable curves by Lemma 3.4, we have | cos go(P+)|Ca(W§) <

Ck™2, independently of & and s. Also, for each k > kg, the number of boxes
B; in H, is finite, depending on L. Thus,

¥ dm

= X:CTmaxlflwk_2 =< Cl|f|w,
k

completing the proof of the lemma. O

Lemma 7.1 If 8 < 1/q, the inclusions B C (CP(20))* and B C (C'(920))*
are injective.

Proof Our proof has two steps: (1) for f € B, if || fllg # 0, then || f|ls # 0;
(2)if || flls # 0, then f # 0 as an element of (C# (M))*.

For claim (1), note that || f||s = O implies immediately that || ||, = 0
since the test functions for | - ||, are in C*(W), while those for || - ||; are
in C#(W) and « > B. To see that || f|lo = 0 as well, observe that for fixed
W e W¥, ¢ € C*(W), the functional Fs(f) = [¢ ) L(fod)lmo o
D Jo_,(w)Ps dme_ (w) is continuous as a function of s as long as ®_ (W)
undergoes no collisions. (It is clearly continuous for f € C?(£20) and extends
to f € B by density since the map f — F;(f) is continuous in the | - ||5
norm.) Thus

1 [t d
i - /0 L OBl Y o @ o s o d

d
=/ (o @)lmo v dmy.
w ar

@ Springer



126 V. Baladi et al.

On the other hand,

! d
/ / —(fo®)|;=0 ¥ 0o D5 Jo_ (w)Ds dmeo_ (w) ds
0 Jo_,w)dr

t
d
:/ / —(fo®,)|,=g0 ®_5 ¥ ds dmy
w Jo dr

d
=/ / —(fod_y) V¥ dsdmwy
w Jo ds

=/ fW0¢tJ¢,(W)<I>r—/fW=0,
®_, (W) %

by assumption on f, where we have used (2.11) for the second equality. Thus
I fllo = 0 as claimed.

Our proof of claim (2) follows closely [20, Lemma 3.8]. For f € C%(Qo)
and W € W?, the expression,

(DL (1), ) =/W Fo dmy, ¥ e CPS).

satisfies [ (Dl (), ¥)| < Il £ lIsI W1V Wy, 50 that D, () € (€CF(R0))*.

Since the map f — Dﬁ,( f) is continuous in the || - ||z norm, by density it can
be extended to B.
Now assume || f|l; # 0. There exists W € W*, ¥ € CP(0) such that

<D€V(f), 1//) =: 4§ > 0. Again, the map W — <D€V(f), z/x) is continuous for
f € B. Thus there exists an open set E, foliated by invariant curves W' € W*
close to W such that <D€V,(f), W) > §/2 foreach W C E.

In order to localize the support of i to the set E, we extend each stable curve
W’ in E by length ¢ > 0 at both ends to form a larger set E/ O E. Call such
extended curves W/. Next we choose a bump function p, such that p, = 0 on
Qo \ E’ and p, = 1 on E. We may choose p, so that |pg|cﬁ(W€/) < Ce~ P for
some uniform constant C. Now,

(D5,(5). pewr) = (D5 (). petr) +(Dfyy (). 00
> 8/2 = Cl¥lesane PIW N WV £1Is
> 8/2 — Cl¥les gl fllse'/47F.

This difference can be made larger than §/3 by choosing ¢ small since 1/g < .
Thus the function p.y € CP () satisfies f(ps¥) # 0 and so f # 0 as an
element of (C#(0))*.
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The injectivity of B C (C'(Q0))* follows by a similar argument since we
may take ¥ € C'(Qq) in the proof of claim (2). This holds since we have
defined CP (W) to be the closure of C! functions in the C# norm. O

7.1 Mollification operators

Since the right-hand side of the Dolgopyat Lemma 8.1 will involve the Lip-
schitz and supremum norm of f, it will be convenient to use mollification
operators M.

We start by defining M,: Fix €y small.>* Let n : R? — [0, 00) be a C*®
function, supported in |Y| < 1 and bounded away from zero on |Y| < 1/3,
with ['ndm = 1, and set, for 0 < € < €,

1 Y
ne(Y) = =1 (—)
€ €

Let 21 be an €p neighborhood of 2, assuming that €q is small enough so
that €21 is still in the torus.

Definition 7.2 (The mollifier operator M) Fix global periodic coordinates
on T3, i.e., view T> as a subset of R3, extending functions periodically. For
0 < € < €, setfor f € L>®(Rp)

Me(f)(Z2) = /};@ Ne(Z =Y) f(Y) dm(Y) = [ne * f1(Z). (7.3)

Since f is supported in g, we have that M (f) is supported in a small
neighborhood of € contained in €. For f € C!(T?), not necessarily sup-
ported in 29, we let

| f 1L 20 = IV (DILe@y) = 111 3y == V(g (7.4)
We have the following bounds for M:

Lemma 7.3 There exists C so that for all small enough € > 0, all § and all
q, every admissible stable curve and every f € CO(T?), supported in Q,

M (f)|Loo(gq) < Ce PV 7, (7.5)

and
IMe ()] () < Ce P22 £ (7.6)

34 1n Sect. 8, we shall take €o small enough as a function of n = [c1n |b]].
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The following lemma shows that M is in some sense an approximation of
the identity.

Lemma 7.4 There exists C > 0 so that for all small enough € > 0, all «, B,
v, ¢, and all f € CO(T3), supported in Q

IMe(f) — flty < CEl fl5, (1.7)

where § = min{y, 1/(2q), 1/q —2/5 — B}, and where the homogeneous weak
norm is defined by

|fIE = sup sup f fo dmy. (7.8)
Wew? veCc* (W) JW
W homogeneous |¢|CQ(W)§1

The last lemma of this section completes the proof of Lemma 3.9, showing
that, although we have taken 13 to be the closure of {£;(C>(S20)NC%) | t > 0},
in fact we have C' (Qo) C B as well.

Lemma 7.5 C'(Q) C B.

7.2 Proofs of Lemmas 7.3-7.5

Proof of Lemma 7.3 We first bound |M f(Z)| for all Z € 2. Recalling the
notation used in the proof of Lemma 2.11, we decompose the e-neighborhood
Ne(Z) of Z inside 29, into homogeneous stable curves Wg over each com-

ponent of Ne(Z) N Hgf and N.(Z) N BiO ~. We estimate the relevant integral
over one such component at a time, using (7.2),

[ s@maz=viamwy = [ [ [ fuz - e cosprtamydsds
B/~ 0 Ey,i WES

< Cek™?| £l sup [WE Nsupp(1e(Z — NI el el cos p(PF)leswe)lpel o (ws):
)

where the factor ek~ comes from the fact that the support of 7, is of order at
most € in the transverse integral ds and of order k3 in the integral d&. Next,
| cos (p(P+)|c,s(W§) < Ck72, using the estimate following (7.2) and the fact

that B < 1/3. Also, [neles < Ce 3P, and as before, |pgler < C. Putting
these estimates together yields,

fB T WeZ = Yydm(Y)| < Ce > PHVUT fll. (7.9)
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It remains to sum over the relevant k and i. Since there are only a finite number
of flow boxes Bl.o_, independent of €, this sum is uniformly bounded. Also,
N¢(Z) can cross only a uniformly bounded number of the singularity surfaces
§0— = (Y € Q : o(PT(Y)) = j:%} (in fact, no more than Tpax/Tmin Of
them). Thus the only index which may be unbounded or infinite is k. Suppose
N (W) intersects a range of k, from k; to ko (note that k; = oo is allowed).
Since the width in the unstable direction of H,?_ is approximately Ck—>, we
must have € of order k1_4 —ky 4 which is precisely the bound we obtain sum-
ming over the above estimate, yielding one more power of € and completing
the proof of (7.5).

For the Holo bound (7.6), we first differentiate once (which produces an extra
factor € 1) and then proceed in the same way as above. O

Proof of Lemma 7.4 Let W be a homogeneous stable curve and let v be a
function on W with | |ce (W) < 1.

Let A be a constant to be determined below. We assume for the moment
that P (W) does not lie within a distance of Ae3/3 of the boundary of any
homogeneity strip. We may also assume that |W| < Lg/2, since otherwise,
we may simply subdivide W into two components and perform the estimate
on each component separately.

In order to compare M ( f) with f, we will adopt a new coordinate system
in N¢ (W) (from the proof of Lemma 7.3) so that small translations of W are
again stable curves. Let W€ be a C? extension of W of length € at each end.
Note that if PT(Z) and PT(Y) lie in the same homogeneity strip Hy, then
d(PH(Z), PY(Y)) < Ck*d(Z,Y), since distances along stable curves are
contracted by a factor of order 1 under PT, while distances along unstable
curves are expanded by a factor proportional to k2. Since the maximum length
of map-stable and -unstable curves in Hj, is at most k=3, this implies that

d(Pt(2), PY(Y)) < B'd(Z,Y)* (7.10)

for some B’ > 0 depending only on the maximum curvature and Tpyax. Thus,
P+ (No(W)) lies in a B'€3/3-neighborhood of PT(W). Since we have assumed
the homogeneity strip containing P (W) has width at least 2A€3/>, we choose
A large enough compared to B’ that P (N, (W)) lies in the same homogeneity
strip Hy as W; indeed, our assumptions imply Ck—3 > 2Ae3/3, so that the
width of the stable cone in this neighborhood of W is at least cos (PT) >
A’€?/3 for some constant A’, increasing with A.

Now using Remark 6.1 and proceeding like in the decomposition in the proof
of Lemma 2.11, we may define a smooth foliation of N.(W) by admissible
stable curves with the following properties: (i) W€ belongs to the foliation; (ii)
the foliation is trivial in the flow direction, i.e., W€ lies in a smooth surface
formed by such stable curves, which is then flown a distance proportional to
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=€ to define the foliation of N.(W). It may be that this flow surface reaches
0. In this case, we simply stop the foliation at 92 so that it does not contain
any collision points.

Fixing a transverse curve yy in the surface containing W€, we define local
coordinates (s, u, t), associating W€ with the first coordinate, {(s,0,0) : s €
[—e — |W]|/2,|W]|/2 + €]}, parametrized by arclength, yy with the second
coordinate, and the flow direction with the third. Due to the smoothness of the
foliation, the Jacobian Jy of the change of variables (x, y, ®) — (s, u,t) is
uniformly C'. Also, it may be that in this coordinate system near 92, some
coordinate choices lie inside one of the scatterers. This is immaterial to the
integral we must estimate since f is taken to be simply O inside such scatterers.

We are now ready to proceed with the required estimate. We have, by Fubini,

/W(Me(f)—f)w dmy = /W /R} Ne(Z = Y)(f(Y) = f(Z) dm(Y)Y(Z) dmw(Z)
= /R3 ne(¥) /W(f(Z —Y) = fF@)Y(D)I(Z = Y) dmw (Z) dm(Y)

< Inelpr sup
YeN:(0)

/W(f(Z = Y) = fO)WW(ZD)Jo(Z = Y) dmw(Z)|,

(7.11)
using that |n¢|;1 = 1. We next want to apply the definition of the unstable
norm. For Y € N.(0), let Wy denote the stable curve correspondingto W — Y
in the adapted coordinates (s, u, t) and lying in the interior of 9. Wy is
necessarily an admissible stable curve by our choice of adapted coordinates.
Let hy denote the translation map from Wy to W. Then,

fW P2 =YW@z = V) dmy = [ fy oty dodm,.

Note that Jhy = 1. In light of (7.11), the following sublemma is the main
estimate in the proof of Lemma 7.4. O

Sublemma 7.6 There exists C > 0 such that for each Y € N (W),

' f¥ ohyJodmy, —/ fdoohy! dmw‘ < Ce flls,
Wy w

where ro = min{y, 1/(2q)}.

Proof of Sublemma 7.6 Notice that not every Wy has dyys (Wy, W) < oo. To
remedy this, let (W) = minw{r(-), 7_1(-)} and define the local surface
WO = {®,(W) : |t] < t*(W)} obtained by flowing W. By arguments similar
to those used to ensure (ii) in the proof of Lemma 3.10, for each ¥ we may
choose a stable curve Vy = &, (W) C WO such that dyys (Vy, Wy) < JJe.
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Indeed, there exists a constant C,, > 0, depending on the maximum curvature
of stable and unstable curves, such that

[ty| < Cre, forallY € No(W). (7.12)

It may be that ®,, (W) is in the midst of a collision. But in this case, we let Vy
denote only that portion of ®;, (W) that has not undergone a collision during
time ¢t € [0, ty]. The mismatch between W and Vy is then of length at most
C /€ and can be estimated as in (7.14) below.

Now we estimate,

flﬁ ohy.]() dmwy —/ flﬂ]() Oh;1 de
Wy w

= fvohyJydmwy,
Wy

—fv f (w Jo oh;I) o ®_;, Jy, d_yy, dmy,

Y

+/V f Joohyl)od_yy Jy, &y dmy,
Y

—/ fdoohy! dmy. (7.13)
w

We begin with the first difference on the right-hand side above. Denote by
Swy the natural map from the r-interval Iy, (on the scatterer) to Wy as defined
at the end of Sect. 2.2, and let Sy, denote the analogous map for Vy. Set Iy to be
the common r-interval on which P*(Wy) and P (Vy) are defined, and denote
the corresponding matched subcurves by Wy, and Vy, as defined in Sect. 4.2.
The unmatched (at most) two ends may be estimated separately, using the
strong stable norm since these unmatched pieces have length at most /e:

f\ ¥ ohydydmy, < Wy \ WyY40| £lls1Joles wy) ¥ © by leswy)
Wy W),,

< CeVCD| 75,
(7.14)
where we have used the smoothness of both Jy and hy. A similar estimate
holds for the integral over Vy \ Vy.

On Iy, define ¢ = ( ohy - Jo) o Sy, o Sy, !, so that d(y o hy - Jo, ¢) = 0.
Since the derivatives of Sy, and S, Yl are uniformly bounded by Lemma 3.4,

we get |@] covy) = ClY|ca(w;) < C'. Now we estimate the first difference in
the matched part of Eq. (7.13),
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/ fyohy Jodmy — / f Joohyl)od_yy Jy, ®_yy dmy,
Wy Vy

< fyohy Jodmy — fodmy

Wy Vy

+

/ fd) de_/ f(lﬂ JOOh;1)0®—Zy Jqu)—ty diy
Vy Vy

< ClIfllu+ 1 fllsl¢ — (& JoohyHyod vy @—tyles vy, (7.15)
where we used that dyys (P (W{,), Pt (V{,)) < € (recall we have removed the
endpoint discrepancy). We proceed to estimate the norm of the test function

in the second term. Since each term in the difference is bounded, we may
estimate each difference separately. For Z € Vy, we have

¥ ohy o Sy, 0 8,1(Z) — ¥ 0 @, (2)]
< [ leeqwyd(hy o Swy 0 §y,1(2), @, (2))°.
Using again dyys (P1(Wy), PT(V})) < €, we have, d(Sw, o S;Yl (2),27) <
Ce. Moreover, hy is simply translation by Y, and |Y| < Ce while |ty| < Cye€

by (7.12). Then using the triangle inequality twice gives d(hy o Sy, o
Sy (Z). ®_4,(2)) < Ce. Thus,

¥ ohy o S, 0 8,,1(Z) — ¥ 0 @, (2)] < Ce,

foreach Z € V. For brevity, set /| = 1/ ohy o Sy, o S;Yl and Yo, = Yod_,,.
Now given Z, Z' € Vy,, we estimate on the one hand using the above,

1Y1(Z) — 2(Z) — Y1(Z)) + ¥ (2N d(Z, Z)) P <2Ce%d(Z, /)P,

while on the other, using the Holder continuity of vr; and v, separately (since
hy, Swy, S;Yl and ®_,, are all smooth functions),

1Y1(Z) =2 Z2) =1 (Z) + (2D d(Z, Z)) P < 2C 1Y |ceqw)d(Z, Z)* P,

The Holder constant is bounded by the minimum of the two estimates, which
is maximized when the two are equal, i.e., when d(Z, Z') = €. Thus,

Y1 — Y2les vy < Ce* P (7.16)
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Next, we must estimate,
—1 -1
|JOOSWY OSVy —J()OhY Oq)_ty|cﬁ(v}/,).

But note that, setting ¢ = Jy o h;l, this difference has precisely the same

form as the difference just estimated concerning . Since Jy and h;l are both
smooth functions, this estimate has the same bound as (7.16).

Finally, we must estimate |1 — Jy, ®_;, |Cﬂ(V)//). Using the linearity of the
flow between collisions and again (7.12), we have |1 — Jy, ®_;,(Z)| < Ce
forall Z € V{,. Then since Jy, ®_;, is uniformly C U'on Vy due to the fact that
Vy has uniformly bounded curvature, we may use the same technique as that
above (7.16) to estimate |1 — Jy, ®_;, |C¢‘(V{,) < Cel= B,

Using these estimates on the test functions in (7.15) together with (7.14)
yields the following estimate on the first difference in (7.13),

‘ fyohyJydmy, —/ f@r Jo oh;l) od_4y Jy, &y, dmy,
WY VY

< CeYCD| flly + Ce” | fllu + Ce* P £l
(7.17)
We proceed to estimate the second difference in (7.13). Using (4.27) and
following,

/ F g oh;l) o ®_yy Jyy @y dmy, _/ v Jo oh;1 dmwy
(ny(W) 1%
ty .
:f at/ f Wloohy')yo @, Jo,w Py dme,(w) dt
0 D (W)
ty
:/ 3:/ fO(Dt'l//-Jooh;,ldedt
0 w
ty 1
— [ [ atro@nioo @y dyony! dmy
0 w
ty 1
:f / 0(f 0 Br)lr—o (Yo o by o By - S,y Dy dimar, ) di
0 Jo, (W)

ty
< fo 1ol (¥ o o b o © s - T,y Dy e w) -

On each stable curve ®,(W) the norm of the test function is bounded by a
uniform constant since the flow is linear in ¢ between collisions, and both h;l

and Jy are C! functions. Using these estimates and |ty| < C,€, we obtain the
following estimate for the second difference in (7.13),
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/ f J0°h;1)o¢—fy Jvy @iy diY_/ fWJOOh;l dmyy
q)[y(W) W
< Cell fllo- (7.18)

Putting this together with (7.17) and (7.13) completes the proof of Sub-
lemma 7.6 since y < « — B by definition of the norms. O

The sublemma being proved, we may return to the proof of Lemma 7.4:
Sublemma 7.6 and (7.11) provide the required estimate under the assump-
tion that P+ (W) does not lie within a distance Ae3/> of the boundary of a
homogeneity strip.

Now suppose that P (W) lies within a distance of Ae>/> of the boundary
of a homogeneity strip Hy,. Let W denote the one connected component of
W which does not project to within a distance of Ae3/> of the boundary of
Hy, (note that this may be empty, for example in homogeneity strips of high
index). We may perform the estimate on W precisely as in Sublemma 7.6.

By construction, W \ W consists of at most two components of length at
most Ae3/3. Call one of them W. Although now N, (W) may cross countably
many homogeneity regions, we proceed using (7.9) and the decomposition of
Lebesgue measure from the proof of Lemma 7.3. Now,

3/5

| v@ane Y [ 0z - vam)
Wi k.i B;

< Y IWi|Ce > VRS £y
k,i

As in the proof of Lemma 7.3, the sum over k yields a factor proportional to
e. Finally, |[W;| < Ae3/3, completing the proof of the lemma. |

Proof of Lemma 7.5 Let [ € CY(Q) and define M f = Me(f - 1ag\a.20)-
where 9.€2o denotes the e-neighborhood of 9€2¢ in €2¢. Note that M f = 0
on 92, so that M f € C%(Q0) N CY. We will show that M f is a good
approximation of f in B. Note that VM f = M (V f) so M fleiq,) <
| fler(qy)- BY the proof of Lemma 3.9, M fl5 < C|flc1(gq,) forall e > 0.
Let W € WS, € CP(W) with []eswy < IW[7!/9. Assume for the
moment that W N 9. 2p = @. Then using (7.3) and the fact that f ne =1,

/ (f = M) ¥ dmy
w

= /W v (2) /11@3 ne(Z = Y)(f(Z) = f(¥)) dm(Y)dmw (Z)
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< Ulenap W1 [ [ ez = 1)1 = Yiam(ydm 2)
< €lfleiqy)>

where in the last estimate, we have used that ¢ > 1 and n.(Z — Y) = 0 if
|Z —Y| > e.

Next, if W N 02,20 # @, then we subdivide W into at most two components
W' = W N 2,20 and at most one component W \ W’. On W \ W’, the above
estimate holds. On W’, we use the fact that |[W’'| < C el/? (see, for example,
Lemma 8.2) to estimate,

~ _ 11
/ (f =M ) dmy < W1Y92 Flaaggy < 2070 flangay.
W/
Putting these two estimates together, we have

11
If =M flls < €22 floi)- (7.19)

Next, we estimate the strong unstable norm. For ¢ > 0, let Wi, W, €
WS with dyys (Wi, Wp) < e. Let ¢; € C*(W;) with [Vilcaw,) < 1 and
dW1, ¥2) = 0.

1Let s > 0 be a small number to be chosen below. First assume that
€27% < gV, Then using the estimates for the strong stable norm on each
curve separately, we have,

eV

(f = MZ )1 dmy, — / (f = MZ f)y2 dmy,
Wi %)
< Ce77e | flevay = CEIflev -

Notice that we do not have the exponent 1 — 1/¢ in this estimate since the
test functions used in the strong unstable norm are nicer than those used in the
strong stable norm.

Now suppose €x s > ¢¥. Recalling the notation of Definition 2.10, we let
Wi ={Sw,(r) = @4y o Gw;(r) : 7 € I}},

where Gy, (r) = (r, ¢i(r)) is the graph of PT(W;) over the r-interval I;.
Denote by U; C W; the maximal subcurve such that P*(U;) and P+ (U,)
are defined as graphs over the interval I = I} N I,. We have at most two
pieces V; = W; \ U; and by definition of dyys (-, -) and Lemma 3.4, we have
|Vi| < C|PT(V;)| < Ce. Thus the estimate over the (at most two) unmatched
pieces V; is,
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1_

1
< Ce' 2 fleoey < ce2™G D,

g7

/V (f = MZ f)vs dm,

It remains to estimate the norm of f — M f on matched pieces.

[ =1z v - /U (f =M v dmw, = | fvn dmw,
1 2

Uy

- f‘/f2 de2+/ M:f ‘ﬁ2 dez_/ M:f ‘ﬁl deI-
Us U Uy

(7.20)
To estimate the difference of integrals in f, we write, using the fact that
Yr1 o Sw, = Y2 o Sw, by assumption,

Fu dmy, — / Fra dmy, = / (f o Sw, JSw, — f o Swyd Swy) Y1 o Sw, dr
U U, 1
<CUI||foSw -JSw, — foSw,- JSW2|C0(])

=< C|I|(|f|c1(90)|SW1 - SW2|CO(1) + |f|CO(§20)|JSW1 - JSW2|CO(1))~

For the first term above, since expansion in the stable direction from P (W;) to
W; is of order 1 by Lemma 3.4, and since the unstable direction only contracts
under this map, we have

ISw, — Swyleory < ClGw, — Gw,leory < Ce,
by assumption on W and W». For the second term, |/ Sw, —J Sw,|co(y < Cé,

again using Lemma 3.4 and that U; and U, are C'-close as graphs over I by
definition of dyys (W1, W3). Thus,

ad

< C8l_y|f|cl(szo)

P dmy, — / Fura dmy,
U U

< c)6)

completing the estimate on the first term of (7.20). The second term is estimated
similarly, using the fact that [ne[c1q)) < Ce™! |10 ()

|f|C1(Qo)’

aad

< cei9)G)

M f ¥ dmwl—/ M f o dmw,| < Ce' ™V M fleia
U>

U
-1
|f|c0(§zo)-
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Putting together these estimates on the terms in (7.20) with the estimate on

unmatched pieces yields an exponent of € at worst (% — s) <% — 1) — 1. Since

y < 1/3, we have % — 1 > 2, and so we may choose s > 0 sufficiently small
that the above exponent is positive.

Finally, we estimate the neutral norm. Fix W € W* and ¢ € C¥(W) with
|¥|ce(wy < 1. Recall that 7} denotes the unit vector in the flow direction. Then,
9;(f o ®y)|;=0 = Vf -1 and also for Z € Q¢ \ 320,

3 (M7 f) o @) li=0(Z) = M (V[ - )(Z).
Now suppose W N 0.2 = @. Then,
/W 0.(f — M f) 0 @yl ¥ dmyy
= /Wllf(Z) /R3 Ne(Z =YYV f-0(Z)=Vf-n)).

Now since V f is uniformly continuous on €2, there exists a function p (¢) with
p(e) | Oase | O,suchthat |V f(Z)—V f(Y)| < p(e) whenever |Z—Y| < €.
Since the flow direction 7 also changes smoothly on (), we have

‘/W 0 (f =M. f) o @sli—0 ¥ dmw | < Cp(e).

If, on the other hand, W N 0,y # @, then using the same decomposition of
W as in the proof the strong stable norm estimate, we have

/ 3 (f =ML f) o ®li=o ¥ dmw < 2]W'IIV fleoay < Ce'?Iflei (-
W/

Since f can be approximated by functions in C?(2) N C°, with uniformly
bounded || - ||g-norms, it follows that f € B. O

8 The Dolgopyat cancellation estimate (Lemma 8.1)

Recall the hyperbolicity exponent A = A(l)/ mx > 1 from (1.2).

Lemma 8.1 (Dolgopyat bound) There exists Cy > 0, and, for any 0 < o <
1/3, there exist Cp, > 0 and yp, > 0 so that for any homogeneous curve
W e WS of length |W| = myw (W) < 1 and any® f € C'(T?)

35 We do not assume here that f is supported in 2, recalling (7.4).
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sup [ YR+ b)) dmy
vecdw) Jw
[¥lcow)=I1
C 1
< e (1l + (@™ 0 M)l o)

Vli<a<?2, Vb>1, Ym=>Cp,Inb.

Since R(a + ib) = R(a — ib) the obvious counterpart of the above lemma
holds for b < 0.

Note that we do not require the §-averaging operator used in [5,32]: Since
the weak norm in the right-hand side of the Lasota—Yorke estimates already
involves averaging over stable curves, we can use the weak norm directly.

The rest of the section contains the proof of Lemma 8.1 and consists of a
direct, but lengthy and highly non trivial, computation. In the present section,
Cy denotes a constant depending only on the billiard dynamics and not on y,
1/q, B, or «.

First of all note that if |W| < b~7P°, then the statement of the lemma is
trivially true. We can thus assume that |W| > b~"Pe,

It is more convenient to work directly with the flow rather than with the
Poincaré sections, and we will consider time steps 7— < Tpin. The precise
value of _ will be chosen later in (8.9).

To compute the integral, it is helpful to localize it in space-time. To localize
in time, consider a smooth function p : R — R such that supp p C (—1, 1),
p(s) = p(—s), and ZEeZ p(t —¢) =1forallr € R. For f € L* (R, vol),
we set p(s) = ﬁ(t:ls) and write

RE@™(f) = Z[ P =t eTILf dt
el - D!
Zf —(SHT S L £ f ds
e — 1!
LeN*
mfl
+/ p(s)———e ¥ L, f ds. (8.1)
0 (m —1)!

Next, setting for £ > 1,

(s +erym=t
pm,@,z(s):p(s)— 2t ¥ and
(m —1)!
M= 1
Pm.0.2(8) = p(s >( ¢ diso. (8.2)

@ Springer



Exponential decay of correlations for Sinai billiard flows 139

we fix ¥ € C*(W) with |/ |ce(w) < 1 and write

T

fW V- (RE@™()) dmw =)

pm,ﬂ,z(s)/ v »Cer_»csf dmwds.
(eN?’ - w

(8.3)
Changing variables, we rewrite (8.3) as

T
/ pm,ﬁ,z(s)/ Jgf_ “Yo®y - Lsfds
—T_ D . W

=> / pm,e,z(s)f IS W o @ - Lo f dmy, ds,
Wa

teN  wyeG,, W)"

[REGCCRIDIZTEDS

leN

(8.4)
where J). = JgVA ®y,_ is the (stable) Jacobian of the change of variable

and @L(W) := {Walaea, is the decomposition of ®_,, W specified in
Definition 3.1. By Lemma 3.2, for each A € Ay there exists t4 € [0, Tmin]
suchthat ®_;, Wy isa C? curve with uniform C2 norm and @, +—1- Testricted
tod_,, Wyisa c? map.

11D Wal r
war = Je = G

is chosen large enough. Note that Y, |, wy 0. = W]
Next, we shall localize in space as well, introducing in (8.7) below a
sequence of smooth partitions of unity parametrised by

[Dor_ Wyl
[Wal

Lemma 3.5 implies that C , provided Cy

0 e€(0,1) and € € (0, Lop)

to be chosen later. First, we need some preparations: We shall exclude a neigh-
borhood of 8Qq since®® the angle of the stable and unstable cones can change
quickly near this boundary. We shall also exclude a neighborhood of the
surfaces on which either the stable or unstable cones we have defined are
discontinuous. Define

S= ={ZeQy:e(PT(2Z) =+n/2} and
S ={Z e Qy: (P (2)) = +n/2}, (8.5)

and their e-neighborhoods, SgjE ={Z € Qo :d(Z, §°%) < ¢}. Note that SO~
is the flow of the singularity curve for the map Sy = {£m/2} backwards until
its first collision, while S is the flow of Sy forwards until its next collision.
Stable cones are discontinuous across the surface S°~ while unstable cones
are discontinuous across S°*. Similarly, let 3, (Q0) denote the e-neighborhood

36 In such a way in the following we will never need to consider a curve in the the midst of a
collision.
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of 9 within Q. The following lemma shows that the curves in W* have
small intersections with such sets. We will then be able to discard such inter-
sections and this will allow us to introduce special charts as in Remark 6.1;
see Remark 8.3 below. This lemma has no analogue in [5], where the situation
was much easier.

Lemma 8.2 There exists Cy4 > 0 such that for any ¢ € [0, Lo] and any
homogeneous W € W¥,

W NSO < Cpe®, IWN S| < Cue, [WN3Q| < Cae/?.
Similar bounds hold for unstable curves with the estimates on Sg_ and Sg+
reversed.

Proof LetV = W N Sg_. The curve PT (W) is a homogeneous stable curve
by assumption. Due to the uniform transversality of the map-stable cones
with horizontal lines, P (V) is uniformly transverse to Sy = {¢ = £ /2}.
Suppose PT (V) lies in a homogeneity strip of index k. The expansion in the
stable cone from P+ (V) to V is of order 1, by Lemma 3.4. On the other hand,
vectors in the unstable cone undergo an expansion of order k2. Thus the angle
between V and S°~ is no smaller than order k2, which means that |V| is
bounded by a uniform constant times £k>. But again using Lemma 3.4, we
have the length of |V | comparable to |P*(V)|, which is at most k3. Since
this holds for any V' in the same homogeneity strip, in particular it is true of
a curve V' of length k=3 (even if V itself is shorter). Thus up to a uniform
constant, we must have k=3 < k2, which implies k > ¢~ 1/5. This means
|PT (V)| and so | V] is at most a uniform constant times &3/,

The analysis is similar for V = W N S%*. Note that $%* is a surface which
may divide V into several components. Let V| denote a component of V on one
side of S, so that P~ (V) is contained in a single scatterer. Since P~ (V1)
is a stable curve, even though it may not be homogeneous, it is uniformly
transverse to Sp. Since S°* is the surface defined by flowing Sy forward, SO+
will remain uniformly transverse to V;. Thus | V|| < Cge. Since the number
of such components of V is uniformly bounded by L?}fﬁj + 1 [15, Sect. 5.10],
the bound on |V | follows.

Finally, let V.= W N 9.€2¢. Recall our global coordinates (x, y, w) from
Sect. 1.1. Although V may not be uniformly transverse to d€2 (consider when
V is close to making a normal collision with a scatterer), the estimate will
follow from the fact that its curvature is uniformly bounded away from the
curvature of the scatterer.

Note that the (absolute value) of the curvature of a stable wavefront (the
projection of a stable curve in the (x, y)-plane) just after a collision is given

by Bt =B~ + C?)TKW where B~ is the curvature just before collision; between
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B 115, Sect. 3.8]
B+t ’ T
Putting these together and using the definition of our stable cones for the flow,
we see that the minimum curvature for any stable curve is Bpjn = mifﬁ

Now if V is a component of a stable curve about to make a nearly normal
collision in backward time, then the curvatures of V and the scatterer are
convex in opposition, both with minimum curvatures bounded away from 0
by our calculation above. Thus the length of the projection of V in the (x, y)-
plane is bounded by C ¢!/2 and since the slope of |V| in the (d§, dw)-plane
just before collision is bounded above by 2/tpiy, we have |V| < C el/2 as
well. If, on the other hand, V has just made a nearly normal collision, then the
curvature of its projection for a short time afterward is at least

collisions, the curvature evolves according to B, =

K

B+ = Bmin + s
Ccos @

(8.6)

while the curvature of the scatterer is K. Thus the curvatures of the two pro-
jections are bounded away from one another, and so | V| < Ce'/2 as before.
The last case to consider is if V is close to a tangential collision. In this case,
the projection of V in the (x, y)-plane is uniformly transverse to the boundary
of the scatterer; however, by the proof of Lemma 3.2, the length of V in the
w-coordinate undergoes an expansion of order 1/ cos ¢ near such tangential
collisions, and so again, |V| < Ce!/2. O

Let ¢ > 2 be a constant that will be chosen shortly and let N+ (Z) denote
the neighborhood of Z in ¢ of size ¢? in the standard (x, v, w) coordinates.
There exists Cx > 0 such that, for each ¢ € (0, L), there exists a C* partition
of unity of Q¢

(e )15 8.7)
enjoying the following properties
(i) foreachi € {1, ..., g(e)}, there exists x; € Qo such that ¢ ; (z) = 0 for
all z & Ngo o (xi);
(i1) for each g,i we have |V, oo < Cue™?;
(iii) g(e) < Cye™;
(iv) for each ¢ > 0 we have supp(¢s.0) C 03.-0 20 U Sgc_sf? U SOt and, for

3cet”’
every i = 1, supp(@.) C R0\ (e 20 U ST, U ST, )

2ce? 2ce? )°

Remark 8.3 (C? cone-compatible Darboux charts) Following Remark 6.1, we
setup a similar family of local charts as announced in Remark 2.4: For any

Z € Qo\ (aw Qo U Sgc_g(9 U Sg:feg), it follows from the proof of Lemma 8.2
that cos@(P1(Z2)) > /2 for ¢ sufficiently large. Similarly, if Z" € Qo
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satisfies d(Z, Z') < ce?, we have t(Z') > c&? and cos (P (Z")) > £7/2.
Thus it follows from (2.4) that the width of the stable cones at Z and Z’
has angle at least of order £//2, and the maximum and minimum slopes in
C*(Z) and C*(Z’) are uniformly bounded multiples of one another. Similar
considerations hold for the unstable cones. Indeed, given the relation k < ¢~¢/°
and the fact that d(P T (Z), PT(Z")) < Cse? by Lemma 3.4, we conclude that
PT(Z)and P*(Z’) must lie either in the same homogeneity strip or in adjacent
homogeneity strips for small ¢; specifically, e/ < C’k—>, where C’ depends
only on c, the distortion of P™ given by Lemma 3.4 and the spacing of the
homogeneity strips. Thus for each i, we may adopt local coordinates in a cs?
neighborhood of x;, (x, x*%, xo) as introduced in Remark 2.4, for which the
contact form is in standard form and x; is the origin, and where c is large
enough so that N ,.(x;) C B,e(x;), where Bo(x;) denotes the ball of radius
¢? centered at Xi, in the sup norm of the (x“, x*, xo) coordinates. By the above
discussion, the charts effecting this change of coordinates are uniformly C2.

We will refer to the two sides of the box B¢ (x;) comprising approximate
weak stable manifolds as “stable sides,” the two sides comprising approximate
weak unstable manifolds as “unstable sides” and the two remaining sides as
“flow sides.”

Fix ¢ > 2 large enough and choose ¢ small enough so that any manifold
W4 intersecting B,o (x;) can intersect only (see [5, Fig. 1]) the weak unstable
sides of the boundary of B¢ (x;). (This is possible since the W4 belong to the
stable cone and the cones vary continuously in Q¢ \ (9,,..6 20U Sgc_ef) U ng;e ).
Define for £ > 0,

Avo= Do = {A €Ayt Wan (ameszo usd,u SS;Q> ” @} ,
and for each x;, i > 1, let

Ag = {AeAy: Wan B.o(x;) # @},
Dy ={A€Ay;: 0(WANBo(x;)) € 0B.o(xi)}, Egi=Agi\ Dg,.

The manifolds with index in A, ; are those which intersect the small box
B.o(x;), while Ey; C Ay ; consists of the indices of those manifolds which go
completely across the big box B_.¢(x;). The remaining manifolds of Ay ;,
with indexes in Dy ;, are called the discarded manifolds. We set Wy ; =
Wa N Bego (x;) for i = 1, Wa 0= Wa N 33,020 U Sy, USST,, and

3ce? c

Ze,A,i :f Jgr deAi, i >0. (8.8)
Wa N ’

J
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It is now natural to choose
_ = cé&’. (8.9)

We are going to worry about the small £ first. Let a = %i(z). Remembering

(8.2), setting
m

Lo =

=—, (8.10)
ae“T_—

and using Stirling’s formula, we have

Z f _ Pm.t.z(S) /W V- Lor 45 f dmwds

L=<ty ©
LoT— smfl
< W —us—d
< Ul W [ e s
-2
Flool¥los <7 o i | flool ¥/ loo (e~ 2m)"
fc#mfo R T
SC#%, (8.11)

where we have made the substitution x = as in the second line. We impose
that

NI

e <ez, (8.12)

Our next step is to estimate the contribution of the discarded manifolds
corresponding to indices in Dy ; and £ > £. For fixed ¢, we use the fact that
the B,o(x;) have a bounded number of overlaps as well as the fact that the
number of components corresponding to a Dy ; for each curve W4 € Gy (W)
is uniformly bounded to estimate

> Y szl ¥ i,
i>0 AeDy ; i>0 AeDy ; Add (8 13)
o Y | e
TIL®(Wa)
Wa€eGer_ (W)

where we have used Lemma 8.2 to bound the lengths of the discarded curves
and Lemma 3.8 to bound the sum over the Jacobians.

Remark 8.4 (About Lemma 6.3 in [5]) The statement of [5, Lemma 6.3] is
incorrect due to a missing sum over ¢ there (the error occurs in [5, (E.6)] since
Qg ; is two-dimensional while the neighborhood of O is three-dimensional).
The argument of [5, Sect. 6] can be fixed either by using Lemma 6.8 of [5],
or by providing a direct argument in the spirit of the one above.
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Now using (8.13) and remembering (8.2), we have

Z Z Z /_Tpm,f,z(s) w WO Dy - J[SL : ¢8,i : »Csf

>0y i>0 AeDy;

o] m—1

0 0
< CosflalVloo [ ot < Cueba™ | ol
’ (8.14)

We are left with the elements of E;; for £ > £y. To study them, it is
convenient to set

WY = Uieer o 1@ Wa YA€ Ay, WO=Ur .1 ®W. (8.15)

To continue, for each x; we consider the line x; + (x%,0,0) for x* €
[—&?, €71, and we partition it in intervals of length & /3. To each such interval
I;, j we associate a point

Xi,j € UAeEL,«Wg N1j, (8.16)

if the intersection is not empty. For each such point x; ;, we choose an index A
so that x; ; € Wg, and we associate Reeb coordinates Exl.,j to x; ; as follows:
We require that x; ; is at the origin in the szi,j coordinates, that iy, i (Wg) C
{(0,x*,x°%) | x*, x" € R}, and that the vector Dy, ;®_¢;_(1, 0, 0) belongs to
the unstable cone. Such changes of coordinates exist and are uniformly C> by
[5, Lemma A.4].

Letting B, = {(x“, x*, xO) x| < e, X5 < g, |x0| < 89},Weconsider
for each x; ; the box (in the coordinates /le.’j)

~ |
Beij =iy, (Be). (8.17)
Up to taking larger ¢, we may ensure that the support of the element of the
partition of unity corresponding to x; does not intersect the flow and weak-
unstable boundaries of B ; ;.

We next control regular pieces intersecting B, :

Lemma 8.5 (Controlling regular pieces intersecting B, ) For each i, j and any
B € Ey;sothat WgNBg; j # 0, if ¢ is sufficiently small so that CefS < 1)2,
where C is from Sect. 6, then the flowed leaf Wg N 0By, j does not intersect
the stable side of Bag ; ;.

Proof By construction, for each B ; ; there is a manifold Wg going through
its center and perpendicular to (1,0, 0) (in the iy, i coordinates), for some
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A e Ey; Letty € [—7—, —]besuchthat VT/A = &, Wy satisfies VT/AOI,-J =
{(x4,0,0)} # 0.5

Next, consider B € Ey; with B # A so that Wg intersects B, ; j, and
let xl"; be the intersection point with /; ;. Again, let Wg = &, Wg. By con-
struction |x{ — x%| < e. Our first goal is to estimate d(VT/A, WB). To this end
we will use the stable version of the fake foliations constructed in Sect. 6.
Observe that each result concerning the unstable curves can be transformed
into a result for the stable curves by time reversal. More precisely, we con-
struct aefoliation in the neighborhood of /; ; made of stable curves of length
p =ce’.

To do this, consider P+ (P, (1;,7)), which is a countable union of homoge-
neous unstable curves, defined analogously to the set 5,, (V) for a map-stable
curve V in the proof of Lemma 3.8. Note that by construction, both Wy ; and
WB ; can be iterated forward for a time £7_, and ®y7_ (WA iU WB N c wo.
Thus both PT (g (W4.;)) and PT (g (Wp,;)) are subcurves of Pt (W),
and they intersect P+(d>gf_ i, ).

Now using the (time reversed) construction detailed in Sect. 6, we choose
a seeding foliation, defined on homogeneous subcurves of PT(®y, (I )2
that contains both PT(®y,_(W4.;)) and P (g (Wp.;)) as two of its curves.
Notice that this choice still allows the seeding foliation to be uniformly C? since
both P (D, (Wa;)) and PH(Dy,_(Wp,;)) are subcurves of PT(W) and
since we assumed that W is homogeneous, by definition of WW* and Lemma 3.4,
PT(W) is a single homogeneous map-stable curve with uniformly bounded
curvature. - N

By the definition of A, in Sect. 6.1, this means that both W, ; and Wp ;
belong to the fake stable foliation in a neighborhood of /; ;. Note in partic-
ular that WA ;i and WB ; do not belong to the gaps in the foliation since by
construction, they are images of stable curves on which ®_,; is smooth and
A, B € Ey;. Also, they are guaranteed to have length at least p = ce?
because, having their indices in E;;, they completely cross B..(x;). In
the coordinates used in Sect. 6 (with the stable and unstable interchanged),
let (G(xY, x*), x*, H(x!, x*)) and (G (x}, x*), x*, H(x}g, x*)) be the curves
WA,,-, WB,,-, respectively. By properties (ii) and (vi) of the fake foliation, it
follows that

M

/ 0,0 G (u, x*)du

XA

|G (¥, x") = G (v )| =

u

/ {1 X /0

A

s

8xs axu G(u, s)ds:| du

37 When no confusion arises, to ease notation, we will identify «y; ; (Wg) and Wg.
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xl/’
sf B[I—I—Cee/S]du
Xy

<e(1+Ce?P) < (3/2)¢ < 2, (8.18)

where we have chosen ¢ sufficiently small that C&?/3

properties (ii) and (v) of the foliation,

< 1/2. Analogously, by

[H (xf. x*) = H (¥, x") | =

xy px’ 140
/ [ 0xs Opu H (1, $)dsdu| < Cpe 7.
x4y JO

(8.19)
Hence Wg cannot intersect the stable boundary of By ; j, again assuming
Cye? <3)2. O

Remark 8.6 The above estimates on the distances of nearby manifolds can be
applied to the “central” manifolds of the boxes as well. This readily implies
that the covering {B; ; ;} has a uniformly bounded number of overlaps.

After this preparation, we can summarise where we stand: From (8.4), (8.11),
(8.14) and assumption (8.12) we have

/W v - (R@)™(f) dmw

- ¥/

tieN AeAy; """

SO0 VI N HCT S ATZL AT

ZZK() i=1 j AGE@J,]'

T—

pm,ﬁ,z(s)/ Jip W o®u i Lsf
_ Wa.i

6
+0 (27" flool¥/Ioo)

(8.20)
where38 Epij C{A€Ey; : WaiNBgij # W}, EgijNEg; # ¥ implies
J =k, and U;Ey; ; = Ey ;. To continue, we need some notation that, for
each £, i, j, is better stated in the above mentioned Reeb charts iy, i In fact,
from now on, we identify the coordinate charts and the manifold notation.
For each A € Ey; j, we now view Wg’l. N Bee (directly) as the graph of

WO (xS, x0) 1= Wa(x*) + (0,0, x°) where

Wax®) i= (Ma(x*), x*, Na(x), |x°] < e, (8.21)

38 Some manifolds can be attributed either to a box or to an adjacent box and a choice can be
made to resolve the ambiguity.
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and M4 and N, are uniformly C? functions. By the same exact arguments
used in the proof of Lemma 8.5, we have®®

|M),| < Cye'~ 7. (8.22)

Since both @ and d « are invariant under the flow, and the manifolds are the
images of manifolds with tangent space in the kernel of both forms, we have
that

N (x%) = x* M/ (x*).
With the above notation, the integrals in Eq. (8.20) can be rewritten as

S Pz (s) fWA,,« Vo®ur - Jj i Lsf ds
=Jo o PaVa T e - @ea - fadx*dx®, (8.23)

where Qs = {(x*, x?) : |x*] <6, |x°] <8} and

A, x%) = pro(—x0), e a(x®, x%) = dei 0 WS, x0) - (W, (x)],
YA, x0) = o Dy o Wax®), Ji,, (20 =T o Wax"),
fa®, x%) = f oW, x9).

Our strategy will be based on the fact that an oscillatory integral of a Lipschitz
function is small. Unfortunately, the integrands above are not Lipschitz. To
deal with this, let

Ee,A,i,j =Va0,0) - Zg A, (8.24)

recalling Z, 4 ; defined by (8.8). By Lemma 3.5 and the fact that [/ |coe(w) < 1,
we have

_ Zo A
) — -1 0 &L, A,
VAT — BeaijlWail < Cye®’ ——— (8.25)

oo (Wa il

39 The manifold Wg in the proof of Lemma 8.5 corresponds here to the central manifold
of the box, which in the current coordinates reads {(0, x*, 0)}, while M4 (x*) corresponds to
G (xx ,x5).
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Therefore, using (8.25) in (8.23) and substituting it in (8.20), yields

fwe(z) Nrdmy =33 Y Tévj( L pabeafa

=Ly i,j A€Ey; ;
o —
+ O( flool¥]00e™ a m),

(8.26)
since « < 1/3. Recalling p(s) = p(—s), we introduce (to ease notation we
suppress some indices):

(ET_ — xO)m—l —z0t_+axY
[Wa,il(m —1)! (8.27)
e i (Ma(x®), x*, Na(x®) — x%) - O4(x*),

Gomia(x®,x% = px¥

where © 4ds A dx® is the volume form on WA0 in the coordinates W%. Note
that X
—0 (r)™" —alt_
(m —1)!
g ()" o—alt
(m —1)!
Indeed, by construction |Wy ;| > ¢, and aside from ¢, the only large contri-

bution to the Lipschitz norm comes from ¢, 4 (Which only differs from ¢, ;

by the uniformly smooth change of coordinates WY, 4)» and p and is of order
—9

1Ge,m,iAloo < Cae
(8.28)

|Ge,m,iAlLip < Cae

With the above notation we can write,

/ YR (f) dmw = O(| f oo ¥ oot a™)

+Y Y Y By /Q P Gy i a (0 x0) f (WA () + (0,0, 20)).

>y i,j A€Eg;; ce?
(8.29)
At this point, we would like to compare different manifolds in the same box by
sliding them along an approximate unstable direction. For this we fix ¢, i, j and
use the approximate unstable fibres y;* e constructed in Sect. 6 (the parameter
x represents the maximum time in .7-",{ xo there). In short, for each coordinate
wa we can construct a Lipschitz foliation in B, in a

p=¢g°

neighborhood of W, = {(0, x*, x%) |x*| < c&?, |x°] < c&?}. In order to have
the foliation defined in all B, we need ¢ < 1, while for the foliation to have
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large part where it can be smoothly iterated backward as needed it is necessary
that ¢ > 6. We thus impose
0 <c¢c<l. (8.30)

The foliation constructed in Sect. 6 can be described by the coordinate change
Fij O 2", 2% = (6, G e (8", ), Hi e (6 x%) 4+ x0).

Also, in Eq. (8.49) it will be essential that x be large enough. It turns out that

% =10ma™" (8.31)

suffices. The leaf yi”‘j’s(xs, x9) is thus the graph of F; ; ,. (-, x*, x9). By con-
struction, we require that the vector (1, 0, 0) is tangent to the curve in the
foliation passing through (0, 0, 0). Thus,*0

Gi,jx(0,0) = H; jx(0,0) = 0x¢Gi,j»x(0,0) = 9xe H; j ,(0,0) =0
(Gijx (6", 0] < Cp®, [Hijuex", 0)] < Cp.
(8.32)
For A € Ey; j, we consider the holonomy

hi jax:WaNB — W,

defined by {z} = yi’fjﬁe(h,‘,j,A,x({z})) N W4. Recalling (8.21), we shall use the
notation
hi Az 0o Walx®) = (0, b3 (x*), h (x*)), (8.33)

where, by construction and provided ¢ has been chosen large enough, for all
*| < &7,

Ih%,(0)] < Ce?, W% (0) — Na(0)| < Ce?, |hS(x*)] < ce?, W (x%)] < ce?.
(8.34)
In other words, IF; j , (M4 (x*), b (x*), h(z\ (x%)) = W4 (x%), that is

Gijr(MaA(x®), Wy (x)) = X%, Hi j(Ma(x*), 0% (x*)) + hY (x%) = Na(x¥).

(8.35)

We shall need the following bounds on the regularity of h’,. The proof of
Lemma 8.7 is provided in Appendix B.

40" We cannot require that the leaf (x“, 0, 0) belongs to the foliation, but the proof of [5, Lemma
A.4] ensures that we can obtain the desired tangency.
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Lemma 8.7 There exists C4 > 0 such that for each i, j, £, and every A €
Ey ;. j, we have

IS, (%) —x* |+ () T () — x| < Cpe IS 1= ()| < Cpe IS,

Next, remember that the fibers yi"j . in the domain A, can be iterated
backward a time » and still remain in the unstable cone. In the following we
will use the notation

Deif = sup  ess-Sup|u< [(Bxu Ty e (3, x5, x0), (V) oFy (6", x*, x0)).
(x5,x0)eA,

(8.36)

With the above construction and notations, using (8.28), (8.34), (8.35) and

Lemma 8.7, we can continue our estimate left at (8.29) (recalling (8.33))

/ dx0 dx® e Gy i a(x®, x0) F(WAGR®) + (0,0, x°))
Q

6‘89
= / dx dx® P Gy i a(x®, x0) £(0, 05 (x%), W (x*) + x°)
Q.0
it m—1
FOE 0y f + 65| floo) - ) pate-
(m—1)!
0
:_/ dx0 dx’ PG —oa) Glmia 27 £, x*, x%
Q. [(h%) o (W) ~1(xs)[” 77
it m—1
FOE 0, f + 65| floo) - ) pate-
(m—1)!
— f dx() dx® eib(xo_a)A(xs))sz’i’A(xs’x())f(o’ XS, xO)
Q.0
01 m—1
+OE0, 1 f + (65 + 61 4/540) flooy . L pate
(m —1)!
(8.37)

where in the first equality, we have expanded f at the reference manifold
W, using 9, ; f on A, and property (iv) of the foliation on W, \ A,; in the
second equality, we have changed variables, x* — x0 — h%(xs ) and then
X% (hi\)_1 (x*); and in the third equality we have used Lemma 8.7, setting
wa(x*) =hY o (h$) ! (x*), and

G} in (. x%) = Gy mia ()7 (), 20 — @a(x")). (8.38)
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Note that Lemma 8.7 and (8.28) imply that there exists C4 > 0 such that,
forall A,

eyt
G aloo = Coe™ e, (8.39)
. ' 49% —alr— |
G i alLip = Cae (m—1)!

At last, we can substitute (8.37) into (8.29): We note that (8.8), (8.24) imply

E Z EeA,ij < Cy,

i,j A€Eq A, j

and use the Schwarz inequality (first with respect to the integrals and then
with respect to the sum on 7, j) together with the trivial identity | > 4 z4 1> =
(3" 4 z4)(Q_p z) on sums of complex numbers, to obtain*!

‘ / YR () dmw'
w

< Cy [(e“" + &' 745 4 e579)| floo + £ sup ax,if:| a™

i
1
2

+ Cx Z Z |f|0059 | Z E[,A,i,j EZ,B,i,j/ eib[wA_wB] I:sz,i,A ! GZm,i,B:I]

=0y i,j A,B€Ey, j cet

< Cs [(em9 + &4 4 6579 Floo + £ sup B,f,;f:| a ™
i

1
2

iblaa— -
/Q el [0a=ws] I:Gz,m,i,AGZm,i,B:I

cet
(8.40)
In view of the cancellation argument needed to conclude the present proof
of Lemma 8.1, we need a fundamental, but technical, result whose proof can
be found in Appendix B.

224 i,j A,BGEL,’_J'

+Cy Y | floot™2 [Z > ZeaiZes.i

Lemma 8.8 (Oscillatory integral) We have

iilsf [0xs [@a — wp] (x*)] = Cgd(Wa, Wp). (8.41)
In addition, provided that

0
0<w§gand4g/5+w(7+llg/15)§1, (8.42)

41" Remember that i runs from 1 to C#8_30, while j from 1 to C#ee_l, s0, all in all, the sum
over i, j consists of Cye 1729 terms.
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we have
|(0A — wBlCl+w(era'9) < C#S, (843)

which implies

‘ / dx® P @A ONGy G

x5|<ce? 00

(Zt_)Zm—Z e
< C#m 2at & 0 (844)

e 1
) [d(WA, W)l +@b™ * e?d(Wy, WB)b]'

Note that the proof of the C'+ estimates on the holonomy in [5, Lemma 6.6]
used a Holder bound on d,«d,s G (called (6) in [S, App. D]) that is not available
in the present context. Yet, it turns out that the four-point estimate (vii) from
Sect. 6 suffices to prove the bound (8.43) on w4 — wp.

We have now all the ingredients to conclude the proof of Lemma 8.1. It is
convenient to introduce a parameter ¥ > 1 and to define

EEI?S;' = {(A,B) € Egij x Egi j: d(Wa, Wp) < &”}
EY ; ={(A. B) € Egij x Egij:d(Wa, Wg) > "},

To estimate the sum on Ez‘l?sf, we will need the following lemma (proved
in Appendix B).

Lemma 8.9 For each £ > €y, i € Nand A € E,;, the following estimate
holds,

Z Zopi <Cy [EQﬁ* + )»h’/z] ,

[B.0):ieN BeEi.d(Wsi WS, ) <p.}

where A < 1 is from Lemma 3.8.

Thus, by the above Lemma with p, = e?, we have

Z Zy,AiZeBi = Z ZyAi Z Zy.Bi

(A,B)EEEI([?S; A€Ey;, (A,B)EE%I(;AS;
h " (8.45)
<Cy Y Ziai [89+0/2+/\5L/z].
AEE[’i’j
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Next, we assume (possibly strengthening assumption (8.12)),

InA—

)\‘ﬁ()‘[_/z ( m) 2ae2 < 89+l9/2 (846)

Hence, using estimate (8.45), for £ > £,

> Y ZiaiZepi < CelWTT

— (8.47)
i,j (A,B)eJEZ‘f;.’fj

To conclude, we want to use estimate (8.40), applied to R(z)™ f rather than
to f. The reason for this is to obtain an estimate in terms of the H, norm, but
with a very small factor in front. More precisely, we will in fact estimate,

/ R f  dmy = / R()" g1 ¥ dmyy + f R()"gxr ¥ dmyy,
w w w

(8.48)
where g, 1 and g, 2 are defined by

x m—1
RE"f = [ ef ds

0o gm 1
+/ —e_zsﬁsf ds =: g}(al + g%’Z'
e (m—1)!

To estimate the second term in (8.48), recalling (5.3) and (8.31), notice that

o gm—1 ; T (1() )k
[85,2l00 < |f|oo/ m “ds = | flooe 10 Z
A0m)" 1" m — 1) .. .k

(m =11 &= (10m)m—1-F

-1 —
§|f|ooe Oma m

(10m)™ " !

< |f| —10m —m '
m:

10 —m-+k < C#|f| —m —6m
k=0
(8.49)
Thus,

— —2m —6 —2m .36
|R(Z)m8x,2|oo =a m|gx,2|oo < Cga e m|f|oo < Cga "¢ | floos

where in the last inequality we have used condition (8.12), e ™" < /2.
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To estimate the first term in (8.48), we apply the bounds derived throughout

this section, in particular (8.31) and (8.36), with g, 1 in place of f, noting that
|g}t,1|00 =< a_m|f|oo and

x smfl '
9 (81| < / B 0 ) ds
0 - .

o0 m—1
< C#IVroo/ e g < Cya I ) g
0 (m—1)! o

Thus, by using (8.39) and (8.47) to estimate the sum over Eﬁl‘l’gje and Lemma
8.8 to estimate the sum over Efar in (8.40), we obtain

‘ /W YR (f) dmw | <

YR (g.1) dmw‘
w

+ '/ YR(2)"(8x,2) dmw'

et (g7_ )m I fe—?(4@)+l  g=6-9 73
<Ci Y I8, oo [ = +— +87+9}
= (m— 1) ez

+Cy [(s"‘) +e' 7P 4 e g 1o + £ sUp ax,,-<g,f,1)] a™" + R(2)" gx2lo
l

_ (l+m%19+29 _ 143040
_ & &€ - - 29 2
< Cpa 2’"( b + e + &% !4 1 es70 1 30 ) | floo
b2

+Cha M e(l+a " A" flp

[SE|

(8.50)
where we have used the fact that

m—1 —m
Z e—a@r_ (br-) < Ca

< <C'a"e
(m—1)! T_

>L

Note that if we choose w = 40, then condition (8.42) is satisfied for each
% < 0 < ¢ < 1. Thus all the conditions imposed along the computation are

O0<O<c<1; 0>2+20; 20712 o 0+9/2,

. _ _ (I4+@)04+2(14+)0 _ 1 4«
If we choose v+ = 24460, b = € @ 0= 15200 § T 112a°
and m > Caln b, for some appropriate fixed constant C, then we satisfy all

@ Springer



Exponential decay of correlations for Sinai billiard flows 155

the conditions, and Lemma 8.1 follows with yp, since the

_ aw
- 8+6w+(6+4w )
largest term appearing in (8.50) is of order*? ¢*¢ = p=7Po, O

9 Completing the proofs (exponential mixing of ®; and resonances of X)
9.1 Proofs of Theorem 1.2 and 1.4

The key step for exponential mixing consists in showing the following conse-
quence of the Lasota—Yorke estimates and the Dolgopyat bound on R(z):

Proposition 9.1 Forany0 <y <o < 1/3,ifB > 0and 1/q < 1 are such
that max{f, 1 — 1/q} is small enough, then there exist 1 < ay < a; < by,
0 < ¢ < ¢, and vp, > 0, so that

1 n
R(a+ib)"|lp < ( )
a + Upe

forall |b| > by, a € ag, a1], andn € [c1 In|b|, c2In |b]].

Proposition 9.1 will be shown in the next subsection. Together with Corol-
lary 5.4 it gives the following corollary:

Corollary 9.2 (Spectral gap for the generator X) Under the assumptions of
Corollary 5.2 and Proposition 9.1, there exists vg > 0 so that the spectrum of
X on B in the half-plane

{z € C|9N(z) > —vp}

consists only of the eigenvalue 7 = 0, which has algebraic multiplicity equal
to one.

Corollaries 5.4 and 9.2 with Lemma 7.5 and Remark 5.3 give claims (a) and
(b) of Theorem 1.4.

Proof By Proposition 9.1 and Corollary 5.4, the sets {z € C : N(z) >
—Upe, |J(z2)| > bo} and {z € C : 9R(z) > 0} are included in the resolvent
set of X, in fact, z — R(z) is holomorphic, as a bounded operator on 3, on
the union of these two sets. (Just like for [5, Cor. 3.10] or [32, Cor. 2.13], we
apply R(z+n"1) = R(2)(1+n""R(z))~". See [11, Lemma 4.2] for details.)

On the other hand, Corollary 5.4 implies that in the set {z € C : R(z) >
—Upy, |3(2)] < bp} there can be only finitely many eigenvalues, while the

42" Note that with the above choices if & = %, then we have the rather small value yp, = ﬁ

Working more it is certainly possible to obtain a better estimate but it remains unclear what the
optimal value is.
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intersection of the spectrum with the imaginary axis consists in a simple eigen-
value at z = 0. Corollary 9.2 is proved. O

Proof of Theorems 1.2 and Claim (c) of Theorem 1.4 We will apply results
of Butterley [11] to obtain exponential decay of correlations for Holder
observables (bypassing the final argument in [5, Proof of Theorem 1.1]).
Proposition 9.1 is [11, Assumption 3A], Lemma 4.7 is [11, Assumption 1],
and Corollary 5.2 is [11, Assumption 2]. In addition, Lemma 4.6 gives strong
continuity on 3 (in particular the domain Dom (X) of X is dense). Thus, [11,
Theorem 1] (noting also the corrigendum) provides a finite set

)} g =sp (X)N{z € C:—vp, < N) <0, |3()| < by},

a (nontrivial) finite rank projector I : B — B, and an operator-valued function
t — Py, where P, is bounded on B, ITP; = P, I1 = 0, and a matrix X €
L(F, F), F = I1(B), which has exactly {z;} as eigenvalues and

L, =P, +¢XM foralls >0, 9.1)
and for each v; < vp, there exists C,, > O such that, forall f inDom X C B,
1P flw < Coe V| Xfllg forallt > 0. 9.2)

Next, by Corollary 9.2, we know that the only z; on the imaginary axis is
zo = 0, corresponding to the constant fixed point of £; and to the invariant
volume [T f = 'fQO S dm. This implies claim (c) of Theorem 1.4.

Finally, Theorem 1.2 (and Corollary 1.3) follows from applying (9.1) and
(9.2)to f € C2(Qo) NC%) and ¥ € C' (), since Lemma 2.11 gives

‘/ VP f dm‘ <P flievy¥ler = 1P fluwl¥lers

while the proof of Lemma 4.6 gives C>(20)NC%(2) € Dom (X)and | Xf|5 <
Clfle2qq)- O

9.2 Proof of Proposition 9.1

It only remains to deduce Proposition 9.1 from Lemma 8.1.

Proof of Proposition 9.1 We shall use several times the trivial observation that
if 0 < 7 < n are small enough then for any D > 1 we have

1 1
Vm > 1. (9.3)

~ n
<= < ~ >
TSD T Utnpm = (U +abm
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We introduce an auxiliary norm in order to handle the*? |z| factor in (5.7)
which is much larger than the || ™22 decay from the Dolgopyat Lemma 8.1.
For fixed |b| > 1 and f € C' (), set

Cu 1
£ = s+ — ut — . 9.4
I f 1= I1flls + |b|”f” + |blllfllo 9.4)

We shall prove Proposition 9.1 for the norm || - ||«. We first check that this
is sufficient: For M > L > 1,if a € [ag,a;] and |b| > by > 1, where ay,
ai, by, 0 < ¢| < ¢y, and vp, are as in Proposition 9.1 for || - |4, we have for
¢ € [c1,c2] and m = [c1n b],

“RLm—i-Mm(a +ib)fllg < |b|||RLm+Mm(a +ib) fll« 9.5)
< Ca ™| RM™(a + ib) f ||+

< Ca " =Mmq 4 g Yopy) MM £ I8,

where we used in the first inequality the fact that || - ||[g < |b]]| - ||x), in the
second inequality Proposition 9.1 with the bound |5|(1 +a 'upy) ™ < 1for
L large enough, and in the last inequality Proposition 9.1 with || - ||« < || - || B

Taking large enough M /L and small enough 0 < Up, < vp, (recalling (9.3)),
we have proved

IR"(a +ib)|lg < (a+ Upy) ™"

for some Up, > 0 and ¢| < ¢, all |b| > bg, a € [ag, a1], any ¢; < ¢ < ¢2,
andn = [¢Inb].

Now we prove Proposition 9.1 for the norm | - ||+. Let f € BNC2.NC% ().
We shall assume that 1 < ag < a1 < by, tobe determined later, and take b > b
(the case b < —by is similar) and a € [ag, a;]. In particular

la +ib]
<
alb|  —

We shall consider n = 2m, the case n = 2m+ 1 is similar. Our starting point
is the Lasota-Yorke estimate (5.8) in the proof of Corollary 5.2, which holds
also when replacing || - ||z by || - ||s: Let 0 < A < 1beasin Proposition 5.1,
then there exists** mq > 1 so that for all a > 1, all |b| > 0, and all m > my,

43 In [24] another approach was used to address this issue, involving an auxiliary norm || -
[|* based on exact stable leaves (bypassing the neutral norm, using the resolvent). See [24,
Lemmas 7.4, 7.8, just after (7.4)].

44 We use here that the constant C in (5.8) is uniform in a and b, also for I -
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we have

IR@+ib)*" fllx < a” ™)' [R(a +ib)" fll+ + Ca' ™" |R(a + ib)" f1,.
(9.6)
where v < C(1 — a~'Ini)™™ < 1, and where the homogeneous weak
norm | f |H,j}I was defined in (7.8). (Indeed, by Definition 3.1 of the partition
G; (W), all the admissible stable curves appearing in the right-hand sides of
Propositions 4.1 and 5.1 are homogeneous.)
Recalling (9.3), take vp, > 0 so that

0 < up, < —In /2.

Since (5.8) for || - ||« also implies

a VMR £l < Coa PV 1l < Caa™ "

——=— | fll,

(1 —a='Iniym Sl

and since we assume a > ag > 1 the first term in the right-hand side of (9.6)
is bounded by

—2m

a
oo M = s oy 1

taking D = 2 in (9.3), if by is large enough and if ¢; > 0.

We may thus focus on the second term in the right-hand side of (9.6), that
is, the homogeneous weak norm contribution. For ¢ > 1 to be determined
later, we fix

€= b"°.

Then, using (5.4), which gives |R(z)" |y < Cga™™, we find (recalling that
I <ac<a)

Ca' " R@™ (s < Cola™ " IR@"™ Me(f )5 + Coa™ "1 f — Me(f)l]-
9.7)

If g > 1 is close enough to 1 and 8 > 0 is small enough, then

min{y, 2¢)~', 1/q —2/5 — B} = y, since y < 1/3. By Lemma 7.4, the
second term on the right-hand side of (9.7) is thus bounded by

CyLy/®a™"e” | flls < Caa 2" |b" =7 || f . (9.8)

Next, if
oy > 1, (9.9)
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we get

1
C —2m b 1—0)/ P
wa 1Dl ~ 6(a + vp)*™m

if b > by is large enough and if

(cy — 1)In|b| — In(6Cy)
2m < .
In(1 +a—tvp,)

The numerator in the right-hand side above is > (ocy — 1) 1In|b|/2 for large
enough by and ag/vp,, since a > ag. This gives a constraint satisfied if

_aloy —1)

) < (9.10)

4vup,

The first term in (9.7) will be more tricky to handle. Recalling a < aj, we
must estimate:

Cga™™  sup /R(Z)m(Me(f))de 9.11)
vecew) Jw
¥ lcew)=1

on some admissible stable homogeneous curve W. Recall A = A(l)/ maX from
(1.2). By the Dolgopyat bound (Lemma 8.1), there exist Cp, > 0 and yp,
(independent of 1/¢ and B), so that, if ¥

m > Cp, In |b| ie., c¢1 > Cpy, (9.12)

then (9.11) is bounded by

IMe () @) ) (9.13)

—2m 1,1 = VDo
Cya™ " |b| <|Me(f)|oo(90) + A5 aTmay?

Now, Lemma 7.3 and Lemma 2.11 give
IMe (Pl < Coe P71V Flly < Coe PV £l (9.14)

and

IMe ()1 p) < Coe P20 Flls < Coe P2HVA £l (915)

45 The proof gives a constant Cp, much larger than yp,, and we may safely assume that
YDo < 1.
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On the one hand, if
oc(B+1—-1/9) < ypo, (9.16)
the estimate (9.14) gives the following bound for the first term of (9.13)

Cua =2 p|~vpoto(B+1-1/q) < ,
ya 2" |b| 1l = g a1/
if b is large enough, and

(ypo —o(B+1—1/g))In|b| —In(6Cy)
m =

2
In(1 +a—'upy,)

El

which holds if by is large enough and

Yoo —o(B+1—1/q)
2Up, '

2= 9.17)

On the other hand, recalling 1 < ag < a < ay, (9.15) gives that the second
term of (9.13) is bounded by || f||« multiplied by (note that (9.9) implies
c(B+2—1/q) >y ! whiley™ >3 > yp,)

a=2m|p|~Ypoto(B=1/q+2) a=2m|p|~vpoto(B=1/q+2)
Cy < Cy
(1+a'lnA)yn/2 (1+a'lnA)"/*(1 +ain A)ym/4
1

< b
— 61+ a_IUD(J)zm
if bg is large enough and m is large enough, more precisely

o(B+2—1/9) — vpo

c1 >4
In(1+a-'lnA)

, (9.18)

and if, in addition, recalling (9.3), we assume vp, < lnTA.

Along the way, we have collected the lower bounds on ¢; given by (9.18)
and (9.12), the upper bounds on ¢; listed in (9.10) and (9.17), as well as the
conditions (9.9) (lower bound on ¢) and (9.16) (upper bound on o). Fixing
o = 1/3, Lemma 8.1 provides values for yp, and Cp,. If by > 1 is large
enough and vp, > 0 is small enough, then all conditions can be satisfied
simultaneously if 1/g < 1 is close enough to 1 and 8 > 0 is small enough. In
particular, recalling*® 0 ~! < y < a — B we require

B+1—1/q < % < Vpo(a — B). (9.19)

16 we may take y = o — f, which is smaller than (and close to) 1/3 < 1/g, given our other
choices, so that ¢ is larger than (and close to) 3.
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This completes the proof of Proposition 9.1. O

Appendix A. Proofs of Lemmas 6.6 and 6.7 (approximate foliation
holonomy)

This section contains the proofs of Lemmas 6.6 and 6.7 (Sects. 6.2 and 6.4) on
the Holder bounds of the Jacobians of the holonomy of the fake (approximate)
foliation. These bounds are instrumental to get the four-point estimate (vii) for
the fake unstable foliation.

Proof of Lemma 6.6 Letting th"aVz” denote the holonomy map from V' =
T7"V)to V) = T~"V,, we begin by noting that

Jhip (v (x%), x°)
TG0, )
X Iy, T (Wi (F), ) _n Sy, T7" (i1 (3, %)
Jy, T~ (hpa (v1 (39, £5,)) Jy, T (hia(vi (3, ¥*))
Jhyn yn (xp)

(A.1)
n—1
-1 r —1=
=Y InJp, T o) —Indy, T7'(E)
j=0
—InJy T ) + Iy, TG
tn Jhyn yn (Xn),
Jhyn yu(yn)
where as in the proof of Lemma 6.4, x; = T (v1(X%), %%, X =

T/ (hya(v; (3%), %)), and similarly for y; and y;.

We begin by estimating the difference of stable Jacobians in (A.1). The
factors in each term involving the stable Jacobian are given by (6.4), and we
can bound the differences by grouping together either the terms on the same
stable curve (standard distortion bounds), or the terms on the same unstable
curve (using Lemma 6.4). Assuming without loss of generality that d (xg, Xo) >
d(y0, yo), this yields the following bound on the sum,

n—1

C Z min{d (x11, )’j+1)k?+1 s d(xjt1, jj+1)k_?+| +d(xj, X))+ (xj, %)+ (X1, Xj4+1)},
=0

(A.2)
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where we have used the uniform bound on Jhi, given by Lemma 6.4 and (6.7)
to eliminate terms involving d(x;, y;) and d(y;, y;). We estimate each term
using one of two cases.

Case 1. d(xjy1,yj+1) <d(xjy1,Xj4+1). We write,

d(xjs1, Yit1) =d i1, yir)Tdxj1, yjie)' ™7

= C (ST 00) dlxo, y0)d e, £ 77
(A3)

On the one hand, we have
. —1
d(xji1 %j41) < Cdxo, Fo) (J, T )

where ¢ is the curve so that xg € T" (@) =: y.0On th¢ other hand, by the
uniform transversality of the curves 7~/ “Lv)yand 7771 (v), we have

T ) BT ) = T ) = €21 gt

. B . (A4)
= T o) = CFUk Ty o T (),

where JT /=1 is the full Jacobian of the map 7~/ ~!. This estimate together
with (6.3) implies

i ~10/3 — ; 3/3
BT 00) = Ok P02 (1 T ) L (AS)

Now using this estimate together with (A.3) and again (6.3) yields,

—(44+10)/3

d(xj1, vk < CGo.y0)7d o, 50)' ™7 = s

1
X j b
7o TIH )78/

(A.6)

and this will be summable over j as long as w < 1/8.
Case2.d(xjy1,Xj41) < d(xj41,yj+1)-Inorderto control the terms involving
¢(xj, X;), we use the expressions for the Jacobians given by (6.4) and (A.4)
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together with [15, eq. (5.27) and following] to write,

d(xj—ms )zj—m)
T e ) T T 1))

$(x), %)) <CZ e

Tm=j=ly,
X0, X

tC- —‘¢(0u0) .

Ty T~ (x0) I3, T (x))

(A.7)
< Cd(xo, Xo)
mz:] Tm ijj_ (-xj m) - J;Tm_l(-xj)

A_jd X0, X
+ o (x0, Xo)

T TG

where in the second line we have used the assumption that ¢ (xq, Xo) is propor-
tional to d (x, Xo) and thatd (x, Xj—m) < Cd(x0, X0)/J ¥, jfo—m(x j—m)-
Note that for terms with m > 2, there is a gap between the expansion fac-
tors of the unstable Jacobians in the denominator of the sum: The Jacobian

J;m - 1_T(x j—m+1) 18 missing. We use the fact that this is proportional to

2 .
kj_m to estimate,

d(xo, %0)°”
J;m /‘T] m(x] m) — —Tm_l(-xj)
Cd(XJ, xJ)9zzrk18w
<

1 1-9%
m—

r-ip 1" )>
Cd(xj, Xj)gwk‘;/12wp_6w

(72, T m)>1_15w (s, 77 x))

< Cd(xj, 7)) 7k 27 p=0m AU DI,

(Fa0e s TG

=

1-9%

where we have used (6.3) in the second line. Notice that this estimate holds
for m = 1 as well. Putting this estimate together with (A.7) yields,

¢ (xj, 5j) < Cd(xo, %) 707 d(x}, 7)) 7 k2™ p67 A, VDI,
(A.8)
A similar estimate holds for ¢ (x; 1, Xj+1) with d(x;+1, Xj+1) in place of
d(xj, x;).
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u

Now since d(x;, X;) = C='d(xj41, Xj1 1) I8,

J7T(xjurl), we have

d(xj, %)) < Cd(xj41, yjrDk;

by the assumption of this case as well. Since d(x;41,X;11) < Cd(x;, X;),
combining similar terms in (A.2), it remains to estimate the following expres-
sion in this case,

d(‘xj+1’ ij-i—l)k?_;'_l + d(xj, i])
+ d(X(), i0)1—9wd(xj’ ij)gwk‘;)Zw,O_6wA(;(j_l)(l_lsw)
< d(xj+l,-fj+l)k12~+1 +d(x4,-+1,ij+1)k§ (A.9)

d(x0, %0)' 07 d(xj41, X)) kST

12 (j—D(A-15=)
k wp6w A OJ
For the first ter m, we use the assumption of this case to Write,
p

d(xjs1, Xj41) = d(xjs1, 53107 d (xj41, 54077
. w
= C (BT 00) dlxo, y0) 7 d e, £ 7,
which is the same expression as in (A.3). Thus the first term in (A.9) is bounded
by (A.6).

For the second term in (A.9), we use (6.3) to bound k? and again (A.5) to
estimate,

. w
d(xji1, %j+0)k3 < C (I3 T N x0))  d(x0, y0)®
J 1

" ; 2/3
d(xO’)zo)l—w (JT—-H?T (Xj))

. 1—w 4/3 2/3
(J;fjfl);T]—i_l(xj—H)) ky"p
< Cd(x0, y0)” d(x0, %) 7
kv—v(4+1ow)/3 |
X p2(5w)/3 , (1=8w)/3°
(J;—j—l};T]H(XjH))
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where in the second line we have used the fact that J7'f, j);Tj(x i) =<

CJ;f,j,l); T+ (xj+1) as well as (A.4) to obtain a bound equivalent to (A.6).

Finally, we estimate the third term in (A.9) following a similar strategy,
using again (A.5),

. ~. 9w 1 18w
d(Xj4+1,Xj+1) kj

s m—j—1 @ [
=C (77 @) dxoyo)

" . 6w
d(xo, X0)3” (JT—J‘;;TJ (xf))

] 8w k12w 6w
(J;,j,lyTﬁl(xjH)) WP
—46w /3 |
< Cdlxo. y0)”d (30, 20)* g .
(‘]T—j—ll;TH_ (Xj+1))

Putting these three estimates together in (A.9) implies that the minimum factor
from (A.2) in this case is bounded by

Cd(x0, y0)® d(xo, ;0)1—wAa(j—1>(1—44w/3)
. I4X {k;VSZw/3p—38w/3’ kv—v4/3710w/3p_2(1+w)/3} ,

which will be summable over j as long as &w < 1/15.

Finally, using Case 1 or Case 2 as appropriate for each term appearing in
(A.2) and summing over j completes the required estimate on the difference
of stable Jacobians appearing in (A.1).

It remains to estimate the term involving Jhy# yx, which is the holonomy
of the seeding foliation {£.} 7 . Since {€.} is uniformly C?, we have on the
one hand,

Jhyn yn (xn)

n < C(d(xp, Xp) + @ (xp, Xp) +d(Yn, Yn) + @ (Yns Yn)),
Jhyn yn(yn)

while on the other hand, using the fact that the curvatures of V' and V' are
uniformly bounded,

Jhyn v (xn)

n < C(d(xn, yn) + d(Xn, Yn))-
thl”,vz”()’n) ns Yn ns Yn
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Jhyn yn(xy)
Now In thn—vi(y) is bounded by the minimum of these two estimates, which
we recognize as a simplified version of the expression (A.2) with j = n. Thus
this quantity satisfies the same bounds as in Cases 1 and 2 above, completing
the proof of Lemma 6.6. O

Proof of Lemma 6.7 Let Vj be the subcurve of P+ (W) corresponding to the
gap; in the coordinates (x“, x%), Vp is the vertical line segment identified
by the interval [a, b]. The boundary curves of the gap from the surviving
foliation on either side as described by {(G (X%, a), a) : |x*| < k3 wp} and
{(G(E",b),b) : |X"] < k). Let x, = (0,a) and y, = (0, b). Fix X with
|¥| < k§,p and define X, = (%, G(x",a)) and J, = (", G(¥", b)). Let
V1 denote the stable curve (vertical in the (x*, x°) coordinates) connecting X,
and yb.

Using similar notation to Sect. 6.3, let j + 1 denote the least integer j* > 1
such that 7/ /(80) intersects Vp. This implies in particular, that the surviving
parts of the foliation immediately on either side of the gap lie in the same
homogeneity strip for the first j interates of 7~!. Define x; = T (x,),
yi =T (), % = T~ (%) and 3; = T~ (5p), fori =0, 1,... .

The following expressions for the quantities appearing in the slope will be
useful,

G(E".b) — G, a) = /ij 3y, T/ dmyy,

b—a:f J3 T/ dm
r-ivy T V0 v

And similarly,
_ I3 T )
0 G (", a) = L’ Jh_(x)),

where h_; is the holonomy map from T~/ Vy to T~/ V; along the surviving
foliation on the sides of the gap. Using these expressions, we estimate,

6()2”,[9)—6()?”,61) T JV1|fT -iv JT /VT dmyy
n —— =In 5 —InJh_;(x;)
(b —a)dps G (X4, a) I v T/ (yj)
J3 T/ (x;) TV,
in TV, j | ol

n———.
1T=7Vol lvo\ Jr=ivy I3- ~ivy 77 dmy =Wl
(A.10)
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Since J;._; v,
is equal to the function evaluated at some point on 7~/ V;. Thus by standard
distortion bounds along stable curves, the first term on the right-hand side of
(A.10) is bounded by Cyla — b| 173 A similar bound holds for the third term
above.

In order to estimate Jh_;(x;), we note that this is part of the surviving
foliation that originated at time —n. Applying Lemma 6.4 from time —j to
time —n, there exists C > 0 such that

T/ is continuous on 7~/ Vy, the average value of the function

InJh_;(x;) < C (d(xj,ij)p—wk‘;“” +(x;, x,-)) ,

where ¢ (x, X ;) represents the angle formed by the tangent vectors to T=1Vy
and 77/ Vy at x; and X;, respectively. .

For the first term above, d(x;, x;) < Cd(xo, )Eo)/J;f,j);TJ (x;), where y
denotes the element of the surviving foliation containing x,. For the second
term, we use (A.7) to write,

¢ (xj, xj) < Cd(xg, Xo) :
I n; ];m_j];T]—m(xj_m)J;_j);Tm—l(xj)

Ay d(x0, %o)
Jp T

+C

where we have used the fact that ¢ (xg, Xg) < Cd(xg, Xo) since both Vj and V;
are vertical segments and the unstable curves in the surviving foliation have
uniformly bounded curvature. As in the proof of Lemma 6.6, there is a gap

in the product of unstable Jacobians; the factor J;m_ iy T (xj—m+1) 1S missing.

This is proportional to k?_m, but due to (6.3), we do not ask for a full power
of this factor; rather, we estimate,

1

s T ) I

i);Tm_l(xj)

6/5
ckil,

<
= , 3/5
T T3 m) (Ji o T D)) T, T )

y
4/5 _
k/p2/5

. , 3/5
(JT-WTJ (xf))

<C

@ Springer



168 V. Baladi et al.

This, together with the above estimates implies,

- - 4
d(xo, Xo) . d(xo, xo)kufs
4/3 j . 3/5
p23ky) JZ’LJ.);TJ(XJ') p2/5 (_]YM_WTJ(XJA))

(A.11)
O

InJh_;(xj;) <C

Sublemma A.1 (Relating the gap size and the unstable Jacobian) Let a, b
define the gap in P (W) as in the statement of the lemma and let j, x; be as
defined above. There exists C > 0, depending only on T, and not on n, j or
W, such that

1

. - ~26/35 |, _ p|2/33
JJIf—J‘);T] (xj) —

Ckv_vz,o

Proof We consider the size of the gap created in a neighborhood of 77/~ (x,),
depending on whether this gap is created by an intersection with homogeneity
strips of high index or not.

Case 1. The connected component of T-71=1(v)) containing T-7=1(x,) inter-
sects Sp. Then using (6.12) and (6.13), we have,

+1,—4 8/3
C ij C:I:lku{ ,04/3
la = bl = - Ty = 4 7 —
D (T ) T )
where we used (6.3) in the second inequality. Now JY’f,j,,);Tj“(xjH) =
C ilk? J;, iy T/ (x ;7). Using this together with (A.4) to convert between stable
and unstable Jacobians yields,
+1,8/3 4/3 +1,,70/9 26,9
bl > Ckyp - C ky' p

. 7/3 143, _2 — . 35/9°
(J;‘,jfTJ(xj)) Pk, <J’T‘_j)7TJ(xj)>

where in the second inequality we have used (6.3). This proves the sublemma
in this case.

Case 2. The component of T=I=1(v)) containing T—7=1(x,) does not intersect
So. In this case, by the uniform transversality of S; with unstable curves, the
gap is bounded below by
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C:I:lpkl Cilpk?,v
T+l JS T—i—1 - . 2
(xXj+1) (xa) (J; i 1—Tj+l(xj+l)> k?—i—l

la —Db| = i
T-i-1ly

+1 1.4
- C= pky,
p— . 2 9
(41577 0x0)
where in the last step, we have used the fact that in Case 2, k; 11 is of order 1.

This is clearly a greater lower bound on |a — b| than in Case 1, proving the
sublemma. O

With the sublemma proved, we return to our estimate (A.11),

d(xo. %o) L d, Fo)ky
473 .
2/3le£ ]Yl'f ]_T'/(Xj) p2/5 (Ju T/(xj))
< Cd(xo, %) ( —10/3 o~ 148/105|, _ 1,19/35 +kW2/5p—148/175|a _ b|27/175>

<C (kv_v4/3:0_43/]05|“ — b/ 4 k%5p27/175|a _ b|27/175)

InJh_;(x;) <C

3/5

<C (p—43/105|a — B35 4 /1T b|27/|75) < Cp3105 | _ 117,

where in the third line we have used the fact that d(xg, Xg) < C ,ok‘z,v and in
the last line that kyy < Cp~'/3. We have also opted to take simpler (slightly
less than optimal) exponents, taking the power 1/7 rather than 27/175 in the
second term of the last line and converting |a — b|*3 < Cp*/33 in the first
term. Note that [a — b| < Cp follows from Sect. 6.1.

Finally, for the fourth term on the right-hand side of (A.10), we note that
the boundary curves for the gap containing 7~/ Vy and 7~/ V; both lie in the
unstable cone. Since 7~/ V and T~/ V; have bounded curvature, we have

TV, Cd(xo,
| 0l < Cd(x). §)) < (x0, Xo)
v Ve -T/(xj)

Using Sublemma A.1, this quantity is bounded by
Cd(xo, fo)k‘}/z,o_%/%la b3 < Cp¥35a — b/,

where again we have used the fact that d (xg, Xo) < k%v p. Using the estimates
for these four terms in (A.10) ends the proof of Lemma 6.7 since both the
average slope and dzs G are uniformly bounded away from O and infinity. O
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Appendix B: Estimates for the Dolgopyat bound (Lemmas 8.7, 8.8, and
8.9)

This appendix contains several crucial, but technical, estimates used in the
Dolgopyat type cancellation argument developed in Sect. 8.

Proof of Lemma 8.7 Recalling condition (ii) on the foliation from Sect. 6, the
first identity in (8.35) together with (8.34) gives

b (x*)
x* = Gjjx(Ma(x%),0) +/ ds 3 Gi j o (Ma(x%), s)
0

Ma(x%) b, (x%) Ma(x%)
= / du 9xuGi j(u,0) +f ds|1 —I—/ du 0xudys Gi j e (u,s)
0 0 0

Ma(x%) hY (x*) pMa(x®)
:hfL‘(xSH—/ du 8qu,~,j,,,(u,0)+'/ ds/ du 9xudysGj j o (u,s),
0 0 0 B.1)
where we have used the fact that d,sG; j ,(0,s) = 1 for each s by prop-
erty (ii) of the foliation. Thus, combining the bound (vi) from Sect. 6, that
is [0yu s Gi j x| < Cp~43 = Ce4s/5, the bound M| < C#sl_%e from
(8.22) (which implies | M4 (x*)| < Cye), and the condition [h% (x*)| < Cye’
from (8.34), we get b, (x*) = x*(1 + O(e!74/5)) + O(e).
Next, differentiating the first identity in (8.35), we find

1 — 05 Gi j o (Ma(x*), 0}y (x*)) M), (x*)

hs / S —
(hy) () 05 G je (M4 (%), 1S, (%))

(B.2)

We have
desGijx (Ma(x*), b (x*)) = 0xsGi jx (0, 0% (x*))
Ma(x*)
+ / Ou axSGi,j,%(uy hfq (x*))du
0
=14 O 4%,

while [0, G j xloo < C#, hence we have the second inequality of Lemma 8.7.
1 ()] = o5, (B3)

while the bound on ‘(hi) (x%) —xs‘ follows by integration. Finally, h’

is invertible and the claimed bound on (hi\)f1 (x*) — x*

sy =18 sy _ 1
N CAETAN

holds using

— 1 and integrating as before. O
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Proof of Lemma 8.8 To start with, note that formula [5, (E.1)] is obtained
by a purely geometric argument and uses only that the strong manifolds are
in the kernel of the contact form and the weak manifolds in the kernel of its
differential. Since the exact same situation holds here, we have, for all relevant
manifolds Wy, the formula

xS M ()~ ()
wa(x*) =/ ds/ du 3 Gi jy(u, s). (B.4)
0 0

Note that this implies
|@aloo < Cye' 7. (B.5)

To obtain the formula we are interested in for each pair A, B, it suffices to
differentiate. Remembering properties (ii) and (vi) of the foliation constructed
in Sect. 6, we have

My (b))
eon(c') ~ droale’) = [
Ma((n) ')
[t )
() )
= [ M5 ((03) " ) =ma ((03) " 00) (140 (£759) ).
(B.6)
Next, the distance between Wg N {x* = 0} and Wg N {x®* = 0} is given by
|[MA(0) —Mp(0)| =: d(Wa, Wp). Then, by the argument developed in (8.18)
(proof of Lemma 8.5), we have

du 0xsGj j e (u, x%)

u
du |:1 —l—/ duy 8x“axSGi,j,k(ulvxS)i|
0

| IM4(0) — Mp(0)] — [Ma(x*) — Mp(x*)| | < Cyd(Wa, Wp)e?/>. (B.7)

On the other hand, by (B.1) and property (vi) of the foliation, we have

[(03) ™" ) = () " )

Mpo(hy) ™' ()
/ o du aqu,-,j,,((u,O)
MAo(hfq) (x%)

MBo(hSB)_l(XS) x5
/ du/ ds 3xuaxxGi’jy,{(M,S)
Mao(s) ') Jo

<Cy (1 +89_%§> )MB o (1153)_1 (x*) = Ma o (b))

+

1

o).
(B.8)
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To conclude recall that we are working in coordinates in which [M/,| <
4
Cye' ™59 cf. the proof of Lemma 8.5, hence

My o ()™ = Mao (03)™"| = My o ()™ — Mao ()|
—Cue! 5 () ™! ()|
> | Mg o ()" = Mo ()]

— Cy <81_%9 + 51_%“‘%9) ‘MB o (h%)_l — My o (hi‘)_l

’

which, together with (B.6) and (B.7), proves (8.41).
To prove the second statement, let us introduce the shorthand notation

04 8(x") = 04(x) —w@p(x*) and n, = (h}) ', 5 = (h}) . By (B.6) we
have

|0gswa, p(x*) — dpswa 5 ()|

MB(ﬂB(xS)) MB('IB()’S))
/ du Oys Gi,j,%(uv xs) - / du Oys Gi,j,}t(ua ys)
My (n(x5)) Ma(na(y*))

<

Ma(ma(x*))

Mg(np(x*))
/ du 3 Gij(u, y*)

Mp(np(x)) v |
/ du s Gy oty x°) — DG (it )

+

Mp(np(y*))

Ma(mp ("))
/ du asti,j,J{(u’ ys)
M4 (x%))

+

Notice that (ii) of the foliation implies

Oxs Gi,j,}:(”a xs) — Oys Gi,j,;{(”a ys)

= afoi,j,x(u» xs) - axXGi,j,%(u» ys) - axXGi,j,%(Oa xs)
+ Oys Gi,j,%(O, ¥h).

Thus, the four-point property (vii) (applied to the points (u, x*) and (0, ¥*))
implies

4
—(3+
|8x5Gi,j’;{(u7 xS) - asti,j,){(I'h )’Y)| S C#8 (5 !

ll?>g+lf7w §

_ yslw.
(B.9)

|x
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On the other hand, Eq. (8.22) and Lemma 8.7 imply

4
IMp(g(x*) — Mp(np(y*)| < Cye'75%1x* — ',

and the same for A. Remembering that |x*|, |y’| < ce?, property (v) of the
foliation, and our conditions on @, 6, ¢ from (8.42), the above facts yield

_4
‘axS(UA,B(XS) _ axswA’B(yS)‘ < C#8|XS _ yvlw' + 81 59|xs _ yY|
S C#8|xs _ yslw

which, together with (B.5), proves the second statement of Lemma 8.8.
To continue, let

2
s 0 [m — D" pupe 0NG* (s 0)
LA,B(xy’x ) = (¢t )2m72 e G?,m,i,A(xs»x )Gz{,m,i,B(xbva)-
Next we introduce a sequence {w j}?/]: o C R such that wy = —cr? and

Oeswa, p(w)(wjt] —w;j) = 2b~! and let M € N be such that wy < ce&?
and wyr 41 > ce? 47 Also, we set d; =wj;y1 — w;. By Lemma 8.7 it follows
that, for each x* € [w;, wjq1],

©04.58(x*) — @4 5(W)) — ds@a p(w))(x* —w))| < Cyed ™.
In addition, the bounds in (8.39) imply
ILag(x*, x%) — La p(wj, x°)| < Cy8;e7.

Then, using the first part of the Lemma,

j+1 . P
/ e*lbwA,B(X )LA’B(xs’xo)dxs
w

J

Wi+l . s . 1+
[ e O ;1) + O 8dx

wj

< Cy <b5}+w8*20“ n 8739(”) 5;

8_20+1 8—39
<C ;.
= #(d(WA,WB)HW +d(WA,WB>b) j

47 Note that M exists and is finite by the first part of the lemma, (8.41).
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We may be left with the integral over the interval [wyy, cr] which is trivially
bounded by Cue™ 208y < Cau[e*bd (W4, Wg)]~!. The statement follows
since the manifolds we are considering have length at most ce?, hence
Z?i‘ol 8 <ce. O

Proof of Lemma 8.9 We start by introducing a function R : W — N such that
R(&) is the first t € N at which ®_,;_& belongs to a component of ®_,, W
of size larger than kLo, k+ < 1/3, and distant more than Lo from d2g. 0O

Remark B.1 We choose «, such that, if ®_,; W is a regular piece of size
larger than Lo/3 but in an Lo neighborhood of 920, then either ® _; 5, W
or ®_ iy, W will satisfy our requirement for some Cy > kt_ > Ly.

We define then R(£) = min{R(£), £}. Let P = {J;} be the coarser par-
tition of W in intervals on which R is constant. Note that, for each Wp,
Dy (Wp,i) C Jj for some J; € P.

Let

Se; ={(B,i) : i €N, BeEy;, d(Wpi, W3,;) < px, GerWpi C Jj).
Then, by Lemma 3.5, for each (B, i) € ¥y ;

Zy.B.i =/ Ji. < Cy |ij| Jo—rr. = C# |ij| |Pe—rpr Wh.il .
Wp.i - |W]| Wp.i T |W]| '

. (B.10)
where R; = R(Jj) and W = ®_p . J;. Note that, by construction, either
|W jl = k«Loor Rj = £ and w j = Wp, ;. Next, consider the local weak stable

—0 —
surfaces Wg,l. = Urercrt,ert )P Wi and W= U _gp0 001 W .

5

Let us analyze first the case in which R; < £. Let p < C#Lg . Then, by
assumption, W j 18 a manifold with satisfies condition (a) at the beginning of
Sect. 6. Indeed Wj is too long to belong to Hj with k > Cp_%, so that Wj
satisfies condition (b) of that section as well. We can then use the construction
in Sect. 6 to define an approximate unstable foliation in a p neighborhood of the
surface W(j) LetI'p ; be the set of leaves that intersect A, R;N D - Rj)T_ Wgy P
By the construction of the covering B, (x;), the I'p; can have at most Cy
overlaps and since Wp completely crosses B_.o(x;), there can be no gaps
between the curves in I' g ;. Now using the uniform transversality between the
stable, unstable and flow directions,

> mTp)=Cs Y | Pegryr Wailpe®
(B,i)€Xy, (B,i)€Xy,
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Accordingly, for each j such that R; < ¢, remembering (B.10),

Y Zupi <Celdjlp e DT m(®_ppeTpi). (B
(B,i)E€Zy, (B,i)eXy, |

where we have used the invariance of the volume. Remembering that the
D_¢—r DT I'g.; have a fixed maximal number of overlaps and since they must

be all contained in a box containing O of length Cye? in the flow direction,
of length Cy&? in the stable direction and of length Cy(py + A~¢R)™ p) in
the unstable direction, we have,*3

SN Zpis Y Gl o+ AT p)

i (B,i)eXy, . . [
J (B,D) 0, j {j . ijj}

+ > > Zsi

{] . Rj>%} (BJ.)EEZ.j

(B.12)

To estimate the sum on R; > % we use the growth Lemma 3.8(a), with
1/q0 = 0, which, remembering Remark B.1, implies

Z Z Zpi =< Z Z C#f ‘]%h_/sz‘i(D“*/z

{j : Rj>%} (B,i)EZy {j: Rj>§} (B,i)eZy, Per_2Wa.i

< Z C#/ Ty Per_s2
W€y j2(W) W
< Z CLolJ3y, Per_paleo < Cyd' ™2

WgeZpr_2(W)

Since A > A~!, the lemma follows by choosing p = ,oi/ 2,
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