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1. Introduction

This work is motivated by the natural connection between escape rates and hitting 
times. The existence of an exponential Hitting Time Statistics (HTS) law, which is a 
recurrence law to shrinking targets, is a rather soft condition: in all cases we are aware 
of, all one requires is mixing, with no rates necessary. However, under some mixing 
conditions, good error bounds can be derived (see e.g. [9]) which mean that we can 
change the scaling in that law and still derive a non-degenerate limit law. If the mixing 
is exponential, the scaling can be changed to recover an escape rate to a fixed hole/target. 
In this paper we explore a parameter space which takes us between the escape rate case 
and the hitting time case. Under exponential mixing we can go between these laws 
in a non-degenerate way. A phase transition occurs when one leaves the hitting time 
setting and heads towards the escape case whenever the system is subexponentially 
mixing. In this paper we address such transitions in the case of stretched exponential, 
super-polynomial and polynomial rates of mixing.

1.1. Hitting times, escape rates, and between

Given a dynamical system f : X � preserving an ergodic probability measure μ, one 
can consider first entry times to a sequence of subsets (Ur)r with Ur shrinking to a given 
point z as r → 0. Letting τr be the first hitting time to Ur, i.e.,

τr(x) := inf {n � 1 : fn(x) ∈ Ur} ,

one can ask how the quantity μ(τr > t) depends asymptotically on both r and t (for a 
fixed z). To derive a HTS law, one scales the time via t = s/μ(Ur) for some s ∈ R

+ and 
considers the limit

lim
r→0

μ(τr > s/μ(Ur)).

For a large range of dynamical systems it is known that this limit is e−s for μ-a.e. 
centre z. So we obtain an expression which is more convenient in this work:

lim
r→0

−1
s

logμ(τr > s/μ(Ur)) = 1 for μ-a.e. z. (1.1)

There is a wealth of literature on this topic, but here we just refer to the reviews [12]
and [19, Chapter 5] and note that we only require very basic mixing properties for (1.1); 
for example, for multimodal maps of the interval, if there is an absolutely continuous 
invariant measure (with no mixing requirement), this law holds [2].
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From the point of view of open systems, one declares Ur to be a (fixed) hole and 
considers any point entering Ur to be annihilated from the system. In contrast to hitting 
times (where τr(x) ≥ 1 a.s. also for x ∈ Ur), in an open system a point x ∈ Ur is not 
allowed to exit Ur. Thus the escape time er(x) satisfies er(x) = τr(x) if x /∈ Ur and 
er(x) = 0 if x ∈ Ur. However, an essential connection between the two is given by,

{
x ∈ X : τr(x) = t

}
= f−1 ({x ∈ X : er(x) = t− 1

})
, for all t � 1.

Due to the invariance of μ, the escape rate can be defined by the following equivalent 
expressions,

lim
t→∞

−1
t

logμ(er > t− 1) = lim
t→∞

−1
t

logμ(τr > t) (1.2)

when this limit exists. If the limit exists, we label it − log λr for reasons that will become 
clear later and consider the ‘derivative of the escape rate’, expressed as the limit,

lim
r→0

− log λr

μ(Ur)
= 1 for μ-a.e. z, (1.3)

which has been proved for certain exponentially mixing systems [3,14]. We are not aware 
of examples where the limit in (1.2) exists (in the exponentially mixing setting), but (1.3)
fails. Naturally if the system is subexponentially mixing, then (1.2) should be degenerate 
and so (1.3) fails, see [5]. One expects (see e.g. [7,8]) that for periodic points z, the limit 
will be some number in (0, 1) which can be expressed in terms of the relevant potential; 
if f is continuous, for all other points the limit should be 1. The recent work [21] extends 
this point of view to a wide variety of conformal systems via symbolic dynamics.

Both of the limits (1.1) and (1.3) can be seen as special limiting cases of the expression

1
μ(Ur)

−1
t

logμ(τr > t), (1.4)

where the open system perspective takes first the limit t → ∞ then r → 0, while the 
hitting time perspective takes the ‘diagonal limit’ r → 0 with t = s/μ(Ur).

Once one views this expression in the two-dimensional parameter space (r, t), as in 
Fig. 1, one can naturally ask questions regarding convergence along various paths through 
this parameter space. Setting t = sμ(Ur)−α for some α, s ∈ (0, ∞), we formulate the 
generalised limit

Lα,s(z) := lim
r→0

−1
sμ(Ur)1−α

logμ(τr > sμ(Ur)−α), (1.5)

if the limit exists. With this formulation, the case α = 1 coincides with the diagonal 
limit formulated above for hitting time statistics. Additionally, α = ∞ can be thought 
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Fig. 1. Different paths of taking the limit r → 0, t → ∞, with t = sμ(Ur)−α.

of as coinciding with the derivative of the escape rate (1.3) (where t → ∞ as r is held 
fixed), while α = 0 can be thought of as the reversed order of limits,

lim
t→∞

lim
r→0

−1
tμ(Ur)

logμ(τr > t).

Remark 1.1. For every α ∈ [0, 1), and supposing μ(τr > t) > 0 for all t, Lα,s(z) ∈ [0, 1], 
provided it exists. Indeed, for t = sμ(Ur)−α, we have

0 � − logμ(τr > t)
sμ(Ur)1−α

= − log(1 − μ(τr � t))
sμ(Ur)1−α

=
− log(1 − μ(∪t−1

j=0f
−j(Ur)))

sμ(Ur)1−α
� − log(1 − tμ(Ur))

sμ(Ur)1−α

= − log(1 − sμ(Ur)1−α)
sμ(Ur)1−α

→ 1 as μ(Ur) → 0.

Therefore, any limit point belongs to [0, 1]. The calculation above also implies that, when 
the limit exists, for α < 1,

lim
r→0

− logμ(τr > sμ(Ur)−α)
sμ(Ur)1−α

= lim
r→0

μ(τr � sμ(Ur)−α)
sμ(Ur)1−α

. (1.6)

1.2. Brief summary of results

Our main results are, roughly speaking, that if the system behaves well and is expo-
nentially mixing, then Lα,s(z) exists for all α; it can be written in terms of the periodic 
behaviour if z is periodic, and Lα,s(z) = 1 otherwise (Theorem 2.1). On the other hand, 
if the system is slower than stretched exponentially mixing then Lα,s(z) = 0 for α > 1. 
If the system is (exactly) stretched exponentially mixing then there exists an α0 > 1
depending on the mixing rate so that we have the same result as for the exponential 
case if α < α0, and Lα,s(z) = 0 for α > α0 (Theorem 3.2). The latter results employ an 
inducing argument and a large deviations law (either exponential, stretched exponential 
or polynomial). Our examples using inducing schemes require good large deviations of 
the inducing time, with various types of tail.
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We remark that the existence of Lα,s(z) for α �= 1 is more delicate than for α = 1 and 
gives additional information about the distribution of τr. For example, in the generic 
case, when α = 1, one obtains that μ(τr > sμ(Ur)−1) → e−s as r → 0, but the rate of 
convergence does not appear. By contrast, when α �= 1, the limit of μ(τr > sμ(Ur)−α)
is always either 1 (for α < 1) or 0 (for α > 1), and Lα,s(z) captures the exponential 
rate at which this convergence occurs. This rate provides information about the tail 
distribution of τr for small r. Again using the generic case as an example, when α > 1, 
Lα,s(z) = 1 implies μ(τr > sμ(Ur)−α) = e−(1±ε)sμ(Ur)1−α ; when α < 1, Lα,s(z) = 1
implies μ(τr � sμ(Ur)−α) = (1 ± ε)sμ(Ur)1−α, due to (1.6).

The paper is organised as follows. In Section 2, we consider interval maps with good 
spectral properties; namely, that an associated family of transfer operators has a spectral 
gap. Our results are formulated abstractly, but in Section 2.6 we give specific examples 
including Lasota–Yorke maps, Gibbs–Markov maps and the Gauss map. In Section 3, 
we consider systems where a well-chosen first return map has good properties and show 
how the tail of the first return time affects the limits Lα,s. Again we formulate our 
results abstractly and then provide examples in Section 4 to a variety of maps, including 
generalised Farey maps, several classes of unimodal maps and Young towers. In the 
appendix we (re)prove two technical results used in Sections 2 and 3.

Notation. We will use the following notational conventions throughout the paper without 
further mention. A = C±1B means there exists C � 1 such that C−1B � A � CB; 
similarly, A = (1 ±ε)B means (1 −ε)B � A � (1 +ε)B. We write A ∼ B if limA/B = 1, 
where the parameter in which the limit is taken is clear by context (usually it is r → 0).

2. Exponentially mixing case

In this section, we consider a piecewise continuous map of the unit interval f : I �, 
with countably many intervals of monotonicity. Our assumptions will be general enough 
to allow both traditional piecewise expanding maps as well as more general Gibbs–
Markov maps with contracting potentials. We will then prove our results regarding 
Lα,s(z), defined in (1.5), with respect to equilibrium states for these potentials. We 
will make assumptions on the map ((F1)–(F4) below as well as (U), and where appro-
priate (P)) which imply the conditions of Rychlik [23] as well as giving a form of the 
Lasota–Yorke inequality needed in Proposition 2.5.

Assume that there exists a countable collection of maximal intervals Z = {Zi}i, 
Zi ⊂ I, with disjoint interiors, such that f is continuous and strictly monotonic on 
each Zi. We set D = I \ ∪iint(Zi).

We assume that there exists a (nonatomic) Borel probability measure mϕ such that 
mϕ(D) = 0, which is conformal with respect to a potential ϕ : I → R, i.e., dmϕ/d(mϕ ◦
f) = eϕ. The associated transfer operator acting on L1(mϕ) is

Lϕψ(x) =
∑

−1

ψ(y)eϕ(y), ∀ψ ∈ L1(mϕ).

y∈f x
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We will study the action of Lϕ on functions of bounded variation. To that end, recall 
that the variation of a function ψ on an interval J is defined by

∨
J

ψ = sup
{

k−1∑
i=0

|ψ(xi+1) − ψ(xi)| : x0 < x1 < · · · < xk, xi ∈ J,∀i � k

}
,

where the supremum is taken over all finite sets {xi}i ⊂ J .
Let Snϕ =

∑n−1
i=0 ϕ ◦ f i. We set ϕ|D = −∞ and assume the potential ϕ satisfies the 

following regularity properties:

(F1) ∃Cd > 0 s.t. |eSnϕ(x)−Snϕ(y)−1| � Cd|fnx −fny| whenever f ix, f iy lie in the same 
element of Z for i = 0, 1, . . . , n − 1;

(F2)
∑

Z∈Z supZ eϕ < ∞;
(F3) ∃n0 ∈ N such that supI e

Sn0ϕ < infI\D Ln0
ϕ 1;

(F4) for each interval J ⊂ I \ D, ∃N = N(J) s.t. infI\D LN
ϕ 1J > 0, where 1J is the 

indicator function of the set J .

Due to the existence of the conformal measure mϕ, we have 
∫
Ln
ϕ1 dmϕ =

∫
1 dmϕ = 1, 

so that infI\D Ln
ϕ1 � 1 for each n ∈ N. Thus by (F3), supI e

Sn0ϕ < 1. Then since 
supI e

Snϕ is submultiplicative,

∃n1 ∈ N such that (2 + 2Cd) sup
I

eSn1ϕ < 1, (2.1)

where Cd is from (F1).
Now fix z ∈ I and for r0 > 0, define (Ur)r∈(0,r0) to be a family of intervals such that 

diam(Ur) → 0 as r → 0, and ∩rUr = {z}. From the point of view of open systems, 
for each r, we define the map with hole Ur and its iterates by, f̊n

r = fn|I̊n−1
r

, where 
I̊0
r = I \ Ur and I̊nr = ∩n

i=0f
−i(I \ Ur).

Let In
r denote the intervals of monotonicity for f̊n

r . We assume the following uniform 
large images condition for f̊n1

r on the sequence (Ur)r.

(U) There exists c0 > 0 such that

inf
r∈[0,r0]

inf{mϕ(f̊n1
r J) : J ∈ In1

r } � c0,

where n1 is from (2.1).
As we shall show in Section 2.1, under assumptions (F1)–(F4), Lϕ admits a unique 

invariant measure μϕ, absolutely continuous with respect to mϕ, whose density g0 is 
of bounded variation and is bounded away from 0. Note that μϕ can also be char-
acterised as an equilibrium state for ϕ. That is, for the variational pressure P (ϕ) :=
sup {h(μ) +

∫
ϕ dμ} where the supremum is taken over all f -invariant probability mea-

sures, μϕ is an equilibrium state since it satisfies h(μϕ) +
∫
ϕ dμϕ = P (ϕ). Moreover, 
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since we can also think of P (ϕ) as the log of the leading eigenvalue of Lϕ, our assumptions 
here give P (ϕ) = 0.

In the case when z is periodic of prime period p, we shall need the following additional 
condition.

(P) The density g0 is continuous at z and fp is monotonic at z.

Let

Icont := {z ∈ I : fk is continuous at z for all k ∈ N}. (2.2)

That μϕ(Icont) = 1 follows from the assumption that mϕ(D) = 0. The main result of 
this section is the following theorem.

Theorem 2.1. Let (f, ϕ) satisfy (F1)–(F4). Fix z ∈ Icont and let (Ur)r∈(0,r0] be a family 
of intervals such that limr→0 diam(Ur) = 0 and ∩rUr = {z}, satisfying (U), and in the 
periodic case, (P) as well.

Then, for any s ∈ R
+ and α ∈ [0, ∞], taking Lα,s(z) with respect to the invariant 

measure μϕ, we have

Lα,s(z) =
{

1, if z is not periodic
1 − eSpϕ(z), if z is p-periodic,

where p-periodic means that the prime period of z is p.

Remark 2.2. If f is continuous, then I = Icont, while in the context of hitting time 
statistics, the case z ∈ I \ Icont �= ∅ is addressed in [1, Section 3.3].

Remark 2.3. As will be clear from the proof of Theorem 2.1, the case α = 0 holds 
in great generality: The proof in Section 2.4 requires neither (F2)–(F4) nor (U). In the 
non-periodic case we require only that z ∈ Icont. In the periodic case, we require (F1), (P)
and the fact that μϕ is absolutely continuous with respect to mϕ with density bounded 
away from 0 at z. Alternatively, if it is known that eSpϕ is continuous at z, then (F1) is 
not needed.

2.1. Preliminaries

We begin by establishing some easy facts about the potential ϕ. Let Zn =∨n−1
i=0 f−i(Z) denote the maximal intervals on which fn is continuous and monotonic.

Lemma 2.4. Assuming (F1)–(F4), for all n � 0, the following hold:

(a)
∑

Z∈Zn eSnϕ < ∞;
(b) for each Z ∈ Z, 

∨
Z eϕ � Cd supZ eϕ;



1270 H. Bruin et al. / Advances in Mathematics 328 (2018) 1263–1298
(c)
∨

I e
Snϕ < ∞.

Proof. (a) follows from a standard inductive argument using (F2).
(b) follows from (F1) since |eϕ(xi+1) − eϕ(xi)| � Cde

ϕ(xi) for any set {xi}ki=1 ⊂ Z.
For n = 1, (c) follows from (b) and (F2). Note that setting ϕ|D = −∞ only adds 

a term bounded by the series in (F2) to the variation. For n � 2, the argument again 
follows from a standard induction. �

Potentials satisfying the above properties in addition to (F3) are called contracting 
potentials in the literature (see for example, [23,17]), while (F4) is called the covering 
property. However, we require (F1) in order to obtain the stronger form of Lasota–Yorke 
inequalities in Proposition 2.5, which we shall need to apply perturbation theory to the 
open systems (f̊r, Ur), considering Ur as a hole.1 We will prove Theorem 2.1 using the 
fact that the transfer operators associated with both the closed and open systems have 
spectral gaps and their spectral projectors vary in some uniform way with the size of the 
hole.

Let B be the set of functions of bounded variation on I equipped with the variation 
norm ‖ψ‖ =

∨
I ψ + |ψ|1, where | · |1 denotes the L1-norm with respect to the conformal 

measure mϕ.
Using Lemma 2.4 and (2.1), the operator Ln1

ϕ satisfies the assumptions of [23, Theo-
rem 1], so that Ln1

ϕ is quasi-compact as an operator on B. Now using the decomposition 
in [23, Theorem 3] and the covering property (F4), it follows that Ln1

ϕ has a simple 
eigenvalue at 1, and no other eigenvalue can have modulus 1, i.e., Ln1

ϕ has a spectral 
gap. Using again Lemma 2.4(b), (c), since Lϕ is a bounded operator on B, it also has a 
spectral gap. This will be the starting point from which we will perturb.

2.2. Notation and initial results for open systems

In this section, we first summarise standard notation for open systems that we will 
use throughout the paper. We then proceed to prove the existence of a uniform spectral 
gap for a family of associated transfer operators.

Recall that if we regard Ur as a hole, then the set of points that has not entered Ur by 
time n is denoted I̊nr = ∩n

i=0f
−i(I \Ur), and the map corresponding to the open system 

is simply the restriction f̊n
r := fn|I̊n−1

r
. Notice that by definition of the escape time er

(see Section 1.1), we have {er > n} = I̊nr .
The transfer operator for the open system and its iterates are defined for ψ ∈ L1(mϕ)

by

L̊n
ϕ,Ur

ψ(x) =
∑

y∈f̊−n
r x

ψ(y)eSnϕ(y) = Ln
ϕ(ψ1I̊n−1

r
), (2.3)

1 For a way to relax condition (F1) by requiring only a Hölder bound on distortion, see the application 
of Theorem 2.1 to the Gauss map in Section 2.6.3.
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for all n � 1. Due to the conformality of the measure mϕ, we have the following useful 
identity, ∫

I

L̊n
ϕ,Ur

ψ dmϕ =
∫
I

Ln
ϕ(ψ1I̊−n−1

r
) dmϕ =

∫
I̊n−1
r

ψ dmϕ. (2.4)

The importance of the above relation is the connection it provides between the escape 
rate with respect to the measure ψdmϕ and the spectral radius of L̊ϕ,Ur

acting on 
functions of bounded variation (see Proposition 2.5).

Since we fix the potential ϕ, for ease of notation and to emphasise the relationships 
among the operators, in what follows we will denote L̊r := L̊ϕ,Ur

and L0 := Lϕ. Similarly, 
we denote by g0 the invariant density for L0, m0 the conformal measure, and μ0 = g0m0
the invariant measure for the closed system.

Due to (U), we have the following set of uniform Lasota–Yorke inequalities for this 
family of operators.

Proposition 2.5. There exists C0 > 0 and σ < 1 such that for any ψ ∈ B, r ∈ [0, r0] and 
all k ≥ 0,

‖L̊kn1
r ψ‖ � σkn1‖ψ‖ + C0

k∑
j=1

σ(k−j)n1

∫
I̊
jn1−1
r

|ψ| dm0,

|L̊k
rψ|1 �

∫
I̊k−1
r

|ψ| dm0.

The proof is by now fairly standard, even in this generalised context. Since our as-
sumptions and estimates necessarily differ from those appearing in the literature for 
closed systems (given that we must show uniformity of the constants C0 and σ in the 
sequence (Ur) as well as the fact that we require decay in the L1 term), we include the 
proof for completeness in the appendix.

It follows from Proposition 2.5, the compactness of the unit ball of B in L1(m0), and 
the conformality of m0 that the spectral radius of L̊r acting in B is at most one while its 
essential spectral radius is bounded by σ < 1. Thus L̊r is quasi-compact as an operator 
on B, as is L0. In addition, defining the following perturbative norm,

|||L0 − L̊r||| = sup{|L0ψ − L̊rψ|1 : ‖ψ‖ � 1},

we have the following bound.

Lemma 2.6. |||L0 − L̊r||| � m0(Ur) � C1μ0(Ur), where C−1
1 = essinf g0.

Proof. The proof is immediate since if ψ ∈ B with ‖ψ‖ � 1, we use the fact that m0 is 
ϕ-conformal to estimate,
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∫
|(L0 − L̊r)ψ| dm0 =

∫
|L0(1Ur

ψ)| dm0 � |ψ|∞m0(Ur),

and the fact that essinf g0 > 0 follows from (F4). �
Corollary 2.7. There exists r1 ∈ (0, r0] such that for all r ∈ [0, r1], the operators L̊r have 
a uniform spectral gap on B. In particular, for r > 0, there exist λr < 1, and linear 
operators Πr, Rr, such that

L̊r = λrΠr + Rr,

Π2
r = Πr, ΠrRr = RrΠr = 0 and the spectral radius of Rr is at most ρ < inf{λr : r < r1}. 

The range of Πr is the span of a function gr ∈ B, satisfying L̊rgr = λrgr, and normalised 
so that 

∫
gr dm0 = 1.

The above decomposition also holds for r = 0 with λ0 = 1.

Proof. L0 has a spectral gap by [23] and the discussion following Lemma 2.4. It follows 
from Proposition 2.5, Lemma 2.6 and [13, Corollary 1] that the spectra and spectral 
projectors of L̊r and L0 outside the disk of radius σ vary continuously in μ0(Ur). Thus 
for r sufficiently small, L̊r inherits a spectral gap from L0, and by continuity, the spectral 
gap is uniform in r, yielding the existence of ρ < inf{λr : r < r1} in the statement of 
the corollary. �

We proceed to the proof of Theorem 2.1, first proving the special cases α = ∞ and 
α = 0, and then turning to the general case α ∈ (0, ∞).

2.3. Proof of Theorem 2.1: the case α = ∞

To address the case corresponding to α = ∞, we must compute the double limit,

lim
r→0

lim
t→∞

1
μ0(Ur)

−1
t

logμ0(τr > t).

For fixed r ∈ (0, r1], the spectral gap provided by Corollary 2.7 implies that the escape 
rate with respect to μ0 is − log λr, i.e.,

lim
t→∞

1
t

logμ0(τr > t) = lim
t→∞

1
t

logμ0(I̊tr) = log λr,

where we have used (1.2) as well as the fact that {er > t} = I̊tr. (Indeed, the escape rate 
is − log λr with respect to the measure ψm0 for any density ψ ∈ B that is bounded away 
from 0.)

In order to show the limit r → 0 converges to the claimed value, we will use the 
results of [14]. To do this we must check the necessary conditions given there, listed 
as (A1)–(A7). In our setting, (A1)–(A3) are immediately satisfied by the existence of a 
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uniform spectral gap for the operators L̊r and the accompanying spectral decomposition 
given by Corollary 2.7.

(A4) requires that we normalise m0(gr) = 1, which we have done, and that there 
exists C2 > 0 such that supr∈[0,r1] ‖gr‖ � C2, i.e., the conditionally invariant densities 
are uniformly bounded in B. This follows from the uniform Lasota–Yorke inequalities 
given by Proposition 2.5 applied to gr:

λkn1
r ‖gr‖ = ‖L̊kn1

r gr‖ � σkn1‖gr‖ + C0

k∑
j=1

σ(k−j)n1

∫
I̊
jn1−1
r

gr dm0

= σkn1‖gr‖ + C0

k∑
j=1

σ(k−j)n1λjn1
r ,

where we have used the fact that 
∫
I̊n−1
r

gr dm0 =
∫
L̊n
r gr dm0, by conformality. Since σ <

λr in the spectral gap regime, we let k → ∞ and conclude that ‖gr‖ � C2 independently 
of r ∈ [0, r1].

(A5) requires that ηr := ‖m0(L0 − L̊r)‖ → 0 as r → 0, where ‖ · ‖ is the norm of the 
linear functional m0(L0 − L̊r) : B → R. This is precisely Lemma 2.6, since if ψ ∈ B, we 
have

|m0((L0 − L̊r)(ψ))| �
∫

|(L0 − L̊r)ψ| dm0 � ‖ψ‖m0(Ur),

so that ηr = m0(Ur).
(A6) requires2 ηr · ‖(L0 − L̊r)g0‖ � C3μ0(Ur), for some C3 > 0. This is satisfied since 

(as noted in Lemma 2.6), essinf g0 = C−1
1 > 0. Thus,

ηr · ‖(L0 − L̊r)g0‖ = m0(Ur)‖L0(1Ur
g0)‖ � C1μ0(Ur)‖L0‖‖1Ur

g0‖

� C1‖L0‖(‖g0‖ + 2|g0|∞)μ0(Ur) � 3C1C2‖L0‖μ0(Ur),

as required.
Finally, (A7) requires that the limit

qk := lim
r→0

qk,r := lim
r→0

m0((L0 − L̊r)L̊k
r (L0 − L̊r)(g0))

μ0(Ur)
,

exists for each integer k � 0. Notice that by conformality and using the fact that L0 −
L̊r = L0(1Ur

·), we have

2 [14] actually states this bound, and subsequent ones, in terms of a more general quantity, Δr ; however, 
in the present context, Δr =

∫
(L0 − L̊r)g0 dm0 =

∫
Ur

g0 dm0 = μ0(Ur), and we will use this simpler 
expression in what follows.
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m0((L0 − L̊r)L̊k
r (L0 − L̊r)(g0)) =

∫
1Ur

◦ fk+1 · 1I̊k−1
r

◦ f · 1Ur
· g0 dm0.

The product of indicator functions in the above expression is equivalent to the indicator 
function of the set

Ek
r = {x ∈ Ur : f i(x) /∈ Ur, i = 1, . . . , k, and fk+1(x) ∈ Ur}.

So qk,r = μ0(Ek
r )

μ0(Ur) .
If z is not periodic, recall that since z ∈ Icont, fk is continuous at z for each k ∈ N, 

so for fixed k, the set Ek
r is empty for all r sufficiently small. Thus qk = 0 for all k � 0. 

On the other hand, if z is periodic with prime period p, then for sufficiently small r, Ek
r

is empty except when k = p − 1. In this case, we use the monotonicity and continuity 
of fp at z (assumption (P)) to conclude that fp(Ep−1

r ) = Ur. Let f1 denote this branch 
of fp. Now the continuity of g0 at z and (F1) yield,

qp−1 = lim
r→0

1
μ0(Ur)

∫
Ep−1

r

g0 dm0 = lim
r→0

1
μ0(Ur)

∫
Ur

eSpϕ◦f−p
1 g0 ◦ f−p

1 dm0 = eSpϕ(z),

where we have used the fact that f−p
1 (z) = z.

Having verified conditions (A1)–(A7) in our setting, we conclude by [14, Theorem 2.1], 
that for z ∈ Icont,

lim
r→0

−1
μ0(Ur)

log λr =
{

1, if z is not periodic
1 − eSpϕ(z), if z is p-periodic.

(2.5)

2.4. Proof of Theorem 2.1: the case α = 0

Since we will not need the measures μr in this section, for simplicity, we will denote 
μ0 simply by μ and m0 by m.

We fix t and consider the limit limr→0 μ(Ur)−1 logμ(τr > t). Note that the set {τr �
t} = ∪t

j=0f
−j(Ur).

Case 1: Nonperiodic z. Assume that z ∈ Icont is not a periodic point for f . Then we 
may choose r sufficiently small that the sets f−j(Ur), j = 0, . . . , t, are pairwise disjoint. 
Thus,

lim
r→0

μ(Ur)−1 logμ(τr > t) = lim
r→0

μ(Ur)−1 log(1 − μ(τr � t))

= lim
r→0

μ(Ur)−1 log(1 − (t + 1)μ(Ur)) = −(t + 1).

Proceeding to the second limit, we complete the proof of this case,

lim lim −t−1μ(Ur)−1 logμ(τr > t) = lim t−1(t + 1) = 1.

t→∞ r→0 t→∞
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Case 2: Periodic z. Fix z of prime period p for f , satisfying (P). Choose r sufficiently 
small that the sets f−i(Ur), i = 0, . . . , p − 1 are pairwise disjoint. This choice forces 
f−i(Ur) ∩ f−j(Ur) = ∅ except when i − j is a multiple of p.

Suppose t ∈ N satisfies t = (k + 1)p − 1 for some k � 0. Then

{τr � t} = ∪k
i=0 ∪p−1

j=0 f−ip−j(Ur).

Note that by the above observation regarding when two pre-images of Ur may intersect, 
we conclude that the sets in the union above are disjoint for distinct j. Thus,

μ(τr � t) =
p−1∑
j=0

μ(∪k
i=0f

−ip−j(Ur)) = pμ(∪k
i=0f

−ip(Ur)).

To estimate the measure of the remaining set, we prove the following lemma.

Lemma 2.8. Let z be a point of continuity of g0 of prime period p. For ε > 0, let Ur be 
a sufficiently small neighbourhood of z with diam(Ur) < ε such that fp is monotonic on 
Ur and for each x ∈ Ur, |g0(x) − g0(z)| � ε. If k is such that Ur, Ur ∩ f−p(Ur), . . . , Ur ∩
f−kp(Ur) forms a decreasing sequence of sets, then

μ(∪k
i=0f

−ip(Ur)) = μ(Ur)(k + 1 − keSpϕ(z)(1 ± C̄ε)),

where C̄ = Cd + C1, Cd is from (F1) and C1 is from Lemma 2.6.

Proof. Write Vr = Ur ∩ f−p(Ur). The proof goes by induction on k. For k = 1, we have

μ(Ur ∪ f−p(Ur)) = μ(Ur) + μ(f−p(Ur)) − μ(Vr)

= 2μ(Ur) − μ(Ur ∩ f−p(Ur)).
(2.6)

Letting fp
1 denote the branch of fp mapping Vr onto Ur monotonically,

μ(Vr) =
∫

Ur∩f−p(Ur)

g0 dm =
∫
Ur

g0 ◦ f−p
1 eSnϕ◦f−p

1 dm

= μ(Ur)eSpϕ(z) +
∫
Ur

g0 ◦ f−p
1 eSpϕ◦f−p

1 (1 − eSpϕ(z)−Spϕ◦f−p
1 ) dm

+ eSpϕ(z)
∫
Ur

(g0 ◦ f−p
1 − g0) dm.

Using (F1), the first integral on the right hand side is bounded by

eSpϕ(z)Cddiam(Ur)
∫

g0 ◦ f−p
1 eSpϕ◦f−p

1 dm � eSpϕ(z)Cddiam(Ur)μ(Ur),

Ur
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where we have changed variables again for the last inequality. The second integral on 
the right hand side is bounded by,

eSpϕ(z)εm(Ur) � eSpϕ(z)C1εμ(Ur),

where C1 is from Lemma 2.6. Putting these estimates together and using the fact that 
diam(Ur) < ε, we obtain,

μ(Vr) = (1 ± C̄ε)eSpϕ(z)μ(Ur), (2.7)

where C̄ = Cd + C1.
Plugging this into (2.6) yields the lemma for k = 1.
Now suppose the statement holds for k and consider the set,

∪k+1
i=0 f

−ip(Ur) = f−(k+1)p(Ur) ∪ (∪k
i=0f

−ip(Ur)) =: f−(k+1)p(Ur) ∪Ak.

We claim that any intersection between f−(k+1)p(Ur) and Ak necessarily belongs to 
f−kp(Ur). To see this, suppose x ∈ f−(k+1)p(Ur) ∩ f−jp(Ur) for some j � k. Then 
f jp(x) ∈ Ur ∩ f−(k+1−j)p(Ur), which necessarily remains in Ur for the next k + 1 − j

iterates of fp, due to the nested property of the sets Ur ∩ f−ip(Ur). In particular, 
f (k−j)p(f jpx) ∈ Vr. Thus x ∈ f−kp(Ur).

Using this fact about intersection as well as (2.7), we now estimate,

μ(∪k+1
i=0 f

−ip(Ur)) = μ(f−(k+1)p(Ur)) + μ(Ak) − μ
(
f−(k+1)p(Ur) ∩ f−kp(Ur)

)
= μ(Ur) + μ(Ak) − μ(Ur ∩ f−p(Ur))

= μ(Ur) + μ(Ak) − (1 ± C̄ε)μ(Ur)eSpϕ(z),

and the lemma is proved using the inductive hypothesis on μ(Ak). �
Using the lemma, we may estimate

1
μ(Ur)

logμ(τr > t) = 1
μ(Ur)

log
(
1 − pμ(∪k

i=0f
−ip(Ur))

)
= 1

μ(Ur)
log
(
1 − μ(Ur)p

[
k + 1 − k(1 ± ε)eSpϕ(z)

])

−−−→
r→0

−
[
pk + p− pk(1 ± C̄ε)eSpϕ(z)

]
.

Now dividing by −t and taking the limit as t → ∞ completes the proof of the periodic 
case, up to an error ±εeSpϕ(z). Since ε was arbitrary, the case is proved for t of the form 
(k + 1)p − 1.
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For more general t = kp + �, for some � = 0, . . . , p − 1, we have

μ(τr > (k + 1)p− 1) � μ(τr > t) � μ(τr > kp− 1),

and since the upper and lower bounds yield the same limit as k → ∞, the limit for 
general t exists and has the same value.

2.5. Proof of Theorem 2.1: the case α ∈ (0, ∞)

Fix z ∈ I, α ∈ (0, ∞), and a sequence of intervals (Ur)r∈r0 satisfying (U). If z is 
periodic, we also assume (P). Let t = sμ0(Ur)−α for some s ∈ R

+. We must consider the 
limit,

lim
r→0

1
sμ0(Ur)1−α

logμ0(τr > sμ0(Ur)−α).

As in Section 2.1, there exists r1 > 0 such that all associated transfer operators L̊r have 
a uniform spectral gap on B for all r ∈ [0, r1].

To simplify notation, set kr = �sμ0(Ur)−α�. Notice that,

μ0(τr > kr) =
∫
I̊kr
r

g0 dm0 =
∫

L̊kr+1
r g0 dm0

= λkr+1
r

∫
λ−kr−1
r L̊kr+1

r (g0 − gr) dm0 + λkr+1
r

∫
gr dm0,

where gr is the unique normalised conditionally invariant density corresponding to λr

from Corollary 2.7. Thus

logμ0(τr > kr) = (kr + 1) log λr + log
(
1 +
∫

λ−kr−1
r L̊kr+1

r (g0 − gr) dm0

)
. (2.8)

Notice that the first term above, when divided by sμ0(Ur)1−α, is simply μ0(Ur)−1 log λr

(up to integer part) and thus converges as r → 0 to the required limit by (2.5), which 
depends on z.

It remains to show that the second term in (2.8) converges to zero after division 
by μ0(Ur)1−α. Using Corollary 2.7, we may decompose the transfer operator as L̊r =
λrΠr +Rr, where as before, Πr is the projection onto the eigenspace spanned by gr and 
the spectral radius of Rr is strictly less than λr. Thus defining Πrg0 = crgr for some 
cr > 0, we have

λ−kr−1
r L̊kr+1

r (g0 − gr) = (cr − 1)gr + λ−kr−1
r Rkr+1

r g0, (2.9)

where we have used the facts, Π2
r = Πr, Πrgr = gr and Rrgr = 0. Integrating, we have
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log
(
1 +
∫

λ−kr−1
r L̊kr+1

r (g0 − gr) dm0

)
= log

(
cr +

∫
λ−kr−1
r Rkr+1

r g0 dm0

)
.

Now since the operators L̊r have a uniform spectral gap for r close to 0, there exists 
β > 0 such that the spectral radius of λ−1

r Rr in B is less than e−β for all r sufficiently 
small. Since the variation norm dominates the L∞ norm, we have,∣∣∣∣

∫
λ−kr−1
r Rkr+1

r g0 dm0

∣∣∣∣ � ‖λ−kr−1
r Rkr+1

r g0‖ � Ce−β(kr+1) � Ce−βsμ0(Ur)−α

,

for some fixed C > 0, and this quantity is super-exponentially small in μ0(Ur). More-
over, since by [13, Corollary 1], the spectral projectors Πr of L̊r vary by at most 
−μ0(Ur) logμ0(Ur) for small r and Π0g0 = g0, i.e., c0 = 1, we have |1 − cr| �
−Cμ0(Ur) logμ0(Ur), for some uniform C > 0.

Using these estimates in the second term of (2.8) and dividing by sμ0(Ur)1−α, the 
relevant expression becomes,

lim
r→0

1
sμ0(Ur)1−α

log
(
1 + O(−μ0(Ur) logμ0(Ur))

)
.

For α � 1, it suffices to note that log(1 + O(−μ0(Ur) logμ0(Ur))) converges to 0 as 
r → 0 to conclude that the above limit vanishes. For α ∈ (0, 1), we note that in addition 
μ0(Ur) log μ0(Ur)

μ0(Ur)1−α → 0 as r → 0, which completes the proof of Theorem 2.1.

2.6. Examples

In this section, we provide examples of several classes of maps and potentials for 
which our assumptions (F1)–(F4) of Section 2 hold. More general examples, including 
the existence of a conformal measure for contracting potentials, can be constructed using 
[17].

2.6.1. Lasota–Yorke maps of the interval with ϕ = − log |Df |
Such maps are assumed to admit a finite partition Z of I into intervals on which f is 

differentiable and |Df | � σ−1 > 1. f is assumed to be C2 on the closure of each Z ∈ Z.
The conformal measure m is Lebesgue measure on I, and (F1)–(F3) are standard 

consequences of uniform expansion, the existence of D2f and the finiteness of the parti-
tion Z.

Since the potential is bounded, condition (F4) can be guaranteed by the equivalent 
condition that for each interval J , there exists n(J), such that fn(J)(J) = I mod 0.

Once we fix z = ∩r>0Ur and n1 from (2.1), (U) is always satisfied for r sufficiently 
small due to the finiteness of Zn1 . Thus Theorem 2.1 holds for this class of maps.

2.6.2. Mixing Gibbs–Markov maps with large images
Assume that f(Z) is a union of elements of Z for each Z ∈ Z, where Z is the countable 

partition defined at the beginning of Section 2. Thus Z is a Markov partition for f .
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We assume that f satisfies the big images and pre-images3 (BIP) property: there 
exists a finite set {Zj}j∈J ⊂ Z such that ∀Z ∈ Z, ∃j, k ∈ J such that f(Zj) ⊇ Z and 
f(Z) ⊇ Zk. We also assume that |Df | � σ−1 > 1 on each Z ∈ Z.

We assume that ϕ is a potential which is Lipschitz continuous on each Z ∈ Z, and 
admits a non-atomic conformal probability measure mϕ with mϕ(I \ ∪Z∈ZZ) = 0.

Then (F1) follows immediately from the regularity of ϕ and the expansion of f , and 
we have a Gibbs–Markov map. Condition (F2) follows from the existence of mϕ and 
(BIP) since by (F1), supZ eϕ � (1 + Cd)mϕ(Z)/mϕ(f(Z)):∑

Z∈Z
sup
Z

eϕ ≤ (1 + Cd)
∑
Z∈Z

mϕ(Z)
mϕ(f(Z)) � (1 + Cd)c−1

0 ,

where c0 = infZ∈Z mϕ(f(Z)) > 0 by (BIP).
(F4) follows from mixing plus (BIP). For (F3), we use the fact that for maps satisfying 

our assumptions, the transfer operator Lϕ acting on functions which are Lipschitz on 
each element of Z is known to have a spectral gap. Since Ln

ϕ1 converges to an invariant 
density that is bounded away from 0 (by (F4)), the expression on the right side of (F3) 
is bounded away from 0 for all n large enough. On the other hand, the expression on the 
left side of (F3) must tend to 0 by conformality and (F1), since for Z ∈ Zn,

sup
Z

eSnϕ � (1 + Cd) mϕ(Z)
mϕ(fnZ) � (1 + Cd)

m(Z)
c0

,

and the diameter of Zn must tend to 0 by the expansivity of f .
Having verified (F1)–(F4), we may apply Theorem 2.1 to this class of Gibbs–Markov 

maps. Note that we can always arrange for (U) to be satisfied as long as we do not choose 
∩rUr to be an accumulation point of the endpoints of the intervals in Zn1 .

2.6.3. Gauss map, f(x) = 1/x mod 1
In this case, ϕ = − log |Df |, mϕ is Lebesgue measure on [0, 1], the invariant density 

is g0 = 1
ln 2

1
1+x , and f is continuously differentiable on each element of the partition 

Z = {Zj}∞j=1, Zj = (1/(j + 1), 1/j).
For this potential, (F1) fails. However this system is well known to satisfy Rych-

lik’s conditions since the potential is monotonic on each branch; moreover the potential 
satisfies the weaker (Hölder) distortion control given by the following lemma.

Lemma 2.9. ∃ Cd > 0 s.t. |eSnϕ(x)−Snϕ(y) −1| � Cd|fnx −fny|1/2, whenever f ix, f iy lie 
in the same element of Z for i = 0, 1, . . . , n − 1.

Before proving the lemma, we will verify the other conditions and show that in this 
case, Lemma 2.9 suffices to prove Proposition 2.5, so that the conclusions of Theorem 2.1
hold.

3 This is automatic if f is full-branched.
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(F2) is immediate since supZj
eϕ � Cj−2, ∀j � 1.

Notice that |eϕ|∞ � 1, while |eS2ϕ|∞ < 1. Thus the expression on the left side of (F3) 
decreases exponentially in n, while Ln

ϕ1 converges to g0, which is bounded away from 0
on I. Thus (F3) holds.

(F4) holds since f is full-branched, and the potential satisfies the distortion control 
given by Lemma 2.9.

We verify also that the items of Lemma 2.4 hold: (a) holds by induction on (F2); (b) 
holds with Cd = 1 since eϕ is monotonic on each Zj , so that 

∨
Zj

eϕ � supZj
eϕ; (c) 

holds by induction on (b), using (a).
Next we show that the operators L̊r satisfy the uniform Lasota–Yorke inequalities 

of Proposition 2.5 under assumption (U). The assumption (F1) is used in precisely two 
places in the proof of the proposition: in equations (A.2) and (A.3). For (A.2), the 
Hölder distortion control given by Lemma 2.9 suffices to give precisely the same bound. 
For (A.3), we use 

∨
Ji
eSnϕ � supJi

eSnϕ by the monotonicity of eSnϕ on each Ji.
With these estimates, the contracting term in (A.4) becomes 4|eSnϕ|∞

∨
I ψ (it is the 

same expression, but with Cd = 1). Thus we need only choose n1 such that 4|eSn1ϕ|∞ < 1, 
replacing (2.1), in order to prove the required Lasota–Yorke inequalities under assump-
tion (U). Note that since f is full-branched, we can arrange for (U) to be satisfied as 
long as {z} = ∩rUr is not chosen to be an endpoint of Zn1 .

Turning to the proof of Theorem 2.1, condition (F1) is used directly in one additional 
place: the proof of Lemma 2.8. In that case, using the Hölder bound given by Lemma 2.9, 
we need only replace diam(Ur) by 

√
diam(Ur) and choose Ur sufficiently small that √

diam(Ur) < ε. Then the rest of the proof of Lemma 2.6 goes through without changes.
With these minor changes to the proof, the conclusions of Theorem 2.1 apply to the 

Gauss map.

Proof of Lemma 2.9. Let x, y be as in the statement of the lemma, and let f ix ∈ Zji . 
The following bounds are elementary, yet essential to what follows,

sup
Zj

|Df2|
|Df | � Cj while diam(Zj) � Cj−2.

Using these estimates, one may complete the standard (Hölder) distortion estimate,∣∣∣∣log Dfn(x)
Dfn(y)

∣∣∣∣ �
n−1∑
i=0

∣∣log |Df(f ix)| − log |Df(f iy)|
∣∣

�
n−1∑
i=0

sup
Zji

|Df2|
|Df | |f

ix− f iy| �
n−1∑
i=0

C|f ix− f iy|1/2

� C|fnx− fny|1/2
n−1∑
i=0

|eSn−iϕ|1/2∞ .

The final sum converges exponentially in i because |eϕ|∞ � 1 and |eS2ϕ|∞ < 1. �
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3. Results via inducing

In this section, we consider some cases in which the map f : I → I and potential ϕ
do not satisfy (F1)–(F4) of Section 2. In such cases, a common strategy is to consider an 
induced map to a subset of I with stronger statistical properties. This is the situation 
we shall address in this section: explicit examples will be given in the following section.

We begin with a map f : I → I, a conformal measure mϕ with potential ϕ, and an 
invariant probability measure μϕ, absolutely continuous with respect to mϕ. We will fix 
the potential and simply denote this measure by μ in this section.

Fixing a sequence of sets (Ur)r∈[0,r0], we assume that we can select an interval Y with 
μ(Y ) > 0 and Ur ⊂ Y ⊂ I, such that the first return map F = fRY : Y → Y and the 
induced potential Φ =

∑RY −1
i=0 ϕ ◦ f i satisfy (F1)–(F4).

Let μY := 1
μ(Y )μ|Y be the F -invariant probability measure, and τY,r(y) = min{u �

1 : Fu(y) ∈ Ur} be the first hitting time for the set Ur, which we sometimes refer to as 
the hole. Let RY,u(y) =

∑u−1
i=0 RY ◦ F i(y) be the uth return time to Y .

Remark 3.1. We will assume for simplicity that the hole is always in Y . This is not much 
of a restriction because it is generically possible, once the location of the hole is known 
(and it is not at an indifferent fixed point or a recurrent critical point), to select a set Y
with good return map containing the hole.

For μY -a.e. y ∈ Y , we have RY,u/u → 1/μ(Y ), but for our purposes we need specific 
estimates for the large deviations μY (Au) for the set

Au = AY,u,ε := {y ∈ Y : ∃n � u such that |RY,n − n/μ(Y )| > nε}.

Following (2.2), we define Ycont to be the set of points in Y at which F k is continuous 
for all k ∈ N.

Theorem 3.2. Suppose f : I → I is as above and there exists Y ⊂ I with z ∈ Ycont such 
that the first return map F = fRY : Y → Y satisfies the assumptions of Theorem 2.1.

(1) If for any small ε > 0, there exists c(ε) > 0 such that μY (Au) � e−c(ε)u for all large 
u, then for each α ∈ (0, ∞],

Lα,s(z) =
{

1, if z is not periodic,
1 − eSpϕ(z), if z is p-periodic for f.

(3.1)

(2) If there exists γ ∈ (0, 1) such that for any small ε > 0, there exist C, c(ε) > 0 such 
that μY (Au) � Ce−c(ε)uγ for all large u, then (3.1) holds for each α < 1

1−γ .
(3) If there exist γ ∈ (0, 1) and C, c > 0 such that μY (RY � u) � Ce−cuγ for all large 

u, then Lα,s(z) = 0 for α > 1 and each z ∈ I.
1−γ
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(4) If both μY (Au) and μY (RY � u) decay superpolynomially in u, but more slowly than 
any stretched exponential, then (3.1) holds if α � 1 and Lα,s(z) = 0 if α > 1 for 
each z ∈ Icont.

Remark 3.3. One expects, as in the examples of Section 4, that the decay of μY (RY � u)
matches that of μY (Au), so (2) and (3) in this theorem can be seen as complementary 
cases.

Remark 3.4. Theorem 3.2 excludes the case α = 0 since as already noted in Remark 2.3, 
the limit holds in this case under general conditions which do not require a spectral gap. 
Thus it is not necessary to pass to the induced map F in this case; one simply needs to 
verify the conditions listed in Remark 2.3.

3.1. Proof of Theorem 3.2

We first prove the theorem for the quantity

LY,α,s(z) := lim
r→0

−1
sμ(Ur)1−α

logμY (τr > sμ(Ur)−α).

Proposition 3.5. Under the conditions of Theorem 3.2, all parts of the theorem hold with 
LY,α,s(z) replacing Lα,s(z). In particular, in cases (1) and (2),

LY,α,s(z) =
{

1, if z is not periodic,
1 − eSpϕ(z), if z is p-periodic for f.

(3.2)

Proof. We will assume throughout that α �= 1 since this case is straightforward and 
proved elsewhere. Fix some small ε > 0, and assume that the hole Ur is contained inside 
one domain of F . For notational simplicity, here we will assume that the centre z of our 
Ur is non-periodic, but the periodic case is then immediate. We remark only that if z is 
periodic for f with period p and in the domain of F , then z is periodic for F with period 
q � p, and eSqΦ(z) = eSpϕ(z).

If y ∈ Ac
u and t = u/μ(Y ), then τr(y) > t implies that τY,r(y) > u/(1 + εμ(Y )) and is 

implied by τY,r(y) > u/(1 − εμ(Y )). Since Theorem 2.1 applies to (F, Y, μY ), there exist 
values θ+(v, r), θ−(v, r) so that

θ−(v, r)e−vμY (Ur)1−α � μY (τY,r > vμY (Ur)−α) � θ+(v, r)e−vμY (Ur)1−α

,

where limr→0
log θ±(v,r)
vμ(Ur)1−α = 0.

We compute for the path t = sμ(Ur)−α, so

u = sμ(Y )μ(Ur)−α = sμ(Y )1−αμY (Ur)−α.



H. Bruin et al. / Advances in Mathematics 328 (2018) 1263–1298 1283
We write θ−(r) =θ−(s(1 −εμ(Y ))−1μ(Y )1−α, r) and θ+(r) =θ+(s(1 +εμ(Y ))−1μ(Y )1−α,

r) to shorten notation. Also we abbreviate

G± = {y ∈ Y : τY,r(y) > s(1 ± εμ(Y ))−1μ(Y )1−αμY (Ur)−α}.

First we bound μY (τr > t) from above, since {τr > t ∧Ac
u} ⊂ G+,

μY (τr > t) = μY (τr > t ∧Ac
u) + μY (τr > t ∧Au)

� μY (G+) + μY (Au)

� θ+(r)e−s(1+εμ(Y ))−1μ(Y )1−αμY (Ur)1−α

+ μY (Au)

= θ+(r)e−s(1+εμ(Y ))−1μ(Ur)1−α

+ μY (Au).

(3.3)

Similarly, we bound μY (τr > t) from below, using G−:

μY (τr > t ∧Ac
u) � μY (τY,r > u(1 − εμ(Y ))−1 ∧Ac

u)

� μY (τY,r > s(1 − εμ(Y ))−1μ(Y )μ(Ur)−α) − μY (G− ∧Au)

� θ−(r)e−s(1−εμ(Y ))−1μ(Ur)1−α − μY (G− ∧Au),

and therefore,

μY (τr > t) = μY (τr > t ∧Ac
u) + μY (τr > t ∧Au)

� θ−(r)e−s(1−εμ(Y ))−1μ(Ur)1−α

+ μY (τr > t ∧Au) − μY (G− ∧Au)

� θ−(r)e−s(1−εμ(Y ))−1μ(Ur)1−α − μY (Au).

(3.4)

Now to find the limit in (3.2), we use first (3.3) to bound LY,α,s from below (taking 
a minus sign, so the inequality flips):

− logμY (τr > t)
sμ(Ur)1−α

� −
log
(
θ+(r)e−s(1+εμ(Y ))−1μ(Ur)1−α + μY (Au)

)
sμ(Ur)1−α

= − log θ+(r)
sμ(Ur)1−α

+ 1
1 + εμ(Y ) −

log
(
1 + es(1+εμ(Y ))−1μ(Ur)1−α

θ+(r) μY (Au)
)

sμ(Ur)1−α
.

(3.5)

The first term converges to zero as r → 0 by assumption, so we focus on the final 
term.

Case I: α ∈ (0,1). In this case since θ+(r) = O(esμ(Ur)1−α+δ) for any δ > 0, and 

μ(Ur)1−α → 0 as r → 0, hence e−s(1+εμ(Y ))−1μ(Ur)1−α

+ = O(1) and we see that the final
θ (r)
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term of (3.5) is of order μY (Au)
μ(Ur)1−α . Assuming that μY (Au) � Cu−β for some C, β > 0, we 

have,

μY (Au) � C(sμ(Y )μ(Ur)−α)−β ,

so that LY,α,s(z) � 1/(1 + εμ(Y )) if α− 1 + αβ > 0, i.e., α > 1
1+β . So the lower bound 

for the non-degenerate part (i.e., the “α ≤ 1” part) of (4) follows along with (2) and (1) 
for the α ∈ (0, 1) case since ε was arbitrary. The upper bound follows immediately from 
Remark 1.1.

Case II: α ∈ (1,∞). Here we focus on the stretched exponential case since all remain-
ing parts of this proposition then follow. To complete the proof of (2), we again refer to 
(3.5). Suppose that there exist C, c(ε) > 0 and γ ∈ (0, 1) such that μY (Au) � Ce−c(ε)uγ . 
Then for (3.2) to hold it is sufficient that the decay of μY (Au), which is Ce−c(sμ(Ur)−α)γ , 
is faster than e−s(1+εμ(Y ))−1μ(Ur)1−α . So we require that α < 1

1−γ . The upper bound 
follows similarly, using (3.4) in place of (3.3), completing (2).

To prove (3) and the degenerate (i.e., “α > 1”) part of (4), we assume that there exist 
C, c > 0, γ ∈ (0, 1) such that μY (RY � t) � Ce−ctγ . Fix α > 1

1−γ . Then using the fact 
that {τr > t} ⊃ {RY � t}, we estimate

− logμY (τr > t)
sμ(Ur)1−α

� − logμY (RY � t)
sμ(Ur)1−α

� − log(Ce−ctγ )
sμ(Ur)1−α

� − logC
sμ(Ur)1−α

+ csγμ(Ur)−αγ

sμ(Ur)1−α

and both terms tend to 0 with r since α > 1/(1 − γ). Note that this estimate easily 
extends from the measure μY to the measure μ, so that Lα,s(z) = 0 for all z ∈ I.

Case III: α = ∞. For this case, we compute first the limit t → ∞ and then r → 0 in 
the expression given by (1.4).

Fix ε > 0 and define Au as before. In analogy to the previous two cases, set

G± = {y ∈ Y : τY,r(y) > u/(1 ± εμ(Y ))},

where u = tμ(Y ). Notice then that {τr > t ∧Ac
u} ⊂ G+ as before. Thus as in (3.3),

μY (τr > t) � μY (G+) + μY (Au).

Following (3.4), we obtain,

μY (τr > t) � μY (G−) − μY (Au).

To prove the exponential case (1), assume that there exists c(ε) > 0 such that 
μY (Au) � Ce−c(ε)u. Since F satisfies the assumptions of Theorem 2.1, we only consider 
r so small such that all associated transfer operators L̊r have a uniform spectral gap. 
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Let Λr denote the leading eigenvalue of L̊r and choose r1 so small Λ(1−εμ(Y ))−1

r > e−c(ε)

for all r < r1. By Corollary 2.7,

C−1Λu(1±εμ(Y ))−1

r � μY (G±) � CΛu(1±εμ(Y ))−1

r ,

for some C > 0, independent of t, but possibly depending on r.
Thus on the one hand we derive a lower bound,

lim
t→∞

−1
t

logμY (τr > t) � lim
t→∞

−1
t

log
(
CΛtμ(Y )/(1+εμ(Y ))

r + Ce−c(ε)tμ(Y )
)

= −μ(Y ) log Λr

1 + εμ(Y ) .

On the other hand, the analogous upper bound holds,

lim
t→∞

−1
t

logμY (τr > t) � lim
t→∞

−1
t

log
(
C−1Λtμ(Y )/(1−εμ(Y ))

r − Ce−c(ε)tμ(Y )
)

= −μ(Y ) log Λr

1 − εμ(Y ) .

Since ε > 0 was arbitrary, this yields

lim
t→∞

−1
t

logμY (τr > t) = lim
t→∞

−1
t

logμ(τr > t ∧ Y ) = −μ(Y ) log Λr. (3.6)

Now using (2.5) applied to the induced map F , we conclude

lim
r→0

lim
t→∞

− 1
tμ(Ur)

logμY (τr > t) = lim
r→0

− log Λr

μY (Ur)
= 1

in the generic case, and 1 − eSpϕ(z) in the periodic case.
For the remaining items (2)–(4) of the proposition, it suffices to show that LY,α,s(z) =

0 when α = ∞ under the assumption that μY (RY � t) � Ce−ctγ for some γ ∈ (0, 1). 
This is a trivial estimate since in this case the escape rate is 0, i.e.,

0 � lim
t→∞

−1
t

logμY (τr > t) � lim
t→∞

−1
t

logμY (RY � t) � lim
t→∞

ctγ−1 = 0.

It follows immediately that LY,α,s(z) = 0 for all z ∈ Y . �
Proof of Theorem 3.2. We will apply Proposition 3.5 to convert the results for LY,α,s to 
Lα,s. For this, we turn to an extended system implied by the existence of the first return 
map F . We will refer to this as a Rokhlin tower (our map F defines what is nearly a 
Young tower, see [27], except that we do not require that F have a Markov structure).
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Define

Δ = {(y, n) ∈ Y × N : n < RY (y)}.

The �th level of the tower is Δ	 = {(y, n) ∈ Δ : n = �} and the dynamics is defined by 
fΔ(y, n) = (y, n +1) if n < RY (y) − 1 and fΔ(y, RY (y) − 1) = (F (y), 0). The first return 
map to the base of the tower Δ0 = Y is again F = fRY .

The assumptions on F imply that μY is an invariant probability measure on Y =
Δ0, which induces an fΔ-invariant probability measure μΔ on Δ: Define μΔ|Δ�

=
c(fΔ)	∗μY |f−�

Δ (Δ�), where c = μY (RY )−1 is the normalising constant. Letting π : Δ → I

denote the natural projection, π(x, �) = f 	(x), we have π ◦ fΔ = f ◦ π and π∗μΔ = μ.
Letting Δ(n) = ∪n

	=0Δ	 denote the n first levels of the tower, we observe that this 
gives us a sequence of induced maps Fn : Δ(n) → Δ(n) each satisfying the conditions of 
Theorem 2.1. (In fact, using the assumption on F , the potential for (Fn)n is contracting.) 
The projection π(Δ(n)) gives a sequence of sets exhausting the space: μ(π(Δ(n))) → 1
as n → ∞. We will carry out the proof for π(Δ(n)) in place of Y , but calling it Y again 
and suppressing the index n.

Case I: α ∈ (0,1). We will use the facts

(a) μ(τr � t ∧ Y ) � μ(τr � t),
(b) given γ ∈ R, for x small, log(1 + γx) ∼ γ log(1 + x).

Then for α ∈ (0, 1), t = sμ(Ur)−α,

− logμY (τr > t)
sμ(Ur)1−α

= − log(1 − μY (τr � t))
sμ(Ur)1−α

= −
log
(
1 − μ(Y )−1μ(τr � t ∧ Y )

)
sμ(Ur)1−α

� −
log
(
1 − μ(Y )−1μ(τr � t)

)
sμ(Ur)1−α

∼ − 1
μ(Y )

log (1 − μ(τr � t))
sμ(Ur)1−α

= − 1
μ(Y )

logμ(τr > t)
sμ(Ur)1−α

.

Here we used (a) in the ‘� step’ and (b) in the ‘∼ step’. So choosing Y = π(Δ(n))
exhausting our phase space, we deduce

lim inf
r→0

− logμ(τr > t)
sμ(Ur)1−α

�
{

1, if z is not periodic,
1 − eSpϕ(z), if z is p-periodic for f.

(3.7)

For non-periodic z, Remark 1.1 gives the upper bound as 1 too, so Lα,s(z) = 1.
For the periodic case we adapt Remark 1.1 and use a result of [9]. First recall Vr :=

Ur ∩ f−p(Ur) from the proof of Lemma 2.8 and let V ′
r := Ur \ f−p(Ur). For all small r, 

this will be a topological annulus around z. By conditions (P) and (F1) (see (2.7)),
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lim
r→0

μ(V ′
r )

μ(Ur)
= lim

r→0

mϕ(V ′
r )

mϕ(Ur)
= 1 − eSpϕ(z). (3.8)

We set τ ′r := inf{n � 1 : fn(x) ∈ V ′
r}. Now [9, Proposition 2.7] (with B = Ur and 

A = V ′
r ) implies that

μ(τ ′r > n) − μ(τr > n) �
p∑

j=1
μ(τ ′r > n ∧ f−n+j(Vr)) � pμ(Vr) < pμ(Ur)

for all large n. So we now proceed as in Remark 1.1:

0 � − logμ(τr > t)
sμ(Ur)1−α

<
− log (μ(τ ′r > t) − pμ(Ur))

sμ(Ur)1−α

= − log (1 − μ(τ ′r � t) − pμ(Ur))
sμ(Ur)1−α

=
− log

(
1 − μ

(
∪t−1
j=0f

−j(V ′
r )
)
− pμ(Ur)

)
sμ(Ur)1−α

� − log (1 − tμ(V ′
r ) − pμ(Ur))

sμ(Ur)1−α
= − log (1 − sμ(V ′

r )μ(Ur)−α − pμ(Ur))
sμ(Ur)1−α

.

So by (3.8), the upper bound above converges to 1 −eSpϕ(z) as μ(Ur) → 0, so we conclude 
that Lα,s(z) = 1 − eSpϕ(z).

Case II: α ∈ (1,∞).
For α > 1, we obtain the following upper bound:

− logμY (τr > t)
sμ(Ur)1−α

= logμ(Y )
sμ(Ur)1−α

− logμ(τr > t ∧ Y )
sμ(Ur)1−α

∼ − logμ(τr > t ∧ Y )
sμ(Ur)1−α

� − logμ(τr > t)
sμ(Ur)1−α

.

So we conclude that Lα,s(z) � LY,α,s(z). Note the above shows LY,α,s(z) = 0 implies 
Lα,s(z) = 0 so that items (3) and (4) of the theorem hold for α > 1.

To prove items (1) and (2) of the theorem, we also need a lower bound on Lα,s(z). 
For this, recall that the measure μ can be expressed in terms of μY by,

μ(A) = 1∫
RY dμY

∞∑
k=0

k∑
i=0

μY (f−i(A) ∩ Yk),

where Yk = {RY = k}, and A is any measurable set. Applying this expression to A =
{τr > t}, we note that f−i(τr > t) ∩Yk = {τr > t + i} ∩Yk since Ur ⊂ Y . Then reversing 
order of summation, we obtain,

μ(τr > t) = 1∫
RY dμY

∞∑ ∞∑
μY (τr > t + i ∧ Yk) � μ(Y )

∞∑
μY (τr > t + i). (3.9)
i=0 k=i i=0
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To proceed, we prove a slight extension of our estimates in Section 2.5. Let L̊r denote 
the punctured transfer operator for F with potential Φ = SRY

ϕ and hole Ur as defined 
in (2.3). By assumption on F and Corollary 2.7, L̊r = ΛrΠr +Rr has a uniform spectral 
gap, i.e., there exists β > 0 such that the spectral radius of Λ−1

r Rr is less than e−β for 
all r sufficiently small.

Lemma 3.6. For all r > 0 sufficiently small and any n ∈ N such that e−βn <

μY (Ur) logμY (Ur), we have

μY (τY,r > n) = Λn
r [1 + O(μY (Ur) logμY (Ur))].

Proof. Noting that (2.8) is valid for all iterates of F , we write

μ(τY,r > n) = Λn
r

⎡
⎣1 +

∫
Y

Λ−n
r L̊n

r (g0 − gr) dm

⎤
⎦ ,

where g0 and gr are the normalised eigenfunctions for L0 and L̊r, respectively. Following 
(2.9), we note that the error term above can be split into two terms, one bounded by 
Ce−βn and the other by −CμY (Ur) logμY (Ur). By assumption on n, the error is of order 
μY (Ur) logμY (Ur). �

Now fix ε > 0 and define Au = AY,u,ε as before. Recall that if τr(y) > n and 
y ∈ Ac

nμ(Y ), then τY,r > nμ(Y )/(1 + εμ(Y )). We assume that there exist C, c(ε), γ > 0
such that μY (Au) � Ce−c(ε)uγ , and require that α < 1

1−γ .
For the sake of brevity, set ϑ = LY,α,s(z), and by (2.5), we may choose r sufficiently 

small so that Λr � e−(1−ε)μY (Ur)ϑ. Setting n = t + i, ρr = μY (Ur) logμY (Ur), and using 
Lemma 3.6, we estimate each term in (3.9) by

μY (τr > t + i) � μY

(
τr > t + i ∧Ac

(t+i)μ(Y )
)

+ μY (A(t+i)μ(Y ))

� μY

(
τY,r > (t + i)μ(Y )/(1 + εμ(Y ))

)
+ μY (A(t+i)μ(Y ))

� Λ(t+i)μ(Y )/(1+εμ(Y ))
r [1 + O(ρr)] + μY (A(t+i)μ(Y ))

� e−(1−ε)μ(Ur)ϑ(t+i)/(1+εμ(Y ))[1 + O(ρr)] + Ce−c(ε)(t+i)γμ(Y )γ .

To estimate (3.9), we must sum both terms above over i. Recalling that t = sμ(Ur)−α, 
the sum over the first term is bounded by,

∑
i�0

e−(1−ε)μ(Ur)ϑ(t+i)/(1+εμ(Y ))[1 + O(ρr)] = [1 + O(ρr)]e−(1−ε)ϑsμ(Ur)1−α/(1+εμ(Y ))

1 − e−(1−ε)ϑμ(Ur)/(1+εμ(Y ))

� 2e−(1−ε)ϑsμ(Ur)1−α/(1+εμ(Y ))
,
(1 − ε)ϑμ(Ur)
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for ε and r sufficiently small. The sum over the second term is (recalling that c = c(ε)),

∑
i�0

Ce−c(t+i)γμ(Y )γ � C

∞∫
0

e−c(t+x)γμ(Y )γ dx = C

c1/γμ(Y )γ

∞∫
ctγμ(Y )γ

e−yy
1
γ −1 dy,

where we have changed variables, y = c(t + x)γμ(Y )γ . Setting n = � 1
γ − 1�, we have 

y
1
γ −1 � yn, so making this substitution and integrating by parts n times, yields

∑
i�0

Ce−c(t+i)γμ(Y )γ � Ce−ctγμ(Y )γ

c1/γμ(Y )γ

n∑
k=0

n!
k! (ct

γμ(Y )γ)n−k � eCn! t e−ctγμ(Y )γ

γc
1
γ −nμ(Y )1−γn

.

Putting these estimates together with (3.9), we have,

μ(τr > t) � μ(Y )
[

2e−(1−ε)ϑsμ(Ur)1−α/(1+εμ(Y ))

(1 − ε)ϑμ(Ur)
+ C ′te−c(sμ(Y ))γμ(Ur)−αγ

]
,

so that

− logμ(τr > t) � log
(

(1 − ε)ϑμ(Ur)
2μ(Y )

)
+ (1 − ε)ϑsμ(Ur)1−α

1 + εμ(Y ) − log[1 + Br],

where

Br = C ′sμ(Ur)1−α(1 − ε)ϑ
2 e−c(sμ(Y ))γμ(Ur)−αγ+(1−ε)ϑsμ(Ur)1−α/(1+εμ(Y )).

Note that Br → 0 as r → 0 since α < 1
1−γ . Thus dividing by sμ(Ur)1−α and recalling 

that α > 1, we have,

lim
r→0

− logμ(τr > t)
sμ(Ur)1−α

� ϑ
1 − ε

1 + εμ(Y ) ,

which is the required lower bound since ε > 0 was arbitrary. Thus Lα,s(z) = LY,α,s(z)
and items (1) and (2) of the theorem are proved for this case.

Case III: α = ∞. First we note that an upper bound similar to the one derived in 
Case II holds:

lim
t→∞

−1
t

logμY (τr > t) = lim
t→∞

1
t

logμ(Y ) − 1
t

logμ(τr > t ∧ Y )

� lim
t→∞

−1
t

logμ(τr > t).
(3.10)

To prove items (2)–(4) of the Theorem, we must show L∞,s(z) = 0 under the assump-
tion μY (RY � t) � Cect

γ for some γ ∈ (0, 1). This follows from Case III in the proof of 
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Proposition 3.5 since then LY,∞,s(z) = 0. Due to the upper bound above, L∞,s(z) = 0
as well.

To prove item (1) of the theorem, fix ε > 0 and assume there exists c(ε) > 0 such 
that μY (Au) � Ce−c(ε)u. As in Case II, we take r0 so small that the transfer operators 
L̊r associated with the induced map F have a uniform spectral gap for all r ∈ [0, r0]
and denote their leading eigenvalues by Λr. Using (2.5), we choose r1 < r0 so small that 
e−(1−ε)μY (Ur)ϑ � Λr � e−c(ε)(1+εμ(Y ))/2 for all r < r1.

By (3.6) in the proof of Proposition 3.5(1), and (3.10), we have

lim
t→∞

−1
t

logμ(τr > t) � −μ(Y ) log Λr.

To prove the corresponding lower bound, we follow (3.9) and the estimates in Case II of 
the present proof (with γ = 1). In particular, using Lemma 3.6,

μY (τr > t + i) � μY

(
τr > t + i ∧Ac

(t+i)μ(Y )
)

+ μY

(
A(t+i)μ(Y )

)
� Λ(t+i)μ(Y )/(1+εμ(Y ))

r [1 + O(ρr)] + Ce−c(ε)(t+i)μ(Y ).

Summing over i, we obtain

μ(τr > t) � μ(Y )
[

2Λtμ(Y )/(1+εμ(Y )
r

(1 − ε)ϑμ(Ur)
+ Ce−cμ(Y )t

]
.

And finally,

− logμ(τr > t) � log (1 − ε)ϑμ(Ur)
2μ(Y ) − tμ(Y ) log Λr

1 + εμ(Y ) − log[1 + Br],

where Br � C(1−ε)ϑμ(Ur)
2 e−cμ(Y )t/2, by choice of r1. Now dividing by t and taking t → ∞

yields

lim
t→∞

−1
t

logμ(τr > t) � −μ(Y ) log Λr

1 + εμ(Y ) .

Since ε > 0 was arbitrary, our upper and lower bounds match. Thus using again (2.5), 
we have

lim
r→0

lim
t→∞

− logμ(τr > t)
tμ(Ur)

= lim
r→0

−μ(Y ) log Λr

μ(Ur)
= lim

r→0

− log Λr

μY (Ur)
= 1

in the generic case, and 1 − eSpϕ(z) in the periodic case. Thus L∞,s(z) = LY,∞,s(z) as 
required. �
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3.2. Remarks about the polynomial case

Theorem 3.2 gives optimal results when the induced system has deviations that are 
superpolynomial and when the decay rate of Au matches that of {RY � u}. However, 
it gives only partial results if the induced system has only polynomial deviations, i.e., 
μY (Au) ≈ u−β and μY (RY � u) � u−β−1. In particular, the proofs of Proposition 3.5(4) 
and Theorem 3.2(4) yields in the generic case,

Lα,s(z) = LY,α,s(z) = 0 if α > 1, and Lα,s(z) = LY,α,s(z) = 1 if 1
1+β < α � 1.

It might appear that by improving our upper and lower bounds in (3.3) and (3.4), we 
might extend our results to the case α � 1/(1 + β), but a closer look reveals there 
is a real obstruction to using inducing arguments to evaluate the required limits in the 
polynomial case. In particular, there is a nontrivial dependence between the sets {τr > t}
and Au which makes the polynomial case particularly delicate from this point of view.

To illustrate this point, consider the class of Manneville–Pomeau or LSV maps on the 
unit interval, defined by

f(x) =
{
x + 2γx1+γ , for x ∈ [0, 1/2),
2x− 1, for x ∈ [1/2, 1].

When γ ∈ (0, 1), these maps preserve an invariant probability measure μ, absolutely 
continuous with respect to Lebesgue, with density g ≈ x−γ for x near 0 [27,18].

Set Y = [1/2, 1] and let (Ur)r∈(0,r0] ⊂ (1/2 + δ, 1), for some δ > 0. For k � 0, let 
ak = f−k

L (1/2), where fL is the left branch of f . Set J0 = Y and Jk = [ak, ak−1) for 
k � 1. Note that τY = k + 1 on f−1

R (Jk), where fR is the right branch of f .
We claim {τr > t ∧ Au} ⊇

⋃
k�t f

−1
R (Jk). Note that 

⋃
k�t f

−1
R (Jk) = {RY > t}, and 

that {τr > t} ⊃ {RY > t} since Ur ⊂ Y . Moreover, if RY (x) > t, then τY,u(x) > u −1 +t, 
and for u = μ(Y )t, we have

1
u
τY,u(x) > 1 − 1

u
+ 1

μ(Y ) =⇒ 1
u
τY,u(x) − 1

μ(Y ) > 1 − 1
u
,

so that x ∈ Au for all u � 2 and ε < 1/2. Thus {RY > t} ⊂ Au, completing the proof of 
the claim.

Using well-known estimates [18] on the spacing of ak, ak ≈ k−1/γ ,

μY (τr > t ∧Au) � ct−1/γ = cs−1/γμ(Ur)α/γ , (3.11)

for some uniform constant c > 0, where as usual we have set t = sμ(Ur)−α. Using this 
lower bound, we may split up the relevant expression in the limit defining LY,α,s as 
follows,
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− logμY (τr > t)
sμ(Ur)1−α

= − logμY (τr > t ∧Ac
u)

sμ(Ur)1−α
−

log[1 + μY (τr>t∧Au)
μY (τr>t∧Ac

u) ]
sμ(Ur)1−α

. (3.12)

To use the results for the induced map, one would expect that the first term above tends 
to the desired limit, while the second term above acts as an error term and tends to 0
as r → 0. However, using (3.11), we see that the ‘error’ term is bounded below by

μY (τr > t ∧Au)
sμ(Ur)1−α

� c′μ(Ur)−1+α+α/γ −−−→
r→0

∞,

whenever α < γ/(1 + γ).
By Remark 1.1, we known all limit points of LY,α,s lie in [0, 1], so in the range α <

γ/(1 + γ), the limit relies on cancellation between two diverging terms in (3.12). This 
implies that what we would like to consider to be an error term does not function as one 
for small α.

4. Applications of inducing

Theorem 3.2 applies whenever we have a system (I, f, μ) with an inducing scheme 
(X, F, ν) where F = fτ and τ is the first return time to X where, moreover, ν(Au) is 
known to satisfy a suitable large deviations principle. At present such large deviations 
principles are known in quite specific cases. We mention several examples here.

4.1. Generalised Farey maps

In the i.i.d. case it has been shown that the large deviation rate of an unbounded 
observable ψ matches the tail of the observable. For example for ψ̄ =

∫
ψ dν, γ ∈ (0, 1)

and c > 0,

ν(ψ > n) � ce−nγ

=⇒ lim
n→∞

1
nγ

log ν(Snψ > ε + ψ̄) = −εγ ,

where Snψ is the n-th ergodic sum of these observables, see [11]. Similarly, if the tail 
of an observable is polynomial of order β, then the deviations are polynomial of order 
β − 1; and for exponential, the orders match exactly [10].

An application of Theorem 3.2 is to generalised Farey maps as in [15]. Here one 
chooses a countable partition {An}n of (0, 1] by left-open, right-closed intervals labelled 
in decreasing order in the interval with length of An equal to an for each n. Then for 
tn :=

∑∞
k=n ak and x ∈ [0, 1],

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − x)/a1 if x ∈ A1,

an−1(x− tn+1)/an + tn if x ∈ An, n � 2,
0 if x = 0.
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Taking a first return map to the interval A1 gives us an induced map for which Lebesgue 
measure is invariant and which satisfies the conditions of Theorem 2.1. Since the branches 
are linear, the map behaves in an i.i.d. manner so that Lebesgue measure is a Markov 
measure for the induced map.

Moreover, one can choose the intervals {An}n in such a way that any of the tail 
decay conditions given by (tn)n apply to our observable RY . By the results above these 
match the large deviations, so we may also apply the appropriate items of Theorem 3.2. 
We observe that the only points z which this theorem does not apply to directly are 
∪n�0f

−n0. It is straightforward to adapt the theorem slightly to cover all elements of 
this set except 0.

4.2. Maps with exponential tails

If we start with an interval map f : I → I and can find a well-behaved first return 
map to an interval Y ⊂ I with exponential tails, then Theorem 3.2(1) holds. That is, we 
require the first return map F = fRY to be a full-branched Gibbs–Markov map where 
the induced measure μY has μY (n −1 � RY < n) � Ce−βn for some constants C, β > 0. 
By Section 2.6.2, F satisfies (F1)–(F4) of Section 2.

The fact that a full-branched Gibbs–Markov map has exponential large deviations for 
observables with exponential tails appears to be essentially folklore. Yuri [28] quotes such 
a result, but the setting is slightly different and the proof there is not given explicitly, so 
for completeness, we provide the proof in Appendix B. Since RY has exponential tails, 
it follows from Proposition B.1 and Corollary B.2 that RY satisfies a (local) exponen-
tial large deviations estimate and thus Theorem 3.2(1) applies to the original system 
f : I → I.

We remark that by this argument, Theorem 3.2(1) applies to the tower map (fΔ, Δ)
whenever one can construct a Young tower [27] over an interval as described in the proof 
of Theorem 3.2.

In order to develop a specific class of examples, for the remainder of this section, we 
make the following standing assumptions. We assume that f : I → I is a C2, topologically 
mixing unimodal map with critical point c and orb(c) = {fn(c) : n � 1} nowhere dense.4

Then one can find an interval Y , compactly contained in I\orb(c), such that (Y, F ) is full 
branched (see [20, Chapter 4] for details), where F is the first return map to Y . Moreover 
we assume F has bounded distortion, e.g. f has negative Schwarzian derivative; then 
(Y, F ) is Gibbs–Markov. Finally, we assume that our measure is an equilibrium state for 
some ϕ and discuss when our induced system has (F1)–(F4) and the return time has 
exponential tails so that we can conclude that Theorem 3.2(1) holds.

4 We note that we can drop the topologically mixing and unimodal assumptions, but this makes our 
statements more involved. Similarly, one can also drop the requirement that orb(c) be nowhere dense, see 
for example [6].
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4.2.1. Collet–Eckmann case
If f satisfies the Collet–Eckmann condition (i.e., |Dfn(c)| grows exponentially, and 

this case includes Misiurewicz maps, i.e., c is not recurrent nor attracted to a stable 
periodic orbit, provided f is non-flat at c), then for ϕ = −t log |Df |, there is a unique 
equilibrium state for each t in a neighbourhood of [0, 1], see for example [22]. More-
over, it can be deduced (e.g. from [22]) that (Y, F ) satisfies the conditions (F1)–(F4) 
for Theorem 2.1 to hold for the induced version of μt (note that the conformal measure 
is w.r.t. the normalised potential ϕ − P (ϕ)), and that the return time has exponential 
tails. By Corollary B.2, RY enjoys exponential large deviations with respect to the equi-
librium measure μt. Thus choosing z ∈ Ycont so that (U) is satisfied, it follows that 
Theorem 3.2(1) holds for each t in a neighbourhood of [0, 1].

4.2.2. Non-Collet Eckmann case
If f fails the Collet–Eckmann condition, then for the potential ϕ = −t log |Df |, there 

is still a unique equilibrium state for t ∈ (t0, 1) for some t0 < 0, again see for example 
[22]. Moreover, (Y, F ) satisfies the conditions for Theorem 2.1 to hold for the induced 
version of μt, and the return time has exponential tails. So again choosing z ∈ Ycont so 
that (U) is satisfied, Theorem 3.2(1) holds for this class of potentials. By contrast, for 
t = 1, even if there is an equilibrium state for − log |Df |, it will have sub-exponential 
mixing, so Theorem 3.2(1) will fail.

4.2.3. Lipschitz potentials
If ϕ is a Lipschitz potential, then our results hold more generally: for Theorem 3.2(1) 

to hold for the equilibrium state we only need the potential to be hyperbolic, i.e., 
supx∈I

1
nSnϕ(x) < P (ϕ) for some n, where P (ϕ) denotes the variational pressure. As 

shown in [16] this is automatic if we merely assume that |Dfn(f(c))| → ∞.

Appendix A. Proof of Proposition 2.5

The L1 bound on L̊n
rψ in Proposition 2.5 follows directly from (2.4), so we focus on 

proving the required bound on the variation of L̊n
rψ.

For r ∈ [0, r0], let In
r = {Ji}i = {(ai, bi)} denote the intervals of monotonicity for f̊n

r

and set Ki = fn(Ji). Then for ψ ∈ B and n � 0, we estimate,

∨
I

L̊n
rψ �

∑
i

∨
Ji

ψeSnϕ + ψ(ai)eSnϕ(ai) + ψ(bi)eSnϕ(bi)

�
∑
i

2
∨
Ji

ψeSnϕ + 1
m0(Ji)

∫
Ji

ψeSnϕ dm0.
(A.1)

For the second term in (A.1), we note that by conformality and the bounded distortion 
property (F1), we have for each x ∈ Ji,
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eSnϕ(x) · m0(Ki)
m0(Ji) � 1 + Cd. (A.2)

For the first term in (A.1), we split

∨
Ji

ψeSnϕ � sup
Ji

eSnϕ
∨
Ji

ψ+sup
Ji

|ψ|
∨
Ji

eSnϕ � sup
Ji

eSnϕ
∨
Ji

ψ+sup
Ji

|ψ|Cd sup
Ji

eSnϕ, (A.3)

where we have used Lemma 2.4(b) to bound 
∨

Ji
eSnϕ. Using the bound supJi

|ψ| �∨
Ji
ψ + (m0(Ji))−1 ∫

Ji
|ψ| dm0, we put these estimates together in (A.1) and use (A.2)

to obtain,

∨
I

L̊n
rψ �

∑
i

(2 + 2Cd) sup
Ji

eSnϕ
∨
Ji

ψ + (1 + Cd)(1 + 2Cd)
m0(Ki)

∫
Ji

|ψ| dm0

� (2 + 2Cd)|eSnϕ|∞
∨
I

ψ + inf
i

(1 + Cd)(1 + 2Cd)
m0(Ki)

∫
I̊n−1
r

|ψ| dm0.

(A.4)

Applying (A.4) when n = n1, setting σ̄ := (2 + 2Cd)|eSn1ϕ|∞ < 1, and using (U) yields,

∨
I

L̊n1
r ψ � σ̄

∨
I

ψ + (1 + 2Cd)2

c0

∫
I̊
n1−1
r

|ψ| dm0,

and this relation can be iterated to complete the proof of Proposition 2.5 with σ = σ̄1/n1 .

Appendix B. Exponential deviations

In this section, we prove the fact that full-branched Gibbs–Markov maps have expo-
nential large deviations for observables with exponential tails.

Let PG(φ) denote the Gurevich pressure of φ (see [24]). Note that as in [24, Theorem 2], 
this is equal to the variational definition of pressure given in Section 2.

Proposition B.1. Let F be a full-branched Gibbs–Markov map and φ, ψ weakly Hölder 
continuous potentials. If there exists δ > 0 such that PG(φ + tψ) < ∞ for each |t| < δ

(or equivalently that |Lφ+tψ1|∞ < ∞), then ψ enjoys exponential large deviations for μ
the equilibrium state for φ.

Proof. First we note that the assumptions on φ imply: (i) φ has finite Gurevich pressure 
PG(φ) [24, Theorem 1]; (ii) φ is positive recurrent [26, Corollary 2]; and (iii) there exists 
a finite conformal Borel measure mφ, positive on cylinders, such that dm

dm◦F = eφ−PG(φ)

[24, Theorem 4, Proposition 3].
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Under these conditions, the associated transfer operator Lφ acting on the space of 
Hölder continuous functions5 has a spectral gap. It then follows from [4, Theorem 2.1], 
that φ is strongly positive recurrent. (We refer the reader to [4] for the relevant definition.)

Strong positive recurrence implies that if ψ is a weakly Hölder continuous function 
such that PG(φ + tψ) < ∞ for all |t| < δ and some δ > 0, then t �→ PG(φ + tψ) is analytic 
in t [25, Theorem 3]. Moreover, φ + tψ is positive recurrent for each |t| < δ and has a 
Gibbs measure μt which is moreover the unique equilibrium state for φ + tψ. Denote by 
μ = μ0 the Gibbs measure for φ. Without loss of generality, in what follows we assume 
PG(φ) = μ(ψ) = 0 and that 0 is a local minimum for t �→ PG(φ + tψ).

Now define J+
n (ε) to be the collection of n-cylinders containing a point x so that 

Snψ(x) > nε; similarly, let J−
n (ε) denote the collection of n-cylinders containing x such 

that Snψ(x) < −nε. We first consider J+
n (ε). Since d

dtPG(φ + tψ)|t=t0 = μt0(ψ) for 
|t0| < δ, and by continuity of the derivative for ε small enough we can find q > 0 so that 
μq(ψ) = ε.

Then strict convexity of pressure implies that PG(qψ + φ) − qε < 0 (a slightly more 
sophisticated argument allows us to express this in terms of the Helmholtz free energy, 
but we do not require this here).

Let Pn denote the set of n-cylinders and for Ci
n ∈ Pn, let xi

n be the fixed point of Fn

in Ci
n. So we compute, using the Gibbs property (here the constant C covers the Gibbs 

constant and distortion constants):

μ (Snψ > nε) �
∑

Ci
n∈J+

n (ε)

μ(Ci
n) � C

∑
Ci

n∈J+
n (ε)

eSnφ(xi
n)

� C2
∑

Ci
n∈J+

n (ε)

eq(Sn(ψ−ε))(xi
n))+Snφ(xi

n)

� C2e−nqε
∑

Ci
n∈Pn

eSn(φ+qψ(xi
n)).

Taking logarithms, dividing by n and taking limits we obtain

lim sup
n→∞

1
n

logμ (Snψ > nε) � P (φ + qψ) − qε < 0

as required. A similar argument, with q < 0, applies to J−
n (ε). �

Corollary B.2. Under the assumptions of Proposition B.1, suppose that ψ is weakly 
Hölder continuous with exponential tails, i.e., μ(n − 1 < |ψ| � n) � e−βn, for some 
β > 0. Then ψ enjoys exponential local large deviations with respect to μ.

5 Hölder continuity here is defined using the same constant θ as for the potential φ, i.e., weak Hölder 
continuity of φ means supCi

n
∈Pn

sup{|φ(x) − φ(y)| : x, y ∈ Ci
n} � θn, where Pn is the set of n-cylinders 

for F . We study the transfer operator on the class of functions f : X → R sharing the same property as φ.
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Proof. Letting {xj}j be the collection of all fixed points of F , and ψi be the maximum 
value |ψ| takes on the 1-cylinder Xi, by the Gibbs property,

∑
j

e(φ+tψ)(xj) =
∑
n�1

∑
n−1<ψj�n

e(φ+tψ)(xj) � C2
∑
n

en|t|μ(n− 1 < |ψ| � n)

� C2
∑
n

en(|t|−β) < ∞

provided |t| < β. Standard theory shows that this implies that PG(φ + tψ) < ∞, so that 
ψ satisfies the hypotheses of Proposition B.1. �
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