
EXPONENTIAL DECAY OF CORRELATIONS
FOR CONTACT HYPERBOLIC FLOWS

MARK F. DEMERS

Abstract. We describe the main ideas and key steps in the proof of exponential decay of correla-
tions for hyperbolic contact flows. The main exposition concerns contact Anosov flows, followed by
some comments on the recent extension of the technique to finite horizon Sinai billiard flows.

1. Introduction

These notes are based on a mini-course given as part of the workshop on Statistical Properties
of Nonequilibrium Dynamical Systems, held at the South University of Science and Technology of
China in Shenzhen, China, July 11-26, 2016. The purpose of these notes is to present the essential
features needed to adapt the analysis of the discrete time transfer operator for hyperbolic maps to
the semi-group of continuous time transfer operators for hyperbolic flows. There are three main
steps needed in the present setting.

(1) Adapt Banach spaces used for hyperbolic maps to the setting of hyperbolic flows: the
presence of the neutral flow direction makes this a nontrivial change.

(2) Contrary to the discrete-time case, we do not prove the quasi-compactness of the transfer
operator for the time-one map of the flow, but rather for the generator of the semi-group of
transfer operators for the flow; this involves the use of the resolvent to ‘integrate out’ the
neutral direction.

(3) The use of the contact form to estimate an oscillatory integral and derive a spectral gap for
the generator of the semi-group (the Dolgopyat-type estimate).

It then follows from some general considerations that a spectral gap for the generator of the semi-
group implies exponential decay of correlations for the flow.

1.1. Setting. For ease of exposition and to more clearly identify the key features of the techniques
we shall present, we will limit our setting to that of a 3-dimensional manifold. This will suffice for
the purposes of explaining the main ideas of this technique, as well as its eventual application to
dispersing planar billiards.

Let Ω be a 3-dimensional compact, smooth Riemannian manifold, and let Φt : Ω → Ω be a C2

Anosov flow. By this, we mean that {Φt}t∈R is a family of C2 diffeomorphisms of Ω satisfying the
group properties: (a) Φ0 = Id; (b) Φt ◦ Φs = Φt+s, for all s, t ∈ R.

Moreover, at each x ∈ Ω, there is a DΦt-invariant splitting of the tangent space, TxΩ = Es(x)⊕
Ec(x)⊕Eu(x), continuous in x, such that the angles between Es(x), Eu(x) and Ec(x) are uniformly
bounded away from 0 on Ω. Ec(x) is the flow direction at x ∈ Ω. We assume there exist constants
C,C ′ > 0, Λ > 1, such that for all x ∈ Ω and t ≥ 0,

(1.1) ‖DΦt(x)v‖ ≤ CΛ−t‖v‖ ∀ v ∈ Es(x), ‖DΦt(x)v‖ ≥ C ′Λt‖v‖ ∀ v ∈ Eu(x).

We shall assume throughout that our Anosov flow is contact, i.e. it preserves a contact form on
Ω. More precisely, we assume there exists a C2 one-form ω on Ω such that ω ∧ dω is nowhere zero.
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We assume that Φt preserves ω:

(1.2) ω(Φt(x), DΦt(x)v) = ω(x, v), ∀x ∈ Ω, v ∈ TxΩ.

It is clear from the invariance described by (1.2) that ker(ω) = Es(x) ⊕ Eu(x). It follows that if
v0 ∈ Ec(x) is a unit vector in the flow direction, then ω(v0) 6= 0. Thus replacing ω by ω/ω(v0), we
may assume without loss of generality that ω(v0) = 1 and that the contact volume ω ∧ dω coincides
with the Riemannian volume on Ω. It follows from these considerations that the Jacobian of the
flow is identically equal to 1, i.e. JΦt = 1, and that the flow preserves the Riemannian volume on
Ω, which we shall denote by m.

1.2. Decay of Correlations. The main question we shall address in these notes is that of the rate
of decay of correlations of the contact Anosov flow defined in the previous section. For α > 0 and
ϕ,ψ ∈ Cα(Ω), define the correlation function,

Ct(ϕ,ψ) =

∣∣∣∣∫
Ω
ϕψ ◦ Φt dm−

∫
Ω
ϕdm

∫
Ω
ψ dm

∣∣∣∣ .
If Ct(ϕ,ψ) → 0 as t → ∞ for all Hölder continuous functions ϕ and ψ, then we say the flow is
mixing. The question then becomes, at what rate? The main result that we shall establish in these
notes is the following.

Theorem 1.1. Let Φt be a C2 Anosov flow of a smooth, compact 3-dimensional Riemannian
manifold Ω preserving a C2 contact form ω. Then for each α > 0, there exists η = η(α), and C > 0
such that for all ϕ,ψ ∈ Cα(Ω) and all t ≥ 0,∣∣∣∣∫

Ω
ϕψ ◦ Φt dm−

∫
Ω
ϕdm

∫
Ω
ψ dm

∣∣∣∣ ≤ C|ϕ|Cα(Ω)|ψ|Cα(Ω)e
−ηt.

This is a special case of a more general result proved for any odd-dimensional manifold by Liverani
[L]. We will limit our exposition to three dimensions in order to maintain the focus on the essential
elements of the technique.

From the definition of the correlation function, one can see immediately that, due to the invariance
of the measure m, a simple change of variables yields,

(1.3)
∫
M
ϕψ ◦ Φt dm =

∫
M
ϕ ◦ Φ−t ψ dm =

∫
M
Ltϕψ dm,

where for each t, Ltϕ := ϕ ◦ Φ−t is the transfer operator, or Ruelle-Perron-Frobenius operator
associated with Φt, defined pointwise, for example, on continuous functions. From this change of
variables, it follows that the rate of decay of correlations is tied to the spectral properties of the
semi-group {Lt}t≥0. This is the perspective that we will develop in these notes.

1.3. Some History and Present Approach. The proof of exponential decay of correlations for
some classes of uniformly hyperbolic flows has proved to be much more subtle than the analogous
proof for hyperbolic diffeomorphisms. For uniformly hyperbolic diffeomorphisms, there is a type of
dichotomy: either the map is exponentially mixing on smooth observables, or it is not mixing at
all. This does not hold for uniformly hyperbolic flows. In [R], Ruelle constructed a class of Axiom
A suspension flows with piecewise constant roof function that mix at a polynomial rate. Pollicott
[P1] then generalized this class of examples to obtain polynomial decay of correlations of any power,
indeed even logarithmically slow decay.

Some early success in proving exponential decay for geodesic flows on manifolds of constant
negative curvature in 2 and 3 dimensions was achieved by Moore [Mo], Ratner [Ra] and Pollicott
[P2], and certain perturbations were considered in [CEG], but the techniques were algebraic and did
not generalize to manifolds of variable curvature.

The first dynamical proof of decay of correlations for Anosov flows was given by Chernov [C1],
who exploited the ‘twist’ provided by the contact form in order to estimate a key quantity, the
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temporal distance function (see (5.13) and Remark 5.1), yet he was only able to obtain a stretched
exponential bound using Markov partitions. Next, Dolgopyat [Do] was the first to prove exponential
decay of correlations for Anosov flows, using an assumption of C1 stable and unstable foliations to
estimate a crucial oscillatory integral (see Lemma 5.5). This work was further extended by Liverani
[L], who proved exponential decay for contact Anosov flows by combining a functional analytic
approach with the ideas of Dolgopyat and Chernov. These ideas were then adapted to piecewise
cone hyperbolic flows by Baladi and Liverani [BL], and finally1 to some dispersing billiard flows in
[BDL]. It is this line of argument that we shall follow in the present set of notes, and we shall limit
our discussion primarily to the smooth, Anosov case, in order to present the key ideas most clearly.2

Given this approach, several choices are available with regards to the functional analytic framework
in which to view the transfer operator.

(1) The approach via Markov partitions used by Dolgopyat [Do].
(2) The norms originally used in [L], which define norms integrating over the entire phase space of

the flow. These were based on the paper [BKL], which introduced a set of Banach spaces for
Anosov diffeomorphisms and subsequently inspired a series of papers constructing norms for
hyperbolic maps from several points of view (see [B1] for a recent survey of these approaches,
and [B2] for a more in-depth treatment).

(3) The Sobolev-type spaces used in [BL] for piecewise cone hyperbolic contact flows. These
norms use Fourier transforms and were based on work of Baladi, Tsujii and Gouëzel [BT1, BG]
who constructed the analogous norms for diffeomorphisms.

(4) The ‘geometric’ approach of [GL], which modified the norms of [BKL] to integrate over
cone-stable curves only. This modification turned out to be essential for the adaptability of
this method to piecewise hyperbolic maps requiring only Hölder continuity in the unstable
direction in [DL] and finally to dispersing billiards in [DZ1, DZ3]. Most recently, it was
extended to prove exponential decay of correlations for the finite horizon Sinai billiard flow
[BDL].

In the present set of notes, we will define a functional analytic setup for contact Anosov flows
which follows the technique described in (4) above. As a result, our exposition and some proofs will
differ from Liverani’s published proof [L]. Yet we choose this method since it combines a relatively
simple exposition with a flexible framework. To date, the geometric norms integrating over stable
curves has proved to be the most versatile in terms of its applicability to a wide range of hyperbolic
systems with discontinuities.

A brief outline of the paper is as follows. In Section 2, we introduce necessary definitions and define
the Banach spaces on which our transfer operators and resolvents will act. We also outline some
properties of these spaces regarding embeddings and compactness. Unfortunately, Proposition 2.6
does not provide true Lasota-Yorke inequalities for our semi-group {Lt}t≥0, so in Section 3 we
introduce the generator of the semi-group X and the related resolvent R(z), z ∈ C. As evidenced
by Proposition 3.3 and Corollary 3.4, we are able to prove quasi-compactness for R(z), and so
obtain useful information about the spectrum of X (Proposition 3.5). In Section 4, we introduce an
improved estimate on the spectral radius of R(z) when |Im(z)| is large, which implies a spectral gap
for X, and leads to the proof of Theorem 1.1. This in turn is reduced to a Dolgopyat-type estimate,
Lemma 4.3, which is proved in Section 5. In Section 6, we briefly sketch some modifications needed
to generalize the present approach to dispersing billiards, as carried out in [BDL].

1In the meantime, Chernov [C2] and Melbourne [M] had proved a stretched exponential bound for dispersing
billiard flows using the techniques adapted from [C1] and [Do].

2A different mechanism for exponential mixing has been proved in the recent work of Tsujii [T], but this lies outside
the scope of the present notes.
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2. Functional Analytic Framework

In order to define the Banach spaces on which our transfer operator will act, we first extend
its definition from acting on continuous functions introduced in Section 1.2 to acting on spaces of
distributions.

For α ∈ (0, 1], and W a smooth submanifold of Ω, define the Cα-norm for functions on W by

(2.1) |ϕ|Cα(W ) := sup
x∈W
|ϕ(x)|+Hα

W (ϕ), Hα
W (ϕ) := sup

x 6=y∈W
|ϕ(x)− ϕ(y)|dW (x, y)−α,

where dW (·, ·) is the Riemannian metric restricted to W . Notice with this definition that C1(W ) is
the set of Lipschitz functions on W .

Since the flow is C2, if ψ ∈ C1(Ω), then ψ ◦ Φ−t ∈ C1(Ω). Thus we may define Lt acting on
(C1(Ω))∗, the dual of C1(Ω), by

Ltf(ψ) = f(ψ ◦ Φt), for all ψ ∈ C1(Ω), f ∈ (C1(Ω))∗.

If f ∈ L1(m), then we identify f with the measure fdm ∈ (C1(Ω))∗. With this identification, Lt
has the pointwise definition stated earlier, Ltf = f ◦ Φ−t, and its action is consistent with (1.3).

2.1. Admissible cone-stable and cone-unstable curves. Due to the uniform hyperbolicity of
Φt given by (1.1), we define stable and unstable cones Cs(x), Cu(x) ⊂ Es(x)⊕Eu(x), lying in the
kernel of the contact forms. The cones satisfy the strict invariance condition,

(2.2) DΦ−tC
s(x) ⊂ Cs(Φ−tx), DΦtC

u(x) ⊂ Cu(Φtx), for all t > 0.

Note that these cones are ‘flat’ since they lie in the plane Es(x)⊕ Eu(x), and have empty interior
in TxΩ. We may choose these cones so that they are continuous and uniformly transverse on Ω.
Moreover, the uniform contraction and expansion given by (1.1) extends to all vectors in Cs(x) and
Cu(x), respectively, with possibly slightly weaker constants C,C ′ and Λ.

Let d0 > 0 denote the minimal length of a closed geodesic on Ω.

Definition 2.1. We define a family of admissible cone-stable curves, Ws = Ws(δ0, C0), in Ω
satisfying:
(W1) for all W ∈ Ws and x ∈W , the unit tangent vector to W at x belongs to Cs(x);
(W2) there exists δ0 ∈ (0, d0/2) such that |W | ≤ δ0 for all W ∈ Ws;
(W3) there exists C0 > 0 such that the curvature of W is bounded by C0.

For brevity, we refer to W ∈ Ws simply as stable curves. A family of unstable curves Wu is
defined similarly.

Due to the strict invariance of the cones, we have Φ−tWs ⊆ Ws, t ≥ 0, up to subdivision of
curves longer than length δ0. Similarly, ΦtWu ⊆ Wu, t ≥ 0.

In order to compare different curves in Ws, we will introduce a notion of distance between them.
To do this, we place finitely many local sections Σi in M , which are smooth surfaces with piecewise
smooth boundary, such that

(a) there exists τ0 ∈ (0, d0/2), such that each W ∈ Ws projects as a smooth, connected curve
onto at least one Σi under {Φt}0≤t≤τ0 ;

(b) each Σi is uniformly transverse to the flow direction;
(c) for each i, there exists a common family of stable and unstable cones for all x ∈ Σi.

On each section, we distinguish a point x̄i in the approximate center of Σi, and define local coordinates
(x̄s, x̄u) with x̄i at the origin, and the x̄s (x̄u) axis tangent to Es(x̄i) (Eu(x̄i)) at x̄i. We may construct
the Σi so that they are approximately rectangular in these coordinates: Σi = {(x̄s, x̄u) : x̄s ∈ Isi , x̄u ∈
Iui }, where Isi and Iui are two intervals centered at 0.
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On each domain3 of the form Di = {Φ−t(Σi)}0≤t≤τ0 , let P+
i denote the projection onto Σi, defined

at x ∈ Di as the first intersection of Φt(x) with Σi, for t ≥ 0. For W ∈ Ws, if P+
i W is defined, then

we may view it as the graph of a function Gi,W : Ii,W → Iui , where Ii,W ⊂ Isi , in case the curve W
is very short.

Now if W1,W2 ∈ Ws, we define a notion of distance between them as follows. If there exists
U ∈W u such that U ∩W1 6= ∅ and U ∩W2 6= ∅ and at least one i such that P+

i W1 and P+
i W2 are

both defined, then

(2.3) dWs(W1,W2) := min
i
{|Ii,W14Ii,W2 |+ |Gi,W1 −Gi,W2 |C1(Ii,W1

∩Ii,W2
)}.

Otherwise,4 set dWs(W1,W2) =∞.
The purpose of requiring the existence of U ∈ Wu intersecting both curves is to ensure that they

are sufficiently close in the flow direction (since the distance in (2.3) only quantifies the distance
between projected curves in Σi, which quotients out the flow direction).

Remark 2.2. The choice to compare curves on sections rather than directly on the manifold Ω may
seem unnecessarily awkward at this stage. Yet, it simplifies certain norm calculations considerably
by introducing a convenient set of local coordinate systems. In addition, it allows for an immediate
generalization to billiards since then one can simply take the sections Σi to correspond to the smooth
parts of the boundary of the billiard table.

A second point to notice is that the distance defined by (2.3) does not define a metric, or even a
pseudo-metric since it does not satisfy the triangle inequality. This does not affect our analysis at all
since the norms we defined will satisfy the triangle inequality, and this is sufficient for our purposes.

For two curves W1,W2 ∈ Ws with dWs(W1,W2) < ∞, we can use the same coordinate system
to define a notion of distance between test functions supported on these curves. Let ψi ∈ C0(Wi),
i = 1, 2. Define

d0(ψ1, ψ2) = min
i
{|ψ1 ◦Gi,W1 − ψ2 ◦Gi,W2 |C1(Ii,W1

∩Ii,W2
},

where the minimum is taken over all i such that both P+
i (W1) and P+

i (W2) are both defined.

2.2. Definition of the norms and Banach spaces. Given α ∈ (0, 1) and W ∈ Ws, define
Cα(W ) to be the closure5 of C1(W ) in the Cα(W ) norm, defined by (2.1). This definition of Cα(W )
guarantees that the embedding of our strong space into our weak space is injective (see Lemma 2.4).

Now fix α ∈ (0, 1]. Given f ∈ C1(Ω), define the weak norm of f by

|f |w = sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫
W
f ψ dmW ,

where mW is arc length measure along W .
By contrast, our strong norm will have three components. Choose 1 < q < ∞, β ∈ (0, α) and

0 < γ ≤ min{α− β, 1/q}.
For f ∈ C1(Ω), define the strong stable norm of f by

‖f‖s = sup
W∈Ws

sup
ψ∈Cβ(W )

|ψ|
Cβ(W )

≤|W |−1/q

∫
W
f ψ dmW .

3Note that these domains may overlap for different i.
4That is, if W1 and W2 do not project onto a common Σi, or if there is no U ∈ Wu with the required property.
5Cα(W ) is strictly smaller than the set of functions with finite | · |Cα(W ) norm, yet it contains all functions with

finite | · |Cα′
(W ) norm for all α′ > α.
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Define the neutral norm of f by

‖f‖0 = sup
W∈Ws

sup
ψ∈Cα(W )
|ψ|Cα(W )≤1

∫
W

d
dt(f ◦ Φt)|t=0 ψ dmW .

And finally, define the unstable norm of f by

‖f‖u = sup
ε>0

sup
W1,W2∈Ws

dWs (W1,W2)≤ε

sup
ψi∈Cα(Wi)
|ψi|Cα(Wi)

≤1

d0(ψ1,ψ2)=0

ε−γ
∣∣∣∣∫
W1

f ψ1, dmW1 −
∫
W2

f ψ2 dmW2

∣∣∣∣ .
Define the strong norm of f by

‖f‖B = ‖f‖s + ‖f‖0 + cu‖fu‖,

where cu > 0 is a constant to be chosen later.
Now our weak space Bw is defined as the completion of C2(Ω) in the | · |w norm, while our strong

space B is defined as the completion of C2(Ω) in the ‖ · ‖B norm.

Remark 2.3. The restrictions on the parameters are placed due to the following considerations.
That β < α is required for compactness (Lemma 2.5). Then γ ≤ α − β is required when adjusting
test functions for the unstable norm estimate (2.9), while γ ≤ 1/q allows us to account for short
unmatched pieces due to our use of sections in the same estimate. Finally, q > 1 is required to obtain
contraction in the strong stable norm estimate (2.8). For a C2 flow, one may take α = 1.

In order to use the Dolgopyat estimate (Lemma 4.3) to prove Proposition 4.2, we shall introduce
additional restrictions on the parameters when applying the mollification lemma (Lemma 4.4). For
this proof, we shall need β to be sufficiently small and q sufficiently close to 1 so that (1+β−1/q)/γ <
γ0, where γ0 is from Lemma 4.3.

2.3. Properties of the Banach Spaces. The spaces B and Bw are spaces of distributions, and
the following lemma describes some important relations with more familiar spaces.

Lemma 2.4. The following set of inclusions are continuous, and the first two are injective,

C1(Ω) ↪→ B ↪→ Bw ↪→ (Cα(Ω))∗.

Indeed, there exists C > 0 such that for all f ∈ C1(Ω), we have

(2.4) |f |w ≤ ‖f‖B ≤ C|f |C1(Ω).

Moreover,

(2.5) |f(ψ)| ≤ C|f |w|ψ|Cα(Ω) ∀ f ∈ Bw, |f(ψ)| ≤ C‖f‖s|ψ|Cβ(Ω) ∀ f ∈ B.

Proof. The bounds in (2.4) are clear from the definitions of the norms, proving the continuity of
the first two inclusions. Moreover the injectivity of the first inclusion is obvious, while that of the
second follows from the fact that C1(W ) is dense in both Cα(W ) and Cβ(W ) because of the way
we have defined these spaces of test functions.

It remains to prove the inequalities in (2.5), which in turn imply the continuity of the last inclusion.
We prove the first inequality in (2.5), since the proof of the second is similar.

Let f ∈ C2(Ω), ψ ∈ Cα(Ω). We subdivide Ω into a finite number of boxes Bi and foliate each
box by a smooth foliation of stable curves {Wξ}ξ∈Ξi . To see that this is possible, we can choose
each box Bi to lie inside one of the domains Di corresponding to surface Σi. Choosing a smooth
family of stable curves intersecting Σi, we can simply flow it to fill Bi.

Now on each Bi, we disintegrate the measure m into conditional measures ρξdmWξ
on each Wξ

and a factor measure m̂i on the index set Ξi. Since the foliation is smooth, we have |ρξ|C1(Wξ) ≤ C1
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for some C1 > 0 and all ξ ∈ Ξi. Then,

|f(ψ)| =
∣∣∣∣∫

Ω
f ψ dm

∣∣∣∣ ≤∑
i

∫
Ξi

∣∣∣∣∣
∫
Wξ

f ψ ρξ dmWξ

∣∣∣∣∣ dm̂i

≤
∑
i

∫
Ξi

|f |w|ψ|Cα(Wξ)|ρξ|Cα(Wξ)dm̂i ≤ C|f |w|ψ|Cα(Ω).

Since this bound holds for all f ∈ C2(Ω), by density it holds for all f ∈ Bw. �

Lemma 2.5. The unit ball of B is compactly embedded in Bw.
Proof. The compactness follows from two important points: the compactness of the unit ball of
Cα(W ) in Cβ(W ) for each W ∈ Ws; and the compactness in the C1 norm of the set of graphs Gi,W
with C2 norm bounded by C0 on each section Σi. This allows us to prove that for all ε > 0, there
exists a finite set of linear functionals `i,j on B, with `i,j(f) =

∫
Wi
f ψj dmWi , ψj ∈ Cα(Wi), such

that

(2.6) min
i,j

(|f |w − `i,j(f)) ≤ Cεγ‖f‖B,

for a uniform constant C > 0. This implies the required compactness. For the details of the
approximation needed to carry out the above estimate, see [DZ1, Lemma 3.10] or [BDL, Lemma 3.10].

�

Exercise 1. Assume that (2.6) holds. Show that it implies that the unit ball of B is compact in Bw.
2.4. Lasota-Yorke type inequalities for the semi-group Lt. The semi-group of transfer op-
erators {Lt}t≥0 satisfies the following set of dynamical inequalities, often called Lasota-Yorke, of
Doeblin-Fortet inequalities, following their seminal role in the development of the spectral theory of
transfer operators [DF, LY].

Proposition 2.6. There exists C > 0 such that for all f ∈ B and t ≥ 0,

|Ltf |w ≤ C|f |w(2.7)

‖Ltf‖s ≤ C(Λ−βt + Λ−(1−1/q)t)‖f‖s + C|f |w(2.8)
‖Ltf‖u ≤ CΛ−γt‖f‖u + C‖f‖0 + C‖f‖s(2.9)
‖Ltf‖0 ≤ C‖f‖0.(2.10)

If Lt were the transfer operator for a hyperbolic diffeomorphism of a 2-dimensional manifold,
the inequalities (2.7) - (2.9) would be the traditional Lasota-Yorke inequalities (there would be no
neutral direction), and we would conclude that Lt was quasi-compact with spectral radius 1, and
essential spectral radius strictly smaller than 1. Unfortunately, in the case of a flow, we are left
with the inequality (2.10) for the neutral norm, due to the lack of hyperbolicity in the flow direction.
Thus the above inequalities do not represent a true set of Lasota-Yorke inequalities since the strong
norm does not contract. So we do not prove that Lt is quasi-compact on B.

Before proceeding to the next step in the argument, which is the introduction of the resolvent
and the generator of the semi-group, we prove several items of the proposition, to give a flavor for
the estimates required. A full proof of analogous inequalities in a variety of settings can be found
in, for example, [GL] for Anosov diffeomorphisms, [DZ1] for dispersing billiard maps, or [BDL] for
some dispersing billiard flows.

Proof of Proposition 2.6. Due to the density of C2(M) in B, it suffices to prove the inequalities for
f ∈ C2(M). We first prove (2.8).

When we flow a stable curve W ∈ Ws backwards, Φ−tW may grow to have length greater than
δ0. If so, we subdivide it into a finite collection Gt(W ) = {Wi}i ⊂ Ws so that each Wi has length
between δ0/2 and δ0, and ∪iWi = Φ−tW .
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Let f ∈ C2(M), W ∈ Ws and ψ ∈ Cβ(W ) with |ψ|Cβ(W ) ≤ |W |−1/q. We must estimate, for
t ≥ 0,

(2.11)
∫
W
Ltf ψ dmW =

∑
Wi∈Gt(W )

∫
Wi

f ψ ◦ Φt JWiΦt dmWi ,

where we have changed variables and subdivided the integral on Φ−tW into a sum of integrals over
the Wi ∈ Gt(W ). The function JWiΦt denotes the Jacobian of Φt along the curve Wi. Due to (1.1),
this is a contraction.

Case I. |Φ−tW | > δ0.
For each i, define ψi to be the average value of ψ ◦ Φt on Wi. Then subtracting the average on

each Wi, we can rewrite (2.11) as,∫
W
Ltf ψ dmW =

∑
Wi∈Gt(W )

∫
Wi

f (ψ ◦ Φt − ψi) JWiΦt dmWi + ψi

∫
Wi

f JWiΦt dmWi

≤
∑
i

‖f‖s|ψ ◦ Φt − ψi|Cβ(Wi)|Wi|1/q|JWiΦt|Cβ(Wi) + |f |w|ψ ◦ Φt|Cα(Wi)|JWiΦt|Cα(Wi),

(2.12)

where we have applied the strong stable norm to the first set of terms and the weak norm to the
second set.

The Cβ norm of ψ ◦ Φt − ψi is easy to estimate using the uniform hyperbolicity of Φt given by
(1.1), as well as the fact that we have defined stable curves which are transverse to the flow direction,
and whose tangent vector lie exactly in the plane where the hyperbolicity of the flow dominates.
Thus for x, y ∈Wi,

(2.13) |ψ ◦ Φt(x)− ψ ◦ Φt(y)| ≤ Hβ
W (ψ)d(Φt(x),Φt(y))β ≤ CΛ−βtd(x, y)β.

This, together with the fact that ψi = ψ ◦ Φt(y) for some y ∈Wi yields,

(2.14) |ψ ◦ Φt − ψi|Cβ(Wi) ≤ CΛ−βt|ψ|Cβ(W ) ≤ CΛ−βt|W |−1/q.

By a similar estimate with α in place of β, and using |ψ◦Φt|C0(Wi) ≤ |ψ|C0(W ), yields |ψ◦Φt|Cα(Wi) ≤
C|ψ|Cα(W ) ≤ C|W |−1/q.

In order to complete the estimate on the strong stable norm, we need the following lemma.

Lemma 2.7. Let W ∈ Ws, t ≥ 0, and suppose Φ−tW = {Wi}i ⊂ Ws.

(a) There exists Cd > 0, independent of W and t, such that for all Wi and x, y ∈Wi,∣∣∣∣JWiΦt(x)

JWiΦt(y)
− 1

∣∣∣∣ ≤ Cdd(x, y).

(b) |JWiΦt|C1(Wi) ≤ (1 + Cd)|JWiΦt|C0(Wi).
(c) There exists C̄, independent of W and t ≥ 0, such that

∑
i |JWiΦt|C0(Wi) ≤ C̄.

Proof. Item (a) is a standard distortion bound in hyperbolic dynamics. It can be proved, for example,
by choosing τ1 > 0 and subdividing [0, t] into [t/τ1] intervals of length τ1, plus a last one of length
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s ≤ τ1. Then using again (1.1)

log
JWiΦt(x)

JWiΦt(y)
≤

[t/τ1]∑
j=1

| log JΦjτ1WiΦτ1(Φjτ1(x))− log JΦjτ1WiΦτ1(Φjτ1(y))|

+ | log JΦt−sWiΦs(Φt−s(x))− log JΦt−sWiΦs(Φt−s(y))|

≤
[t/τ1]∑
j=1

Cd(Φjτ1(x),Φjτ1(y)) + Cd(Φt−s(x),Φt−s(y))

≤ C ′
[t/τ1]∑
j=1

Λ−jτ1d(x, y) + Λ−(t−s)d(x, y) ≤ C ′′d(x, y),

where C ′′ depends on the maximum C2 norm of Φs, 0 ≤ s ≤ τ1.

Item (b) is an immediate consequence of (a).

Item (c) also follows from (a). To see this, note that if Φ−tW has length less than δ0, then there
is only a single Wi, and the fact that the Jacobian along stable curves is a contraction implies the
inequality. If Φ−tW has length longer than δ0, then each Wi has length at least δ0/2. Thus using
bounded distortion from (a) yields,

(2.15)
∑
i

|JWiΦt|C0(Wi) ≈
∑
i

|Φt(Wi)|
|Wi|

≤ 2δ−1
0

∑
i

|Φt(Wi)| ≤ 2δ−1
0 |W | ≤ 2.

�

The items of the lemma allow us to complete the proof of (2.8). Recalling (2.12), and using (2.14)
and Lemma 2.7(b) yields,∫

W
Ltf ψ dmW ≤

∑
i

CΛ−βt‖f‖s
|Wi|1/q

|W |1/q
|JWiΦt|C0(Wi) + C|f |w|W |−1/q|JWiΦt|C0(Wi).

The first sum is uniformly bounded in t and W by Lemma 2.7(a),(c) and a Hölder inequality,

∑
i

|Wi|1/q

|W |1/q
|JWiΦt|C0(Wi) ≤

(∑
i

(1 + Cd)
|Φt(Wi)|
|W |

)1/q (∑
i

|JWiΦt|C0(Wi)

)1−1/q

≤ (1 + Cd)
1/qC̄1−1/q.

The second sum is bounded uniformly in t and W since by an estimate similar to (2.15),∑
i

|W |−1/q|JWiΦt|C0(Wi) ≤ 2δ−1
0 |W |

1−1/q.

Putting these estimates together yields,

(2.16)
∫
W
Ltf ψ dmW ≤ CΛ−βt‖f‖s + C|f |w.

Case II. |Φ−tW | ≤ δ0.
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In this case,6 we do not subtract an average for the test function, and there is simply one term in
(2.11), to which we apply the strong stable norm,∫

W
Ltf ψ dmW ≤ ‖f‖s

|Φ−t(W )|1/q

|W |1/q
|JΦ−t(W )Φt|C0 ,

where again, we have used (2.13) and Lemma 2.7 to estimate the norms of the test functions. By
bounded distortion, |JΦ−t(W )Φt|C0 ≈ |W |

|Φ−t(W )| , so that∫
W
Ltf ψ dmW ≤ C‖f‖s

|W |1−1/q

|Φ−t(W )|1−1/q
≤ C‖f‖sΛ−(1−1/q)t.

Putting Cases I and II together and taking the supremum over W and ψ proves (2.8).

The proof of (2.7) follows more simply since the weak norm needs no contraction so we do not
subtract the average value of the test function on each curve. Also, there is no weight of the
form |W |−1/q since for the weak norm, the test function ψ ∈ Cα(W ) satisfies |ψ|Cα(W ) ≤ 1. Thus
following (2.11) and applying the weak norm to each term yields,∫

W
Ltf ψ dmW ≤

∑
i

|f |w|ψ ◦ Φt|Cα(Wi)|JWiΦt|Cα(Wi) ≤
∑
i

C|f |w|JWiΦt|C0(Wi) ≤ C
′|f |w,

where again we have used Lemma 2.7.

The proof of the neutral norm bound (2.10) is similarly straightforward. Using the group property
of Φt, we have,

(2.17)
d

ds

(
(Ltf) ◦ Φs

)
|s=0 = lim

s→0

(f ◦ Φs − f) ◦ Φ−t
s

=
d

ds
(f ◦ Φs)|s=0 ◦ Φ−t.

Taking ψ ∈ Cα(W ) with |ψ|Cα(W ) ≤ 1, we use (2.17) and change variables as in (2.11),∫
W

d

ds

(
(Ltf) ◦ Φs

)
|s=0 ψ dmW =

∑
i

∫
Wi

d

ds
(f ◦ Φs)|s=0 ψ ◦ Φt JWiΦt dmWi

≤
∑
i

‖f‖0|ψ ◦ Φt|Cα(Wi)|JWiΦt|Cα(Wi),

and the sum is uniformly bounded in t and W , again using Lemma 2.7.

The proof of (2.9) is more lengthy, and to avoid cumbersome technicalities, we shall omit the
proof in these notes. We refer the interested reader to [DZ1] for the map version or [BDL] for the
flow version. �

3. The Generator and The Resolvent: Regaining Quasi-Compactness

The novel idea introduced by Liverani in [L] was to shift attention away from the semi-group of
transfer operators, and onto generator of the semi-group, and the associated resolvent. Indeed, the
path we shall follow to prove Theorem 1.1 will be to prove a spectral gap for the generator.

For f ∈ C1(Ω), define

Xf = lim
t→0+

Ltf − f
t

.

The operator X is called the generator of the semi-group {Lt}t≥0. Since Φt is invertible, in fact
{Lt}t∈R is a group when acting pointwise on functions; however, since we are interested in its action

6This case can be eliminated entirely by requiring that curves in Ws have a minimum length of say, δ0/2. Then
Case I would suffice to estimate all curves, and (2.8) would simplify to ‖Ltf‖s ≤ CΛ−βt‖f‖s + C|f |w. Since we are
interested in presenting norms which can be applied to discontinuous maps and flows, we do not place this additional
restriction on curves in Ws.
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on the Banach space B, we consider only the semi-group. This is because the dynamical properties
of Lt for t < 0 will not preserve the norms: the roles of the stable and unstable directions are
exchanged, and so the definition of the anisotropic spaces would also need to be changed in order
to study t < 0.

Remark that if f ∈ C2(M), then Xf ∈ C1(M), so Xf ∈ B by Lemma 2.4. By definition, this
implies that the domain of X is dense in B.

The following lemma provides additional information about the behavior of Lt for small t.

Lemma 3.1. There exists C > 0 such that for all f ∈ B,
(a) lim

t→0+
‖Ltf − f‖B = 0;

(b) |Ltf − f |w ≤ Ct‖f‖B, t ≥ 0.

Proof. For the proof of (a), see [BDL, Lemma 4.6]. We prove (b).
Let f ∈ C2(Ω), W ∈ Ws and ψ ∈ Cα(W ) with |ψ|Cα(W ) ≤ 1. Then using (2.17), we estimate∫

W
(Ltf − f)ψ dmW =

∫
W

∫ t

0

d

ds
(f ◦ Φ−s)ψ ds dmW

=

∫ t

0

∫
W

d

dr
(f ◦ Φr)|r=0 ◦ Φ−s ψ dmW ds

=

∫ t

0

∑
i

∫
Wi

d

dr
(f ◦ Φr)|r=0 ψ ◦ Φs JWiΦs dmWi ds

≤
∫ t

0
‖f‖0

∑
i

|ψ ◦ Φs|Cα(Wi)|JWiΦs|Cα(Wi) ≤ Ct‖f‖0,

where we have changed variables in the third line, and used Lemma 2.7 in the fourth. Taking the
supremum over ψ and W proves (b). �

Remark 3.2. Item (a) of Lemma 3.1 implies that the semi-group {Lt}t≥0 acting on B is strongly
continuous. This in turn implies that X is closed as an operator on B, with a dense domain [Da].

Next, for z ∈ C, we define the resolvent R(z) : B → B by

(3.1) R(z) = (zI −X)−1.

When Re(z) > 0, R(z) has the following representation,

(3.2) R(z)f =

∫ ∞
0

e−ztLtf dt.

The importance of (3.2) is that the operator R(z) integrates out time, and so eliminates the neutral
direction. This will be the key point that enables the subsequent analysis.

Exercise 2. Use the definition of X to verify that R(z) defined by (3.2) satisfies R(z)Xf =
−f + zR(z)f . This implies that R(z) satisfies (3.1).

3.1. Quasi-compactness of R(z). Define λ = max{Λ−β,Λ−γ ,Λ−(1−1/q)} < 1.

Proposition 3.3. There exists C ≥ 1 such that for all z ∈ C with Re(z) =: a > 0, and all f ∈ B
and n ≥ 0,

|R(z)nf |w ≤ Ca−n|f |w ,(3.3)
‖R(z)nf‖s ≤ C(a− log λ)−n‖f‖s + Ca−n|f |w ,(3.4)
‖R(z)nf‖u ≤ C(a− log λ)−n‖f‖u + Ca−n(‖f‖s + ‖f‖0) ,(3.5)
‖R(z)nf‖0 ≤ Ca1−n(1 + |z|/a)|f |w .(3.6)
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Due to the integration over time provided by (3.2), Proposition 3.3 represents an essential im-
provement over Proposition 2.6. The key improvement is the weak norm |f |w appearing on the right
hand side of (3.6) in place of the neutral norm ‖f‖0 which appeared on the right hand side of (2.10).
This permits the following corollary.

Corollary 3.4. Let z = a + ib ∈ C with a > 0. The spectral radius of R(z) on B is at most a−1.
For any σ > (1 − a−1 log λ)−1, we may choose cu > 0 such that the essential spectral radius is at
most σa−1. Thus the spectrum of R(z) outside the disk of radius σa−1 is finite-dimensional, and if
it is nonempty, then R(z) is quasi-compact as an operator on B.

Proof. Using the definition of the strong norm, we estimate,
an‖R(z)nf‖B = an‖R(z)nf‖s + cua

n‖R(z)nf‖u + an‖R(z)f‖0
≤ C[(1− a−1 log λ)−n + cu]‖f‖s + Ccu(1− a−1 log λ)−n‖f‖u + Ccu‖f‖0

+ C(1 + a+ |z|)|f |w.

Now choose σ ∈ ((1− a−1 log λ)−1, 1) and N > 0 so large that C(1− a−1 log λ)−N < σN/2. Finally,
choose cu > 0 so small that Ccu < σN/2. Then the above estimate yields,

(3.7) aN‖R(z)Nf‖B ≤ σN‖f‖B + C(a+ |z|+ 1)|f |w,
which is the traditional Lasota-Yorke inequality. Since this can be iterated, it follows from a classical
result of Hennion [H], together with the compactness of the unit ball of B in Bw (Lemma 2.5), that
the essential spectral radius of R(z) on B is at most σa−1. �

The following two facts will be useful for proving Proposition 3.3.

Exercise 3. Starting from (3.2), prove by induction that R(z)nf =
∫∞

0
tn−1

(n−1)!e
−zt Ltf dt.

Exercise 4. Let z = a+ ib with a > 0. Show that
∣∣∣∫∞0 tn−1

(n−1)!e
−zt dt

∣∣∣ ≤ a−n, for all n ≥ 1.

Proof of Proposition 3.3. As usual, by density, it suffices to prove the inequalities for f ∈ C2(Ω).
We begin by proving the weak norm estimate (3.3).

Let W ∈ Wss, ψ ∈ Cα(W ) with |ψ|Cα(W ) ≤ 1. Then for n ≥ 1,∣∣∣∣∫
W
R(z)nf ψ dmW

∣∣∣∣ =

∣∣∣∣∫ ∞
0

∫
W
Ltf ψ dmW

tn−1

(n− 1)!
e−zt dt

∣∣∣∣
≤
∫ ∞

0
|Ltf |w

tn−1

(n− 1)!
e−at dt ≤ C|f |wa−n,

(3.8)

where in the first line we have used Exercise 3 and reversed the order of integration since the integral
of Ltf on W is uniformly bounded in t; in the second line we have used (2.7) and Exercise 4 to
complete the estimate. Taking the appropriate suprema over W and ψ proves (3.3).

The proof of (3.4) is similar, except that we take advantage of the extra contraction provided by
(2.8). Taking W ∈ Ws and ψ ∈ Cβ(W ) with |ψ|Cβ(W ) ≤ |W |−1/q, we estimate for n ≥ 1, following
(3.8), ∣∣∣∣∫

W
R(z)nf ψ dmW

∣∣∣∣ ≤ ∫ ∞
0
‖Ltf‖s

tn−1

(n− 1)!
e−at dt

≤
∫ ∞

0

[
C‖f‖s

tn−1

(n− 1)!
e−(a−log λ)t + C|f |w

tn−1

(n− 1)!
e−at

]
dt

≤ C(a− log λ)−n‖f‖s + Ca−n|f |w,
where again we have used Exercises 3 and 4, as well as (2.8).

The estimate for (3.5) is again similar, now using (2.9).



EXPONENTIAL DECAY OF CORRELATIONS FOR CONTACT HYPERBOLIC FLOWS 13

Finally, we prove (3.6). This differs from the previous estimates since we will not simply apply
(2.10), which would result in no improvement over Proposition 2.6, but rather we first integrate by
parts in order to use the weak norm. Now taking W ∈ Ws and ψ ∈ Cα(W ) with |ψ|Cα(W ) ≤ 1, we
estimate,∫

W

d

ds
((R(z)nf) ◦ Φs)|s=0 ψ dmW =

∫
W

∫ ∞
0

tn−1

(n− 1)!
e−zt

d

ds

(
(Ltf) ◦ Φs

)
|s=0 dt ψ dmW

=

∫
W

∫ ∞
0

tn−1

(n− 1)!
e−zt

d

dt
(Ltf) dt ψ dmW

=

∫
W

∫ ∞
0
−
(

tn−2

(n− 2)!
e−zt − ze−zt tn−1

(n− 1)!

)
Ltf dt ψ dmW

= −
∫ ∞

0

(
tn−2

(n− 2)!
− ztn−1

(n− 1)!

)
e−zt

∫
W
Ltf ψ dmW dt.

Now we use the triangle inequality, apply the weak norm estimate (2.7) to the integral over W , and
Exercise 4 to both terms integrated over t to obtain,

‖R(z)nf‖0 ≤ C|f |w
(
a1−n + |z|a−n

)
,

which proves (3.6). �

3.2. Initial results on the spectrum of X. Proposition 3.3 and Corollary 3.4 provide useful
information about the spectrum of X, which we denote by sp(X). First notice that since ‖Lt‖B is
uniformly bounded in t by Proposition 2.6, the spectrum of X on B is entirely contained in the left
half-plane, Re(z) ≤ 0. Moreover, the invariant measure m, identified with the constant function 1
according to our convention, is an eigenvector with eigenvalue 0 for X.

Proposition 3.5. The spectrum of X on B is contained in Re(z) ≤ 0. The intersection sp(X)∩{z ∈
C : − log λ < Re(z) ≤ 0} consists of at most countably many isolated eigenvalues of finite multiplicity.
The spectrum of X on the imaginary axis contains only an eigenvalue at 0 of multiplicity 1.

We will not present a formal proof of Proposition 3.5, which by now is standard. We refer the
interested reader to [BL, Lemma 3.6, Corollary 3.7] or [BDL, Corollary 5.4]. However, we discuss
the main ideas, which are essential for what comes next.

The proof of the proposition relies on the observation that for z ∈ C with Re(z) > 0, we have,

(3.9) ρ̄ ∈ sp(R(z)) if and only if ρ̄ = (z − ρ)−1, where ρ ∈ sp(X).

Here R(z) and X are understood as operators on B. The proof of this is classical, see for example
[Da, Lemma 8.1.9]. Furthermore, the following fact holds.

Exercise 5. Suppose ρ ∈ sp(X) and ρ̄ = (z− ρ)−1 ∈ sp(R(z)). Show that for any k ≥ 1 and f ∈ B,
we have (R(z)− ρ̄)kf = 0 if and only if (X − ρ)kf = 0. This implies that ρ̄ is an eigenvalue of R(z)
of multiplicity k if and only if ρ is an eigenvalue of X of multiplicity k.

Figure 1 summarizes this relationship. By fixing a > 0 and considering the family of parameters
{z = a + ib : b ∈ R}, we see that the essential spectrum of X is contained in the half plane
{Re(w) ≤ log λ}, and so is bounded away from the imaginary axis.

Since the spectrum of R(z) in the annulus {(a− log λ)−1 < |w| ≤ a−1} contains only finitely many
eigenvalues of finite multiplicity by Corollary 3.4, it follows that for each b0 > 0 the intersection of
sp(X) with the rectangle {Re(w) ∈ (log λ, 0], |Im(w)| ≤ b0} contains only finitely many eigenvalues
of finite multiplicity. Once this identification is made, the fact that the imaginary axis contains
only the simple eigenvalue at 0 follows from the fact that contact Anosov flows are mixing, see [BK,
Theorem 3.6] together with the classical Hopf argument [LW].
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a−1

(a− log λ)−1

(a)

z
ib

a

a

a− log λ

log λ

?

(b)

Figure 1. (a) The spectrum of R(z) is contained in a disk of radius a−1 (solid
red circle), and its essential spectrum is contained in a disk of radius (a− log λ)−1

(dashed red circle).
(b) The red circles are the images of the corresponding circles in (a) under the
transformation w 7→ z − w−1. Due to (3.9), the spectrum of X lies outside the solid
red circle, and its essential spectrum must lie outside the dashed red circle. This
forces the strip between the dashed blue line (Im(w) = log λ) and the imaginary axis
to contain only isolated eigenvalues of finite multiplicity. The blue x’s are possible
eigenvalues of X, which may accumulate on the imaginary axis as |Im(w)| → ∞.

4. A spectral gap for X

Unfortunately, Proposition 3.5 is not sufficient to prove the desired result on decay of correlations
that is the goal of these notes. The problem is that although the spectrum of X in each rectangle
{w ∈ C : Re(w) ∈ (log λ, 0], |Im(w)| ≤ b0} is finite dimensional, and so the minimum distance from
an eigenvalue ρ 6= 0 in this rectangle to the imaginary axis is positive, it may happen that a sequence
of eigenvalues ρ = u+ iv approaches the imaginary axis as |v| → ∞.

In order to conclude exponential mixing, we will show that in fact, X has a spectral gap.

Theorem 4.1. There exists ν > 0 such that sp(X) ∩ {w ∈ C : −ν < Re(w) ≤ 0} = 0.

Theorem 4.1 in turn will follow from the following proposition.

Proposition 4.2. There exist ν̄ > 0, C̄ > 0 and b0 > 0 such that for all z = a+ ib with 1 ≤ a ≤ 2
and |b| ≥ b0, ‖R(z)n‖B ≤ (a + ν̄)−n for all C̄ log |b| ≤ n ≤ 2C̄ log |b|. Thus the spectral radius of
R(z) on B is at most (a+ ν̄)−1 for all 1 ≤ a ≤ 2, |b| ≥ b0.
Proof of Theorem 4.1, assuming Proposition 4.2. Due to Proposition 4.2 and (3.9), the set {Re(w) ∈
(ν̄, 0], |Im(w)| ≥ b0} is disjoint from sp(X). On the other hand, the set {Re(w) ∈ (ν̄, 0], |Im(w)| ≤ b0}
contains only finitely many eigenvalues by Proposition 3.5, and 0 is the only eigenvalue on the
imaginary axis. The finiteness of this set guarantees a positive minimum distance between the
imaginary axis and the closest nonzero eigenvalue. �

4.1. Reduction of Proposition 4.2 to a Dolgopyat estimate. Turning our attention to Propo-
sition 4.2, we note that the strength of the claim can be reduced by a couple of straightforward
reductions.

The first point to notice is that the constant |z| appearing in (3.6) and (3.7) ruins the uniformity
of our estimates when |b| is large. To compensate for this, we introduce the following modified norm,
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which depends7 on |z|,

(4.1) ‖f‖∗B = ‖f‖s +
cu
|z|
‖f‖u +

1

|z|
‖f‖0.

It suffices to prove Proposition 4.2 for the norm ‖ · ‖∗B, as long as C̄ and ν̄ remain independent of
|z|. For this would imply that the spectral radius of R(z) acting on the space (B, ‖ · ‖∗B) is at most
(a+ ν̄)−1. And since

‖ · ‖∗B ≤ ‖ · ‖B ≤ |z|‖ · ‖∗B,
the two norms are equivalent for each |z|, and so the spectral radius of R(z) on (B, ‖ · ‖B) is at most
(a+ ν̄)−1 as well.

Exercise 6. Show that the same choice of N and cu as in (3.7) yield the inequality,

‖R(z)nf‖∗B ≤ σna−n‖f‖∗B + Ca−n|f |w, ∀ f ∈ B,

for all n ≥ N and some σ < 1 and C > 0 independent8 of z.

Next, using Exercise 6 we have the inequality,

‖R(z)2nf‖∗B ≤ σna−n‖R(z)nf‖∗B + Ca−n|R(z)nf |w, ∀ f ∈ B.

For the first term on the right hand side, we estimate ‖R(z)nf‖∗B ≤ (1 + C)a−n‖f‖∗B, again using
Exercise 6 and the bound | · |w ≤ ‖ · ‖s ≤ ‖ · ‖∗B. Interpolating between σa−1 and a−1, and possibly
increasing N to overcome the effect of (1 +C), this implies the existence of ν > 0 such that the first
term contracts at a rate (a+ ν)−2n‖f‖∗B. Thus to prove Proposition 4.2, it suffices to show that the
weak norm decays exponentially at a rate faster than a−n, i.e.

(4.2) |R(z)nf |w ≤ (a+ ν)−n‖f‖∗B,

for some ν > 0, and z and n as in the statement of the proposition. In fact, we will prove the
following key lemma.

Lemma 4.3 (Dolgopyat inequality). There exists C# > 0 and for all 0 < α ≤ 1, there exists
CD, γ0, b0 > 0 such that for all f ∈ C1(Ω),

(4.3) |R(z)2nf |w ≤
C#

a2n|b|γ0
(
|f |∞ + (1 + a−1 log Λ)−n|∇f |∞

)
,

for all 1 < a < 2, |b| ≥ b0 and n ≥ CD ln b.

Here, | · |∞ denotes the L∞ norm of a function.
Equation (4.3) is the Dolgopyat-type estimate that will prove the existence of a spectral gap for

X. Given (4.2), one might expect ‖f‖∗B on the right hand side of (4.3) rather than the C1 norm of f .
In fact, the C1 norm of f can be replaced by the strong norm of f due to the following mollification
lemma.

Let η : R3 → R be a nonnegative C∞ function supported on the unit ball in R3, with
∫
η dm = 1

and a unique global maximum at the origin. For ε > 0, define ηε(x) = ε−3η(x/ε).
For f ∈ C0(Ω) and ε > 0, define the following mollification operator,

(4.4) Mε(f)(y) =

∫
M
η̃ε(y − x)f(x)dm(x),

where η̃ε is the function ηε in a local chart containing y.

7Note that |z| > 1 since a ≥ 1.
8Use the fact that 1 ≤ a ≤ 2 to obtain a choice of σ independent of a. Also, note that 1+a+|z|

|z| ≤ 3.
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Lemma 4.4. There exists C > 0, such that for all f ∈ C0(Ω) and ε > 0,

|Mε(f)− f |w ≤ Cεγ‖f‖B ;(4.5)

|Mε(f)|∞ ≤ Cε−1−β+1/q‖f‖s ;(4.6)

|∇(Mε(f))|∞ ≤ Cε−2−β+1/q‖f‖s .(4.7)

The estimates on the mollification operator are fairly standard, and follow the same lines as the
proof of Lemma 2.4: the integral in an ε-neighborhood of a point x ∈ Ω is disintegrated using a
foliation curves in Ws, and the strong stable norm is applied to the integral on each stable curve.
The interested reader is referred to [BDL, Lemmas 7.3 and 7.4], or [BL, Lemmas 5.3 and 5.4].

Proof of Proposition 4.2 via Equation 4.2. Fix z as in the statement of Proposition 4.2 and without
loss of generality, assume b ≥ 1. If necessary, increase b0 from Lemma 4.3 so that CD log b0 ≥ N .
Then for n ≥ CD log b and ε > 0 to be chosen later, we have,

|R(z)2nf |w ≤ |R(z)2n(f −Mε(f))|w + |R(z)2nMε(f)|w
≤ Ca−2n

(
|f −Mε(f)|w + b−γ0 |Mε(f)|∞ + (1 + a−1 log Λ)−n|∇(Mε(f))|∞

)
≤ Ca−2n

(
εγ‖f‖B + b−γ0ε−1−β+1/q‖f‖s + b−γ0ε−2−β+1/q(1 + a−1 log Λ)−n‖f‖s

)
≤ Ca−2n‖f‖∗B

(
εγb+ b−γ0ε−1−β+1/q + b−γ0ε−2−β+1/q(1 + a−1 log Λ)−n

)
,

where in the second line we have used (3.3) for the first term and Lemma 4.3 for the second, while
in the third line we have used Lemma 4.4, and in the fourth line ‖f‖B ≤ |z|‖f‖∗B.

Choose ρ > 1/γ and set ε = b−ρ. Next, choose β sufficiently small, and q > 1 sufficiently close9
to 1, so that ρ(1 + β − 1/q) < γ0. Then,

|R(z)2nf |w ≤ Ca−2n‖f‖∗B
(
b−γ1 + b−γ2 + b−γ2bρ(1 + a−1 log Λ)−n

)
,

where γ1 = ργ − 1 > 0 and γ2 = γ0 − ρ(1 + β − 1/q) > 0. Finally, choosing n ≥ ρ log b
log(1+a−1 log Λ)

implies bρ(1 + a−1 log Λ)−n ≤ 1. Putting these estimates together yields,

|R(z)2nf |w ≤ Ca−2n‖f‖B∗b−γ̄ ,

for γ̄ = min{γ1, γ2}, and n ≥ C̄ log b := max{ ρ
log(1+a−1 log Λ)

, CD} log b. Next, choosing b0 sufficiently

large so that Cb−γ̄/20 ≤ 1 eliminates the constant C from the estimate on |R(z)2nf |w. Finally if also
n ≤ 2C̄ log b, then b−γ̄/2 ≤ e−nγ̄/(4C̄), and (4.2) is proved. �

4.2. Corollary of the Spectral Gap for X: Proof of Theorem 1.1. Using Proposition 3.5
and Theorem 4.1, we apply the results of [Bu] to obtain the following decomposition for Lt. Let ν
be as in Theorem 4.1 and ν̄ be as in Proposition 4.2.

There exists a finite set of eigenvalues {zj}Nj=0 = sp(X) ∩ {w ∈ C : Re(w) ∈ (−ν̄, 0]}, with z0 = 0

and Re(zj) ≤ −ν for 1 ≤ j ≤ N , a finite rank projector Π, a bounded linear operator Pt on B
satisfying PtΠ = ΠPt = 0, and a matrix X̂ : Π(B) 	 having {zj}Nj=1 as eigenvalues such that

Lt = etX̂Π + Pt, t ≥ 0.

Moreover, for each ν1 < ν̄, there exists Cν1 > 0 such that for all f ∈ Dom(X),

|Ptf |w ≤ Cν1e−ν1t‖Xf‖B, for all t ≥ 0.

Note that according to the above equation, the weak norm of Pt decays on Dom(X), but not on
all of B. Indeed, if ‖Ptf‖B decayed at a uniform exponential rate for all f ∈ B, this would imply a

9Note that this choice of q does not effect the requirement γ ≤ 1/q from the definition of the norms, since we may
safely take γ ≤ 1/2, and so make it independent of 1/q when q is close to 1.
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spectral gap for Lt, t > 0. The above inequality is significantly weaker, yet sufficient to conclude
exponential decay of correlations.

For f ∈ B, let Πjf = cj(f)gj denote the projection onto the eigenvector gj corresponding to zj .
Note that by conformality of the measure m, for f ∈ C2(Ω), we have c0(f) =

∫
Ω f dm.

Now let ϕ ∈ C2(Ω), ψ ∈ Cα(Ω). Then∫
Ω
ϕ · ψ ◦Ψt dm =

∫
Ω
Ltϕ · ψ dm =

∫
Ω
Ptϕ · ψ dm+

∫
Ω
etX̂(Πf) · ψ dm

=

∫
Ω
Ptϕ · ψ dm+

∫
Ω

(
c0(ϕ) +

N∑
j=1

etzjcj(ϕ)gj

)
ψ dm.

Thus recalling (2.5),∣∣∣∣∫
Ω
ϕ · ψ ◦ Φt dm−

∫
Ω
ϕdm

∫
Ω
ψ dm

∣∣∣∣ ≤ C|Ptϕ|w|ψ|Cα(Ω) +
N∑
j=1

c̄j‖ϕ‖B|ψ|Cα(Ω)e
−νt

≤ C
(
e−ν1t‖Xϕ‖B + e−τ−t‖ϕ‖B

)
|ψ|Cα(Ω)

≤ Ce−νt|ϕ|C2(Ω)|ψ|Cα(Ω) ,

where we have used the fact that cj(ϕ) ≤ c̄j‖ϕ‖B for some c̄j independent of ϕ, and recalling (2.4),
that ‖Xϕ‖B ≤ C|Xf |C1(Ω) ≤ C|f |C2(Ω).

To complete the proof of Theorem 1.1, it remains only to approximate ϕ̄ ∈ Cα(Ω) by ϕ ∈ C2(Ω).
This is by now a standard approximation, which we recall here for the convenience of the reader.

Let ϕ̄, ψ ∈ Cα(Ω) such that
∫

Ω ψ dm = 0. Given any ε > 0, define ϕ ∈ C2(Ω) such that
|ϕ̄ − ϕ|L1(m) ≤ ε|ϕ̄|Cα(Ω) (for example, by using a mollification as in (4.4)). One has then that
|ϕ|C2(Ω) ≤ Cεα−2|ϕ̄|Cα(Ω). Now for t ≥ 0,∫

ϕ̄ · ψ ◦ Φt dm =

∫
(ϕ̄− ϕ)ψ ◦ Φt dm+

∫
ϕ · ψ ◦ Φt dm

≤ ε|ϕ̄|Cα(Ω)|ψ|C0(Ω) + Ce−νt|ϕ|C2(Ω)|ψ|Cα(Ω)

≤
(
ε+ Ce−νtεα−2

)
|ϕ̄|Cα(Ω)|ψ|Cα(Ω) .

Now choosing ε = e−νt/2 completes the proof of Theorem 1.1 with η = να/2.

5. Dolgopyat Estimate: Proof of Lemma 4.3

Let f ∈ C1(Ω), W ∈ Ws, and ψ ∈ Cα(W ) with |ψ|Cα(W ) ≤ 1. Let z = a + ib ∈ C such that
1 ≤ a ≤ 2 and without loss of generality, take b ≥ 1. For n ≥ 0, we must estimate

∫
W R(z)nf ψ dmW .

Remark 5.1. Most of the calculations in this section are made simply in order to arrive at the
oscillatory integral appearing in (5.16) and estimated in Lemma 5.5(c) using the smoothness of
the temporal distance function established in Lemma 5.5(a) and (b). In order to accomplish this,
we will localize in both space and time using partitions of unity in order to exploit the presence of
cancellations occurring on small scales according to the oscillation provided by eibt.

First, we localize in time. Let τ > 0 be a small time to be chosen later. Let p̃ : R → R be an
even function supported on (−1, 1) with a single maximum at 0, satisfying

∑
`∈Z p̃(t − `) = 1 for

any t ∈ R. Define p(s) = p̃(s/τ). Then p and p̃ both define partitions of unity on R. Next, using
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Exercise 3,

R(z)nf =

∫ ∞
0

tn−1

(n− 1)!
e−ztLtf dt

=
∑
`∈N∗

∫ τ

−τ
p(s)

(s+ `τ)n−1

(n− 1)!
e−z(s+`τ)L`τ (Lsf) ds+

∫ τ

0
p(s)

sn−1

(n− 1)!
e−zs Lsf ds,

(5.1)

where N∗ = N \ {0}. To abbreviate the notation, we introduce the following notation for the kernels,

pn,`,z(s) := p(s)
(s+ `τ)n−1

(n− 1)!
e−z(s+`τ), for ` ≥ 1, and pn,0,z(s) := p(s)

sn−1

(n− 1)!
e−zs1s≥0,

where 1A denotes the indicator of a set A.
Using this notation, we write the integral needed to estimate the weak norm as,∫

W
R(z)nf ψ dmW =

∑
`∈N

∫ τ

−τ
pn,`,z(s)

∫
W
ψL`τ (Lsf) dmWds

=
∑
`∈N

∑
Wj∈G`τ (W )

∫ τ

−τ
pn,`,z(s)

∫
Wj

JWjΦ`τ ψ ◦ Φ`τ Lsf dmWjds,
(5.2)

where in the first line we have reversed order of integration since the integral in t converges uniformly
as x ranges overW , and in the second line we have changed variables for each `, recalling the notation
Gt(W ) introduced in the proof of Proposition 2.6.

Next, we introduce partitions of unity in space as well, dividing Ω into ‘flow boxes’ in which we
shall compare integrals on stable curves.

Let r ∈ (0, δ0) and c > 2 to be determined below. Set,

(5.3) τ = r1/3.

At the end of this section, r will be taken sufficiently small with respect to b−1. We choose a
finite collection of points xi so that ∪iNr(xi) = M , where Nr(xi) denotes the r-neighborhood of xi
in Ω.

Definition 5.2 (Darboux coordinates). Using the fact that Ω and ω are smooth, and the splitting
of the tangent space is continuous, we may choose cr sufficiently small, so that the following local
coordinates exist in a 3cr neighborhood of each xi: x = (xs, xu, x0), where

a) xi = (0, 0, 0) is placed at the origin;
b) {(xs, 0, 0) : |xs| ≤ 2cr} is a stable curve;
c) the tangent vector (0, 1, 0) at xi belongs to Eu(xi);
d) in these local coordinates, the contact form ω is in standard form, ω = dx0 − xsdxu.

The last item (d) in the definition above, distinguishes x0 as the flow direction.
In these local coordinates, define for any ε ∈ (0, cr], the flow box

Bε(xi) = {y ∈ N3cr(xi) : max{|xsi − ys|, |xui − yu|, x0
i − y0|} ≤ ε}.

Notice that two faces of the box can be obtained by flowing a single stable curve (in our coordinates,
this would be the top and bottom faces). We call these the stable sides of Bε(xi). Similarly, we
define the unstable sides and the flow sides of each box.

Finally, choose c > 2 sufficiently large (depending on the maximum curvature of stable curves in
Ws, and maximum width of the stable cone) so that if W ∈ Ws intersects Br(xi), then Φs(W ) does
not intersect the stable sides of Bcr(xi) for all s ∈ [−cr, cr].
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Now we return to our required estimate of (5.2). We subdivide each curve Wj ∈ G`τ (W ) into
curves Wj,i = Wj ∩Br(xi), and define

A`,i = {j : Wj ∈ G`τ (W ) crosses Bcr(xi) completely in the stable direction}.

If Wj ∈ G`τ (W ) intersects Br(xi), but does not cross Bcr(xi) completely, then we place Wj,i :=
Wj ∩Bcr(xi) ∈ D`, the set of discarded pieces, and note that∫

Wj∩Bcr(xi)
JWjΦ`τ ψ ◦ Φ`τ Lsf dmWj ≤ cr|JWjΦ`τ |C0(Wj)|ψ|∞|f |∞.

Then summing over `, we have that the contribution to the integral from discarded pieces is at most,

(5.4)
∑
`≥0

∑
j∈D`

∫ τ

−τ
pn,`,z(s)

∫
Wj∩Bcr(xi)

JWjΦ`τ ψ ◦ Φ`τ Lsf dmWj ≤ Cr|f |∞a−n,

for some C > 0.

Exercise 7. Prove (5.4). Hint: Use the fact that due to the choice of c, there are at most two curves
in D` for each Wj ∈ G`τ (W ). Then Lemma 2.7(c) and Exercise 4 complete the argument.

Next, set `0 = n
ae2τ

. We estimate the contribution from the terms with ` ≤ `0. These are the
‘short times’ t ≤ n

ae2
in the integral (5.1).

Exercise 8. Use Stirling’s formula to show that the contribution from terms with ` ≤ `0 is bounded
by

(5.5)
∫ n

ae2

0

tn−1

(n− 1)!
e−zt

∫
W
Ltf ψ dmW dt ≤ C|f |∞a−ne−n,

for some C > 0 independent of n and a.

Now choose n sufficiently large that

(5.6) max{e−n,Λ−
n
ae2 } ≤ r .

It remains to estimate terms in the sum (5.2) for large times ` ≥ `0 and components Wj,i ⊂ Wj ∈
G`τ (W ) that completely cross the box Bcr(xi). Define a partition of unity {φr,i}i comprised of C∞
functions φr,i centered at each xi and supported in Br(xi). We may choose this partition such that,

(5.7) ‖∇φr,i‖L∞ ≤ Cr−1 and #{φr,i}i ≤ Cr−3,

for some C > 0. Then recalling the definition of A`,i together with (5.4) and (5.5), the sum from
(5.2) that we must estimate is,∫

W
R(z)nf ψ dmW =

∑
`≥`0

∑
i

∑
j∈A`,i

∫ τ

−τ
pn,`,z(s)

∫
Wj,i

JWjΦ`τ ψ ◦ Φ`τ φr,i Lsf dmWjds,

+O(a−nr|f |∞) .

We would like to use the oscillation in the kernel pn,`,z to create cancellation in the integrals against
Lipschitz functions. Unfortunately, our integrands are not Lipschitz, but only Hölder continuous.
To correct for this, define

ψj,i = |Wj,i|−1

∫
Wj,i

ψ ◦ Φ`τ dmWj,i and J`,j,i = |Wj,i|−1

∫
Wj,i

JWjΦ`τ dmWj,i .

Due to the regularity of ψ and JWjΦ`τ , in particular (2.14) and Lemma 2.7(a), we have

|ψj,iJ`,j,i − ψ ◦ Φ`τ JWjΦ`τ |C0(Wj,i) ≤ Cr
αJ`,j,i ,
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for some C > 0. Then summing over ` and using the fact that |ψj,i|∞ ≤ 1, we must estimate,∫
W
R(z)nf ψ dmW =

∑
`≥`0

∑
i

∑
j∈A`,i

J`,j,i

∫ τ

−τ
pn,`,z(s)

∫
Wj,i

φr,i Lsf dmWjds,

+O(a−nrα|f |∞) .

(5.8)

Now for each Wj,i, define W 0
j,i = {ΦsWj,i}s∈(−cr,cr) ∩ Br(xi) to be the weak stable surface10

containing Wj,i. In the local coordinates in Br(xi), we view W 0
j,i as the graph of the function

W0
j (x

s, x0) = Wj(x
s) + (0, 0, x0),

where

(5.9) Wj(x
s) = (xs, Ej(x

s), Fj(x
s)), |xs|, |x0| ≤ r,

and Ej , Fj are uniformly C2 functions. Due to the contact form ω = dx0 − xsdxu in the local
coordinates, it follows that F ′j(x

s) = xsE′j(x
s).

On each Br(xi), we use these functions to change variables in each integral on the domain
Sr = {(xs, x0) : |xs| ≤ r, |x0| ≤ r}. Thus,

(5.10)
∫ τ

−τ
pn,`,z(s)

∫
Wj,i

φr,i Lsf dmWjds =

∫
Sr

pj φr,j fj dx
s dx0,

where

pj(x
s, x0) = pn,`,z(−x0), φr,j(x

s, x0) = φr,i ◦W0
j (x

s, x0) · ‖W′j(xs)‖, fj(x
s, x0) = f ◦W0

j (x
s, x0).

At this point, given two curves, Wj,i,Wk,i ∈ A`,i, we would like to slide these two curves to the
same reference weak stable surface in Br(xi). Let us define this surface to be

W 0
i = {(xs, 0, x0) : |xs|, |x0| ≤ r} ,

which, by choice of coordinates, is precisely the surface obtained by flowing the stable curve through
xi given by {(xs, 0, 0) : |xs| ≤ r}, according to Definition 5.2(b).

In order to carry out this sliding, we will use a local foliation of real strong unstable manifolds11

in Br(xi).

Definition 5.3 (Unstable foliation). For each i, define a foliation F on Br(xi), such that for all
x0 ∈ [−cr/2, cr/2],

F(xs, xu) = {(G(xs, xu), xu, H(xs, xu) + x0) : |xs|, |xu| ≤ cr/2},

and each curve xu 7→ γuxs(x
u) = (G(xs, xu), xu, H(xs, xu) + x0) is a local unstable manifold through

(xs, 0, 0). Moreover, for all xs ∈ [−cr/2, cr/2],
(i) ∂xuH = G, so that γuxs lies in the kernel of ω;
(ii) G(xs, 0) = xs, H(xs, 0) = 0;
(iii) Φ−s(γ

u
xs) ∈ Wu, for all s ≥ 0;

(iv) there exists C > 0, independent of xs, such that C−1 ≤ ‖∂xsG‖∞ ≤ C, (and so by (i),
‖∂xs∂xuH‖L∞ ≤ C);

(v) ‖∂xu∂xsG‖Cη ≤ C, for some η > 0 and C > 0 independent of xs;
(vi) ‖∂xsH‖C0 ≤ Cr, ‖∂xsH‖Cη ≤ C.

10If Wj,i is a local strong stable manifold, then W 0
j,i is the corresponding local weak stable manifold.

11For systems with discontinuities such as billiards, the real unstable manifolds do not create a nice foliation of
Br(xi), so a smooth local foliation of unstable curves lying in the kernel of the contact form must be constructed.
This is quite laborious and outside the scope of these notes. The interested reader should refer to [BDL, Section 6]
for the details of the construction.
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Remark 5.4. We list properties (i)-(vi) for the convenience of the reader: it is known that the
foliation by local strong unstable manifolds enjoys these properties for Anosov flows (see, for example
[L, Appendix B] for the Anosov case or [BL, Appendix D] for the piecewise Anosov case). Indeed,
item (i) is immediate since unstable manifolds lie in the kernel of the contact form; (ii) is simply a
normalization that we take, choosing our parametrization to be the identity on the stable manifold
of xi; (iii) holds due to the invariance of unstable manifolds.

To justify the estimates in (iv)-(vi), we present the following suggestive calculation, which while
not a complete proof, does give a flavor for the estimates involved. We consider the 2-dimensional
case on one of the sections Σi defined in Section 2.1. On such a section, we adopt local coordinates
(x̄s, x̄u).

For ξ ∈ [−r, r], let Vξ = {(x̄s, x̄u) : x̄u = ξ)} denote a stable curve in Σi. We project the foliation
F onto Σi and normalize Ḡ(x̄s, x̄u) so that ∂x̄sḠ(x̄s, 0) = 1. Define

hξ,0 : Vξ → V0

to be the holonomy map along the projected unstable foliation. It follows that the Jacobian Jhξ,0
satisfies the following relation,

Jhξ,0 =
∂x̄sḠ(x̄s, 0)

∂x̄sḠ(x̄s, ξ)
=

1

∂x̄sḠ(x̄s, ξ)
,

so that ∂x̄sḠ can be expressed in terms of the Jacobian of the holonomy map, which is known to be
Hölder continuous. This is the content of (iv).

Moreover, using the invariance (ii),

Jhξ,0(x) =

∞∏
`=1

JΦ−`V0Φ1(Φ−`(x))

JΦ−`VξΦ1(Φ−`(hξ,0(x)))
,

and taking ∂x̄u of this product converges since the unstable direction is the contracting direction for
Φ−`. This is the main idea behind (v).

Lifting these calculations to the flow yields (iv) and (v) for G. Item (vi) follows from the normal-
ization (ii) together with (iv).

Having defined our foliation, for j ∈ A`,i, we consider the associated holonomy map hj,i : Wj,i →
W 0
i . As a function of xs, we have,

(5.11) hj,i ◦Wj(x
s) =: (hsj(x

s), 0, h0
j (x

s)).

On Sr, define

K`,n,i,j(x
s, x0) =

p(x0)(`τ − x0)n−1

|Wj,i|(m− 1)!
e−z`τeax

0
φr,j(x

s, x0).

Then (5.10) yields,∫
Sr

pj φr,j fj dx
s dx0 = |Wj,i|

∫
Sr

K`,n,i,j(x
s, x0)f(Wj(x

s) + (0, 0, x0))eibx
0
dxs dx0

= |Wj,i|
∫
Sr

K`,n,i,j(x
s, x0)f(hsj(x

s), 0, h0
j (x

s) + x0)eibx
0
dxs dx0

+ |Wj,i|O(|∂uf |∞r2)
(`τ)n−1

(n− 1)!
e−a`τ ,
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where ∂uf denotes the derivative of f in the unstable direction. Changing variables twice, first
x0 7→ x0 − h0

j (x
s), and then xs 7→ (hsj)

−1(xs), results in the following,

∫
Sr

pj φr,j fj dx
s dx0 = |Wj,i|

∫
Sr

K∗`,n,i,j(x
s, x0)

|(hsj)′ ◦ (hsj)
−1(xs)|

f(xs, 0, x0)eib(x
0−∆j(x

s)) dxs dx0

+ |Wj,i|O(|∂uf |∞r2)
(`τ)n−1

(n− 1)!
e−a`τ

= |Wj,i|
∫
Sr

K∗`,n,i,j(x
s, x0)f(xs, 0, x0)eib(x

0−∆j(x
s)) dxs dx0

+ |Wj,i|O(|∂uf |∞ + |f |∞)r2 (`τ)n−1

(n− 1)!
e−a`τ ,

(5.12)

where

(5.13) K∗(xs, x0) = K((hsj)
−1(xs), x0 −∆j(x

s)) and ∆j(x
s) = h0

j ◦ (hsj)
−1(xs),

and in the second line we have used the fact that (hsj)
′ ≈ 1 + r due to items (ii) and (iv) of

Definition 5.3. The function ∆j is the so-called temporal distance function alluded to in Remark 5.1.
Next we use (5.12) to sum over `, i and j in (5.8).

∫
W
R(z)nf ψ dmW =

∑
`,i

∑
j∈A`,i

J`,j,i|Wj,i|
∫
Sr

K∗`,n,i,j(x
s, x0)f(xs, 0, x0)eib(x

0−∆j(x
s)) dxs dx0

+
∑
`≥`0

∑
i

∑
j∈A`,i

J`,j,i|Wj,i|O(|∂uf |∞ + |f |∞)r2 (`τ)n−1

(n− 1)!
e−a`τ

+O(a−nrα|f |∞) .

(5.14)

Exercise 9. Reverse order of summation and use bounded distortion to show that∑
i

∑
j∈A`,i J`,j,i|Wj,i| ≤ C, for some C > 0 independent of W and n.

Exercise 10. Use (5.3) to show that
∑
`≥`0

(`τ)n−1

(n− 1)!
e−a`τ ≤ Cτ−1a−n ≤ C ′r−1/3a−n, for some con-

stant C > 0 independent of `0 and τ .

Summing over ` and using Exercises 9 and (10) yields,

(5.15)
∑
`≥`0

∑
i

∑
j∈A`,i

J`,j,i|Wj,i|O(|∂uf |∞ + |f |∞)r2 (`τ)n−1

(n− 1)!
e−a`τ = O(a−nr5/3)(|∂uf |∞ + |f |∞) .
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Next, we estimate the sums over the integrals in (5.14). Setting Z`,j,i = J`,j,i|Wj,i|, we have∑
`≥`0

∑
i

∫
Sr

∑
j∈A`,i

Z`,j,iK
∗
`,n,i,jfe

ib(x0−∆j(x
s)) dxs dx0

≤
∑
`≥`0

∑
i

∫
Sr

∣∣∣ ∑
j∈A`,i

Z`,j,iK
∗
`,n,i,je

ib(x0−∆j(x
s))
∣∣∣2
1/2 (∫

Sr

|f |2
)1/2

≤
∑
`≥`0

∑
i

|f |∞r

 ∑
j,k∈A`,i

Z`,j,iZ`,k,i

∫
Sr

K∗`,n,i,jK
∗
`,n,i,ke

ib(∆k−∆j)

1/2

≤
∑
`≥`0

|f |∞r−1/2

∑
i

∑
j,k∈A`,i

Z`,j,iZ`,k,i

∫
Sr

K∗`,n,i,jK
∗
`,n,i,k e

ib(∆k−∆j)

1/2

,

(5.16)

where in the second line we have used the Cauchy-Schwarz inequality, in the third line we have used
that |

∑
j vj |2 = (

∑
j vj)(

∑
k vk) for any set of complex numbers {vj}j , and in the fourth line we

have used the Hölder inequality together with the fact that the cardinality of the sum over i is at
most Cr−3 by (5.7).

The last integral remaining in (5.16) is the oscillatory integral which has been the object of the
rearrangements and changes of variables of this entire section. It is at the heart of the Dolgopyat
estimate. Define the flow surface, W 0

j,i = Br(xi) ∩ (∪s∈[−cr,cr]Φs(Wj,i)).

Lemma 5.5. There exists C > 0, independent of r, n and W , such that:
a) inf

xs
|∂xs(∆j −∆k)(x

s)| ≥ Cd(W 0
j,i,W

0
k,i);

b) |∆j −∆k|C1+η(Sr) ≤ Cr;

c)
∣∣∣∣∫
Sr

K∗`,n,i,jK
∗
`,n,i,k e

ib(∆k−∆j)

∣∣∣∣ ≤ C (`τ)2n−2

[(n− 1)!]2
e−2a`τ

[
r

d(W 0
j,i,W

0
k,i)

1+ηbη
+

r−1

d(W 0
j,i,W

0
k,i)b

]
,

where η > 0 is from Definition 5.3.

Sketch of proof. We give here the main ideas used in the proof of Lemma 5.5, the end result of which
is the estimate (c) of the key oscillatory integral.

We choose a curve Wj,i with j ∈ A`,i crossing the box Bcr(xi). Without loss of generality (by
flowing it if necessary), we may assume Wj,i intersects the xu axis in the local coordinates. For a
fixed ξ ∈ (−r, r), we consider the closed path starting at (ξ, 0, 0) on W 0

i (i.e. xs = ξ on the strong
stable manifold of xi), running to xi along the stable manifold of xi, and up the coordinate axis
of xu (which lies in Wu) to Wj,i. From there, the path runs along Wj,i until it reaches the point
Wj((h

s
j)
−1(ξ)), then follows the strong unstable manifold γuξ (this is an element of the foliation

defined in Definition 5.3) down to W 0
∗ , and from there follows the flow direction back to (ξ, 0, 0).

We call this path Γ(ξ). See Figure 2.
Recalling (5.13), we notice that ∆j(ξ) = h0

j ((h
s
j)
−1(ξ)) is precisely the distance in the flow

direction from (ξ, 0, 0) to the point of intersection of γuξ with W 0
i . In addition, every other smooth

component of Γ(ξ) lies in the kernel of ω by construction of Ws and Wu. Since ω(v) = 1 for every
unit vector v in the flow direction, and using Stokes’ theorem, we have,

∆j(ξ) =

∫
Γ(ξ)

ω =

∫
Σ1

dω +

∫
Σ2

dω ,

where Σ1 is the ‘vertical’ surface defined by the part of the foliation F connecting Wj,i to W 0
i , and

Σ2 is the ‘horizontal surface’ comprised of the part of W 0
i enclosed by Γ(ξ) and the curve hj,i(Wj,i)
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xs

xu

x0

xi
ξ

Wj,i

γiξ

Figure 2. Part of a flow box Br(xi) with path Γ(ξ) and the unstable foliation shown.
Γ(ξ) starts at ξ, goes along the xs-axis to xi, up the xu-axis to Wj,i, across Wj,i to
γiξ, down γ

i
ξ to the flow surface W 0

i , and then in the flow direction back to ξ. The
length of the dotted line is ∆j(ξ).

(remembering (5.11). The integral over Σ2 is 0 since the flow direction lies in the kernel of dω.
Writing the integral over Σ1 in local coordinates and using (5.9) and Definition 5.3 yields,

∆j(ξ) =

∫ ξ

0

∫ Ej((h
s
j)
−1(xs))

0
∂xsG(xs, xu) dxu dxs.

And so, assuming that Wk,i with k ∈ A`,i is also in standard position intersecting the xu axis, we
obtain

∂xs∆k(ξ)− ∂xs∆j(ξ) =

∫ Ek((hsk)−1(ξ))

Ej((hsj)
−1(ξ))

∂xsG(xu, ξ) dxu

=

∫ Ek((hsk)−1(ξ))

Ej((hsj)
−1(ξ))

[
1 +

∫ xu

0
∂xu∂xsG(u, ξ) du

]
dxu

=
[
Ek((h

s
k)
−1(ξ))− Ej((hsj)−1(ξ))

]
(1 +O(r)) ≥ d(Wj,i,Wk,i)(1 +O(r)) .

This proves item (a) of the lemma, and immediately gives the required bound on the C0 norm for
part (b). The bound on the Cη norm follows from the same integral expression for ∂xs(∆k −∆j),
together with property (v) of the foliation.

For item (c) of the lemma, we follow [BDL, Appendix B]. Define

Lj,k(x
s, x0) = K∗`,n,i,j(x

s, x0)K
∗
`,n,i,k(x

s, x0) and ∆j,k = ∆k −∆j

Exercise 11. Show that |Lj,k|∞ ≤ (`τ)2n−2

r2[(n−1)!]2
e−2a`τ and |∂xsLj,k|∞ ≤ (`τ)2n−2

r3[(n−1)!]2
e−2a`τ .

We define a sequence {sm}Mm=0 ⊂ R such that s0 = −r, and ∂xs∆j,k(sm) · [sm+1 − sm] = 2πb−1,
and let M ∈ N be such that sM−1 ≤ r and sM > r. Such a finite M exists by part (a) of the lemma.
By part (b) of the lemma,

|∆j,k(x
s)−∆j,k(sm)− ∂xs∆j,k(sm)[sm+1 − sm] ≤ Cr|sm − xs|1+η,

for all xs ∈ [sm, sm+1]. Moreover, using Exercise 11, we have

|Lj,k(xs, x0)− Lj,k(sm, x0)| ≤ Cδme`,nr−3,

where δm = sm+1 − sm and e`,n = (`τ)2n−2

[(n−1)!]2
e−2a`τ . Notice then that by part (a) of the lemma,

(5.17) bδm ≤ 2πd(W 0
j,i,W

0
k,i)
−1.
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Now we fix x0 and estimate for each m,∣∣∣∣∫ sm+1

sm

e−ib∆j,k(xs)Lj,k(x
s, x0) dxs

∣∣∣
=

∣∣∣∣∫ sm+1

sm

e−ib[∂xs∆j,k(sm)[xs−sm]+O(r|xs−sm|1+η)]
(
Lj,k(sm, x

0) +O(r−3δme`,n)
)
dxs
∣∣∣∣

≤ C
(
bδ1+η
m r−1 + r−3δm

)
δme`,n

≤ C

(
r−1

d(W 0
j,i,W

0
k,i)

1+ηbη
+

r−3

d(W 0
j,i,W

0
k,i)b

)
δme`,n,

where again we have used Exercise 11 and in the last line we have used (5.17). The last integral
over the interval [sM−1, r] is trivially bounded by Cr−2δM ≤ Cr−2(bd(W 0

j,i,W
0
k,i))

−1, again using
(5.17). Then summing over m yields

∑M−1
m=0 δm ≤ 2r, and integrating over x0 yields another factor

of r, completing the proof of part (c). �

The bound given by Lemma 5.5(c) is nearly what we need to complete the Dolgopyat estimate.
We require one more lemma, which allows us to neglect the contribution from curves in A`,i that
are too close together.

Lemma 5.6. There exists C > 0 such that for each ` ≥ `0, i ∈ N and j ∈ A`,i,∑
k∈A`,i

d(W 0
j,i,W

0
k,i)≤ρ

Z`,k,i ≤ C[r(ρ1/2 + Λ−`τ )] .

Proof. Let A(ρ) = {k ∈ A`,i : d(W 0
j,i,W

0
k,i) ≤ ρ}. First notice that by bounded distortion,

(5.18)
∑

k∈A(ρ)

Z`,k,i =
∑

k∈A(ρ)

|Wk,i||JWk,i
Φ`τ |C0(Wk,i) = C±1

∑
k∈A(ρ)

|Φ`τ (Wk,i)|,

where the notation P = C−1Q means C−1Q ≤ P ≤ CQ for some C ≥ 1.
Let W 0

r = ∪s∈[−2r,2r]Φs(W ). Fix ρ∗ > 0, and consider the set of local strong unstable manifolds
{γux}x∈W 0

r
having length ρ∗ in both directions, and centered x. Let G0

i,k = {x ∈W 0
r : x ∈ Φ`τ (W 0

k,i)}
and note that the sets ∪x∈G0

i,k
γux are disjoint for different k. On the one hand, due to the uniform

transversality of Es, Eu and Ec, we have

(5.19)
∑

k∈A(ρ)

m(∪x∈G0
i,k
γux) = O(rρ∗)

∑
k∈A(ρ)

|Φ`τ (Wk,i)| .

On the other hand, for each k, Φ`τ (∪x∈G0
i,k
γux) is approximately a parallelepiped having length in the

flow and stable directions of about r, and having length in the unstable direction at most 2ρ∗Λ−`τ .
Moreover, these sets are disjoint for different k and their union lies in a set of length in the unstable
direction at most ρ+ 2ρ∗Λ−`τ . Then using the invariance of the measure,

(5.20)
∑

k∈A(ρ)

m(∪x∈G0
i,k
γux) =

∑
k∈A(ρ)

m(Φ`τ (∪x∈G0
i,k
γux)) ≤ Cr2(ρ+ ρ∗Λ−`τ ) .

Using (5.18) in (5.19) and equating this with (5.20) yields,∑
k∈A(ρ)

Z`,k,i ≤ Cr(ρ∗)−1(ρ+ ρ∗Λ−`τ ) ,

and choosing ρ∗ = ρ1/2 completes the proof of the lemma. �
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We will apply Lemma 5.6 with ρ = r2. For each j ∈ A`,i define Aclose
`,i,j = {k ∈ A`,i : d(W 0

k,i,W
0
j,i) ≤

r2}, and Afar
`,i,j = A`,i \Aclose

`,i,j . Then,

(5.21)
∑
i

∑
j∈A`,i

∑
k∈Aclose

`,i,j

Z`,j,iZ`,k,i ≤ Cr(r + Λ−`τ ) ≤ Cr2,

remembering (5.6) and using Exercise 9.
Finally, we apply Lemma 5.5(c), summing over Afar

`,i,j ,(∑
i

∑
j∈A`,i

∑
k∈Afar

`,i,j

Z`,j,iZ`,k,i

∫
Sr

K∗`,n,i,jK
∗
`,n,i,k e

ib(∆k−∆j)
)1/2

≤
(∑

i

∑
j∈A`,i

∑
k∈Afar

`,i,j

Z`,j,iZ`,k,iC
(`τ)2n−2

[(n− 1)!]2
e−2a`τ

[
r−1−2ηb−η + r−3b−1

] )1/2

≤ Cr−1/2[r−2ηb−η + r−2b−1]1/2
(`τ)n−1

(n− 1)!
e−a`τ ,

(5.22)

where again we have used Exercise 9.

Exercise 12. Show that for all `, n, i, j, k,
∣∣∣∣∫
Sr

K∗`,n,i,jK
∗
`,n,i,k e

ib(∆k−∆j)

∣∣∣∣ ≤ C (`τ)2n−2

[(n− 1)!]2
e−2a`τ .

Now combining Exercises 10 and 12 with with (5.21) and (5.22) in (5.16) yields,∑
`≥`0

∑
i

∫
Sr

∑
j∈A`,i

Z`,j,iK
∗
`,n,i,jfe

ib(x0−∆j(x
s)) dxs dx0

≤
∑
`≥`0

(`τ)n−1

(n− 1)!
e−a`τ |f |∞

(
r1/2 + r−1[r−2ηb−η + r−2b−1]1/2

)
≤ a−n|f |∞

(
r1/6 + r−4/3[r−2ηb−η + r−2b−1]1/2

)
.

(5.23)

Now we use (5.15) and (5.23) in (5.14) to estimate,∫
W
R(z)nf ψ dmW ≤ Ca−n

(
|f |∞

(
rα + r5/3 + r1/6 + r−4/3[r−2ηb−η + r−2b−1]1/2

)
+ r5/3|∂uf |∞

)
.

We can assume without loss of generality that η < 1 so that the first term in the square root above
is the larger of the two. Setting r = b

− η
8+6η , bounds the term with the square root by by b−η/3.

Since all other powers of r are positive, we obtain,

(5.24)
∫
W
R(z)nf ψ dmW ≤ Ca−nb−γ0(|f |∞ + |∂uf |∞),

for some γ0 > 0, and all b ≥ b0, where b0 depends only on the maximum size of r determined by
Definition 5.2. As a final step, we apply (5.24) to R(z)nf rather than f .

Exercise 13. Use (1.1) and Exercise 3 to show that |∂u(R(z)nf)|∞ ≤ C(a+ log Λ)−n|∇f |∞.

Now Exercise 13 together with (5.24) and the bound |R(z)nf |∞ ≤ Ca−n|f |∞ (from Exercise 4)
yield, ∫

W
R(z)2nf ψ dmW ≤ Ca−nb−γ0

(
|R(z)nf |∞ + |∂u(R(z)nf)|∞

)
≤ C ′a−2nb−γ0

(
|f |∞ + (1 + a−1 log Λ)−n|∇f |∞

)
,

which completes the proof of Lemma 4.3.
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6. Extension to Dispersing Billiards

In this section, we briefly describe some of the ideas needed to adapt the technique and framework
presented in these notes to the continuous time billiard flow associated with a dispersing billiard
table. This is done in full detail in [BDL] for the finite horizon periodic Lorentz gas, and we only
recall here in broad terms some of the adjustments that must be made. We remark that although
presently a proof of exponential decay of correlations exists only in this context, these results are
expected to generalize to dispersing billiard tables with corner points, and cusps (the fact that the
discrete time billiard map for tables with cusps has a polynomial rate of decay of correlations will
not prevent the associated continuous time flow from having an exponential one), and some billiard
tables with focusing boundaries, such as those studied in [BM]. The flow associated with the infinite
horizon periodic Lorentz gas, however, is known to have decay of correlations at the polynomial rate
of 1/t [BBM].

6.1. The Billiard Table. Let T2 = R2/Z2 be the two-torus, and place finitely many open convex
sets Γi, i = 1, . . . d, in T2 so that their closures are pairwise disjoint and the boundary of each set
Γi is a C3 curve with strictly positive curvature. We shall call these sets scatterers and the billiard
table is Q = T2 \ (∪di=1Γi).

The billiard flow is defined by the motion of a point particle traveling at unit speed in Q and
colliding elastically at the boundaries of the scatterers. The particle’s velocity changes only at
collisions, which are defined when the particle belongs to ∂Γi for some i. We assume that the table
satisfies a finite horizon condition: there is a finite upper bound on the time between consecutive
collisions in Q.

Define Ω0 = Q × S1 ⊂ T3. In Ω0, we may describe the billiard flow in the coordinates (x, y, θ),
where (x, y) ∈ Q denotes position and θ ∈ S1 denotes velocity. Then,

(6.1) Φt(x, y, θ) = (x+ t cos θ, y + t sin θ, θ),

between collisions, and at collisions the velocity changes from θ− (pre-collision) to θ+ (post-collision)
according to the usual law of reflection. If we identify (x, y, θ−) ∼ (x, y, θ+), then the flow becomes
continuous on the phase space Ω := Ω0/ ∼. We will find it convenient to work in both the spaces
Ω0 and Ω depending on the context.

Analysis of the flow is often aided by appealing to the associated discrete time billiard map. This
is defined by introducing coordinates to track each collision (r for position on ∂Γi parametrized by
arc length, and ϕ for the angle the post-collision velocity vector makes with the normal to ∂Γi). The
two-dimensional phase space for the map is then a union of cylinders M = ∪di=1∂Γi × [−π/2, π/2]
and the billiard map T (r, ϕ) = (r1, ϕ1) maps one collision to the next.

6.2. Hyperbolicity and Contact Structure. In the coordinates described above, the flow pre-
serves the one form defined by,

ω = cos θ dx+ sin θ dy .

Between collisions, this is obvious from the definition (6.1) since θ is constant except at collisions.
That the one form is preserved through collisions is a simple calculation (see [CM, Section 3.3]).
Since (cos θ, sin θ) is the direction of motion of the particle in the table Q, we see that geometrically,
the kernel of the one form is the plane perpendicular to the flow direction in Ω, and ω(v) = 1 for
any unit vector v ∈ R3 pointing in the flow direction.

Exercise 14. Show that ω ∧ dω = dx ∧ dθ ∧ dy.
Exercise 14 shows that the contact volume is Lebesgue measure on Ω0, and this is preserved

by the flow. Thus the flow and one form are already normalized according to the requirements of
Section 1.1.

Due to the strictly positive curvature of the ∂Γi, both the map and the flow are hyperbolic. Let
τmin,Kmin > 0 denote the minimum time between collisions and the minimum curvature, respectively,
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and let τmax <∞ denote the maximum time between collisions, which exists due to the finite horizon
condition. The constant Λ0 = 1 + 2τminKmin represents the minimum hyperbolicity constant for
the map; then setting Λ = Λ

1/τmax

0 gives a lower bound on the hyperbolicity constant for the flow
satisfying (1.1).

The billiard map T preserves the following stable cone on all of M ,

(6.2) Cs(r, ϕ) = {(dr, dϕ) ∈ R2 : −Kmin ≥ dϕ/dr ≥ −Kmax − τ−1
min},

and an analogous unstable cone Cu is defined by Kmin ≤ dϕ/dr ≤ Kmax + τ−1
min. Then flowing Cu

forward between consecutive collisions and Cs backwards between collisions defines a family of cones
in Ω that is invariant under the flow (satisfying (2.2)) and lies in the kernel of ω. This family of
cones is continuous on each component of Ω0 that does not cross one of the singularity surfaces
(defined below). See [BDL, Section 2.1].

6.3. Singularities. The singularities for both the map and the flow are created by tangential
collisions with the scatterers. For the map, this is the set S0 = {(r, ϕ) ∈M : ϕ = ±π

2 }. For n ≥ 1,
the sets Sn = ∪ni=0T

−iS0 and S−n = ∪ni=0T
iS0 are the singularity sets for Tn and T−n, respectively.

The map T is discontinuous at S1. Moreover, its derivative satisfies

‖DT (z)‖ ≈ d(z,S1)−1/2, for z = (r, ϕ) ∈M,

so that the derivative becomes infinite at tangential collisions.
The local sections Σi introduced for Anosov flows in Section 2.1 can be defined naturally for the

billiard flow as the boundaries of the scatterers, ∂Γi. The projections P+ and P− are defined for
Z ∈ Ω as the first intersection of Φt(Z) with one of the Γi, for t > 0 for P+ and for t < 0 for P−.

While the flow remains continuous on Ω, its derivative also becomes infinite at tangential collisions
(with the same order of magnitude as the map). Thus the flow is only Hölder continuous with
exponent 1/2 due to the tangential collisions. Let S+

0 denote the surface in Ω0 created by flowing
S0 forward to its next collision (on S−1). Then the family of unstable cones Cu is continuous in Ω0

away from the surface S+
0 . Similarly, let S−0 denote the surface obtained by flowing S0 under the

inverse flow to S1. The family of stable cones Cs is continuous in Ω0 away from S−0 .
In order to regain control of distortion, one introduces homogeneity strips, which are artificial

subdivisions of the phase space on which the derivative has comparable rates of expansion and
contraction. For the map, the standard choice is to choose k0 > 0 and then define the homogeneity
strip

Hk = {(r, ϕ) : k−2 ≤ π
2 − ϕ ≤ (k + 1)−2} for k ≥ k0,

with a similar definition for H−k for ϕ near −π
2 . Since expansion factors for the map are proportional

to 1/ cosϕ1 when T (r, ϕ) = (r1, ϕ1), these subdivisions of the space imply that the Jacobians of the
map satisfy distortion bounds as in Lemma 2.7(a), but with12 Hölder exponent 1/3.

Exercise 15. Suppose z, z̃ ∈ Hk for some k ∈ Z. Show that∣∣∣∣cosϕ(z)

cosϕ(z̃)
− 1

∣∣∣∣ ≤ Cd(z, z̃)1/3, for some C > 0 independent of k.

Here, ϕ(z) denotes the second coordinate of z = (r, ϕ) ∈M .

One extends this distortion control to the Jacobians of the flow by only comparing derivatives
at points whose next collisions lie in the same homogeneity strip under the forward flow (for the
unstable Jacobian) or the backward flow (for the stable Jacobian).

12The exponent 1/3 is a simple consequence of defining the homogeneity strips to decay like k−2. If, instead, one
chooses a decay rate of k−p, p > 1, then the Hölder exponent becomes 1/(p + 1). Thus it is possible to obtain a
Hölder exponent arbitrarily close to 1/2 by choosing p close to 1. However, p = 1 is not an acceptable choice since it
ruins the summability of the series and the growth lemma needed for the analogue of Lemma 2.7(c) fails.
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6.4. Admissible Curves and Definition of the Norms. Since our invariant cones Cu and Cs
satisfy (2.2), we may define a family of admissible cone-stable curves Ws which is invariant under
Φ−t, t > 0, and satisfies the requirements of Definition 2.1. In addition, we require stable curves
to be disjoint from ∂Ω0. Thus if a stable curve is in the midst of a collision, we omit the collision
points, and consider each of the two or three connected components as separate stable curves.

Due to our definition of Cs, we have that P+(W ) is a stable curve for the map wheneverW ∈ Ws.
Due to our discussion of distortion in Section 6.3, we call a stable curve W ∈ Ws homogeneous if
P+(W ) ⊂ Hk for some k ∈ Z. Similarly, we define an invariant family of unstable curves Wu and
call an unstable curve U homogeneous if P−(U) ⊂ Hk for some k ∈ Z.

Using the (global) coordinates (r, ϕ) in M and (6.2) allows us to view each map-stable curve
P+(W ) as the graph of a function GW over the r-coordinate. We then use the same definition of
distance between stable curves, dWs(W1,W2), as given in (2.3), with the added requirement that
dWs(W1,W2) =∞ unless P+(W1) and P+(W2) lie in the same homogeneity strip.

With these conventions in place, we may define the weak and strong norms for f ∈ C1(Ω0)
precisely as in Section 2.2. Due to Exercise 15, we choose α ≤ 1/3 in order that the Jacobian along
a stable curve may be a viable test function. The other restrictions on the parameters remain the
same.

The definitions of the weak and strong Banach spaces are again the closures with respect to | · |w
and ‖ · ‖B, respectively, but now C1(Ω0) is replaced by slightly different function spaces, see [BDL,
Definition 2.12]. However, Lemmas 2.4 (embedding) and 2.5 (compactness) continue to hold as
stated.

6.5. Lasota-Yorke Inequalities and Complexity Bounds. The Lasota-Yorke inequalities of
Proposition 2.6 continue to hold as written as well, except that their proofs change considerably.

As an example, consider the proof of the weak norm inequality, (2.7). Following (2.11), we write,∫
W
Ltf ψ dmW =

∑
Wi∈Gt(W )

∫
Wi

f ψ ◦ Φt JWiΦt dmWi

≤
∑

Wi∈Gt(W )

|f |w|ψ ◦ Φt|Cα(Wi)|JWiΦt|Cα(Wi)

≤ C|f |w
∑

Wi∈Gt(W )

|JWiΦt|C0(Wi),

(6.3)

where we have used bounded distortion and the equivalent of (2.13) to estimate the Hölder norms
of ψ ◦ Φt and JWiΦt. However, the counterpart of the bound on the sum over the Jacobians,
Lemma 2.7(c), is not immediately available due to the cutting caused by the singularities. Indeed,
the set Gt(W ) contains a countably infinite number of stable curves since in order to have bounded
distortion for JWiΦt, we must subdivide Φ−tW so that for each Wi ∈ Gt(W ), P+(ΦsWi) lies in a
single homogeneity strip for all s ∈ [0, t].

Despite the countable subdivision of Φ−tW which defines Gt(W ), one can show that the sum over
Jacobians in (6.3) remains uniformly bounded in t and W ∈ Ws. This is an essential property of
both the map and the flow: that the hyperbolicity dominates the complexity due to cuts created
by singularities, including the countable collection of cuts made by the boundaries of homogeneity
strips. The key estimate which encapsulates this property is the one step expansion for the map,
due to Chernov. Let Ws denote the set of homogeneous stable curves for the map.

Lemma 6.1 (One Step Expansion). For any W ∈ Ws, let Vi denote the connected homogeneous
components of T−1W . There exists an adapted metric ‖ · ‖∗, equivalent to the Euclidean metric in
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R2, such that
lim
δ↓0

sup
W∈Ws

|W |≤δ

∑
i

|JViT |∗ < 1,

where |JViT |∗ is the minimum contraction factor on Vi in the adapted metric ‖ · ‖∗.

This is proved, for example, in [CM, Lemma 5.56]. The main idea is that on homogeneity strips,
the contraction factor is ≈ k−2, so one can choose k0 sufficiently large to make the sum

∑
k≥k0 k

−2

as small as one likes. The constant Λ0 > 1 defined earlier gives the minimum contraction factor
Λ−1

0 in the adapted metric, and then choosing δ small enough guarantees that T−1W can contain
at most one component in M \ (∪|k|≥k0Hk), and a bounded number of components13 that must be
divided according to homogeneity strips Hk with |k| ≥ k0.

Then choosing δ0 in the definition of Ws (Definition 2.1) and the analogous map-stable family
Ws according to Lemma 6.1, the one-step expansion can be iterated for the map ([DZ1, Lemmas 3.1
and 3.2]) and then extended to the flow ([BDL, Lemma 3.8]), yielding finally that the sum in (6.3)
is bounded uniformly in t and W , proving (2.7) for the billiard flow.

Similar adjustments must be made for the strong norm estimates, with increased complexity due
to cutting and distortion control.

6.6. The Generator and The Resolvent. The definition of the generator X and the resolvent
R(z) proceeds as described in Section 3. Lemma 3.1 and the Lasota-Yorke inequalities of Proposi-
tion 3.3 go through with minor changes. Thus the characterization of the spectra of X and R(z)
given by Corollary 3.4 and Proposition 3.5 hold for the billiard flow.

To prove that in fact, X has a spectral gap, one can follow again the path outlined in Section 4.
The major difference is in the proof of the Dolgopyat estimate, Lemma 4.3. In Section 5, we used a
local foliation of strong unstable manifolds to compare the integrals on stable curves in the same
flow box in Lemma 5.5. Unfortunately, the foliation of unstable manifolds for the billiard flow is
only measurable due to the density of the sets {Φt(S0)}t∈R in Ω, so that Definition 5.3 is no longer
valid.

Instead, one must construct a foliation of flow-unstable curves, lying in the kernel of the contact
form, which approximate the properties enumerated in Definition 5.3. Since the curves are not real
unstable manifolds, in item (iii) of the definition, they only remain invariant for a specified amount
of time χ, chosen proportional to log |b|. And due to the singularities, there are gaps in the parts of
the foliation that can be mapped backwards for time χ. These gaps must be interpolated across in
order to obtain the required smoothness for the foliation. Finally, item (v) of the foliation fails, yet
a four-point estimate does hold which suffices to prove the items in Lemma 5.5. The construction
of this foliation is carried out in detail in [BDL, Section 6], and is one of the most technical parts of
that paper.

With the Dolgopyat estimate proved, the proof of Theorem 1.1 can proceed as in Section 4.
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