UNIQUENESS AND EXPONENTIAL MIXING FOR THE MEASURE OF
MAXIMAL ENTROPY FOR PIECEWISE HYPERBOLIC MAPS

MARK F. DEMERS

ABSTRACT. For a class of piecewise hyperbolic maps in two dimensions, we propose a combinatorial
definition of topological entropy by counting the maximal, open, connected components of the
phase space on which iterates of the map are smooth. We prove that this quantity dominates the
measure theoretic entropies of all invariant probability measures of the system, and then construct
an invariant measure whose entropy equals the proposed topological entropy. We prove that our
measure is the unique measure of maximal entropy, that it is ergodic, gives positive measure to
every open set, and has exponential decay of correlations against Holder continuous functions. As
a consequence, we also prove a lower bound on the rate of growth of periodic orbits. The main tool
used in the paper is the construction of anisotropic Banach spaces of distributions on which the
relevant weighted transfer operator has a spectral gap. We then construct our measure of maximal
entropy by taking a product of left and right maximal eigenvectors of this operator.

1. INTRODUCTION

There has been a flurry of recent activity in establishing the existence and uniqueness of equi-
librium states for broad classes of potentials and systems outside the uniformly hyperbolic setting.
This topic traces back to the work of Margulis [Mal], who proved that the number of periodic orbits
of length at most L for the geodesic flow on a compact manifold of strictly negative curvature grow
at an exponential rate determined by the topological entropy hiop of the flow. To prove this result,
Margulis constructed an invariant measure i, via conditional measures on the local stable and
unstable manifolds of the flow which scaled by etthtop | An important feature of the measure fi,,, is
that it is the unique measure of maximal entropy for the flow: its measure-theoretic entropy equals
the topological entropy hiop.

These results were generalized and further developed for broader classes of Anosov and Axiom
A flows and diffeomorphisms through the work of Sinai, Bowen, Ruelle and many others using
thermodynamic formalism [S, BR], [Rul], topological techniques [Boll, Bo2l Bo3l Bo4], and dynamical
zeta functions [PaPl, [Ru2]. Later, Dolgopyat’s proof of exponential decay of correlations for some
geodesic flows [Do] led to more precise asymptotics for counting periodic orbits [PS].

Recent attempts to extend proofs of existence and uniqueness of equilibrium states in general, and
measures of maximal entropy in particular, to the nonuniformly hyperbolic setting have employed
symbolic dynamics [Sall, [Sa2l [LiM| [BS], as well as adapting the approach of Bowen via a notion
of non-uniform specification [BCET] I[CET), [CKW,, [CPZ]. These works have greatly broadened the
classes of systems for which one can prove the existence and uniqueness of equilibrium states, yet
they do not usually provide rates of mixing for these measures.

Simultaneously, there have been advances made in the study of the transfer operator associated
with hyperbolic systems with singularities, first to piecewise hyperbolic maps (with bounded deriva-
tives) [DLL BGIl, BG2], and then to dispersing and other hyperbolic billiards [DZ1], [DZ2|, [DZ3].
This approach, which avoids the coding associated with Markov partitions or extensions, exploits
the hyperbolicity of the system to prove that the action of the transfer operator on appropriately
defined Banach spaces has good spectral properties. It was used recently to prove exponential decay
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of correlations for the finite horizon Sinai billiard flow [BDL], adapting ideas of Dolgopyat [Do] and
Liverani [L2]. It was then applied to prove the existence and uniqueness of a measure of maximal
entropy for finite horizon Sinai billiard maps [BD], establishing a variational principle for this class
of billiards.

For hyperbolic systems with discontinuities, a priori results that guarantee the existence of an
invariant measure maximizing the entropy, or even a simple definition of topological entropy, are not
available as they are for continuous maps and flows. Indeed, in order to overcome this shortcoming,
one approach is to redefine the map as a continuous map on a noncompact space, and then apply
generalized definitions of topological entropy in this setting. Yet such definitions can be cumbersome
to work with, and the resulting entropy can depend on the choice of metric in the reduced space.

To simplify matters, the first step in [BD] is to define an intuitive notion of growth in complexity
given by the number of domains of continuity M for the map 7™. This leads to an asymptotic
quantity hs, which plays the role of topological entropy [BD., Definition 2.1] (see also Definition
below). This quantity is proved to equal the supremum of the measure-theoretic entropies of the
invariant measures for the billiard map, and the unique measure p, whose entropy achieves this
maximum is constructed by taking a product of left and right maximal eigenvectors of an associated
weighted transfer operator £, following the methods in [GL] which generalize the classical Parry
construction.

Despite this success, the weight in the relevant transfer operator in [BD] is unbounded due to
the unbounded expansion and contraction that occur near grazing collisions in dispersing billiards.
The presence of this weight forced significant changes in the Banach spaces from [DZI] on which
the operator acted, and it was not possible to establish a spectral gap in this context. Indeed, the
rate of mixing for the measure of maximal entropy is an open question for billiards.

The purpose of the present paper is to demonstrate that under the additional assumption that
the derivative of the map is bounded, the techniques employed in [BD] are sufficient to prove the
existence and uniqueness of a measure of maximal entropy that is exponentially mixing. To this end,
we study a class of piecewise hyperbolic maps, defined in Section [2| The existence and statistical
properties of Sinai-Ruelle-Bowen (SRB) measuresﬂ for this class of maps has been studied via a
variety of techniques [P}, [L1) [Y), DLl BG2]. Transfer operators with more general potentials were
studied in [BG2] and a bound on the essential spectral radius was obtained; however, lower bounds
on the spectral radius of the transfer operator were not obtained, so that no spectral gap was
established and the related invariant measures were not constructed. Currently there are no results
regarding measures of maximal entropy, nor more general equilibrium states for this class of maps.

In structure, this paper mainly follows the approach in [BD]. Yet there are several key differences
between the class of piecewise hyperbolic maps studied here and dispersing billiards. The primary
simplification is that our maps have bounded derivatives, as mentioned above, and this fact permits
us to prove a spectral gap for the relevant transfer operator, which leads to exponential decay of
correlations for the measure of maximal entropy u.. However, there are two additional difficulties
in the current setting that are not present in Sinai billiards.

(i) We do not assume that the singularity curves for our map T satisfy the continuation of
singularities property enjoyed by billiards.

(ii) We do not assume the map is associated with a continuous flow.
Point (i) creates significant complications in the study of the rate of growth of #M(, the number
of maximal, connected domains of continuity of T". In particular, the submultiplicative property
of #M{ proved in [BDL Lemma 3.3], and often exploited in that work, may fail in the present
context due to the fact that dynamical refinements of #M{ may have elements that are not
simply connected. Indeed, the uniform exponential upper and lower bounds on #M{ proved in

IRecall that an SRB measure for a hyperbolic system is an invariant probability measure whose conditional
measures on local unstable manifolds are absolutely continuous with respect to the Riemannian volume.
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Proposition [2.12] are completed only after the spectral gap for the operator L is established. Point
(ii) has several consequences. The first is that the continuous flow provides a linear bound on the
growth in complexity, which is exploited in [BD]. In the present work, this property is replaced by
the complexity assumption (P1) introduced in Section while the growth in complexity may be
exponential for our class of maps, it is slow relative to the minimum hyperbolicity constant for the
map (and therefore also relative to hy by Lemma [3.6(d)). The second consequence of (ii) is that in
[BDI, there is a positive minimum distance between orbits that belong to different elements of M.
In the present context this may fail, so in Section we define an adapted metric which we use to
define the dynamical Bowen balls instrumental in the estimation of the entropy of p, in Section

The structure of the paper is as follows. We begin by defining in Definition the exponential
rate of growth in complexity, h,, which counts the number of domains of continuity Mg of T". This
quantity dominates the measure-theoretic entropies of the invariant measures (Theorem . We
then proceed to study the action of a weighted transfer operator, defined in Section [3.2] The Banach
spaces we use are similar to those defined in [DL] (not [BD]) for this class of maps, yet the operator
has significant differences from the transfer operator with respect to the SRB measure studied in
[DL]. By proving a series of growth and fragmentation lemmas in Sections and that control
the prevalence of short and long connected components of T~"W for local stable manifolds W, we
are able to establish that the operator has a spectral gap in Section 4l Finally, in Section [f] we
construct a measure p, out of the left and right eigenvectors of the transfer operator and show that
it has exponential decay of correlations and that it is the unique invariant measure with entropy
equal to hy. The properties of the measure p, are summarized in Theorem [2.9] In Corollary 2.11]
we derive our asymptotic bound on the growth rate of periodic orbits, applying results of [LiM] and
[Bul. Finally, as a byproduct of this approach, uniform growth rates are established for #M{ and
the length |T~"W/| of stable manifolds W; these are stated in Proposition and Corollary
respectively.

2. SETTING, DEFINITIONS AND RESULTS

In this section, we introduce a set of formal assumptions on our class of piecewise hyperbolic
maps and state the principal results of the paper.

2.1. Piecewise Hyperbolic Maps. Let M be a compact two-dimensional Riemannian manifold,
possibly with boundary and not necessarily connected, and let T": M O be a piecewise uniformly
hyperbolic map in the sense described below. There exist a finite number of pairwise disjoint open,
simply connected regions {M;"}¢_; such that U;M;" = M and OM;" comprises finitely many C*
curves of finite length. We will refer to ST = M \ U;M;" as the singularity set for T'.

Define M, = T(M;"). We assume that U;M; = M and refer to the set S~ = M\ U; M; as the
singularity set for T7~1. We require that 7' € Diff>(M\S+, M\S™) and that on each M;", T has a
C? extensio to M;". Since the extension of 7' is defined on dM;", we will write 7(ST) to denote
the set of images of these boundary curves (on which the extension of 7' may be multi-valued). In
this notation, T(ST) = S~ and T-1(87) = S™.

On each M;, T is uniformly hyperbolic: i.e., there exist constants A > 1, x € (0,1) and

two DT-strictly-invariant families of cones C* and C¥, continuous in each M;r which satisfy,

2This implies in particular that ||DT|| is bounded on each M;r, so that this class of maps does not include dispersing
billiards.
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DT (x)C%(x) € C*(Tz), DT~ Y(2)C%(x) € C*(T~z), and

DT DT—1
mf e P S o g e IPT R
2.1) zeM\S+ veCt  ||v]| zeM\S— veCs  ||lv]|
‘ . o [IDT||
and k := inf inf

zeM\s+ v |v

The strict invariance of the cone field together with the smoothness properties of the map implies
that the stable and unstable directions are well-defined for each point whose trajectory does not
meet a singularity line.

In Section [B.I], we define narrower cones with the same names and refer to them as the stable
and unstable cones of T respectively. We assume the following uniform transversality properties:
there is a uniform positive lower bound on the angle between vectors in C*(z) and C*(x) for all
x € M\ 8T, the tangent vectors to the singularity curves in S~ are bounded away from C*, and
those of ST are bounded away from CY; lastly, curves in S~ either coincide with, or are uniformly
transverse to, curves in ST. As mentioned in the introduction, this class of maps is similar to that
studied in [P} [IL1), Yl DL, BG2]; see also [LW] for the symplectic case.

Convention 2.1. (Doubling boundary points.) It will be convenient in what follows to have T
defined pointwise on M, but a priori it is defined only on UZ-M;F. Since T is C? up to the closure of
each Mf, we may extend T to be defined on 8MZ~+, making T multivalued where these boundaries

overlap. Following [L1], we adopt the convention that the image of such a subset of M under T
contains all such points, and continue to call this extended space M.

We remark that although this convention is made for convenience, it follows from Theorem [2.9(a)
that the measure u, is independent of how 7' is defined on 8MZ-+.

Let d(-,-) denote the Riemannian metric on M. The following related metric is better adapted
to the dynamics. Define

(2.2) d(x,y) = d(z,y), whenever z,y belong to the same component Mi,

and d(x,y) = 10diam(M) otherwise. Since we have doubled boundary points in M according to
Convention the extended space M is compact in the metric d.

Denote by S;F = U?;(}T ~iST the set of singularity curves for T" and by S, = UzzolTiS_ the
set of singularity curves for T~". Let K(n) denote the maximum number of singularity curves in
S, or in §;7 which intersect at a single point. We make the following assumption regarding the
complexity of T

(P1) There exist g > 0 and an integer ng > 0, such that Ak > 1 and (Axk®°)" > K(ny).

Condition (P1) can always be satisfied if K (n) has polynomial growth (as is the case with a Sinai
billiard on a torus); however, since (P1) is required only for some fixed nyg, it is not necessary to
control K (n) for all n in order to verify the condition.

Remark 2.2. If property (P1) holds for «g, then it holds for all 0 < o < g with the same nyg.
Notice also that K (kno) < K (ng)* which implies that the inequality in (P1) can be iterated to make
(AK0) k0 I (kng) arbitrarily small once (P1) is satisfied for some ng.

In Section we will define a set of admissible stable curves W\S, with tangent vectors belonging
to the stable cone, which we will use to define our norms. For W &€ 17\/\5, let K, denote the number
of smooth connected components of T~"W. For a fixed IV, by shrinking the maximum length §g of
leaves in W\S, we can require that Ky < K(N) + 1. This implies that choosing N = kng, we can
make (Ax%°)~N Ky arbitrarily small.
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Convention 2.3. In what follows, we will assume that ng = 1. If this is not the case, we may
always consider a higher iterate of T' for which this is so by assumption (P1). We then choose d
small enough that KiA~ k=% =: p < 1.

We also assume the following.

(P2) T is topologically mixing and preserves a unique smooth invariant measure pgsgg, i.e.
there exists fsrp € Cl(M;r) for each i such that dusgrp = fsrpdm, where m denotes
the Riemannian volume on M.

Remark 2.4. Property (P1) is standard for piecewise hyperbolic maps, and a variant of it has been
used in [Pl [L1], Y], DL, BG2]. The most common form is only to require the complexity bound in
one direction, for example on S, in [L1, [DL]. Here, we assume the symmetric version on both S,
and S;F in order to prove the super-multiplicativity property for #M(, Proposition . In fact,
the requirement for S is used only in the proof of Lemma .

It follows from the piecewise hyperbolicity of T and (P1) that T admits an SRB measure [P,
Theorem 1]. The requirement that psgrp be smooth in Property (P2) is less essential to our argument.
We use psrp as our reference measure rather than the Riemannian volume m in order to simplify
the estimates involving the transfer operator. Assuming that psrp s smooth allows us to prove the
embedding lemma, Lemma connecting our Banach spaces to the standard spaces of distributions.

Our assumptions on the hyperbolicity of T imply the following uniform expansion and bounded
distortion properties along stable curves, which we record for future use. There exists C, > 0 such
that for any W € W% and n > 0,

(2.3) T—"W| > C.A™W],

where |W| denotes the arc length of W in the metric induced by the Riemannian metric on M.
Suppose W € W* is such that T is smooth on W and T*W € W, for i = 0,...,n. We denote

by JwT™ the Jacobian of T™ along W with respect to arc length. There exists Cy > 0, independent

of W, such that for all x,y € W and all n > 0,

’ JwT™(z)

JwT™(y)

where dyy (-, -) denotes arc length distance along W.

(2.4) - 1‘ < Cydw (z,y),

2.2. A Definition of Topological Entropy. Following [BD], for k,n > 0, let M", denote the
set of maximal connected components of M \ (S} US; ), where we define S§ = ). Note that by
definition, elements of M" . are open in M. With this notation, Mg denotes the set of maximal,
open, simply connected components of M on which T™ is continuous, while M has the analogous
property for T~". We remark also that the requirement that each Mi+ be open and simply connected
prevents the partition M from being trivial, and implies in particular that the diameter of elements
of M"_ tends to 0 as n gets largeﬁ Similarly, the transversality assumptions coupled with the
finiteness requirement on the number of smooth curves in St guarantee that #M™, is finite for
each k and n.

1
Definition 2.5. (Topological entropy of T.) Define h.(T) = limsup — log (#Mg).

n—oo N

3Thus, if one wants to apply the present results to a smooth map, for example a toral automorphism, one should
first partition the torus into a finite number of simply connected ‘rectangles’ with boundaries transverse to C'* and
C?. Then Theorem implies that the rate of growth in cardinality of dynamical refinements of this partition, h.,
will equal the topological entropy of the automorphism.
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By definition, if A € M, then T"A € MY, so that #Mp = #M°, . Thus h.(T) = h.(T71),
i.e. this definition is symmetric in time. Indeed, the limsup in the definition is in fact a limit, which
follows from Proposition [2:12]

We begin by establishing that the quantity h, is finite.

Lemma 2.6. For a piecewise hyperbolic map T as defined in Section but not necessarily
satisfying conditions (P1) and (P2), the quantity h, < co.

Proof. The elements of M} are simply the domains M;". For any n > 1, elements of Mg“ are
created by (the image under 7! of) the connected components of the intersection of an element of

& with one of the domains M, . By assumption, ST and S~ comprise finitely many C L curves
which either coincide or are uniformly transverse. Since T is C? on the closure of each Mi+, the
same is true of the sets S;7 and S~. Moreover, elements of S;' have a uniform bound (in n) on
their derivative.

Consider the intersection AN M, for A € M. Connected components of this set are created by
intersections of A with elements of S~. Since 9A C S;7, by the compactness of M and uniform
transversality, JA can intersect each smooth curve in S~ a finite number of times, with uniform
upper bound B > 0 independent of n. Thus the number of connected components of AN M, is
bounded by B(#S87). Since this bound holds for each A € Mg, we have

HMET < (H#MG)B(#S™) < dB™(#S7)",
where d is the number of domains M;r. O

In order to connect h, = h.(T') to the dynamical refinements of a fixed partition, for each k € N,
define Pj, to be the maximal connected components of M on which 7% and T—* are continuous.
That is, Py is the partition of M defined by M \ (S;" US; ), together with the boundary curves
associated to each element, according to Convention If we let Pk denote the collection of
interiors of elements of Py, then we have Pk =M+ .

For n > 1, define P! = ;LT Py, Pp is still a pointwise partition of M, yet its elements may
not be open sets, and it may occur that P}’ contains isolated points due to multiple boundary curves
intersecting at one point. Furthermore, we do not assume that the elements of P;' are connected
sets Thus, although the collection of interiors 73,? is a partition of M \ (S;- +n US, ), it may be
that Pp # M*E".

Our next lemma provides a rough upper bound on the number of isolated points that can be
created by refinements of Pj. Let #S* denote the number of smooth components of S*.

Lemma 2.7. For each k,n > 1, the number of isolated points in P;' is at most

k+n )

25 + #5) Y #M],

j=1
Proof. By Convention there are no isolated points in P;. Next, for each n > 1, at time n,
isolated points in PJ* can be produced by intersections of corner points in the boundary of ’P{“l
with elements of S~. Moreover, each pair of smooth curves S € S and S’ € S~ intersect at most
twice per element of M{. Thus the number of new isolated points created at time n is at most
2#S~#M{. Applying this estimate inductively, we have

number of isolated points in P < 2#S5~ Z #M% .
j=1

4Contrast this with [BD, Lemma 3.1], where the analogous construction yields connected elements due to the
property of continuation of singularities enjoyed by dispersing billiards.
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Next, for each k, applying a similar inductive argument to 7', we have

k k
number of isolated points in Py, < 2#S™ Z #ng + 2#S™ Z H# M,

j=1 j=1

k
SAH#STH#ST) D #M,
j=1
where we have used the fact that #M% = #ng. Finally, refining P, we create at most

2H#S™ #Mgﬂ new isolated points in 73,1 at time j. Summing over j < n, we complete the proof of
the lemma. O

2.3. Statement of Main Results. Our first result establishes a connection between the rates of
growth of #P;' and #M(}, and uses this to prove that h, dominates the measure-theoretic entropies
of the invariant measures of 7.

Theorem 2.8. Let T be a piecewise hyperbolic map as defined in Section [2.1], but not necessarily
satisfying conditions (P1) and (P2).
a) For each k,n > 1, #73]? < #M]f’,;n and #P;} < C’(k:—{—n)#/\/l]f};", for some C > 0 depending
only on T'.
1
b) For all k > 1, limsup — log(#M"”}.) = h..
n

1 n—oo 1
. - n _ . - SN
c) sgp nh_}ngo - log #P;, s%p nh_{]go - log #P;; < he.
d) hy > sup{h,(T) : p is an invariant probability measure for T'}.
Proof. a) The first inequality is straightforward since by definition, both P,? and ./\/l]f,;" are partitions

of M\ (S, US;), yet ’P,? may have disconnected components. Thus M*4™ is a refinement of

73,? The second inequality follows by noting that #P;' equals #77,? plus isolated points, and then
applying Lemma

b) The value of the limsup is the same for each k since by definition, A € M", if and only if
TFA € M3, Thus #M™, = # Mot

c) We first remark that #P,?J“T” < #Pr#P;", and also #75,?+m < #P,?#P}C” (which can be proved
as in [BD, Lemma 3.3]), thus the two limits in part (c) exist by subadditivity. The fact that both
limits are bounded by h, follows from parts (a) and (b) of the theorem.

d) Let i1 denote a T-invariant probability measure. The assumptions of uniform hyperbolicity imply
that both T and T~! are expansive with respect to the metric d defined in ([2.2)):

(2.5) There exists g > 0 such that if d(T7x, T7y) < &g for all j € Z, then z = .

By , the uniform transversality of stable and unstable cones, and the assumption that each
M;" is simply connected, the maximum diameter of elements of M* i (and hence of Py) is bounded
by CA=*. Choosing k large enough that CA=* < &y, we conclude that P is a generator for T [W),
Theorem 5.23]. Then by [W, Theorem 4.22],

1 n .1 "
h(T) = hyu(T,Py) = lim —H,(Py) < lim —log(#Py) < hu,
applying part (c) of the present theorem. Thus h,(T) < h.. O

Next we state our main theorem, which requires the additional hypotheses (P1) and (P2).
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Theorem 2.9. Let T be a piecewise hyperbolic map as defined in Section [2.1], satisfying conditions
(P1) and (P2).
There exists a T-invariant probability measure s with the following properties.
a) The measure p, has no atoms, and there exists C > 0 such that for any e > 0,

pe(NL(SH)) < Ce'77,
where p > 1 is from (3.4) and N:(-) denotes the e-neighborhood of a set in the Riemannian

metric on M. This implies in particular, that p.-a.e. x € M has a stable and unstable
manifold of positive length, and that x approaches ST at a subexponential rate.

b) p«(O) > 0 for any open set O C M.

c) (T™, us) is ergodic for alln € Z+.

d) ps has exponential decay of correlations against Hélder continuous functions.

e) The measure i is the unique T-invariant probability measure satisfying hy, (T') = h.

Theorem will be proved in Section |5} In particular, items (a)-(c) are proved in Section
item (d) is proved in Proposition and item (e) is proved in Sections and

Corollary 2.10. Let T be a piecewise hyperbolic map as defined in Section[2.1), satisfying conditions
(P1) and (P2).
T satisfies the following variational principle: For all k > 0,

1 n ) , . -
Jim - log (#M™},) = hs = sup{h,(T) : i is an invariant probability measure for T'}.

Proof. The fact that the limit defining h, exists (rather than simply the lim sup from Definition
follows from Proposition and the independence from k follows from Theorem [2.8(b). The
second equality follows from Theorem [2.8(d) together with Theorem [2.9e). O

Theorem (a) implies that [, |logd(z,ST)|du. < oo (see Corollary m(c)), so that p, is T-
adapted in the language of [LiM]. This allows us to make the following connection to the growth of
periodic orbits of T. Let P, (T) = {x € M : #{T"*x : k € Z} = n} denote the set of points of prime
period n for T'.

Corollary 2.11. Under the assumptions of Theorem 1irr_1>inf #Pn(T)e_"h* =1.
n oo

Proof. The proof relies on the construction of a countable Markov partition for hyperbolic maps
with singularities carried out in [LiM]. The class of maps in the present paper satisfy conditions
(A1)-(A6) in [LiM], which are general enough to admit dispersing billiards. Since pu, is T-adapted
and hyperbolic (see Corollary , we may apply [LiM|, Corollary 1.2] to conclude that there exist
p > 1 and C > 0 such that the number of points of period np for T is at least Ce™"* for all n
sufficiently large.

Next, applying [Bu, Main Theorem| as in [Bul, Theorem 1.5], we conclude that we may take p = 1
and asymptotically, C = 1 for large n. O

In the course of proving the growth lemmas in Section (3] we establish the following uniform
bounds on the growth of #M(, which may be of independent interest, and are needed for the proof
of uniqueness in Section [5.3

Proposition 2.12. There exists a constant Cx > 0 such that for alln > 1,
Cpe™ < HMG =H#M, < Cyle™
Proof. The upper bound is Corollary while the lower bound is Lemma [5.1 ]

Corollary 2.13. There exists C > 0 such that for all stable curves W € W* with |W| > 61/3 and
all n > ny, where both §; > 0 and ny are from (3.9), we have

Ce™ < T7"W| < C1lenh«
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Proof. Let W € W* with [W| > 61/3. We use the notation of Section [3.5| regarding the connected
components G, (W) of T~"W. Lemma [3.6(b), Lemma and Proposition together yield,

coCye™ < o M < #G, (W) < Co  # Mg < Coy ' Cltem™

Then on the one hand,
T"W|= > |Wi| <0o#G (W),
W;€Gn (W)

since each element of G, (W) has length at most 0y, completing the upper bound of the corollary.
On the other hand, by (4.12)),

TTW = Y Wi = 2R #G. (W),
Wiegil(W)

proving the lower bound. O

3. BANACH SPACES AND GROWTH LEMMAS

In this section we define the Banach spaces we will use in the analysis of the transfer operator
and prove several key lemmas controlling the growth in complexity of 7.

3.1. Stable Curves. We begin with a definition of stable curves as graphs of functions in local
charts, following [DL]. We will use the fact that the uniform hyperbolicity of T' guarantees the
existence of stable E*(z) and unstable E%(x) directions in the tangent space T,M at Lebesgue-
almost-every © € M.

For 7 sufficiently small, we define the stable cone at x € M by

C(a) = {u+veToM:ue E(x),v L E*(x),|lv]| < 7lul}.

Define C%(x) analogously. These families of cones are strictly invariant, DT~ (x)C%(x) € C*(T'z)
and DT (z)C"%(x) C C*(T'z).

For each i, we choose a finite number of coordinate charts {x;}#

J=1
(—rj,7;)? if x; maps only to the interior of M;", or (—rj,r;) restricted to one side of a piecewise C*
curve (the preimage of a piece of 8Mi+) which we place so that it passes through the origin. For
each j, R; has a centroid z;, and x; satisfies,

whose domains R; are either

(a) Dx;(x;) is an isometry;

(b) Dxj(z)) - (R x 0) = E*(x;(;);

(¢) The C%norm of x; and its inverse are bounded by 1 + 7;

(d) There exists ¢; € (7,27) such that the cone C; = {u+v € R? : u € Rx{0},v € {0} xR, ||v| <
cjllul|} satisfies: For each y € R; such that x;(y) ¢ S~, Dx;(y)C; D C%(x;(y)), and
DT~ (Dx;(y)Cy) € C*(T " (x;()));

(&) M;" CUfLyx; (B N (=%, )%

Choose rg < %minj rj; ro may be further reduced later, depending on 4. Fix B < oo and consider
the set of functions

E:={F e C*[-r,r,R):r e (0,r0], F(0) = 0,|F|c < ,|F|c2 < B}.
Define I, = (—r,r). For x € R; N (—7r;/2,7;/2)? such that = + (t,F(t)) € R; for t € I, define
G(z,r, F)(t) == xj(x + (t,F(t)) for t € I, i.e. G(x,r, F) is the lift of the graph of F' to M.
To abbreviate notation, we will refer to G(z,r, F) as Gp. It follows from the construction that
|Gpler < (1+7)2and Gt <1+ 7.
Our set of admissible stable curves is defined by,

W= {W =G(z,r,F)(I,) : x € R;N (rj/2,rj/2)%r <ro,F € E}.
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If necessary, we reduce ro so that sup,,, i |W| < dg, where g is the length scale chosen in Conven-

tion Due to ﬁle uniform hyperbolicity of T', if T-"Ws represents t}/lg Conr/lgcted components of
T "W for W € W?*, then choosing B large enough, it follows that T~"W?® C W?*, up to subdivision
of long curves. With this choice of B, the set of real local stable manifolds of length at most dg,
which we denote by W?, satisfies W* C Ws.

Next, we define two notions of distanceﬂ which are used in the definition of our norms, namely
the strong unstable norm. For two curves Wi(xi,, 21,71, F1) and Wa(xi,, x2, 72, F2), we define the
distance between them to be,

dyys (Wh, Wa) = n(iy,i2) + |x1 — za| + |11 — 72| + |F1 — F2‘Cl(l7"10]7"2)’

where n(i1,12) = 0 if i3 = i9 and n(i1,i2) = oo otherwise, i.e. we only compare curves in the same
chart.

Given Wy, Wo with dyys (W1, Wa) < oo and two functions v; € C°(W;), we define the distance
between them to be

do(t1,%2) = [th1 0 Gy — b2 0 GRyleo(r, 1) -

3.2. Transfer operator. The main tool we will use to construct the measure of maximal entropy
is a weighted transfer operator, £. Because we do not have a conformal measure at our disposal a
priori, we will define the transfer operator acting on distributions defined via local stable manifolds.
Let W? denote the set of maximal connected local stable manifolds of T restricted to each M;r.
Note that such manifolds have uniformly bounded length due to the the finite diameter of M and
the assumption that M;" is simply connected. Due to the uniform hyperbolicity of T', ysrg-almost
every point in M has a stable manifold of positive length.

For any local stable manifold W, and a € (0, 1], define the a-Holder norm of a test function
¥ : M — C by

[Y(x) —¥(y)l
3.1 a = own + Hy i=sup ||+ sup ————F—,
(3.1) [Vleawy = [¥lcowy + Hyy (1) U] || SO )
where dy (-, -) denotes distance induced by the Riemannian metric restricted to W. Let Cx (W)
denote the set of functions in CO(W) with finite | - |ca (1) norm. With this notation, C'(W) denotes
the set of Lipschitz functions on W.
Analogously, for each n > 0, define H%}S (V) = supy, 5. Hiy (), and

CXOV*) = {: M = C | [bloo + H, (1) < o0} .

The set C*(W*) together with the norm |w|ca(v~\13) = [Y]oo + HE, (1) is a Banach space.

Since stable manifolds cannot be cut under T", if W € we , then T"W C V € W# for each
n > 0. This together with the uniform hyperbolicity of T and (2.1 implies that if ¢ € C*(W?#),
then ¢ o T € C*(W?) (see also (4.4).
Then if f € (C*(W?*))* belongs to the dual of C*(W?), the operator £ : (C*(W?))* — (C*(W?*))*
is defined by,
w oT Q (VA8
(3.2) i) = £ (Yor) vwecow),
JT
where J%T denotes the stable Jacobian of T'. By (12.4)), it follows thatﬁ JIT" € él(WS) for each
n > 1.

SNeither of these distances will satisfy the triangle inequality, but that is irrelevant for our purposes.
OFor z € W € W?, J*T(z) = JwT(z).
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If f € CY(M), then we identify f with a signed measure absolutely continuous with respect to
usr- We denote this integration by,

= /MT/deMSRB )

for ¢ € CO(M). With this identification, we consider C°(M) C (C*(W#))*. Then also by (3-2), for
any n > 1, L™ f is absolutely continuous with respect to usgs with density,

fol™m
JsTnoT—n’
3.3. Definition of Norms. Let V/* denote those local stable manifolds having length at most
09, where dg is from Convention Note that W*® C Ws yet W* ¢ W since W* contains only
maximal local stable manifolds (Wthh are necessarily disjoint), while WW* contains stable manifolds
of any length less than dy, many of which may overlap. We will define our norms by integrating on
elements of W? against Holder continuous test functions.

For W € W* and a > 0, let C*(W) denote the closure of C'(W) in the C® norm, defined in
E| In this notation, then C*'(W) = C*(W).

Now given a function f € C!(M), define the weak norm of f by

|flw = sup sup / fdmy,

Wews yecl( W)
lecl(w)

where myy denotes arc length along W. Let |W| = my (W).
Next, choose a, 8 < 1 and p > 1 such that

(3.4) 0<28<1/p<1l—a<a, and 1/p<a.

(3.3) Lrf =

Define the strong stable norm of f by
7= s s [ fdm

EWs el (W)
[lca ) <[W|—1/P

Recalling the notion of distance dyys (-, ) between curves W € W* and the distance dy(-,-) between

test functions on nearby curves defined in Section and fixing eg < rg, we define the strong
unstable norm of f by,

Iflu=sup  sup sup =\ [ pondm ~ [ fodm,
e<eg Wi,WaeW?® |y ‘Cl(W ) 4% Wa
dyys (W1, Wa)<e do(¥1,42)=0

|| \/\

Define the strong norm of f by || f||5z = || fl|s + cul| f||u, Where ¢, > 0 is a constant to be chosen in
the proof of Lemma

Finally, our weak space B,, is defined to be the completion of C1(M) in the weak norm, | - |,
while our strong space B is defined to be the completion of C!(M) in the strong norm || - || 5.

Remark 3.1. The definition of our spaces B and B,, is nearly the same as that in [DL Section 2.2],
the key difference being that the norms in [DL] integrate along cone-stable curves )7\/\5, while our
norms here integrate on local stable manifolds W?*. This change is necessary since the potential for
our weighted transfer operator, 1/J°T, is Hélder continuous along real stable manifolds, yet may
only be measurable along arbitrary stable curves. By restricting our norms to this smaller set of
curves, we are able to prove the essential Lasota-Yorke inequalities, Proposition [].3.

"This space is strictly smaller than the set of C functions, yet contains ¢ for each @/ > a. We adopt this usage
in order that the embedding of our strong space in our weak space is injective (Lemma .



12 MARK F. DEMERS

3.4. Preliminary facts about the Banach spaces.

Lemma 3.2. Let Q be a (mod 0 w.r.t. usrp) finite partition of M into open, simply connected
sets such that there exist constants K,Cg > 0 such that for each Q € Q, and W € W*, QNW
comprises at most K connected components and for any € > 0, my (N=(0Q) N W) < Coel/?.

a) Lety > B/(1— ) and suppose ¢ is a function on M such that supgeg |[plev(g) < co. Then
pEeB.
b) There exists C' > 0 such that if ¢ is such that supgeg |¢le1(q) < 00 and f € B, then of € B

and [loflls < C| fllBsupgeqg [#ler(q)-

Proof. To prove (a), a function ¢ as in the statement of the lemma can be approximated by C!
functions using mollification precisely as in [DZ3, Lemma 3.5]. Part (b) follows along similar
lines using [DZ3] Lemma 5.3]. Both proofs use the restrictions in we have assumed for the
parameters appearing in the norms. In particular. we need 5 < 1/(2p), rather than simply 8 < 1/p,
due to the weak transversality condition assumed on 0Q. OJ

Lemma 3.3. Let f € CY(M) and ¢ € C-OV®). Then,

£ = | [ 6 dusns

< Clflu([$loo + HE, (1)) -
Proof. Let f € CY(M) and ¢ € C1(W*). We will estimate

F@) = /Mfwum.

To this end, we choose a foliation F = {W¢}ecz C W? of maximal local stable manifolds subdivided
according to the length scale §g. We then disintegrate the measure ugrp into conditional measures
ugRB on We € F and a factor measure fisgg(§) on the index set = of stable manifolds. Since
Usrp is smooth by assumption (P2), it follows from [Pl Proposition 6] (see also [CZ, eq. (3.7)])
that the conditional measures MéRB are absolutely continuous with respect to arc length, d,ugRB =
|We| =1 gedmyy,, where g¢ is given b

for all z,y € We.

This characterization, plus the normalization ugRB(Wg) = 1, uniquely determines g¢. It follows
from a standard estimatﬁ and (2.4]) that g is uniformly log-Lipschitz continuous on W, i.e. there
exists Cy > 1 such that

-1 . .
(3.5) 0<C; < grelélvr‘}gfgg < 216115) |9¢lcrwe) < Cg < 0.

8Both [P] and [CZ] give the analogous formula for the conditional measures of uggrp on unstable manifolds. Yet,
due to our assumption (P2), usgrp is an SRB measure for T~ ! as well, and so enjoys the analogous properties on
stable manifolds of T'.
INote Jw T"(2) = 3:01 Jri WgT(sz) and for brevity let g, = Jw,T™. The limit of g,(z)/gn(y) exists if the
limit of log(gn(z)/gn(y)) exists. Now for n,k > 1, we may estimate using (2.3]) and (2.4),
k n
gn(.CU) gn+k(m) JTnW&T (T {E) n n —1A—n
log — log =log —————— < Cuydrrnw, (T 2, T"y) < CyC; A" "dw, (z,y),
0@ % gorew) |~ Trow T(T) el ) <>y
so that the sequence log(gn(z)/gn(y)) is Cauchy and therefore converges. Thus the limit defining g¢ exists. A similar
estimate shows that g, is log-Lipschitz with Lipschitz constant at most C4, bounded independently of n, and so this
bound carries over to ge.
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Using this disintegration, we write,

()] =

| fwgg|Wgrlde§dﬂSRB<5>’
fe: WE
(3.6) < /56: | flwltler we)l9elcr owe) [ Wel ~ diisrs (€)

< Col fhul(Who+ g, () [ _IWel disnn(€).

To bound this last integral, we will apply some results of [CZ], which studies hyperbolic maps with
singularities in an axiomatic context (Assumptions (H.1)-(H.5) in that paper), which include the
class of maps in the present paper, in addition to many dispersing and semi-dispersing billiards.
Indeed, the final integral in is precisely the Z-function, Z;(F), defined in [CZ| eq. (4.7)] which
governs the average length of stable manifolds in the family F. (See also |[CM|, Exercise 7.15 and
Proposition 7.17] for a similar application of these ideas.) The parameters p and ¢ in [CZ] are both
equal to 1 in our context, due to our property (P1) and Convention which imply that T satisfies
the one-step expansion condition, |CZ, Condition (H.5)] with parameter ¢ = 1,

W\ |TV;
(3.7) sup Z (‘V‘) ’W’§K1A_1§p<1,
wews VicT-1w ’ Z| ’ ’

where V; are the maximal, connected components of T~'W. The required bound on Z;(F) follows
from [CZ, Lemma 4] (again with ¢ = 1) since ugrp is obtained as the limit of standard pairs with
finite valued Z-function. O

Lemma 3.4. There is a sequence of continuous inclusions,
CH(M) — B <= By < (C*(W*))*.
The first two inclusions are injective.

Proof. The continuity of the first inclusion follows from Lemma [3.2] and its injectivity is obvious.
The continuity of the second inclusion follows from |- |, < || - ||s. Its injectivity is a result of the
fact that we have defined || - || with respect to C*(W) rather than C*(W), and C*(W) is dense in
C*(W). Finally, the continuity of the third inclusion follows from Lemma O

By adding an additional weight to the weak norm, one can make the third inclusion in Lemma
injective as well (see for example [DZ3, Lemma 3.8]), but we will not need this property here. Our
final lemma in this section is essential for proving the quasi-compactness of £ on B.

Lemma 3.5. The unit ball of B is compactly embedded in B,,.

Proof. The lemma follows from [DL, Lemma 3.5]. The fact that [DL, Lemma 3.5] uses the family
of admissible curves W?* while we use the smaller set W?* C W? does not affect the argument since
the family of functions defining W?* in each chart is still compact in the C'-metric. U

3.5. Growth Lemmas. In this section, we prove several growth lemmas which will be instrumental
in establishing precise upper and lower bounds on the spectral radius of our transfer operator. Many
of the results in this subsection and the next parallel those of [BD] Section 5.

Given a curve W € W* , let G1(W) denote the maximal connected components of T~!W on
which T is smooth, with long pieces subdivided so that they have length between dy/2 and dp. In
particular, elements of G; (W) must belong to a single element of M}, i.e. to a single component
M;" of M. Inductively, define G, (W) to denote the collection of maximal connected components of
T~'V, where V € G,,_1(W), again subdividing long pieces into curves of length between d§y/2 and
do. We call G, (W), the nth generation of W.
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For each n, let L, (W) denote those elements of G, (W) having length at least dp/3. Let Z,,(W)
denote those elements W; € G, (W) such that for each 0 < k <n —1, TFW; c V € G,_(W) and
[V| < d0/3, i.e. I,(W) represents those elements in G, (W) that have always been contained in a
short element of G,,_; (W) from time 1 to time n.

Lemma 3.6. There exists C' > 0 such that for all W € 17\/\5, and all n >0,
a) #L,(W) < K} < p"ko0"A"
b) #Ga (W) < OOy ' #My
|1/p
C) Z |Wz| < CéoflJrl/PK—n/p(#M'g)l—l/p :

ergn(w) |W’1/p
d) #ME > CoA™ .

Proof. (a) This estimate follows from the fact that curves W; € Z,, (W) have always been contained
in a short element of G, (W) for each k between 0 and n — 1. Thus property (P1) (recalling also
Convention can be applied inductively in k to each element of Z,, (W), yielding the claimed
bound on the cardinality of these elements.

(b) The bound is trivial since each element of G,,(W) belongs by definition to one element of M.
Since the stable diameter of each component of Mj is uniformly bounded in n, the connected
components of T~"W are subdivided into at most C¢, ! curves to form the elements of G, (W), for
some uniform C' > 0.

(c) Note that for W; € G,,(W), using (2.1),
’TnWi’ :/ JWZ.T" dei Z ’WZ‘K)n .
W;

Thus,

> W sy TR ( 2 1) -
7y Sk o, Sk
W;€Gn (W) ‘W‘ & W;€Gn (W) ‘W’ & Wi€Gn (W)

< Cwroy TP M)

where we have used the Holder inequality and part (b) of the lemma.

(d) Applying part (b) of the lemma, we have

T"W|= Y W] <0#G(W) < CHMg.

Then recalling (2.3) and applying this to W € W?# with |WW| = 0y completes the proof of the
lemma. ]

Next we proceed to show that most elements of G, (W) are long, if the length scale is chosen
appropriately. For § € (0,00) and W € W*, define G2 (W) to be the smooth components of T~"W,
with pieces longer than ¢ subdivided to have length between §/2 and 6, i.e. G3(W) is defined
precisely like G,,(W), but with dy replaced by . Define LS (W) to be the set of curves in G5 (W)
having length at least 6/3, and let SS(W) = Go(W) \ L(W). Similarly, let Z2(W) denote those
elements of S (W) that have no ancestors of length at least /3.

Lemma 3.7. For all e > 0, there exist 6 € (0,dp) and n1 € N such that for all n > ny,

#LE(W) > (1 — ) #GE (W),  for all W € W* with |W| > 6/3.
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Proof. Fix ¢ € (0,1) and by Property (P1) and Remark choose ny sufficiently large that
3CHEK (i +0) +1)A ™ f < /2 for all 0 < £ < ny — 1, where C, < 1is from (2.3). Next, choose
§ > 0 sufficiently small that if W € W* with |W| < &, then T~"W comprises at most K(n) + 1
smooth components of length at most dy for all n < 2n;.

Now let W € W* with |[W| > §/3. We shall prove that for n > n1,

#SL(W) < e#Go(W).

For n > nq, write n = kny + £ for some 0 < £ < nj. If Kk = 1, the above inequality follows
immediately since there are at most K(nj + ¢) + 1 elements of Sgl +¢(W) by choice of §, while
by @3), [T~ *W| > C.AM W] > C.A™+45/3. Thus G5 (W) must contain at least CeA™ /3
curves since each has length at most §. Thus,

#Sp, +e(W)

(n1+40)+1
#G0, (W)

K
—1
< 3C, Al <

€
2 )
by assumption on n;.
On the other hand, if £ > 1 then we split n into k — 1 blocks of length n; and one block of length
n1 + £. We group elements W; € Sgn ) +¢(W) by most recent long ancestor V; € LY. (W): tis the

tny

greatest index < k — 1 such that T¢=0™+W, € V; and V; € LY, (W). Note that we only consider

tny
ancestors occurring in blocks of length ny. It is irrelevant for our estimate whether W; has a long

ancestor at an intermediate time.
Since each |V;| > §/3, it follows that Q?k_t)n1+e(‘/}) must contain at least CoAF=9™1 /3 curves of

length at most 6. Thus using Lemma a), we have
#Sgnl-‘rf(W) o #Ilgn1+f(W) l’f;ll ZV]'GL‘;LI W) #I(akft)nl+e(‘/j)
# Gt e W) G 1o(W) #Gy (W)
() + 14 Zyjerg,, ov)E(m) + 1)
> C@Aknl /3 ZVjGLfnl (W) CBA(kft)nl /3

t=1

(3.8)

k k t
_ in €
<3C7NY (K(m) + 1)PAT™M < :<2> <e.
t=1 t=1
O

The following corollary extends Lemma [3.7] to arbitrarily short curves, and is used in Lemma
to prove the positivity of our maximal eigenvector on all elements of W?.

Corollary 3.8. There exists Cy > 0 such that for any €, and n1 as in Lemma
| log(|W1/9)]

HLLW) 2 (1= 2)#GHIW), VIV € W, ¥ > Com ==y

Proof. Fix €,0 and n; from Lernrna Suppose W € WS has |W| < §/3, and let n > n;. We
decompose G (W) as in Lemma and estimate the second sum in precisely as before.

The first term on the right hand side of (3.8), #Z3(W)/#G5(W), is handled differently. Let
ny denote the least integer ¢ such that G(T) contains at least one element of length §/3. Since
|T~*W| > C.AY|W| by (2:3), and G¢(W) < K{ by (P1) and Convention as long as |T—‘W| < &,
at least one element of G (W) must have length at least %QWI > Cep~Y|W|. Thus

- [ log(3C.|W|6—1)] ‘
- | log p|
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Then calling V' the element of 922 (W) having length at least /3, we have

#GO (W) > #G5_,,,(V) = CoA" ™2 /3.
Thus

0 n/n n/n

#I, (W) _ 3(K(m) + )l (s)t s
#GO(W) — CeA" —\2

Finally, since no = O(|log(|W|/d)|), we may choose C5 sufficiently large, that if n > Caong

then the quantity on the right is at most €, completing the proof of the corollary.

[log(|W|/8)]
Toge[

Choosing € = 1/3, we let 4; > 0 and n; be the corresponding quantities from Lemma Fixing
this choice of 4; and nq, we have

(3.9) H#LO(W) > 2460 (W), for all W € W* with |W| > §;/3 and all n > ny.

Our next lemma shows that a positive fraction of elements of M% and M?,, have length at least
41 in some direction. This will be essential to establishing the lower bounds of Section [3.6] For
A C M, let diam®(A) denote the stable diameter of A, i.e. the length of the longest stable curve in
A. Similarly, define the unstable diameter diam"(A) to be the length of the longest unstable curve
in A.

The boundary of the partition defined by M%, is comprised of unstable curves belonging to
S, = U?;OITi(S 7). Similarly, M} is comprised of the stable curves, S;% = U?;&T‘%S“‘). In what
follows, we will find it convenient to invoke Convention regarding the definition of 7+ on each
smooth component of S*. Let L,(M?Y,)) denote those elements of M, whose unstable diameter
is at least 01/3, and let Ls(Mg) denote those elements of M whose stable diameter is at least
91/3. The following lemma is the analogue of Lemma for these dynamically defined partitions.

Lemma 3.9. There exist Cy,, > 0 and ng > ny such that for all n > ng,
HL(MB) > Cp 1 #ME  and  #L, (M) > Cp 01 #M° .

Proof. We prove the bound for Ls(MF). In order to prove the lemma, we will use the fact that the
boundary of M is the set U?;&T‘j ST.

Let Ss(M{) denote the elements of M} whose stable diameter is less than 6;/3. We have

B = Ly(MP)USs(ME). Similarly, let Ss(T—7S*) denote the set of stable curves in 7-/S* whose
length is less than d;/3.

The following sublemma will prove useful for establishing key claim in the proof.

Sublemma 3.10. If a smooth stable curve V; € T~'St intersects a smooth curve V; C TSt for
1 < j, then V; must terminate on V;.

Proof of Sublemma [3.10, Suppose such an intersection occurs for j > i. Then T°t(V;) C S~
is an unstable curve, while T (V;) C S;“_ .1 is a stable curve. Thus 7" (V;) must cross S~
transversally, and so T’(VJ) will be split into at least two smooth components since S~ is the
singularity set for 7~!. This implies that V; cannot be a single smooth curve. O

Using the sublemma, we establish the following claim:

n—1 )
(3.10) #S5s(MG) < 2> #S,(T78%) + Bin,

j=0
for some By > 0. According to the sublemma, if A € S5(M(), then either 0A contains a short curve
in T779S8T or A contains an intersection point of two curves in 778, for some 0 < j < n — 1.
But intersections of curves within 77/ST are images of intersections of curves within ST, and the
cardinality of cells created by such intersections is bounded by some uniform constant B; > 0
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depending only on S*. Since each short curve in 7-7S* belongs to the boundary of at most two
elements of Ss(MF), the claim follows.

Now, we subdivide ST into ¢y smooth curves V; of length between d§;/3 and 6;. For j > ny,
recalling the notation S?l(V) for the short elements of the jth generation g (V;) of subcurves in

T=7V;, we have by (3.9,
Lo
(3.11) #S,(T77S8T) = Z#s“l %Z#L‘ﬁ

Next, using (3.11]), we estimate the sum over j in (3.10) by splitting it over two parts,

ni—1 n—1 4o
(3.12) #S5,(M2) < Bin + 2 Z HS(TTST)+2 3 S LMV
j=n1 =0

The cardinality of the first sum up to n; — 1 is bounded by some constant C_'n1 depending only on
the map T and nq, but independent of n.
Next, we wish to relate #L‘Sl( Vi) to #Ls(Mg) for j > ny. Note that if V' € L?l(Vi), then

|T"=IV'| > CA™95,/3, so that #g;il_j(V/) > CA" /3.
Now for each j such that ny < j<n—1-—ny,and V' € L?l(Vi), we may apply (3.9), so that

(3.13) #LL() 2 3 #L (V) 2 CNTTIHLEE (V).
VieLy (v;)
For j > n —ny, we compare Lj-l(Vi) with L% | (V;). Since K; < A, there is at least one element of

Lo

i41(Vi) for each element of L?l(Vi). Applying this inductively to j, we conclude,

#L,1 (Vi) = #L5 (Vi)
Putting together this estimate with (3.13]) in (3.12), we estimate,

n—1-nq n—1
(3.14) #9s(MG) < Bin+Cpy+ > CNTIPHL(T ST+ Y #L(T"HIST)
‘ J=n j=n—nq

< Bin+ Cy, + C67 ' #Lo(MG) + miCoy ' # L (M),

where in the second line we have used the fact that #L4(T-"t1S*) < C67 ' #L,(ME), which follows
from Sublemma [3.10]
Finally, since #Mj§ = #Ls(M§) + #Ss(M§), we estimate,

#MO —Bln
1+ 0oy (1+n1) '

Since #M[ > CéA™ by Lemma (d) and n; is fixed, we may choose ny € N such that #M{ —
C — Bin > 2#./\/l for all n > na. We conclude that there exists C,, > 0 such that for n > no,
#L (Mg) > C’mél#./\/l", completing the proof of the lemma for Ls(M§).

The lower bound for #L,(M?Y,)) follows similarly, using the fact that (P1) also allows us to
control the evolution of unstable curves under 7™ by controlling the complexity of S;7. Note that
the analogue of Lemma holds for forward iterates of unstable curves using precisely the same
proof. The constant x does not appear in this argument, i.e. the fact that the rate of expansion
has a maximum is not needed for the proof. 0

#Ls(Mg) =
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3.6. Lower bounds on growth. The prevalence of long pieces established in Lemmas [3.7 and
have the following important consequences.

Lemma 3.11. Let 01 be the length scale from (3.9)). There exists co > 0, depending on 01, such
that for all W € W* with |[W| > 61/3 and n > 1, we have #G, (W) > co#My.

This lemma, in turn, implies the supermultiplicativity property for #M.
Proposition 3.12. There exists ¢c; > 0 such that for all j,n € N with j <n, it holds,
HME > et My # MY

In order to establish Lemma we recall the construction of Cantor rectangles. For x € M,
let W*(z) and W"(z) denote the maximal smooth components of the local stable and unstable
manifolds of z (which, by definition, belong to a single domain M;").

We begin by defining a solid rectangle D C M to be a closed region whose boundary comprises
exactly two stable manifolds and two unstable manifolds of positive length. Given such a region D,
define the locally mazximal Cantor rectangle R in D to be the union of all points in D whose local
stable and unstable manifolds completely cross D. Locally maximal Cantor rectangles are endowed
with a natural product structure: for any z,y € R, W"(z) N W*(y) belongs to R. Such rectangles
are closed, so their boundary coincides with the boundary of D. In this case, we write D = D(R)
to denote the fact that D is the smallest solid rectangle containing R.

Following [L1], for a Cantor rectangle R, we call the core of R to be RN D4, where Dy /4 is an
approximately concentric rectangle in D(R) with side lengths 1/4 the side lengths of D.

For a locally maximal Cantor rectangle R, we say that a stable (respectively unstable) curve W
properly crosses R if W intersects the rectangle D, 4(R), but does not terminate in D(R), and W
does not cross either of the stable (resp. unstable) boundaries of both D(R) and Dy /4(R).

Proof of Lemma[3.11. Applying [L1, Theorem 4.10], we may choose locally maximal Cantor rect-
angles Rs, = {R1, -+, Ry}, with usps(R;) > 0, whose stable and unstable boundaries have length
at most %51 such that any stable or unstable curve of length at least /3 properly crosses at
least one of themm Furthermore, we may choose the rectangles sufficiently small that both R; and
R; N D, /4(RZ-) have positive ugrg-measure for each ¢. The number of rectangles k depends on ¢ .

For brevity, denote by R} = R;ND;4(R;), the core of R;. Due to the mixing property of (7T, usrz),
there exist ¢ > 0 and n4 € N such that for all n > ny4, and all 1 <4,5, <k, usrp(R; NT"R;) > e.

We claim that for each n, at least one Cantor rectangle R; € R, is fully crossed in the unstable
direction by at least 7#L,(M2,) elements of of M . This is because if A € MY, , then JA
is comprised of unstable curves belonging to S, . Since unstable manifolds cannot be cut under
iteration by 77", S, cannot intersect the unstable boundaries of R;. Thus if AN R; # 0, then
either OA terminates inside R; or A fully crosses R;. This implies that elements of L,(M?Y,) fully
cross at least one R;, and so at least one R; must be fully crossed by at least % such elements.

With the claim established, for each n, let R;, denote a Cantor rectangle that is fully crossed by
at least 1# L, (M%) elements of M2 .

Now take W € W* with |[W| > §;/3. By construction, there exists R; € Rs, such that W properly
crosses IR; in the stable direction. For each n € N, using mixing, we have usrs(R; NT ™R;) > ¢.
By L1, Lemma 4.13], there is a curve V € G31 (W) that properly crosses R;, in the stable direction.
By choice of R;,, this implies that #G,(V) > ;#Ly(M%,). Thus,

HGniny(W) > F#LU(ML,) = #G,(W) > GHL(MY,),

100nce a Cantor rectangle of some size is constructed around pgrp-almost-every x € M, the existence of such a
finite family for any fixed length scale 61 follows from the compactness of the set of stable (and also unstable) curves
of length > §,/3 in the Hausdorff metric, as in [CM| Lemma 7.87].
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where (C')~1 = Coy ' #Mp* since #Gyn,(W) < C8y ' #M{*#G, (W) by Lemma (b)
Finally, by Lemma #L,(M°,) > Cp, 51#M?,,, which proves the lemma for n > max{ns, ns}

since # M, = #Mp. The lemma extends to all n € N by possibly reducing the constant ¢y since
there are only finitely many values to correct for. O

Proof of Proposition [3.12 Recall'that since 77 (S; v S ;) = S;f, there is a one-to-one correspon-

dence between elements of MT_L;J and M for each j < n. Thus #Mj = #MT_L;j , and this latter

partition is obtained by taking the maximal connected components of M(lj V Mgij .

To prove the lemma, we will show that a positive fraction, independent of j and n, of elements
of My’ intersect a positive fraction of elements of ng. Recall that Lu(ng) denotes those
elements of M(lj with unstable diameter of length at least d;/3 while Ly(M( 7) denotes those
elements of My’ with stable diameter of length at least d;/3.

If Ae Ly(Mg ) and V C A is a stable curve with [V| > 6;/3, then #G;(V) > co# M) by
Lemma Remark that up to subdivision of long pieces, each component of G;(V') corresponds
to one component of V' \ S; . Thus V intersects at least oM = co#ng elements of ,/\/l(ij.

Applying this estimate to each A € L, (Mgij ), we obtain
HMy > #L(MG) - cot Ml > Crybrco#t MG I # M,

where we have applied Lemma B:9]in the second inequality. This proves the lemma when n—j > ng.
For n — j < ng, since #M( 7 < #M_?, we obtain the lemma by possibly decreasing the value of

c¢1 since there are only finitely many values to correct for. O
Corollary 3.13. For alln € N, #M{ < 2cfle"h*, where ¢y > 0 is from Proposition .
Proof. The proof follows using Proposition precisely as in [BD| Proposition 4.6]. O

4. SPECTRAL PROPERTIES OF L
In this section, we prove the following theorem.

Theorem 4.1. The operator L acting on B is quasi-compact, with spectral radius equal to e and
essential spectral radius bounded by max{A=5, p}eh=.

Since T is topologically mizing, £ has a spectral gap: e is a simple eigenvalue (multiplicity 1
and no Jordan blocks) and the rest of the spectrum of L is contained in a disk of radius strictly
smaller than e .

Let vy € B be an eigenfunction for eigenvalue e defined by

1 n—1
vy := lim — Z e khepky
n—oo n
k=0
Then vy # 0 is a non-negative Radon measure on M.

The quasi-compactness of £ is proved in Lemma, following the Lasota-Yorke inequalities of
Proposition[4.2] The fact that £ has a spectral gap is proved in Lemmal[4.6] while the characterization
of vy is proved in Lemma

4.1. Lasota-Yorke Inequalities. The following proposition is the key component in establishing
the quasi-compactness of L.

Proposition 4.2. There exists C > 0 such that for alln > 0 and f € B,
(4.1) Ll < COT HME)|Flu

(4.2) L7 flls < O (M) (A" + ) flls + 5721 flu)
(4.3) L7l < OS5 FEMP A Fllu+ 7P f1s)
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By density, it suffices to prove the proposition for f € C*(M).

4.1.1. Weak norm bound. Take f € CY(M), W € W* and o € CL{(W), |91 wy < 1. Recalling that
Gn (W) denotes the decomposition of T-"W into elements of W?*, we estimate for n > 1,

/Wﬁ"fwdmwz /f¢oT"dmw<|f|w S o T |erwy

ergn(w Wiegn (W)

where we have applied the weak norm of f to the integral on each W;. Next, using the uniform
contraction of T along stable curves, we have

[poT"(x) =T (y)| [YoT"(x)—voT"(y)| dw(T"z,T"y)

dw, (z,y) ~ dw(Tra, Try) dw, (z,y)
for some uniform constant C' > 0, using (2.1). Then since [¢) o T"|coqw,) < [1|coqw), Wwe have
[P oT"crwyy < ClYlerwy < C. Finally, applying Lemma (b) to the sum over G, (W) and taking
the supremum over ¢ € C}(W) and W € W?* completes the proof of .

(4.4) < C|J*T"cow Hyy (¥) 4

4.1.2. Strong stable norm bound. Let f € C*(M), W € W* and ¢ € C*(W) with [¢[ca(w) < W |~1/p,

Let n > 1. For each W; € G, (W), define ¢, = |[W;|! Jw, ¥ o T™ dmy,. Proceeding as before, we
estimate

@s) [ cpdme = 3 / FoT" ) dm, + S [ fdm,
Wi eGn (W W;eGn (W)

To each term in the first sum on the rlght hand side, we apply the strong stable norm,

wi|He

|W /P

/W_ FoT™ =) < || fllsIWil Pl o T™ — Pylcaqwsy < Cllflls | T T |Go(wr)

where we have applied the analogous estimate to (4.4]) to the difference 1)oT™ — 1), with the exponent
a. Since a > 1/p, using bounded distortion ( , we estimate
(Wil 2L T %o g,y < CITW;[M/PAT D)

Finally, summing over W;, we obtain,

_ iy |1/p
S ffwer-masaiae 5 Ea
W, €Gn (W Wi €Gn (W)
(4.6) o Wi\ 7 )
< C|fllsA (a—=1/p) Z||W|| (#gn(Wi))l 1/p

< Oy TP F ATV FMEY VP < OOy AT Flo#ME

where in the second line we have used the Holder inequality and in the third we have used
Lemma [3.6(b) and (d).

Next, we estimate the second sum in . For this estimate, we group W; € G, (W) by most
recent long ancestor as follows. Recall that L;(7W) denotes those elements of Gy (W) whose length
is at least 0g/3. If V; € Li(W) is such that T *(W;) C V; and k < n is the largest such index
with this property, then we say that V; is the most recent long ancestor of W;. Let Z,,_(V;) denote
those elements of G, (W) whose most recent long ancestor is Vj. If no such ancestor exists, then
W; € Z,,(W). Thus,

3 wz/ Famw =3 Y /fdmw+ 3 m/ f dmay;

W;€Gn (W) k=1V;eL,(W)W; eIn K ( Wi €Ln (W
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We use the strong stable norm to estimate the terms in Z, (W),

1/p
S B S s S i

<|flsx™™P >
(4.7) Wi €L, (W) Wi €L, (W) W|1/p Wi €T, (W)
< llsk™PRTETIPY < |||k P RN < || f]|5p" C oy M

where we have used for the second inequality, the Holder inequality and Lemma [3.6{(a) for the
third and fourth inequalities, and the fact that ag > 1/p (from (3.4)) and Lemma d) for the
last inequality.

For the remainder of the terms, we use the weak norm of f, and sum using Lemma (a) from
time k to time n,

>y G amesy XS WL

k= 1vjeLk(W)erIn & (V5) k=1V;eL,(W) W;eL,_1(V})

— e V N
X X w rlw‘l/ﬂflw-ZOé PR TP HME) T f

k=1V;eLy(W)

T W[ M/P
WL

<C(5 1|f‘w’i n/pzpn k ao(n kAn k#MO<C(5 2 Il n/p#M |f|wa
k=1

where we have used Lemma [3.6{c) to sum over V; € Li(W), as well as the fact that
AR ME < OO IHMETFHME < 050 cll#M”,
by Proposition Putting this estimate together with ( and ( in (4.5) yields,
[ £npdmy < O82 (A" + )]+ ﬂ’"/”lflw)#M”,
and taking the appropriate suprema over W and 1 completes the proof of .

4.1.3. Strong unstable norm bound. Let f € C'(M) and ¢ € (0,&9). Take W', W2 € W* with
dyys (W W?2) < ¢, and 9, € C1(W*) such that [Vklerowry < 1 and do(¥1,v2) = 0. For n > 1, we
subdivide G, (W*) into matched and unmatched pieces as follows.

To each W} € G, (W), we associate a family of vertical (in the chart) segments {’)/l-}wewil of

length at most CA™"¢ such that if ~, is not cut by an element of S;, its image 7", will have
length Ce and will intersect W2. Due to the uniform transversality of stable and unstable cones,
such a segment 7%y, will belong to the unstable cone for each i = 0,...,n, and so undergo the
uniform expansion due to .

In this way, we obtain a partition of W' into intervals for which 7™y, is not cut and intersects
W? and subintervals for which this is not the case. This defines an analogous partition of 7~ "W!
and T~"W?2. We call two curves Uj1 C T7"W!' and U ]2 C T~"W? matched if they are connected
by the foliation v, and their images under T" are connected by T"7,. We call the remaining
components of T~"W* unmatched and denote them by V;k With this decomposition, there is at
most one matched piece and two unmatched pieces for each Wf € G,(Wk), and we may write

TW = (UUF) U (UV).

We proceed to estimate,

' [oerrin= [ e < 3

We begin by estimating the contribution from unmatched pieces. We say a curve V;! is created
at time j, 1 < j < n, if j is the first time that 7" 7/V;! is not part of a matched curve in T—/W?!.

;‘/U}fwlo:r”—/@fwgofr"

/V.qu/}koT” :
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Define,
Vie = {i: V;! is created at time j and T"IV;' ¢ W} € G;(Wh)}.

Note that Uieyj’[Vil = ng. Due to the expansion of T in the unstable cone and the uniform

transversality of S;” with the stable cone, it follows that |W}| < CA~7e. Now applying the strong
stable norm to each such curve at the time it is created,

(4.9)

S fu et = DD /m—wow—j
I=lwleg;(w
SZ S WL Fllsl o T ey
=l Wleg;(W)

Z

<Z Z CAfj/pgl/p(go—lHf(nfj)/p(#Mg—j)||f”s
J=1Wleg;(w)

3

n
< O VP fllsr™P Y AT PHMGBMGT < Cop P f T PHME
j=1
where we have applied (4.2) in the second inequality (actually, a simpler version suffices with no

need to subtract the average of the test function on each W;), and Proposition in the fourth.
A similar estimate holds over the curves V2.

Next, we estimate the matched pieces. Recall that according to our notation in Section [3.1] the
curve U jl is associated with the quadruple (i;,z;, 75, Fjl) so that F jl is defined in the chart y;; and
Ujl = G(xj,rj, Fjl)(I,«j ). By definition of our matching process, it follows that sz = G(xj, 1y, F]-Q)(Irj)
for some function Fj2 defined in the same chart, so that the point z; + (¢, F. jl (t)) is associated with
the point z; + (¢, F7(t)) by the vertical line (0, s),p in the chart.

Recall that Gpr = x4,5(z; + (¢, Ff(t)), for t € I,.;. Define
J
y=th1oT" 0 GryoGrs.

The function 1;]- is well-defined on U ]2 and do({bvj, 1 0T™) = 0. We can then estimate,
(4.10)

S|[ et [ fosot

s;’/[]}fwloT”—/Uff% +

We estimate the first term on the right side of (4.10]) using the strong unstable norm. It follows
from the uniform hyperbolicity of 7" and the usual graph transform arguments (see [DL| Section 4.3]),
that

NIRRT EVADIR
U:

J

dws (U}, U7) < CA™"

Moreover, by definition GF_I,G;,% € C! so that by (4.4)), |7Zjlcl(U_z) < Cly1lerwry for some uniform
J j J

constant C. Thus,
S fver = [ 1
U} Uz?

where we have used Lemma [3.6(b) to sum over the matched pieces since there is at most one
matched piece per element of G, (W1).

(4.11) < CPA| flluby  #MG
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We estimate the second term on the right side of (4.10)) using the strong stable norm,
J
It follows from [DL, Lemma 4.2 and eq. (4.20)] that,
[ — 20 Tn|ca(Uj2) < el

/Qf(%*?/)onn)
Uj

< S I INT2IP185 — 162 0 T o)
J

Putting this together with the above estimate and summing over j yields,
J

Finally, collecting the above estimate with (4.11)) in (4.10) and adding the estimate over un-
matched pieces from (4.9)), yields by (4.8]),

| ersin= [ e

Then, since 8 < min{l — a, 1/p} according to (3.4), we may divide through by £°, and take the
appropriate suprema to complete the proof of (4.3).

< O™ || flls6g ' #MG -

/Qf(Jj—%Donn)
Uj

< O (PN fllu 40 lls + PRTP L) MG -

4.2. A spectral gap for £. We prove that £ has a spectral gap in a series of lemmas, first estab-
lishing its quasi-compactness, Lemma [£.3] then characterizing elements of its peripheral spectrum,
Lemmas [£.4) and [4.5] and finally concluding the existence of a spectral gap, Lemma [£.6] These are
all the items of Theorem (4.1

Lemma 4.3. The spectral radius of £ on B is e, while its essential spectral radius is at most
oe’ for any o > max{A=P p}. Thus L is quasi-compact on L. Moreover, the peripheral spectrum
of L contains no Jordan blocks.

Proof. First we establish the upper bound on the spectral radius of £ using Proposition
and Corollary 3.13L Fix ¢ < 1 such that o > max{A=? p}. Next, choose N > 0 such that
050_2201_1 max{A~"N pN1 < %O‘N. Finally, choose ¢, > 0 such that cuC50_22cl_1/€*N/p < %O‘N.
Then,

1N Flis = 12N Flls + eull £ £
< (3NIFlls + Cop 26 5N fluy + e o™ | fllu + cuCog 26 NP £ ) €N

< (NI flls + C'85 2w NP £, ) NP

This is the standard Lasota-Yorke inequality for £, which, coupled with the compactness of the
unit ball of B in B,, (Lemma [3.5), is sufficient to conclude [H] that the essential spectral radius of
L is at most oe™ and its spectral radius is at most e"*.

To prove the lower bound on the spectral radius, we estimate using and Lemma Take
W e W* with [W| > 61/3. Then for n > n; we have,

Ies = [ ctdmy = 3 Wl= Y a3
(4.12) AT WieL2 (W)
26 26
> S HG(W) = Tt M.

Then taking the limit as n — oo and using the definition of h,,

1 1 1
limsup — log ||£"||g > limsup — log (||[£"1||5/||1]|5) > limsup — log (#Mg) = hs,
n—oo T n—oo T n—oo M
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which proves that the spectral radius of £ is at least e/*. We conclude that the spectral radius of

L is in fact e and so £ is quasi-compact since its essential spectral radius is bounded by oe/*.
Finally, the lack of Jordan blocks stems from Corollary [3.13] and Proposition [.2] which together

imply ||£"||g < Ce™ for all n > 0. O

Let Vy denote the eigenspace associated to the eigenvalue e 27 Due to the quasi-compactness
of £ and the absence of Jordan blocks, the spectral projector Iy : B — Vy is well-defined in the
uniform topology of L(B,B) and can be realized as,

LS ke ik ok
(4.13) My = lim — > e Fhe ck.
k=0
Let V = ®yVy, where the sum is taken over 6 corresponding to eigenvalues of £. Note that V is finite
dimensional by the quasi-compactness of £. Analogously, and as in the statement of Theorem
define

1 n—1
(4.14) vo = Ilpl := lim — Z e kh= £k
k=0

n—oo n
Since we have proved uniform bounds of the form ||£¥||5 < Cek"* | the limit above exists and satisfies
Ly = e 1y. A priori, however, vy may be 0 (if ¢" is not in the spectrum of £). The following

lemma shows this is not the case, and provides an important characterization of the peripheral
spectrum of L.

Lemma 4.4. (Peripheral spectrum of L)

a) The distribution vy = gl # 0 is a non-negative Radon measure and ™ is in the spectrum
of L.

b) All elements of V are signed measures, absolutely continuous with respect to vy.

¢) The spectrum of e~ " L consists of a finite number of cyclic groups; in particular, each 6 is
rational.

Proof. (a) By density of C!(M) in B, since Vj is finite-dimensional, it follows that IToC! (M) = V.
Thus for each v € V, v # 0, there exists f € C'(M) such that Ilyf = v. Moreover, for every
Y € CY(M), we have

LEF)] < | flooTo1(J#2])

n—1
(4.15) V()| = Mpf(4)] < lim = 3 b
n—oo n, =0

so that TIp1 # 0 since v # 0. In particular, e is an eigenvalue of £. Moreover, since ITy1 is positive
as an element of (C*(M))*, it follows from [Schl Sect. 1.4] that vg = Iyl is a non-negative Radon
measure on M.

(b) Applying (4.15) again to v € Vjy, we conclude that every element of Vy is a signed measure,

absolutely continuous with respect to vg. Moreover, setting f, = déf; L it follows that f, €

L>®(M, ).
(c) Suppose v € Vy. Then using part (b), for any ¢ € C}(M),

Yol
JST)

) _ efh*efQﬂ'iHEVO(wfV o Tfl)

/ O f,dvg = v() = e e T Ly (y) = e e 20

M

Yol

JsT

= 6—27'('1'9/ ¢fy o T—l dVO )
M

(416) _ efh* €72m’91/0(fy
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Thus f, o T~ = ¥ f, vp-a.e. Define f,, = (f,)¥ € L>(w). It follows as in [DIJ, Lemma 5.5],
that dvy, := f, rdvg € B for each k € N. Then since L, = e2mik0, it follows that e2™*? ig in the
peripheral spectrum of £ for each k. By the quasi-compactness of £, this set must be finite, and so
6 must be rational. I

We remark that elements of B, can be viewed as both distributions on M, as well as families of
leafwise distributions on stable manifolds as follows (cf. [BD), Definition 7.5]). For f € C1(M), the
map defined by

Ko@) = /W fodmw, ¥ eC' W),

can be viewed as a distribution of order 1 on W. Since Ky, 5)(¥) < [flwl®lcr(wy, Kw,.) can be
extended to f € B,. We denote this extension by [, f, and we call the associated family of
distributions the leafwise distribution (f, W)wews corresponding to f. If, in addition, f € B,
satisfies [, ¢ f > 0 for all ¢» > 0, then by [Schl Section I.4], the leafwise distribution is in fact a
leafwise measure.

Recall the disintegration of psrp used in the proof of Lemma into conditional measures ugRB
on the family of stable manifolds F = {W¢}¢c=, and a factor measure fisgp on the index set =. We

have d,ugRB = |We| ™! gedmy,, where g¢ is uniformly log-Hélder continuous by (3.5)).

Lemma 4.5. Let I/g and Dy denote the conditional measures on W and factor measure on Z,

respectively, obtained by disintegrating vy on the family of stable manifolds F. For all ¢ € CY(M),
fW ¢9§ o
pdvf = —F——— forall§ €, and din(€) = |We| 7 ( / 9cv0) ditsr(€)
We Jw, 9¢ o We

Moreover, viewed as a leafwise measure, vo(W) > 0 for all W € W?.

Proof. We prove the last claim first. For W € W*, let ny < Ca|log(|]W|/61)| be the constant from
the proof of Corollary applied in the case ¢ = 1/3 and d; as chosen in (3.9). Let V € gg;(W)

have |V| > 61/3. Then using (3.9) and Lemma

n—1 n—1

o1 _ .1 _
/ v = h_}m —Ze kh*/ £F1dmyy > 11_}111 — Z e khs Z |Wi|
n o n (o]
w " k=0 w "™ k=n1+ng Wi€Gk—ny (V)
1 = ki 28 k 5 —( )h — _kh k
> lim — e kh« 201 N2 — 20001 o= (mitn2)hae iy e .
— n—oon Z 9 O#MO 9 n—r00 Z #MO
k=n1+no k=0

We claim that the last limit cannot be 0. For suppose it were 0. Then for any W € W?*, ¢ € C1(W),
we would have by Lemma [3.6]b),

N k R B
/Wz/zyoznh_)rgoEZe /Wwﬁ 1de§nh_>rgoﬁZe Z |9)] oo | Wi
k=0 k=0 W;€G (W)
1 n—1
< lim — Z e*kh*C#MIS =0,
k=0

n—oo n,

which would imply vy = 0, a contradiction. This proves the claim, and recalling the definition of
neo, we conclude that

(4.17) (W) > C' W for all W € W*.

With (4.17)) established, the remainder of the proof follows from the definition of convergence in
the weak norm, precisely as in [BD, Lemma 7.7]. O
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We are finally ready to prove the final point of our characterization of the peripheral spectrum

of L.
Lemma 4.6. £ has a spectral gap on B.

Proof. Recalling Lemma (c), suppose v € Vp,/,. Then L, = eh= vg and L) = e+ 1. Since
TY is also mixing and the spectral radius of £ is e?*, it suffices to prove that mixing implies the
eigenspace corresponding to e+ is simple in order to conclude that £ can have no other eigenvalues
of modulus e, i.e. £ has a spectral gap. We proceed to prove this claim.

Suppose v1 € Vg. We will show that v; = ciy for some constant ¢ > 0. By , there exists
f1 € L™ (1) such that fiv1 = vy and f1 o T = fi, vp-a.e. Letting

Snfi(z Zf1OTk

it follows that the ergodic average fS fi = fi for all n > 0. This implies that f; is constant on
stable manifolds. In addition, since by Lemma and - the factor measure 7 is equivalent
to fisgg on the index set Z, we have that f; = fl oT on figgp a.e. We € F,ie. fi = fioT,
usrp-a.€. By the ergodicity of usrp, fi = constant ugsgrg-a.e. But since this constant value holds
on each stable manifold W, € F, using again the equivalence of 7 and fisgs, we conclude that f;
is constant vg-a.e. O

5. CONSTRUCTION AND PROPERTIES OF THE MEASURE OF MAXIMAL ENTROPY
Since L : B — B has a spectral gap, we may decompose L as
(5.1) L'f =e™Iyf + R"f forany n > 1, f € B,

where T2 = Iy, IIoR = RIly = 0 and there exists & < 1 and C > 0 such that |e™"" R"||z < Co™.
Indeed, we may recharacterize the definition of the spectral projector Ily in (4.13) as,

Hof = lim e~ £"f,

where convergence is in the B norm. Indeed, letting W € W? with |[W| > §;/3, we have by

Lemma E and - ,

0<w(W)= hm e " / L1 dmy = hm e " Z |Wi|
erg”n(w)

PR —nhx n
< hnrglcgf Ce #My .
This implies the final limit cannot be 0. We have proved the following.
Lemma 5.1. There exists ¢c; > 0 such that #M{ > ¢ enh= for allm > 1.

Next, consider the dual operator, £* : B* — B*, which also has a spectral gap. Recalling our
identification of f € C!(M) with the measure fdusgp from Section define

~ 1 —nhy *\M
(5.2) 7 = lim e (L*)"dusrs ,
g+. Clearly, iy € B*, and L*y = e"*y. By the positivity
of the operator £*, we have 7y(f) > 0 for each f € C'(M) with f > 0 (recalling C*(M) C B). Thus

again applying [Schl Section 1.4], we conclude that 7y is a Radon measure on M.
Next, defining f, = e ™= £"1 € B for n > 1, we have,

o(fn) = klgTolo 67kh*<fna (ﬁ*)deSRB> = klglolo €7kh*<£kfmdMSRB> ;
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where (-, -) denotes the pairing between an element of B and an element of B*. Then, decomposing
psrp into its conditional measures ugRB and factor measure fisgg on We, £ € 2, as in the proof of
Lemma and letting =% C = denote the set of indices such that |W¢| > 6;/3, we estimate

o) = Jim [ o dpsns = Jim [ dfsn(€) = [ 27 gedmur Wl

> dil —(n+k)h inf ge |We | IWe| L
= Hm o fisrs(§) e 25: 11/1‘1/5 e |[Weil [We|

: ~ —(n+k)he —12 k< A = —12¢q =
> Jim [ djisnn(€) eI O R A MG 2 fisnn (E7)C 50
=01

for all n > 1, where we have used and Lemma for the second inequality, and Lemma
for the third. Since this lower bound is independent of n, we have 7y(vp) > 0.

We can at last formulate the following definition, which is our candidate for the measure of
maximal entropy.

Definition 5.2. For vy € C'(M), define,
(Yo, 7o)

prs (1) 1= —~ .
: <V07 V0>

The measure pu, is a probability measure on M due to the positivity of 1y and 7y, and since
(vo, 7o) # 0. Moreover, (¢ oT) = p.()) so that p. is an invariant measure for 7'

We may also characterize the spectral projector Iy in terms of this pairing: for any f € B, it

follows from (j5.1)) and (5.2)) that,

(53) H(]f: <f7 ﬁO>

(o, 70)

vy .

It follows immediately from the spectral gap of £ that u, has exponential decay of correlations.

Proposition 5.3. For all ¢ > 0, there exist constants C = C(q) and v = v(q) > 0 such that for
all p, € CI(M),

’/ soon"du*—/ sodu*/ Y dps
M M M

Proof. We prove the proposition for ¢, € C'(M). The result for ¢ € (0,1) then follows by a
standard approximation argument.

First we verify that 1) o T"7 is an element of B* for ¢» € C'(M) and n > 1. We do this by noting
that for any ¢ € C*(M), i € B* by simply defining,

<f7¢770> = <¢f7 ﬁO> for any f € Bv

and the expression on the right is bounded by [v|c1|| f||5]/v0||5+ by Lemma [3.2(b), and so the pairing
defines a bounded, linear functional on B, with norm at most |i|c1||o||s+. Next, define for n > 1,

(5.4) (f, 0 0 T™g) = (e ™ LM fpug) = (e ™™ L7 f, 1) .
The expression on the right is bounded by
le= L7 fllsl|Polls- < [¥lerane ™™ IL" fllsllZolls < Clbleranllflslools

where we have used Lemma (b) for the first inequality and (/5.1]) for the second, since in particular,
e || L7 f||p < C. Thus (5.4) defines a bounded, linear functional on B, so ¥ o T" € B*.

< Cloleaany¥leaane™™™  for alln > 0.




28 MARK F. DEMERS

Finally, using Definition and (|5.4)), noting that pry € B by Lemma (b), and recalling again
(5.1), we write

/ oipo T dy, = $YoY T %) _ <€_"h*5"(90~Vo)a¢170>
M (v, Do) (v, 7o)
_ (Ho(wo) + ™™ R™(pro), dino) _ (pro, o) (vo, ¥in) | (e~ R"(ow0), ¥io)
{vo, 70) {vo, 70) (w0, o) (0, 70) ’

where we have used (5.3). The first term on the right is simply [,, ¢ dps [, ¥ dps. The second
term is bounded by,

Ce || R" (¢wo) I8llvoolls- < C'5" | owollslélerlIPolls- < C"5"|plerllen
where we have used Lemma [3.2b) and C” depends on ||v||s, ||%0]|s+, and (vo, D). O

5.1. Hyperbolicity and Ergodicity of u.. We begin by showing that u, gives small measure to
e-neighborhoods of the singularity sets S;F.

Lemma 5.4. For any k € N, there exists Cy, > 0 such that
He(N2(SE)) < Cre/P.
In particular, for any v > p and k € N, for p.-a.e. x € M, there exists C' > 0 such that
(5.5) d(T"z,SF) > Cn™,  for alln > 0.
Proof. First we prove the claimed bounds with respect to v for each S, , k > 1. Let 1 . denote the
indicator function of the set NVz(S, ). Since S, comprises finitely many smooth curves, all uniformly

transverse to the stable cone, by Lemma (b), 1k 10 € B, and as a consequence, 1j .19 € B,,. We
claim that,

(5.6) (N(S)) < Cllgctiolw < CrellP.

Indeed, the first inequality follows from Lemma [3.3] To prove the second inequality, let W € W*
and ¢ € CH(W) with [¥]e1wy < 1. Due to the transversality of S~ with the stable cone, WNN(S,)
comprises at most a finite number Ny, of curves, depending only on S, and dy, and not on W, each
having length at most C's. Thus,

/W lgepvy = Z/W Yo <3 wollsWil Pl leaw,) < CNke'/?,
and taking the supremum over ¢ and W proves the second inequality in (5.6]).
Next, it follows from (5.2) and Lemma that
(5.7) 120 ()] < C[f lw, for all f € Buw,
so that in fact g € B}, C B*. Thus for each k > 1, by (5.6),
o (1
(s = IR) oy < o0
o(vo)
To prove the bound for S;", we use the invariance of u, together with the fact that T *kSk,_ = S,j .

Moreover, we have T*(N.(S;")) C /\/'C,{;i (S ), where £ is the maximum rate of expansion in the

unstable cone.
Finally, to prove (5.5)), we fix v > p and estimate for each k € N,

S e Woer (§5) £ G 30 < ox.

n>1 n>1

Thus by the Borel-Cantelli Lemma, p.-a.e. x € M visits N,,—~ (Ski) only finitely many times along
its orbit, completing the proof of the lemma. O
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Lemma [5.4] immediately implies the following corollary.

Corollary 5.5. The following items establish the hyperbolicity of the measure piy.

a) For any C' curve V uniformly transverse to the stable cone, there exists C > 0 such that
(N (V) < Ce for all e > 0.

b) The measures vy and . have no atoms, and p.(W) = 0 for all local stable and unstable
manifolds, W .

¢) fu ogd(x,SE)| dps < o.

d) ps-a.e. x € M has a stable and an unstable manifold of positive length.

Proof. The proof follows directly from the control established on the measures of the neighborhoods
of the singularity sets in Lemma The argument follows exactly as in [BD), Corollary 7.4]. O

With the control established in Lemma we may follow the same arguments as in [BD]
Section 7.3] to establish the ergodicity of the measure u,. Indeed, our control is stronger than the
bounds 1. (Nz(SF)) < Ck|loge|” for some > 1 available in [BD], and the Hélder continuity of our
strong norm || - ||, is stronger than the logarithmic modulus of continuity available in [BD]. The
key result is establishing the absolute continuity of the unstable foliation with respect to p.. Given
a locally maximal Cantor rectangle R, let W/%(R) be the set of stable/unstable manifolds that
cross D(R) completely (see Section [3.6).

Proposition 5.6. Let R be a locally mazimal Cantor rectangle with . (R) > 0. Fiz W° € W%(R),
and for W € W¥(R), let O : WON R — W N R denote the holonomy map sliding along unstable
manifolds in WY(R). Then Oy is absolutely continuous with respect to .

Proof. This is [BD| Corollary 7.9]. Its proof relies on the analogous property of absolute continuity
for vg, which in turn follows from the control established by the strong norm and Lemma [5.4 The
final step in the proof is to show that on each W € W#(R), the conditional measure u"V of p, is
equivalent to the leafwise measure v restricted to W, i.e. there exists Cy > 0 such that

(5.8) Cw il < wolw < Cy' .

This equivalence of the measures follows from the representation of vy as a family of leafwise
measures given by Lemma as well as the characterization of u, via the limit,

p(¥) = o (v) o (Yv) = (1) ! Jim e (L% dpsre (Yr)

from (j5.2]). O

Corollary 5.7. The absolute continuity of the unstable holonomy with respect to p, implies the
following additional properties.

a) (T™, u«) is ergodic for all m > 1.

b) For any open set O C M, we have 1. (O) > 0.

Proof. a) Using absolute continuity, one establishes that each Cantor rectangle belongs to a single
ergodic component following the usual Hopf argument [BD, Lemma 7.15]. Then the ergodicity of
T™ follows from the assumption that 7" is topologically mixing [BD), Proposition 7.16].

b) The proof is identical to the proof of [BD| Proposition 7.11]. O

5.2. Entropy of p,. In this section, we prove that the measure-theoretic entropy of p is hs, by
estimating the measure of dynamically defined Bowen balls for 7—!. Recall the metric d defined in
(2.2). For n >0 and € > 0 and x € M, define

Bp(z,e)={ye M :d(T 7y, T7z) <e,V0<j<n}.
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Lemma 5.8. There exists C' > 0 such that for all € > 0 sufficiently small and all n > 0, we haveiE
px(Bp(z,€)) < Cne "

Proof. Fix x € M, e > 0 and n > 0, and let 15 . denote the indicator function of the Bowen ball
By, (z,e). We shall prove

(5.9 (B, 2))) = 2lnet0)
VO(VO)

where C' > 0 can be chosen independent of . The first inequality follows from (5.7]), once we show
that 156V0 € B,,. To see this, write

< C|17Ji€1/0|w < Cne "

n n
15 =T vriny o T77 = [[ Lhrs(Unr(r-ia)) -
j=0 j=0
where Lsrp denotes the transfer operator with respect to psrp. Since Lsrp preserves B, (and also
B) by [DL], the claim follows since 1y, (p-j,) satisfies the assumptions of Lemma ON(T )
consists of a single circular arc, together with possibly part of 9M, both of which satisfy the weak
transversality condition of that lemma for ¢ sufficiently small. Applying Lemma (b) inductively
in j completes the proof of the claim, and of the first inequality in ([5.9)).

Next, since vg is a non-negative leafwise measure by Lemma e have [y, Y1 > 0 for all
W € W? and ¢ > 0. Then since | [, ¥ vo| < [y, |¥| vo, we can achieve the supremum in the weak
norm of vy by restricting to test functions ¢ > 0.

Now take W € W?, ¢ € C*(W) with ¢ > 0 and [¥]e1wy < 1, and suppose that W N By, (x,¢) # 0.
Then using that vy is an eigenfunction of L,

/mjigz/o:/ Y1p e MLy =T Y / boTm1E 0T yy.
W W WieGn(w) Wi

Observe that 17113,5 oT™ = 1p-n(B,(z,)), and that
T (By(z,e)) ={y € M : d(T? "z, T7y) <e,Y0 < j <n}.
Thus on each W; € G,,(W) such that W; N T~"(B,,(z,¢)) # 0, the positivity of vy implies,

/W w OTn 155 OTn 120 S Vo(WZ') S ’V()‘w .

It remains to estimate the cardinality of such W;. Recalling , if ¢ < 10diam(M), and
d_(Tj_”x, T7y) < e, then T7""z and T?y belong to the same set Mij for each j. We would like to
conclude that then T—"(B,(z,¢)) belongs to a single element of M, yet this may fail since both
the dynamical refinements of M} and the local components of T—/W C M:; may not be connected.
Figure [1| shows an example of how these multiple components may arise due to intersections of S;r
with S

Yet suppose V C V' € G;(W), |[V| < e. Since S~ comprises a finite number of smooth curves
uniformly transverse to the stable cone, for ¢ sufficiently small there can be at most two connected
components of V' that lie in the same MZ} these will be mapped to the same M;; under 7!, Since

this subdivision of a set of radius € can occur at most once per iterate, we have at most n elements
Wi € Gn(W) such that W; N T7"(B,(x,e)) # 0 for ¢ sufficiently small. Putting these estimates
together yields,

UThe extra factor of n in this estimate is due to the fact that we do not assume the dynamical refinements of M}
are simply connected. Such an assumption would allow us to eliminate this factor, as in [BD, Proposition 7.12].
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FIGURE 1. A possible intersection between Sf (dashed line) and S~ (solid lines).
S is the boundary between two domains M, and M, ;, while S;T is the boundary

of elements of M{). The local stable manifold V' C T—JW is contained in a single
element of M , yet the intersection V' N M,” has two connected components whose
images under 7! will both lie in M;" and be within distance ¢ of one another in
the metric d.

and taking the supremum over ¢) and W yields the final inequality in (5.9). O
Proposition 5.9. For u, defined by Deﬁm’tion we have hy, (T) = hy.

Proof. Recall that [, |log d(m,Sli)| du, < oo by Corollary M(c), and that u, is ergodic by Corol-
lary Thus applying [DWY], Proposition 3.1”E| we conclude that for p.-a.e. x € M,

1 1
lim lim inf —— log 14 (Bp (2, €)) = lim lim sup —— log pu(By(w,€)) = hy,, (T™1) = hy,,. (T).
n

e—0 n—oo n e—=0 nooco

On the other hand, Lemma [5.8] implies that for all ¢ > 0 sufficiently small,

1
lim inf —— log p«(Bp(z,€)) > hy .
n

n—oo

Thus hy,, (T) > hy. But hy, (T) < h, by Theorem [2.§(d), so equality follows. O

5.3. Uniqueness of p,. In this section we prove that u. is the unique invariant probability measure
with hy, (T) = h..

The proof of uniqueness follows very closely the proof of uniqueness in [BD, Section 7.7]. We
include the proof to point out several differences in the initial estimates on elements of MY, and
for completeness. The idea of the proof is to adapt Bowen’s proof of the uniqueness of equilibrium
states to the setting of maps with discontinuities. The key estimates will be to show that while
not all elements of MY satisfy good lower bounds on their measure, most elements (in the sense
of Lemma [5.10])) have satisfied good lower bounds at some point in the recent past (in the sense of
Lemma [5.11)). Recall that M{ denotes the set of maximal, open connected components on which
T™ is smooth, while M°, denotes the analogous set for T—™.

Choose 9o > 0 sufficiently small that for all n,k € N, if A € M", is such that diam“(A) < do
and diam®(A) < &, then A\ ST consists of no more that K; connected components. Such a choice
of dy is possible by property (P1) and Convention

For n > 1, define

B, ={AeM%, :Vj,0<j<n/2, T7ACEec M, ;such that diam"(E) < 6} .

Define B3" C M3" analogously with diam"(E) replaced by diam®(E). Next, let
(5.10) Bo, :={Ac M%,, : cither A€ B, or T"?"Ac B"},

12Which is a slight modification of the Brin-Katok local entropy theorem [BK], applying [M, Lemma 2]. See also
[BD] Corollary 7.17].
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and Gag, = Mo_gn \ B2,. We think of By, as the set of ‘bad’ elements and G, as the set of ‘good’
elements.
Note that for any n > 1, each A € M satisfies diam®(A4) < CA~". We choose 7 € N such that

CA~™ < §. Our first lemma shows that the cardinality of Ba, is small relative to €2 for large n.

Lemma 5.10. There exists C > 0 such that for all n > n,
#Bo,, < C@gnh*/2K?/2 < Cpn/2€2nh* .

Proof. For n > #i, suppose A € BY, < MY, . For simplicity assume n is even; otherwise, we may
use |n/2] in place of n/2. For 0 < j < n/2, let A; denote the element of Mggn/z_j containing

TN A e MYS

Since A € B%,,, and by choice of 7, it follows that max{diam®(A;), diam"(A4;)} < dy for each

0 < j < n/2. By choice of d2, the number of connected components of /\/ll_3n/2_j in each A; is

at most K;. Fixing Ay € M%n /2 and applying this estimate inductively in j, we conclude that
#{A" € B, T ™2A" C Ag} < K{Lﬂ. Summing over the possible Ag € /\/l93n/2 yields,

#39271 < #MQBn/QK?/z < Ceth*/Qpn/QAn/Z < C,On/2€2nh* ,

where we have used Proposition and Convention [2.3|for the second inequality, and Lemma (3.6(d)
for the third.

Next, if A € M, then diam“(A) < CA™" as well, so the same choice of 7 permits the analogous
estimate to hold for #B2" for n > n. Finally, since there is a one-to-one correspondence between
elements of M§ and MY, we have # Ba, < #B%,,, +#B2", completing the proof of the lemma. [J

Our next lemma shows that long elements of M% ; enjoy good lower bounds on their p,-measure.
These lower bounds will eventually be linked to elements of Ga,.

Lemma 5.11. There exists a constant Cs, > 0 such that for all j > 1 and A € M(lj such that
min{ diam"(A), diam® (T A)} > 6s, it follows that,

1(A) > Cse

Proof. As in the proof of Lemma we choose a finite set Rs, = {R1, ..., R¢} of locally maximal
Cantor rectangles with u,(R;) > 0, such that every stable curve of length o properly crosses at
least one R; in the stable direction, and every unstable curve of length ds properly crosses at least
one R; in the unstable direction.

Now let j > 1 and A € M? ; be as in the statement of the lemma. By choice of Rs,, an unstable
curve in A properly crosses at least one R; € R;,. Since 0A C §,;, 0A cannot intersect any unstable
manifolds in R; since unstable manifolds cannot be cut under 7~". Thus A must fully cross R; in
the unstable direction. Similarly, 777 A € My, must fully cross at least one rectangle Ry € Rs, in
the stable direction.

Let Z; denote the index set of the family of stable manifolds comprising R;. If £ € =, set
Wea = Wen A, Since T~ is smooth on A and T—7 A fully crosses R}, in the stable direction, it
must be that 777 (W, ) is a single curve that properly crosses Ry, and so contains a stable manifold
in the family corresponding to Ry.

Let s > 0 denote the length of the shortest stable manifold in the rectangles belonging to Ry,.

Applying (4.17)), we estimate for & € =;,

/ vy = e I / Livg = e M / . vy > e Il gh=C2
We,a We,a T=3(We,a)

Next, we let D(R;) denote the smallest solid rectangle containing R;, and disintegrate . on
{We}ees, into conditional measures uﬁ and a factor measure fi, on =;. Then using the equivalence
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of the conditional measure /ﬁ with vy on ps-a.e. € € E; from (5.8]), we have

p1(A) > p (AN D(R / 15 (A) dfu(€)
> [ Gt mWew) din() > C'smCe [ Ctdpuo).
which completes the proof of the lemma due to the finiteness of Rs,. O

Our main proposition of the section is the following.
Proposition 5.12. The measure u. is the unique measure of mazrimal entropy.

Proof. Since u, is ergodic, it suffices to prove that if p is an invariant probability measure that is
singular with respect to fi., then h,(T) < hy, (T).

Recall from that with respect to the metric d defined in , T and T~! are expansive:
there exists g > 0 such that if d(T7z, T7y) < ¢¢ for all j € Z, then x = 1.

For n > 1, define Q,, to be the partition of maximal, connected components of M (with boundary
points doubled according to Convention on which 77" is continuous. By the discussion of
Section Q,, consists of elements with non-empty interior which correspond to elements of MY |
plus isolated points. Since the entropy of an atomic measure is 0, we may assume that p gives 0
mass to the isolated points, and it follows from Lemma that p, does as well. Thus the only
elements of Q,, with positive measure correspond to elements of M®, = B, UG,,. Accordingly, we
throw out the atoms in Q,, and continue to call this collection of sets by the same name.

Since p is singular with respect to i, there exists a Borel set ' C M with T~'F = F, ju,.(F) = 0,
and p(F) = 1. Our first step is to approximate F' by elements of Q,,.

Sublemma 5.13. For each n > n, there exists a finite union C, of elements of Q,, such that

—n/2 _
Jim (g4 ) (T77Cn) AF) = 0.
This is [BD) Sublemma 7.24], and its proof relies on the fact that the diameters of elements of
T-"/2(Q,) tend to 0 as n increases due to the uniform hyperbolicity of T. The invariance of F
implies in addition that

i () (Co A F) = lim (i + ) (T2C,) AF) =

By the proof of [BD, Sublemma 7.24], for each n, there exists a compact set K(n) that defines

the approximating collection C,, = T-"/2C,, C Mn/ 2/2, and satisfying C(n) ' F as n — oo. To

exp101t this approximation, we group elements @ € Qa, according to whether T7"Q C UC,, or
T-"Q N (UCy,) = 0, where UC,, denotes the union of elements of C, in M. Since we have eliminated
isolated points, if 7-"Q N (UC,) # 0, then T-"Q € M™,, is contained in an element of M //2 that
intersects K(n). Thus Q C UT"C,, = UT™/2C,,.
As noted above, the diameters of T~"Q,, tend to 0 as n — 0o, so by the expansive property

of T, since the image under T%" of each element of Qs, is simply connected, Qs, is a generating
partition for 72" for n large enough. Thus,

h(T?") = h (T, Q2n) < Hu(Qon) = — D u(@Q)log (@) -
QEQQn
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And so,
2nhy(T) = h,(T*) < Z w(Q)log 1(Q)
QEQQn
<= > p@logu(@Q) - > p(Q)log u(Q)
Qcurnin QNUT"Cn)=0

< 2 4 p(UT"C") log #(Qan N T"Cy) + (M \ (UT"C) log #(Qon \ (T7C,)),

where in the last line we have used that for p; > 0, Z —1pj <1, it holds that
N 1 N
_ijk)gp] < - + (log N) ija
Jj=1 j=1
see for example [KH], eq. (20.3.5)]. We have applied this fact with p; = 1(Q) to both sums separately.
Next, since —h,,, (T) = (,LL(UT”én) + p(M\ (UT”én))) log e~ we estimate for n > 7,
(i (T) ~ By (T)) ~ =

< u(UT™C,) log Z e 2 (M (UT™C,)) log Z e~ 2nhs

QCuUT"C, QEQ2n\(T"Cr)
5.11
( ) < ,U(Ucn) 10g ( Z 6—2nh* + Z e—?nh*>
QeGan,NT"C, Q€EBo,NT"Cr

+M(M\(UCn))10g( >oooerhep M e_Q”h*) ,

QEGQn\Tnén QGBQn\Tnén

where for the last inequality, we have used the invariance of u. By Lemma [5.10] the sums over the
two subsets of Ba, are bounded by Cp™/2. We focus on estimating the sums over the two subsets
of ng.

The following is proved in [BD, Section 7.7]: For each Q € Ga, C M%,,, there exists j, k € N,
0<j,k<n/2and E € M32n+j+k such that 777Q C E and min{diam"(E), diam®(T—2"++F)} >
2. We call such a triple (E, j, k) an admissible triple for Q € Ga,, and note that by Lemma

(5.12) pix(E) > Cs e 72ntithhs

There may be many admissible triples for a fixed ) € Ga,. Define the unique maximal triple for
@ by taking first the maximum j, then the maximum £ over all admissible triples for Q.

Denote by &, the set of maximal triples corresponding to elements of Ga,, and for (E, j, k) € &gy,
set

Am(E, j, k) = {Q € Gap : (E, j, k) is the maximal triple for Q} .
Since E € M32n+j+k and Gy, C MY, . it follows from Proposition that # Ay (F,j,k) <

Celith)hs for some C independent of (E,j,k) and n.
The following sublemma is [BD), Sublemma 7.25], which implies that if we organize our counting
according to maximal triples, we avoid unwanted redundancies.

Sublemma 5.14. If (E1,j1, k1) and (Ea, jo, ko) are distinct elements of Ean with jo > j1, then
T-02=)E N By = (.
If Q € T"C, N Ap(E, j, k), then by definition of maximal triple, T-"tE ¢ /\/ln;ik contains
T7"Q. Since j,k < n/2, T"""E is contained in an element of M" n/2 /2 that also contains 77 "Q and
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intersects K(n). Thus T__”HE C UC,, whenever T"C,,N Ay (E,j, k) # 0,and so A,,(E,j,k) C "¢,
whenever T"C,, N Ay (E, 3, k) # 0.
Using these observations together with (5.12]), we estimate

Z e—th* < Z Z 6—2nh*

QEG2,NT"Cy, (E,j,k)EE2: ECT=3C,, QEAN(E,] k)

< > Cel-2rtthh: < ) C'1u(E)
(E,j,k)EE2n: ECT=3Ch, (E,j,k)EE2: ECT=IC),

< > C' 1 (T™"HE) < C'pi(UC,) = C' 1 (UCy)

(E,j,k)€E2n:ECT™—iC,,

where we have used the invariance of u, and the constant C’ is independent of n. In the last line
we have used Sublemma [5.14] in order to sum over the elements of £, without double counting.
Similarly, since T-"*E C M \ C,, whenever T"C,, N Ap(E, j,k) = 0, the sum over Q € G, \ T"C,

in (5.11)) is bounded by C’pu.(M \ (UCy)).
Putting these estimates together with (5.11]) allows us to conclude the argument,

2n(h,(T) — hy,, (T)) — Z < u(UCy,) log (C'u*(UCn) + Cp"/z)

(M \ (UC)) log (€' (M \ (LC)) + Cp/?) .

Then since u(UC,,) — 1 and u.(UC,) — 0 as n — oo, the quantity on the right side of the inequality
tends to —oo. This forces h,(T") < hy, (T') to permit the left side to tend to —oo as well. O
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