THERMODYNAMIC FORMALISM FOR DISPERSING BILLIARDS

VIVIANE BALADI AND MARK F. DEMERS

ABSTRACT. For any finite horizon Sinai billiard map 7' on the two-torus, we find ¢, > 1 such
that for each t € (0,t¢) there exists a unique equilibrium state p; for —tlog J*T', and p¢ is T-
adapted. (In particular, the SRB measure is the unique equilibrium state for —log J“T.) We
show that u: is exponentially mixing for Holder observables, and the pressure function P(t) =
sup, {h, — [ tlog J“Tdu} is analytic on (0,t.). In addition, P(t) is strictly convex if and only if
log J“T is not p¢-a.e. cohomologous to a constant, while, if there exist ¢, # t, with p:, = pe,, then
P(t) is affine on (0,t.). An additional sparse recurrence condition gives limy o P(t) = P(0).
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2 VIVIANE BALADI AND MARK F. DEMERS

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

1.1. Set-up. A Sinai or dispersive billiard table @ on the two-torus T2 is a set Q = T2\ U?lei,
for some finite number 2 > 1 of pairwise disjoint closed domains O; (the obstacles, or scatterers)
with C? boundaries having strictly positive curvature K. (In particular, the domains are strictly
convex.) The billiard flow, also called a periodic Lorentz gas, is the motion of a point particle
traveling in @ at unit speed and undergoing specular reflections at the boundary of the scatterers.
(At a tangential — also called grazing — collision, the reflection does not change the direction of
the particle.)

We study here the associated billiard map 7" : M — M on the compact set M = 0Q x [~F, 5],
defined to be the first collision map on the boundary of (). We use the standard coordinates
x = (r,¢), where r is arclength along 00; and ¢ is the angle the post-collision trajectory makes
with the normal to 00;. Grazing collisions cause discontinuities in the map 7. We remark, however,
that since the flow is continuous, the map T is well-defined and bijective on M. There is no need
to reduce the domain to a smaller set.

For © € M, let 7(z) denote the distance from x to T'(x) (the free flight time). Set Kpax =
sup K < 00, Kmin = inf K > 0, and 7pi, = inf 7 > 0. Then [CM] the cones in R? defined by

1

1 d
c" = {(d’f’, dSD) : Kmin < flff < Kmax + 7}7 C° = {(dr, d%@) : _Kmin > df@ > —’Cmax - }

Tmin T min
are strictly invariant under DT and DT, respectively, whenever these derivatives exist.
The map T is uniformly hyperbolic, in the following sense: Let

(1.1) A=1+ 27 Kmin > 1.

Then there exists C7 > 0 such that, for all x for which DT"(x), respectively DT ~"(x), is defined,
(1.2) |DT" (x)v]| > C1A™||v]|, Yo € C¥, || DT "(z)v|| > C1A"||v|, Yv € C*®, ¥n > 0.

Let So = {(r,¢) € M : ¢ = £5} denote the set of tangential collisions on M. Then

(1.3) Sy =U4T'Sy, n€Z,

is the singularity set for 7. In other words, there exists n € Z such that DT"(x) is not defined if
and only if x belongs to the (invariant and dense, [CM, Lemma 4.55]) set of curves U,,czSy,. Let

(14) M/ = M \ UmGZ’Sm .

The spaces E%(x) and E*(x) are defined at any x € M’. Indeed, for each n > 0, let =, = Tz,
and consider v, = DT "(xy)v/||DT"(z,)v| for some v € C*. Since x € M', we have that
DT~ "(xy,) is well-defined for each n > 0. By uniform hyperbolicity, the sequence v, converges to a
vector veo. The direction of vy is E*(x). Similarly, for y € M \,;,<o Sm, consider y, = T~"y and
Up, = DT (yn)v /|| DT™ (yn)ul|, for n > 0 and w € C*. The limit of u, is E"(y).

We have [CM|, Theorem 4.66, Theorem 4.75] that Lebesgue(M'\ M) = usgp(M’'\ M) = 0, where
psrs = (2|0Q|) 7! cos p drdyp is the unique absolutely continuous invariant measure. Also, at each
x € M’', the unstable and stable Jacobians J“T'(z) and J*T'(z), with respect to arclength along
unstable, respectively stable, manifolds, are well-defined and nonzero. Note also that, if JyepT
denotes the Jacobian of T with respect to Lebesgue, then,

cos(p(x)) EoT(x) :
1.5 JrepT () = ————~—= = J"T(x) - J°T(x) - ———, Yoz € M",
(-9 L) = ooy 7T T )
where E(x) = sin(Z(E*(x), E*(x))). Thus, for any T—invariantﬂ probability measure p on M,
(1.6) it (M \ M) = 0 then / log JUT dj = —/ log J*T dys .
M M

1An probability measures in the present work are Borel measures.
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Finally, we assume that the billiard table Q) has finite horizon, i.e., the billiard flow on @ does
not have any trajectories making only tangential collisions. This implies (but is notﬂ equivalent
with) Tmax := sup7 < 00, see [BD, Remark 1.1].

1.2. Potentials and Pressure. Theorems Corollaries [1.5 The Operator L;.
Since T' admits a finite generating partition (see the beginning of Section , it follows that for
any T-invariant probability measure p, the Kolmogorov entropy h,(7T') is finite ([W), Theorem 4.10,
Theorem 4.17]).

Fix ¢ > 0. Let p be a T-invariant probability measure p. If u(M \ M') = 0, define the pressure
of p for the (so-called geometric) potential —tlog J*T by

P,(—tlog J*T) = h,(T) — t/ log J“T dy .
M

If w(M\ M') # 0, we set [,,log J*T du = oo, so that P,(—tlog J*T) = —oo if t > 0. Due to the
invariance of p, the bound (1.2]) implies that [, log J*T dp = lim, %fM log J¥T™ dp > log A,
thus the integral is either well-defined and nonnegative or infinite. It is known that

(1.7) X" = /M log J“T dpsrs = hugpg (1) € (A, 00) ,

so that Py (—log J*T) = 0 (this is the Pesin entropy formula, see e.g. [CM|, Theorem 3.42]).

For a bounded function g : M — R, we set P,(—tlog J*T + g) = P,(—tlog J*T) + [ gdu, and
we define the pressure P(t,g) of the potential —tlog J“T + g by

(1.8) P(t,g) :=sup{P,(—tlog J*T +g) : u a T-invariant probability measure }, P(t) := P(t,0).

We call p an equilibrium state for the potential —tlog J*T' + g if P, (—tlog J*T + g) = P(t, g).

The case t = 0, g = 0, corresponds to the measure of maximal entropy. Under an additional
condition of “sparse recurrence to the singularity set” (see Definition , a measure fio with
P(0) = P,,(0) was recently constructed in [BD] (uo was called f, there), shown to be mixing (in
fact, Bernoulli), to be the unique measure y satisfying P,(0) = P(0), and to satisfy the T-adapted
condition below. The speed of mixing of 1 is not known.)

For t = 1, we mentioned above that P, (—logJ"T) = 0. In addition, pgsrg is T-adapted
and, for any T-invariant probability measure p giving small enough weight to neighbourhoods of
singularity sets [KS, Part IV, Theorem 1.1], the Ruelle inequality P,(—logJ“T) < 0 holds. The
measure jggp is mixing, in fact, correlations for Holder observables decay exponentially [Y].

For ¢ in a small intervaﬂ around 1, [CWZ] established the existence of equilibrium states for the
potential —tlog J*T using a Young tower construction with exponential tails, proving that these
measures are exponentially mixing on Holder observables and are unique in the class of measures
that lift to the Young tower.

We establish a thermodynamic formalism for Sinai billiards for ¢ € (0, ¢,), with ¢, > 1 defined by

(1.9) ty = sup{t>0:At<eP(t)}:sup{t>O:t>—1§g(?x} :

(That t, > 1 follows since A > 1 from , while P(t) > 0 for t < 1.) The definition of ¢, can be
viewed as a pressure gap condition, controlling by P(t) the contribution from pieces that constantly
get cut by the singularities. In particular, for any ¢t < t., we mayﬂ choose § € (A=%,1) in the
one-step expansion Lemma so that 0t < e’®) This complexity bound permits us to prove the
required growth lemmas essential to our analysis. Our first main result is the following theorem:

2We need the stronger condition e.g. in the proof of Proposition

3The interval depends on the exponential rate of return (itself close to 1) to the Young tower coupling magnet.

Ut is in fact enough to require there that 8* < e™=®.
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Theorem 1.1 (Thermodynamic Formalism for Sinai Billiards). For each t € (0,t.), the potential
—tlog JUT admits a unique equilibrium state py. The measure py is mizring, gives positive mass to
any nonempty open set, and does not have atoms. Moreover, u; is T-adapted, that zzﬂ

(1.10) /|logd(az,8i1)]dut <.

In addition, py has exponential decay of correlations for Hélder observables. Finally, if T satisfies
the sparse recurrence condition then limy o P(t) = P(0).

We prove Theorem for t € (0,t,) in three steps:

e First, we introduce in Section an equivalent (topological) expression Py (t) for P(t),
generalising what was done in [BD] for ¢ = 0, and we show that Py (t) is convex and strictly
decreasing (Proposition [2.5)), and that P(t) < Py(t) (Proposition [2.3)), for all ¢ > 0.

e Next, for t € (0,t,), we prove the following properties for the transfer operator

_ for?
B |JST‘1—t oT-1

acting on an anisotropic Banackﬁ space B (Theorem |4.1)): The operator £; has spectral radius
e essential spectral radius strictly smaller than e™(®) and the maximal eigenvectors
of £; and its dual give rise to a T-invariant probability measure p;. In addition, £; has a
spectral gap on B, so that u; is exponentially mixing on Holder observables.

e Finally, in Section [5, still for ¢ € (0,t,), we show that P, (—tlogJ“T) = Pi(t) , so that
P(t) = P.(t) Corollary as well as the remaining claims about z;: in particular that j is
the unique equilibrium state among all T-invariant Borel probability measures realising the
variational principle P(t) = P.(t) (Theorem [2.4), and that sparse recurrence implies that
P(t) tends to P(0) as ¢ | 0 (Proposition [5.5). Our proof of uniqueness also gives a more
general variational principle, P(t,g) = Pi(t,g), Theorem [5.8

(1.11) Lif

We use the Banach spaces B introduced in [DZ2], except that we work with (exact) stable
manifolds W* (as in [BD]) instead of cone stable curves W* (see Section. More importantly, we
must tune the parameters used to define B = B(tg, 1) in Section [4.1] to an interval [tg,¢1] C (0, t4)
containing t. In particular, the decay rate k™7 defining the homogeneity strips in [DZ2] was
q = 2, while we need to assume gt > 1 here (due to (3.2)). Also, we need to let the parameter p
used in the definition of the strong stable norm tend to infinity when ¢ — ¢, (see Lemma .
It follows that our bound for the essential spectral radius of £, on B(tg,t1) deteriorates as tg — 0
or t1 — ti, and we lose the spectral gap in both limits.

The keys to the proof of the spectral Theorem are the delicate growth lemmas given in Sect.
To prove these growth lemmas, subtle modifications of the fundamental ideas of Chernov [CM] and
of the original techniques introduced in [DZ1], BD] were necessary. In particular, the analysis for
t > 1 required a new bootstrap argument (see the beginning of Sect. [3| and Sect. and .

In Section [6], a more careful study of the operator £; yields our second main result:

Theorem 1.2 (Strict Convexity). The function t — P(t) is analytic on (0,t.), with

(1.12) P'(t) = /log J*T dpy = —/log JUT dpy < 0,

and

(1.13) P(t) =) [ / (log J*T o T*) log J*T dp; — (P'(t))?| > 0.
k>0

5The T-adapted property appears in particular in the work of Lima—Matheus [LM].
6We attract the reader’s attention to Lemmashowing L:(C") C B, which furnishes the proof of [BD| Lemma 4.9],
which had been omitted there, see Remark
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Moreover, P"(t) = 0 if and only if log J°T = f — foT + [log J*T dyy (1t a-e.) for some f € L?(uy).
Finally, both t — [log J“T dps and t — hy, are decreasing functions of t.
The formula for P’(¢) in (1.12)) implies that, if there exist ¢, # t in [0, ) such that p, = ps,,

then P(t) is not strictly convex: indeed, P’(t) is constant on [t,,tp]. By analyticity, we then deduce
that P(t) must be affine on (0, t,). Therefore, we get an immediate corollary of Theorem

Corollary 1.3. If there exist to, # t, in (0,ts) such that p, = p, then P(t) is affine on (0,ty),
and log J°T is p; a.e. cohomologous to its average [log J*T dyy; for all t € (0,t).

We expect that there does not exist any Sinai billiard table such that log J*T" is us a.e. coho-
mologous to a constant on M’ for some t € [0,t,). If we only want to verify that puoy # p1 = psrs,
it is enough to show that P”(1) # 0. Note that in [BD|, assuming sparse recurrence (see Defini-
tion, we showed that g = psrp (i-e., o = p1) only if % log | det(DT~P|gs(x))| = P(0) for every
nongrazing periodic orbit 7 (z) = x.

The proof of analyticity of P(t) via analyticity of £; in Theorem gives:

Corollary 1.4 (Uniform Rates of Mixing). The exponential rate of mizing of y; for C* observables
is uniformly bounded away from 1 in any compact subinterval of (0,t.).

In addition, the proof of the claim on P”(t) = 0 in Theorem givesﬂ
Corollary 1.5 (Central Limit Theorem). For anyt € (0,t.) such that P"(t) # 0, setting x; := P'(t)

and oy := P"(t), we have limy_,, Mt(ﬁ Z?;&(log JT —xt)oTV < z) = \/2;7% 2 e~/ (297) gy |
for any z € R.

To end this section, we motivate heuristically the choice of the weight 1/[J*T|'~* in (1.11]), by
analogy with the theory for smooth hyperbolic T'. For a transitive Anosov diffeomorphism 7', the
transfer operator whose maximal left and right eigenvectors on an anisotropic Banach space give
rise to py is Le(f) = (f/(|JYT|*J*T)) o T~ (see [GL] or [Ba, Chapter 7]). A coboundary argument,
reflecting the fact that C' functions are interpreted as distributions via integration with respect to
the SRB measure psgps = (2|0Q]) ! cos ¢ drdp here (see below Proposition , but with respect
to Lebesgue in [GL, Ba], will replace 1/(|J*T|*J*T) by 1/|J5T|'~*: Indeed, gives (on M’)

—log (|J*“T|'J*T) = —log | J*TJ*T|" — log | J*T|*~*

FE cosy
1.14 = —tl —_
(1.14) Og<(Ecos<,0)oT

The first term of (1.14)) is a coboundary. Thus the operators £; and £; from (I.11]) have isomorphic
spectral data.

> —(1—1t)log J°T .

2. TOPOLOGICAL FORMULATION P, (t,g) FOR P(t,g). VARIATIONAL PRINCIPLE (THEOREM [2.4])

2.1. Hyperbolicity and Distortion. W?, W\S, Wrr, W\ﬁl Families M" , Mﬁ,fl For n > 0,
following [BD], define M2 to be the set of maximal connected components of M \ S,,, and M, to
be the maximal connected components of M \ S_,,. Set M™, = M°, \/ M. Note that if A € Mg,

then TFA e Mﬁ;k for each 0 < k < n, and T*A is a union of elements of Mgk for each k > n.
To control distortion, we introduce homogeneity strips whose spacing depends on ty € (0,1) if
t > to. Chooseﬁ q = q(tp) > 1 such that gty > 2. For fixed ky € N define

(2.1) Hk:{(r,gp)eM:(k;+1)_q§g—gp<k:_q}, for k > ko,

Our approach gives other limit theorems (large deviation estimates, invariance principles, see [DZ1], Sect. 6]).
8The standard choice for ¢ = 1 is q=2.
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and similarly H_j is defined approaching ¢ = —n/2. A connected component of Hy, for some
|k| > ko, or of the set Ho = {(r,¢) : kg ! < min{5 — ¢, —F — ¢}} is called a homogeneity strip.
We let H denote the partition of M into homogeneity strips. Let Sgﬂ =S5y U (U| k|>ko OH},) and, for
n €7, let S = OTzSO denote the extended singularity set for T".

leﬂ do € (0, 1) Let W?* denote the set of all nontrivial connected subsets W of local stable
manifolds of T of length at most dy. Such curves have curvature bounded above by a fixed constant
[CM|, Prop 4.29], and T-"W?* = W? for all n > 1, up to subdivision of curves according to the
length scale dg. Let Wy C W?* denote the set of nontrivial connected subsets W of elements of WW?*
with the property that T"™W belongs to a single homogeneity strip for each n > 0. Such curves are
calledlﬂ homogeneous stable manifolds.

We call a C% curve W C M (cone) stable if at each point = in W, the tangent vector T,W to
W lies in C*. We denote by W the set of (cone) stable curves with second derivative bounded by
a constant chosen sufficiently large ([CM| Prop 4. 29]) so that T-"W$ C W for all n > 1, up to
subdivision of curves according to dy. Finally, WH C W is the set of elements of W* contained in
a single homogeneity strip, while W}, is the set of elements of ¥V* that are contained in a single
homogeneity strip. Such curves are called weakly homogeneous (cone) stable curves and stable
manifolds, respectlvely Obviously, Wy C Wg C W* C W+ and Wi C WH

For every W € WS, let C1(W) denote the space of C! functions on W, and for every n € (0,1)
let C"(W) denote the closurd''| of C*(W) for the n-Holder norm defined by

) o @ =)
(2.2) Wlenow) = sup ] + Hy, (), Hy (1) —;%I;V Az
7Y

The following lemma extends standard distortion bounds for homogeneous curves to all exponents
t > 0. (See Lemma for a further generalisation.)

Lemma 2.1. There exists 50 >0 and Cyg > 0, dependmg on ko and q, such that for all 5y < &g, all

n >0, and any W € T~ "W such that T'W € WH for each i =0,. — 1, we have
| Jw T ()| t 1 1
1— —| < 2°Cyd(z,y Na+1) Ve, ye W, VvVt >0,
I )

where JyT"(x) = |det(DT}'|T,W)| denotes the Jacobian of T™ along W.

Proof. There exists Cy < oo, independent of y, but depending on ky and ¢ such that

JwT" ()
JwT™(y)
(For ¢ = 2, see e.g. [CM|, Lemma 5.27] or [DZ1, App. A]. The proofs there give (2.3)) for all ¢ > 1.)

For ¢t < 1, the estimate is an immediate consequence of (2.3)), since for all A > 0, we have
|1 — A?| < |1 — A|. Now choose g such that C’dgé/(qﬂ) < 3/4. Then, for t > 1, we set A = JwL"(®)

(2.3) ‘1 — < Cdd(x,y)l/(QH) , Vz,y e W, VW as in the lemma.

2 JwTm(y)
By (2.3)), this implies that 1/4 < A < 2if y < §p. For A in this range, we have, again using (2.3)),
that |1 — A?| < 281 — A| < 28Cyd(z,y)"/ (@D, 0

9The index ko = ko(to,t1) and the length scale dg = do(to,t1) < 1 will be chosen in Definition

101y [CM], these curves are called H-manifolds. This strong notion of homogeneity is needed to prove Holder
continuity of the conditional densities of the SRB measure decomposed along stable manifolds — needed to get valid
test functions for our spaces — using the asymptotic limit of the ratio of stable Jacobians, forward iterates must be
contained in a single homogeneity strip (so that the ration remains bounded).

11Using the closure of C'* will give injectivity of the inclusion of the strong space in the weak one in Proposition
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Next, recalling that S,IEI = U;fOTngﬂ, define for n > 1,

MS’H = maximal connected components of M \ (T‘"Sg U SEI_l) ,
(2.4) M = maximal connected components of M \ (80 U T(SEH(n_l)D ,

ME= MO MPT k> 1
We comment on the use of S in ([2:4). First notice (just like for the sets M", defined in the
beginning of this subsection) that if A € MS’H, then TFA e Mﬁ;kH for each 0 < k <n, and T"A
is a union of elements of MO H for each k > n. Next, if W € W\ﬁ is such that V' = T~'W is a single

curve, then Jyy T~ (z) =~ 1/ cos go(T L) while JyT(y) ~ cos p(y). Thus by (2.3), the definitions in

4]) guarantee that for any W € WH such that W c 4 € M” H , the Jacobian Jy/T~" has bounded
dlstortlon on W, while Jp—ny/T™ has bounded distortion on T ”W (which is contained in a single

element of MS’H).
We shall also need the following distortion bound.

Lemma 2.2 (Distortion Relative to MO’E). There exists C' > 0 such that for all n > 1, for all
U,V € Wy such that U,V € Ae M2, and all]u e U\ S_p, v € V\ S,

JyT—" (u)

R AP
JvT_”(v) ¢

‘log

The bound above is more general (and weaker) than the usual distortion bound along stable
curves given by (12.3)) or between stable curves given by [CM, Theorem 5.42] (or more generally

[DZ1l, Appendix A]) since we do not assume that the points u, v in A, with A € MQE, lie on the
same stable or unstable curve.

Proof. Let n>1, u € U, v €V, be as in the statement of the lemma. Define u; = T *u, vZ T
for ¢ = 0,...,n, and notice that wu;,v; belong to the closure of the same element of MEH Tpais BY
the uniform hyperbolicity of T, for ¢+ = 0,...,n, if A € MZE_H, then diam“(A4) < CA™* and
diam®(A) < CA~"* where diam*(B) is the maximum length of an unstable curve in B, and
diam?®(B) is the maximum length of a stable curve in B. Thus, due to the uniform transversality
of C% and C%, we have

(2.5) d(us,v;) < Cmax{A~", A7},

By the time-reversal of [CM| eq. (5.24)], we have that

cos p(u;) + 7(uir1) (K(ui) — V(i) +log 1+ V(uit1)?

2.6 log Jy. T~ (w;) =1
(20) o Jud () = o cos (1) T VP

)

where V(u;) = %‘;’(ui) < 0 is the slope of the tangent line to U; at u;. Summing over 7, the last term
above telescopes and the sum is uniformly bounded away from 0 and oo, giving,

log 22T ") ( ’10 cos p(ui) + 7(uir1) (K(ui) — V(ui))
JyT—n cos @(v;) + 7(vig1) (K(vi) — V(vi))
Since wu;y1, vi4+1 lie in the same homogenelty strip for each i, using (2.1)) we have

log S8 P(Vit1)
cos p(u;+1)

g LO5% (vit1)
® cos p(uisr)

(2.7)

C‘So(ul-i-l) — QD(UZ'+1)| < Cd

1/(g+1)
cos p(uir1)

(2.8)

(tig1,Vig1)

1277 denotes the closure of U in M. The distortion bounds on U and V' extend trivially to the boundaries of
homogeneity strips, but not to real singularity lines, hence U \ S—_,.
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Next, the terms in the second set on the right-hand side of ([2.7)) are bounded and the denominator
in the expression is at least Tyinmin > 0. Moreover, K is differentiable while 7 is 1/2-Holder
continuousﬁ Thus following [CM, eq. (5.26)], we have

n—1 n—1

cos () + 7(uit1) (K(u;) — V(wi)) ' 1/2
g %8 cos (i) + T(vi) (K(v;) = V(v;)) | = ; (ti41,0i11) (i, vi) + AV
where AV; = V(u;) — V(v;). By (2.5), the sums over all terms in (2.7) involving d(u;, v;) are
uniformly bounded in n. It remains to estimate 3" |[AV;]. By [CM, eq. (5.29)] and (2.5), we
bound |AV;| by

C(1AVOIAT + 3 AT d(uij, v )/?) < CAWIAT + 30 AT (A2 4 A=z
§=0 j=0
< C(|AVO AT+ AT2 4 ACTH/2),
Summing over ¢ completes the proof of the lemma. O
2.2. Topological Formulation P, (t,g) of the Pressure P(t,g). Theorem In view of
our proof of uniqueness in (which uses differentiability of the pressure), for a C! function

g: M — Rand n > 1, we set Sp,g = ?:_01 g o T!. The hyperbolicity of T implies the following
distortion bounds: There exists C, < oo such that for all n > 1

(2.9) |39 =Sna) _ 1| < C,|Vg|co d(z,y), YW € W? such that T'W € W, V0 <i<n.
Recalling (1.4), we define (aside from we only need g = 0),

(2.10) Qu(t,g)= Y sup |JT"(2)|"e5 9 | Qu(t) = Qn(t,0), n>1,
AEMSL’H CEEAHM/
and
1
(2.11) P.(t,g) = lizr;s;p . log Qn(t,g), Pi(t) := Pi(t,0).

We will show the following result in Section [2.3
Proposition 2.3 (Topological Pressure). For allt > 0 and g € C', we have{ﬂ P(t,g) < Pi(t,9g).
For t, > 1 given by (|1.9]), the analysis carried out in Sections 3-5 will yield:

Theorem 2.4 ((StrongEI) Variational Principle). Ift € (0,ty), then P.(t) = P(t) and the supremum
is attained at the unique invariant measure p; from Theorem [1.1].

Proof. This follows from Proposition Theorem Corollary and Proposition O
Theorem will give the generalisation of the above strong form of the variational principle to
P(t,g) = Pi(t, g) for suitable g.
We first establish basic properties of Py(t, g):

Proposition 2.5. For each t > 0 and g € C! the limsup (2.11)) defining P.(t,g) is a limit in
(—00,00). The function t — Py(t,g) is convex and strictly decreasing on (0, 00).

Remark 2.6. It is not hard to show, using Lemma that for each t > 0, there exists Cp > 0
such that Qy(t) < C% 2 aeprr infreann |JST™(z)|* for all n > 1, so that replacing the supremum
0
by an infimum in the definition of Q,(t) does not change the value of Pi(t).
13We cannot take advantage of the smoother bounds on 7 given by [CM eq. (5.28)] since our points u; and v;
may lie on different stable or unstable manifolds.

MRecall our convention that fM log J*T dp = oo if u(M\ M') > 0.
1E’By "strong" we mean that the supremum is a maximum, and it is attained at a unique measure.
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Proof of Proposition [2.5. We first set g = 0. The partition M} is finite, and each element of M}
is subdivided by curves in S§' to comprise a union of elements of /\/l(l)’H, according to (2.4]). Thus,

Q1(t) = Z sup |JS r)t<C Z Z sup|cosg0 )|t§C#MéZk_qt,

AGM mrEANM EEMl k>ko z€Hy k>ko

and the sum converges since gt > 2 > 1. We next show that @,,(t) is submultiplicative:

Quis®)= > 3 sup [J T ()|

zeBNM'
AeMPE BempTRE

BCA
(2.12) < > sup [Ty > sup |JSTH(T"z)|, Vhk,n > 1.
AeMn,lHI yGAﬁM/ BGMn+k H xeBNM’
’ BCA

Notice that if B,B’ C A € MEL’ are distinct elements of M”+kH then T"B,T"B’ € M’iﬁ‘f =
M%H \/MIS’H are both contained in T"A € MQE and so must lie in distinct elements of Mg’H
Thus the inner sum in is bounded by Q(t) for each A, and the outer sum is bounded by @, (¢),
proving submultiplicativity. If g # 0, it is easy to see that we also have Q1 x(t, 9) < Qn(t,9)Qk(t, g9).
Therefore, since Q1(t, g) < oo, the sequence in converges to a limit in [—o0, 00).

To see that P, (t,g) > —o0, let x), be a periodic point of period p with no tangential collisionsm
and let x,, denote the negative Lyapunov exponent of x,,. Then, Qny(t, g) > [J*T"P ()| eSmra(@r) =
e"PXp ¢"p9(0) and so Py(t,g) > txzjespg(wp) > —o0.

To prove convexity, pick ¢,#' > 0 and « € [0,1]. Then using the Holder inequality,

Qulat+ (1 —a)t,g)= Y sup [JTn[tH1-0) casng(@)o(1=a)Sng(a)

Ac ./\/ln HTEANM’
< ( Z sup ]JST”]teS”g(“T))a( Z sup |JST"|t,€S"g($))1_a = Qn(t,9)*Qn(t', 9)' .
AhnE z€ANM’ AhnE r€ANM’

Taking logarithms, dividing by n, and letting n — oo proves convexity.
Next, fixing t > 0 and applying (1.2)), we find for s > 0,

Qu(t+s,9)= >, sup [JT"*e590) < CroA™Qu(t,g),
AEMS’H reANM’

so that Py (t + s,9) < Pi(t,g9) — slog A, that is, P.(t,g) is strictly decreasing in ¢. O

2.3. Proof that P,(t,g) > P(t,g) (Proposition [2.3). If Q is a partition of M we let Int Q
denote the set of interiors of elements of Q. In [BD|, we worked with P, the (finite) partition of
M into maximal connected sets on which 7" and T~! are continuous, noticing that the set Int P
coincides with M1, while the refinements P", = \/I_, T~P may also contain isolated points if
three or more scatterers have a common tangential trajectory (see [BDL Fig.1]). (Note that P is
a set-theoretical partition: zero measure sets do not need to be ignored.) We also observed that
P is a generator for any T-invariant Borel probability measure u, since \/5°__ TP separateﬂ
points in the compact metric space M: if 2 # y there exists k € Z such that T%(z) and T%(z2) lie
in different elements of P. Let P be the partition of M into maximal connected sets on which T
is continuous. Then P = P \/ T(P), so P is also a generator for T. We have Int P = M}. More
generally, Int (\/}—J T7%P) = M} for n > 1.

163yuch a periodic point always exists. For example, since two adjacent scatterers are in convex opposition, there
is a period 2 orbit whose trajectory is normal to both scatteres.

1Ty fact, all points  # y may be separated while the definition of a generator in [Pal allows a zero measure set of
pathological pairs.
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Proof of Proposition 2.3, If a T-invariant probability measure p gives positive weight to M’ or, more
generally, if [,,log J*T dp = oo, then P,(t,g) = —o0, so P,(t,g) < Pi(t,g). We can thus assume
without loss of generality that p is a T-invariant probability measure with [,,log J*T dp < oo, in
particular p(S,) = 0 for each n € Z. Then

n—1
(2.13) Hy, (\/ T"“P> = H,(Mg),
k=0
since the boundary of any element of \/Z;é TP is contained in S,.

Since P is a generator, we have h,(T) = h,(T,P) for any T-invariant probability measure y on
M (see e.g. [W], Theorem 4.17]). Then, using (1.6]), we find, adapting the classical argument (see
e.g. [W), Prop 9.10]), that

— 1 n—1 _ 1 n—1
h, (T, P) —t/ log JUT dp = lim —H, (\/ T‘k73> + lim 7/ t> log J°T o TF dy
M

< lim 1( > u(A)[—logpu(A) + sup tlogJST"D
ANM’

n—oo n, AGMBL
1 APAYAGL 1
< lim — Z 1(A)log SUP A | | < lim —log Z sup |JT™|,
n—oo n, P M(A) n—oo n Py ANM

where we used in the second line, and the convexity of the logarithm in the third line.
Finally, notice that each element of M{ is a union of elements of Mg’H, modulo the boundaries
of homogeneity strips. But since the distortion bound Lemma extends to the boundaries of
homogeneity strips, we have

sup [JST"|' = sup sup |JT"|' < Z sup [J5T™|,

4 JH / ’
ANM Bempt BNM BeMoE BNM
BCA BCA

for each A € Mf. Using this bound in the previous estimate and applying Proposition [2.5 implies
hu(T) —t [ log JUT dp < Py(t) for every T-invariant probability measure p.
If g # 0, we may write

B . ) 1 n—1 B _ ) 1 s
hu(T,P)+/(tlogJ T+g)du:n1LHgOﬁHu (k\:/OT k73> +T}L120ﬁ/5n(tlogJ T +g)dp

1
< lim —log Z sup |JST"|te 9

— n—oo n AEMS’ ANM!

and this last expression is bounded by Pi(t,g) by the same reasoning as above, using that the

analogue of Lemma holds for e979: Recalling (2.9), for all n > 0, all A € MS’H, and z,y € A,
since the diameter of 7" A is bounded by ([2.5)),

(2.14) eSn9@=5n9W) <1 4 C'C, - |Vglco .

3. GROWTH LEMMAS

In this section, after preliminaries in introducing in particular the contraction rate 6 and
sets G, (W) appearing when iterating the transfer operator L;, we prove a series of growth and
complexity lemmas which will allow us to control the sums over G,, (W) for W € Ws. This culminates
in the lower bound of Proposition which implies exact exponential growth (Proposition |3.15))
of Qn(t,g). (This exact exponential growth is essential to control the peripheral spectrum of £;.)
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Since J*T is not bounded away from zero, we shall use different strategies for ¢t € (0, 1] and ¢ > 1.
Several important growth lemmas are proved for ¢ € (0, 1] in Sections and We then use the
results for ¢ < 1 to bootstrap an analogous set of lemmas for ¢ > 1 in Sections [3.4] [3.5] and [3.6]

3.1. One-Step Expansion: 6(¢1). Choice of ¢(to), ko(to,t1), do(to,t1). Gn(W), I,(W). We
begin by proving an adaptation of the one-step expansion (see e.g. [CM|, Lemma 5.56]) for our
choice of potential and homogeneity strips. Using the notation from , recall t, > 1 from ,
and the adapted metric from [CM| Section 5.10]:

V142
Lemma 3.1 (One-Step Expansion). For t; € (1,t.), ﬁ 0 e (Afl,Ail/Q) such that Ot < eP=(t1)
Then for each tog € (0,1) and q > 2/to, there exist ko(to,t1,q) > 1 and do(to,t1,q) > 0 such that

(3.1) S Tleo,y . <0, YW € W* with |W] < by, ¥t > 1o,

[l =

where the V; range over the mam’ma connected weakly (q, /;:0)—h0mogeneou5 components of T~'W,
and |Jv;T|cow;) « denotes the mazimum on V; of the Jacobian of T along V; for the metric || - ||

Proof. Note that |Jy;T|cov;) . < A™" and, if V; C Hy, then |Jy,T|coy;) . < Ck™? for some C > 0

[CM, eq. (5.36)]. There exists 6 > 0 such that if W € W* with |W| < §, then T~*W has at most
% + 1 connected components, and all but at most one component experience nearly tangential
collisions (see [CM), Sect. 5.10]). o

For tg € (0,1) and g > 2/tg, choose ko = ko(to,t1,q) such that
(3.2) At 4 Tmax ™ glog—ato < p~fo . Tmax oo ot i

Tmin k>Fo Tmin

For all W € W*, we have |[T~1W| < C’'|W|Y/2 [CM, Exercise 4.50] for some ¢’ > 0 independent of
W. Next, choose dg(to,t1) so small that 0'53/2 < ky?, so that if [WW] < |dp|, then each component
of T7'W making a nearly tangential collision lies in a union of homogeneity strips Hj, for k > k.

Then if |VV_| < dg, the quantity Z_i |Jv, T |t000 (Vi) is bounded by the left-hand side of (3.2)), proving
(3.1) for t = to. Finally, for all ¢ > o,

(3.3) sup Z |JVZ-T’tCO(Vi),* < At sup Z |J‘4T‘£COO(V;),* < A tHoglo < gt
wews i Wews i
[W1[<do(to) [W <80 (o)

O
We now choose the parameters defining Ws, Wfﬂ and W#, Wy depending on tg € (0,1), t1 € (1,t4):
Definition 3.2. Given to € (0,1), t1 € (1,t.), we fiz q(to) > 1 such that qto/2 > 2, and fix

0 =0(t1), ko = ko(to, t1,q) = ko(%2,t1,4), 6o = do(to, t1,q) == d0(%¢, t1,q) as in Lemmal[3.1 Reduce

1
S0 if needed so that Cydi*" < 3/4, with Cq from (2.3). This choice of (to,t1), 0, q, do, and ko
determines the set of stable curves W, Wy and stable manifolds W?*, Wy.

Our proofs use sets G, (W), Z,,(W) associated with dy and kg, and, for § < &y, also G (W), Z3(W):
For W € W#, we let G1(WW) denote the maximal, weakly homogeneous, connected components of
T~'W, with long pieces subdivided to have length between d/2 and &y. Inductively, we deﬁnﬂ

18This is possible by definition of ¢, and Proposition It implies 8% < e™® for ¢t < ¢; since P, (t) is decreasing.
Dy is not necessarily weakly homogeneous, but each V; is, using parameters g and ko for the homogeneity strips.
20This definition of G, (W) is as in [DZI], [DZ2], but different from [BD] where homogeneity was not required.
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Gn(W) = Uw,eg,_.w)G1(W;). Thus G,(W) is the countable collection of subcurves of T7"W
subdivided according to the extended singularity set S, and T7(V) is weakly homogeneous for all
0<j<n-—1landall Ve G,(W),in particular G,(W) C VV\]I‘?H For each n > 1, let L, (W) denote
the elements of G, (W) whose length is at least do/3. Let Z,,(WW) denote those elements W; € G, (W)
such that TFW; is never contained in an element of L,_,(W) for all k =0,...,n — 1.

Finally, for § < &g, define G2 (W) like G,(W), but subdividing long pieces into pieces of length
between §/2 and §. Similarly, denote by L (W) those elements of GJ(W) having length at least
§/3, and by Z2(W) those elements W; € GS(W) such that T*W; has never been contained in an
element of LS , (W) forall k =0,...,n — 1.

3.2. Initial Lemmas for all ¢ > 0. We start with two easy lemmas. (In the present paper, the
parameter ¢ appearing in Lemmas and will be zero or 1/p, for p > ¢+ 1 chosen in (4.1)).)

Lemma 3.3. Firtg € (0,1). There exists Co = Co(tg) > 0 such that for all g € C°, every t > to,
all ty € (1,ty), and all 0 < ¢ < 2;:;(? if tg <2, all0<¢<1ifty>2, we have

[Wil* _ —
(34) Z |V[;|< |JWzTn’tC'O(WZ)|esng’CO(W2) S C()Hn(t §)en|g|00 , VW S WS’ vn Z 1.
W, €T, (W)
Proof. The case ¢ =0, g = 0 can be proved by induction on n using (3.1)), since elements of Z,, (W)
have been short at each intermediate step. This is the same as in [DZ1, Lemma 3.1] (the exponent

t changes nothing), and th constant C([fzo] comes from switching from the metric induced by the
adapted norm || - ||+ to the standard Euclidean norm at the last step.

For ¢ > 0, g = 0, we use a Holder inequality,

L —— Wil ‘ as
2 el Ty <20 qppl T esony > wiT ey )
Wi€Zn (W) Wi€Zn (W) Wi€Zn (W)

Since [Jw,T'|cogw,) < ecd% by , the first sum is bounded by e“S. Then, since f;_z > %0,
Definition and Lemma for tg = to/2, together with the case ¢ = 0, imply the second sum
is bounded by (C([]CZO])I_CH”@_Q. This completes the proof of the lemma in the case g = 0. For
nonzero g, use ‘€S”g|CO(WZ,) < e"ldlco for all W; to bootstrap from the bound for g = 0. O
Lemma 3.4. Firtg € (0,1) and t; € (1,t4). Let t; > tg. There exists Cy = Cs(to,t1,t1) > 0 such
that, for all g € C° and all s € [0, 1], we have

(3.5) 3 (Wil

erg”n(w) |W|<

|JWzTn’tC+0§(WZ)|esng’CO(W1) <Oy Qn(tag) , VIV € W\S ,Vn>1, Vte [t07£1] :

Proof. The case ¢ = 0 and g = 0 is trivial since by definition each W; € G, (W) is contained in
a single element of MS’H. Since there can be at most 2/dy elements of G, (W) in one element of
MS’H (with 8o = 8o (to, 1) from Definition [3.2), the lemma holds with C5[0] = 2(50_16{10, where C
is from Lemma (recall also footnote (21))). Next, for ¢ > 0 and g = 0, notice that by ,

Cade" " |

1/(q+1)
(Will Jw, T cow,y < 4% |T"W;| < e

. . 1/(q+1) .
so that the sum for ¢ > 0 is bounded by the sum for ¢ = 0 times % BT g # 0, then again

using Lemma [2.2| on each W;, we have

| Tw, T o wy | €5 coqwsy < €€ sup || J5T™|'e9],
W;nM'’

and the required bound follows with Cy = Cy [()]eccdéé/ (a+t) -

21 The sets V/\\/S and Z, (W) become smaller if ¢; is larger; while 6 increases if 1 is larger, this does not affect Cp.
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3.3. Growth Lemmas for t € (0,1]. In this section, we prove two growth and complexity lemmas
for t € (0,1]. The first one shows that we can make the contribution from the sum over short pieces
small compared to the sum over all pieces in G, (W) by choosing a small length scale.

Lemma 3.5. Let tg € (0,1) and t1 € (1,t.). For any e > 0, there exist 61 > 0 and n; > 1 such
that for all W € W? with |[W| > 61/3, all n > nq, and all g € CV with

(3.6) 2glco < —tologh, ie. eldloopio/2 <1
we have
Z \JWZ.T"FCO(WZ,)\eS"QICO(Wi) <e Z ‘JWiTn’tCo(Wi)‘65"9’00(‘/[/2.) , Vt e [t(), 1] .
Wiegdt (W) W,eG3L (W)
|Wi‘<(51/3

In particular, taking ¢ = 1/4 gives 1 < &g and ny > 1 such that for all n > ny, for all g € C°
satisfying (3.6), for all W € W?* with |W| > 61/3, we have

(3.7) Yoo W T oownle™ ooy =5 D IwT eyl gleogw, » VE € [to, 1]
WieL (W) Wiednt (W)

Proof. Let ¢ > 0 and choose € > 0 so that 6C; '&/(1 — &) < ¢ (where Cy is from (1.2)). Next,
choose ny such that Cpftm A~ (-1 <z (where Cp is from Lemma for ¢ = 0). Recalling again
that [T-1U| < C|U|Y/2 for any U € W*, we may choose 6, > 0 such that, if |U| < 8, then each
homogeneous connected component of T~ "U has length shorter than dy for each n < 2ny. Then
using Lemma With ¢ =0,if U € W* with |U]| < 6y,

(3.8) Yo T o,y < Cof™,  for all n < 2ny.
W;€Gn(U)

Now for n > nq, write n = kny + /£, for some 0 < /¢ < nq. Let W € W* with |W| > 61/3. Looking
only at times mni, m =0,...,k — 1, we group elements W; € G, (W) with |W;| < 61/3 according
to the largest m such that T¢*—mm+yy, Vi € L%nl(W). This is similar to usin the most
recent long ancestor, except that we only look at times that are multiples of ny. We denote by
f?kfm)mH(Vj) the set of W; € G, (W) identified with V; € Lfﬁk(W) in this way. Since |W| > §;/3,
every element of GJ'(TW) must have a long ancestor.

Note that since T*=")m+Y; is contained in an element of G, (W) that is shorter than d; /3
for m’ < m, we may apply inductively k£ — m times. Thus,

k—1
t t k— +4t
Zg |JWiTn|CO(Wi) < Z_O (;Z |J‘/1Tmn1|00(\/j) ) Z |JWiT( m)ny ‘CO(WI-)

k—1
< Z Z ‘ijTmnl ’tCO(Vj)COthl(k:—m) ]

= §
m=0y e, (W)

Next, notice that for t € (0,1], V € W and each k > 1, using Vi=> W) \TF (W),

Wieggl
(3.9) Yoo 1w T ey = > |JWiTk|CO(W,‘)|JWiTk|15)1(Wi)

Wieg’ (V) Wied, (V)

22The most recent long ancestor for W; € G, (W) corresponds to the maximal m < n such that T7"~™W,; C V; and
Vi € Ly, (W), not to be confused with the first long ancestor, see (4.15).
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kv
> ClAk(l—t) Z |j|jWVTZ| > ClAk(l_t)‘VMl_l .
WG (V) !

Also note that by the proof of Lemma [2.1] we have

supew, [Jw, T" ()"
inf cw, [Jw, T (y)[*

(3.10) <1+ Cyot/ Tt <9,

since t < 1. Putting these estimates together, we obtain,

Z ‘JWiTnPCO(Wi)
WiGQil w)
[Wil<d1/3

Yo 1w T oo
Wiegil w)

92 Z |JVJ T ‘tCO(V})COQtnl (k—m)
Vi€Lpkn, (W)

k—1
<>
m=0

t k— +4|t
Yo T oo, > [, T8 o
‘/JELfr%nl(W) Wieg?]i—m)nl-&-i(‘/j)

9 Z |JVijn1 |tCo(vj)000tn1(k—m)

- ’“i VieLll, (W)
o O T ey, Cr AT mIm Gy 5
V€L, (W)
k—1 —
(3.11) <6C;1 Y <60y - -
m=0

where in the second inequality we used (3.9) on each V; € L31, (W). This ends the case g = 0.

mni

If g # 0, letting € > 0 and & > 0 be as above, we take n; such that Cof"™ e2"19lco A= (1-1) < 2,
and we choose §; > 0 such that, if U € W? satisfies |U| < 01, then

3.12 Jw. Tt W eS5n9] 1o wy < C’OHmemg‘CO , for all n < 2nq,
3 CO( 7,) C ( 7«)
W;€Gn(U)

which is the analogue of (3.8)). (For fixed tp, note that ny and J; depend only on &, uniformly in
g satisfying ([3.6)).) The proof above can then be followed line by line, inserting e5»9. Thus (3.9)

becomes,

(3.13) > |JWiTk\tCO(Wi)]eSkg|CO(Wi) > Oy AR e=klgloo 7|61
Wiegi (V)

Inserting this lower bound in (3.11]) and applying Lemma with ¢ = 0 yields,

> ’JWiTn‘tCD(Wi)’esng‘CO(Wi)

W;egat (W)
[W;|<d1/3

Z ’JWiTn‘tCO(Wi)’esng‘CO(Wi)
Wiegil W)

(3.14)
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2 > |y \tco(Vj)COGt”l(’“’m)em(’“’m)‘g‘oo
- Vi€Lpkn, (W)
Ao D T o Gt Tmm T emm sl v s,
V€L, (W)

3
1—-¢

k—1
<60yt > <ect! <e.

m=0

O

The second lemma proves the analogue of Lemma for elements of MS’H, in anticipation
of Proposition For A € MI"™ let B,_1(A) denote the clement of M™E +1 VH containing
T 1A ¢ /\/ll_]ln%I 11, recalling that H is the partition of M into homogeneity strips Hy. We introduce

this additional intersection with H (omitted from the definition of M%EI 1) since it will be convenient
to work with homogeneous partition elements in what follows. For § > 0, define

(3.15) An(8) = {A e MPE: diam*(B,_1(A)) > §/3}.

The following result shows that most of the weights contributing to @, (¢, g) come from elements of
A, (9) if § is chosen small enough.

Lemma 3.6. Let to > 0 and t1 € (1,t.). For any v > 0, there exist do > 0 and ¢y = co(v) > 0 with
co(v') > co(v) if v’ € [0,v], such that for any g € C' satisfying (3.6) with |[Vglco < v,

ST sup |IT()]e ) > o Qult,g), Yn €N, VL€ [to,1].
AEA7L(52) xEAﬂM’

Proof. Assume first g = 0. We begin by relating J*T™ on A € MS’H with J¥T—"*! on T"1A. By

(1.5), if z € A and y = T"x, we have

(Ecosp)oT"(y)
(Ecos¢)(y)

Here, JUT ™ = det(DT~"|gu), where E* is the unstable direction for 7' (not T~'), so that J“T—"
is a contraction. Next, sincd*”| J*T~1(y) = C*! cos ¢(y), and the function E is uniformly bounded
away from 0, we conclude,

T () =

JUT " (y) .

(3.16) JST™(x) = CF cos (T "y) JT " (Ty) .
For brevity, for any set A C M, we will denote
(3.17) |J* T == sup [J*T™(x)|" and similarly, |J*T "% := sup |J“T "(x)|".
zeANM’ zeANM’

Next, we consider the evolution of elements of M(i’f[ under iteration by 77 for j > 1. If B € M%H,
then we subdivide T7 B according to singularity curves and homogeneity strips at each iterate, much
as we would consider the evolution of an unstable curve U under 77. We write T9B = Uprcq,( B)B’ ,
where G;(B) is the maximal decomposition of 77B into elements of M(i’],lj[_j \/ H, recalling that
‘H denotes the partition of M according to homogeneity strips. This last intersection with H is

necessary since we will work with homogeneous elements B’ C T’ B (to maintain bounded distortion
for J*T'~7 on B’). Let L?(B) denote those elements B’ € G;(B) with diam"(B’) > 4/3.

23We use the notation A = CE'B to denote C~'B <A<LCB.
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Now by Definition and applying the time reversal of the proof of Lemma (with ¢ = 0),
there exists d2 > 0 such that if max{diam"(B),diam®(B)} < d2, then

(3.18) S I < CobY,  for all j < na,
B'eG,;(B)
where n; = ny(1/4) is from in Lemma For convenience, we choose d2 < 01(1/4). Also, if
B e M(EEI, then diam®(B) < CA~* for some uniform constant C' > 0. We choose ny > ny so that
diam®(B) < d9 if B € Mgiﬂ for k > ns.
We fix n > ng + 1 and prove the lemma for such n. For B € MQ’HH VH, let B_; denote the
element of M_,,114;\H containing 7-7B. We call B_; the most recent u-long ancestor of B if

j is the minimal integer k < n — ngy such that diam"(B_;) > da. If no such j exists, we say that
B has been u-short since time ny. (It follows from the definition of no, that diam®(B_;) < 69 for

all j <n—ng—1.) Let L@n +1+; denote those elements of M_p 114V H which are u-long, and let

86_2” +14; denote those elements which are u-short (in the length scale d2). Similarly, let ]I§-2 (B—j)
denote the collection of B € M_,,11\/H whose most recent u-long ancestor is B_;. Note that

I7(B-;) C G§(B-;).
Thus if £ > ny and B’ € M%EI, then estimating inductively as in the proof of Lemma
3.19 JUT Il < Cody 16 for all j > 0,
B 2
Bel?(B')

where the factor d, 1is due to the fact that B’ itself may be u-long, in which case it would be
artificially subdivided into ~ d, ! pieces of u-diameter less than d before being iterated.

Let A% (d2) = MM\ A, (62). By (3:16),

S T =0 F feosgly T
A€ AS (62) A€AS (62)
Note that if B € M%EH \V H with diam"(B) < d2/3, then any A € MS’H for which B = B,,_1(A)
belongs to A (d2). Also,
- 1,H 0,H
T"HAE M2y = M2 \VHN Mg

so that for fixed B, the number of A such that B,_1(A) = B is at most #M]}. Moreover,
since all such A are by definition contained in T-"*1(B,_1(A)) = T~""B, and T-""'B €
MS‘LH \/ T~"*1%, all A corresponding to one B are contained in the same homogeneity strip, so
that | cos |4 is comparable on all such A. Thus,

(3.20) ooy =0 Y [cosplponn gl T T,
AEAS (52) Bes

and similarly,
(3.21) ST = O S eos @l gl T
A€AL(02) BG]L&_Q,’H_l

Next, we group elements of S(S_Qn 41 by most recent u-long ancestor in MQ’E 414> as described above.

By (3.18)), there is no need to consider long ancestors for j < n;. Note that if B’ € M%E 4145 VH
and B € ]I;S-2 (B'), then T~"*1B lies in the same homogeneity strip as 7-""*/ B’  so that cos ¢ is
comparable on each of these sets. Thus, by (3.18)—(3.19)),
(3.22) S fcos il gl T

BeS‘an 1
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n—ns—1

=Y Y Y Jeosplh gl Tl T,
T el |, BEL(B)

+ ) > leos @l gl T Bl T

B'es®  Bel?, (B')

—n
n—ngo—1 ) )
Z Z 06510 cos @b iy | JUT |,

Jj=n1 BIEH‘i2n+1+j

+ 3 0O cos plly | Tl
Bres’?
g

IN

where the final sum over B’ € S represents those B € S‘sfn 41 which have had no u-long ancestor

e
since before time ns.

. . C . . . 5
To proceed, we will need the following sublemma, linking the contribution from L7 +; to the

. . 5o
contribution from L7 ;.

Sublemma 3.7. Let ty € (0,1) and t; € (1,t.). There exists C > 0 such that for all t € [to, 1],
eachni <j<n-—ng—1, and all B’ € L‘anﬂﬂ.,
| €08 Ql7nsrs | STl < Co AVETD ST [cos plfponi gl T
BeL;(B')
where Lj(B') denotes the collection of elements B € G;(B’) with diam"(B) > d2/3.

Proof. Since B’ € L‘anJrHj, there exists an unstable curve U C B’ with |U| > d3/3. Let G’(B')
denote those elements B € G;(B’) such that T7UNB # (). Letting Q?Q (U) denote the jth generation
of homogeneous elements of T/U, using the time reversed definition of 9?2(W) for stable curves
from Section If U; € QJ‘?Q(U) has [U| > 62/3, and BNU #  for some B € G%(B’), then
necessarily, diam"(B) > d3/3. Let L;(B’) C L;j(B’) denote this collection of long elements. Then
letting L?Q(U) C sz (U) denote those elements of Q?Q (U) with length at least d2/3, we estimate,
(3.23) S o pllp i gl
BeL;(B')
> (] COS90|tTfn+1+jB”JuTin+1+j|l}3’ Z | 4T |5
BeL!(B')
> O cosglly wmnn gl T 98 Y T oo,
Uiesz(U)
> C'dy] cos ‘P‘tTfnJrlHB/uuTinJrlJrj‘tB/% Z |JUVL-T7j’tCO(Ui)
€6, (U)
> 6] 05 Pl | T A0 S g T
U;€G2(U)
" t urp—n+1+j1t A j(1-t) |U|
> C"d2] cos | p—nsitsg| ST |5 A 5y
where in the first inequality we have used the fact that cos¢ is comparable on T-"*'B and

T+ B’ in the second inequality we have applied the time reversal of Lemma [2.2| and the factor
89 appears since there may be up to ~ 6, elements of L?(U ) in each element B € L’(B’) (due to
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artificial subdivisions in the definition of QJ‘?Q(U )), and in the third inequality we have applied the
time reversal of Lemma and (3.7) from Lemma since d2 < 01 and j > ny. Since |U| > d2/3,
this completes the proof of the sublemma. O

Using the sublemma, we now estimate the right hand side of (3.22)), summing over B’ € }L‘sfn 14

and noting that if B € L;(B’), then B € ]LfiQnJrl and each such B is associated with a unique B’:

S Jeos gl gl TG < S OO cos gl | Ty

8 8
Bes™ ., B'eS?,
n—ng—1
2SN S cosplyn T
j=m Bel’?,
¢ —2 ¢ —nt1t
< Cp,0™" + 09, Z | cos ¢|ynsr gl ST Y,
Bel’2

for some constant Cp,, > 0 depending only on na.
Note that the sum over ]L‘sfn 11 grows at a rate of at least C A=Y by the proof of the sublemma.
Thus we may choose n3 > ng large enough that C,,0" < CA™=1) for all n > ng, which implies,

> leosplpnnpl /T <0852 Y [eos@lponnpl/ T 5.

) b
BeS=E 11 BeL =, 1

Using this estimate with (3.20)), (3.21) and the fact that A, (d2) U A% (d2) = MS’H yields,
Qu(t)y= > |PT'a+ > [T,

A€ A (62) AeAy(62)
SCE°+1) Y feosplpnnpl/" T < CO2+1) Y |JTy,
B€L6_2n+1 A€An(62)

completing the proof of the lemma for n > n3 and g = 0. The statement for general n (and g = 0)
follows, possibly reducing the constant cg, since there are only finitely many n to correct for.

If g # 0, the proof remains as is until with the same choices of ny and d2 (these choices are
independent of g), so that holds with |e%i9|;—;  inserted in the left-hand side and e/l9lco in
the right. The analogous modification is made to . Then becomes

(3.24) Z |J5T"|f4|eS”9]A = C*! Z | cos QO|§—\7n+1B|JUT7n+1’tBIBSn_lg‘TfnquB ,
AE.A%((SQ) BeSiZnJrl

where C depends on |Vg|co via (2.14), with the analogous modification to (3.21). Then (3.22)) is
modified in the obvious way for n > ng + 1,

(325) 2 Jcosplponn gl T €51 g
BESi2n+1
n—ng—1
< S 0N cos ll i | T 5159 g
j=m prepf?
—n+1+j

+ Z Cotn—n2=1) g(n=n2=1)lglco) COS¢’tT—n23/UuT_nQ’tB/’eSnzg’TfnzB’ )

52
Bes®
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A suitable analogue of Sublemma [3.7] yields C' > 0 such that for each ny < j < n —mng — 1 and

/ 02
B elZ 14

| cos 90|T—ﬂ+1+jB/ |Jqun+1+j |tB’ \BS”*17j9|Tfn+l+jB'
< €65 AT eilgleo > cos Ol g JUT ™| €519 i g,
BeL;(B’)
where we have used the lower bound (|3 - rather than (3.9] F in . This provides the contraction
required to complete the proof of Lemma 6| since fleldlco < 1 by . O

3.4. Defining s; > 1. Growth Lemmas for ¢ € (1,s1). In this section, we bootstrap from our

results for t < 1 to conclude a parallel set of results for ¢ € (1, s1), for s; > 1 from Definition

below. To do this, we will apply Propositions [3.14] and from Section [3.5] for ¢ < 1 whose proofs

rely only on the lemmas in Section [3:3] In Section [3.6] we show how to extend this to all ¢ < ¢..
The easy lemma below will be crucial to define s1:

P,
Lemma 3.8. We have P,(1) = 0. Moreover, the limit x1 := lim ()

exists and x1 > log A > 0.
s—1— — S

In fact, x1 = /. a log JUT' dpgrp, which follows from Theorems and

Proof. Proposition for t = 1 together with [DZI, Lemma 3.2] prove that Q,(1) is uniformly
bounded for all n, so that P,(1) < 0. Since Proposition gives P,(1) > P(1) = 0, we have
established that P,(1) = 0. Next, the convexity of P.(t) (Proposition on (0,00) implies that
left (and right) derivatives exist at every ¢ > 0. Thus, since P,(1) = 0, the limit below exists

P, P, — P (1
(3.26) lim £208) gy B8) = P()
s—1-1—3s s—1— 1—s
The proof that P(t) is strictly decreasing in Proposition [2.5[implies x1 > log A > 0. O
Definition 3.9. Recalling 0(t1) € (A=, A='/2) from Deﬁm’tz’on we define s1 := % >1
X1 T 108

Note that s; is just the intersection point between the tangent line to Py (t) at t = 1 (which is
the largest ¢ where we have established the lower bound on the sum over G, (W)) and the line
y=tlogh. If t < s1 then 0" < e™ () which can be viewed as a pressure gap condition. Note finally
that establishing Theorem in a neighbourhood of ¢t = 1 will give s; < t,.

A key to many results for 0 < ¢ < 1 is the lower bound on the rate of growth given by (3.9) in
the proof of Lemma Our next lemma obtains this lower bound for ¢ > 1, interpolating via a
Hoélder inequality.

Lemma 3.10. Let tp € (0,1) and t; € (1,t.). Let t1 > 1. For any x > 0, there exist C,, > 0,
Nk > 0 such that for all g € C° and § > 0, and all W € W* with |W| > §/3,

327) > W T ooy le lcogr, = Cpd Vet mnldleo vy > 1 vt € [1,4].

Wiegs (W)
Proof. Assume first ¢ = 0. For ¢ > 1, we have for any s € (0,1), taking n(s) € (0,1] such that
nt+ (1 —n)s =1, that 3, a; = ant+(1 ms < (3 ah)"(2; a5)' ™" for any positive numbers a;. It

follows that for any W € WS with |W|>6/3 and all n > 1,

i\ /1
(ZWZGQQ(W) ‘JWZT |) > (Cl)l/n (Oz[o]iz np*(s))(n_l)/n

n |t
(328) > |wI"'= |S>(1—n)/77 =

Wi€G3 (W) (ZWiegg(W) | Jw, T™
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where we have used (3.9) for the lower bound in the numerator, and Lemmawith ¢=0andt; =1

combined with Proposition for the upper bound in the denominator. Since n = (1 —s)/(t — s),

e )n=1)/n = e=n(t=1)P.(s)/(1=5) " For fixed r > 0, Lemmaallows us to choose s = s(k) € (0,1)

(and hence 71, = n(s) > 0) such that P.(s)/(1 — s) < x1 + K, completing the proof for g = 0 since

n(s) > (1 —s)/t1. For g # 0, (3.27) follows since |9|co(yy,) > e~"9lco for each W;. O
By definition, #%eXx1(t=1) < 1 if t < s;. Thus for ¢; € (1, s1) there exists k1 = x(t1) > 0 such that

(3.29) phretatr)(ti=1) ~ 1 = and thus @leCatm=1 1 vt <y,

Our next lemma is the analogue of Lemma [3.5] for ¢ > 1.

Lemma 3.11. Let tg € (0,1), t1 € (1,t.) and t; € (1,51). Let k1 = k(t1) satisfy (3.29). Then for

any € > 0 there exist 61 > 0 and n; > 1, such tha for all W € W* with |W| > 61/3,

Z |JWiTn’tCo(Wi)|GS”9’CO(WZ.) <e Z |JWiTn’tCo(Wi)|GS”9’CO(WZ.) , Vt € [1,1?1} ,Vn > nq,

Wieght (W) Wiegp (W)
[Wi|<d1/3
for all g € C° satisfying (3.6)) and such that, in addition,
(3.30) 2lglco < —t1logh — (x1 + k1) (1 — 1), ie Orebatr)E=D+2Adco <

Let [to, 1] C (0,51). For all g € C* satisfying (3.6) and (3.30]), Lemma and Lemma for
e =1/4 give n; > 1 and 6; > 0 such that for all n > n; and all W € W?* with |W| > §,/3,

(331) Y 1Iw T eowyle™lcowy =5 D IwT oy €7 lcogwy 5 VE € Tto, ]
WieLS (W) WieGnl (W)
Proof of Lemma [3.11 For ¢ > 0, choose £ > 0 such that 20,3115/(1 — &) < e (with Cy, (to,t1,1)

from (3.29)). Assume first that g = 0. Choose ny such that Cof™em(xatrs)(t=1) <z Next,
choose ¢; > 0 such that (3.8) holds for all n < 2n;. Grouping elements of G (W) as in the proof

of Lem we follow the estimates there (omitting (3.9)) until (3.11). In (3.11), we apply

Lemma to each Vj € Lf}ml (W) appearing in the denominator to obtain,

> |JWZ.T(’“_’”)”1+Z\EO(WZ_) > O e~ k=mmCatr)(t-1)
Wi€Gl_ (Vi)

so that the left hand side of (3.11]) is bounded by 2C;* an;lo gF=™ < ¢ by definition of &.
If g # 0, choose ni such that Cpftnematr)(t=1)+m2lglco < z Then choose §; > 0 such that

(3.12)) holds for this value of nj. (The choices ny and §; are uniform for g satisfying (3.6]) and (3.30)).)
B27)

The argument then follows precisely the proof of Lemma but applying the lower bound
(noting that |g|co is bounded for g satisfying (3.30)), rather than (3.13), to each V; € L3, (W)

mni

appearing in the denominator of (3.14]). O
Our final lemma of this section is the analogue of Lemma [3.6| for ¢ > 1. Define A4, (0) as in (3.15)).

Lemma 3.12. Let ty € (0,1), t1 € (1,t,) and &1 € (1,51). Let 6 > 0 be as in Lemma 3.6, For
any v > 0, there exists co(v) > 0, with co(v') > co(v) > 0 if v' € [0,v], such that, for any g € C*
satisfying (3.6), (3.30), and |Vg|co < v, we have
sup |J8Tn(l,)|te$'ng(a:) > COQn(t)g) ) Vn € Na vt e [1751] :
A€ A (55) PEANM!

Proof. The calculations in the proof of Lemma for g = 0 are valid for all ¢ > 0 up through
(3.22). To proceed, we replace Sublemma by the following.

24We take 6, < 61(c) and n;y > ny(e) with & (¢) and ny (g) from Lemma
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Sublemma 3.13. Let ty € (0,1), t1 € (1,t.) and t1 € (1,s1). There exists C > 0 such that for all
te[l,ty], eachny <j<mn-—ng—1andall B € L62n+1+j,

| cos @’%—nJrlJer/’JuT_n—‘rl—’_j’tB/ < C’(Sz_lej(X1+”1)(t_l) Z | cos w\tT_nHB\J“T_"H@,
BeL;(B)

where L;j(B') denotes the collection of elements B € G;j(B’) with diam"(B) > d2/3.

Proof. The proof of this sublemma only requires one adjustment to the estimate in (3.23]). Using
the same notation as in Sublemma [3.7], we have

Z | cos ‘P|tT*n+1B|JuT_n+1 5 > C|cos <P|tT—n+1+jB/ | T Z | T4T |5
BEL;(B') BeL/(B')
i L
> C/|COS<P|tT—n+1+]’B/|JuT "0 Z |Ju, T J|60(Ui)
UiELj-Q(U)
i »
> 0/52|COS<P|%—n+1+]’B/|JuT n+ +J|§B'% Z | Ju, T J‘tcO(Ui)
U,€6,? (U)
Z C'”(Sg\ COS §0|§w_n+1+jB/ ’JUT_TL+1+j |tB/ Cﬁe—j(Xl-l-Hl)(t—l) s
where the only new justifications are that we use the time reversal of (3.31)) in the third inequality

since d3 < 01 and |U| > d2/3, and in the fourth inequality, we apply the time reversal of Lemma
since j > nj. ]

Using Sublemma, we estimate the right hand side of (3.22)) as in the proof of Lemma
L2

summing over B’ € and recalling that if B € L;(B’), then B € IL‘sQn 41 and each such B is

—n+1+j —
associated with a unique B’:
(3.32) S Jeosplnmpl I T <0 ST 0012 cos gl p | JUT T [l

BESS_Qn_,'_l BIGS(S—Q’ILQ
n—ngo—1 o
+ Z 052—2615]6](X1+H1)(t71) Z |COSSO‘§"7n+lB‘JUTin+1|tB
j=m Bel’2,
< Cn20m + 0652 Z ’ cos ¢|§“*"+1B|JHT_TL+1HB )

52
Bel’?,

for some constant C),, > 0 depending only on ng, where we have used the fact that glebatr)t=1) <1
to sum over j.

The sum over B € ]LfsfnJrl shrinks at a rate bounded below by Ce~"(Xx1+51)(1=%) Ly the proof of
Sublemma Thus we may choose n3 > ngy large enough that C,,,0"" < Ce—nba+s)(t=1) for all
n > ng, which implies,

Z | cos @l g JUT "l < €652 Z |cos |l i gl JUT T

b P
Bes? Bel™ |

The proof of the Lemma proceeds without further changes from this point, ending the proof of

Lemma if g=0.

If g # 0, choosing d2 as in the proof of Lemma implies that (3.24) and (3.25) remain as
written. The only change required in the proof is to use the lower bound (3.27)) with k = k; to

prove the analogue of Sublemma There exists C' > 0 such that for all ny < j <n —n9 —1 and
o
B elL” 1.

—n-+1+j ‘tB’ ‘eS

| cos @‘tTanﬂ‘B/UuT =3 i g
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< 052—161(X1+/’~1)(t*1)€j\glco Z ’COSS0|’§"71L+1B|J“T7”+1’tB’esn_lg‘T*nJrlB )
BeL;(B)

We then proceed as in (3.32)) using the contraction provided by (3.30]) to sum over j. O

3.5. Lower Bounds on Complexity. Exact Exponential Growth of Q,(¢,¢g). In order to
conclude that the spectral radius of £; on B is e*®) and to control the peripheral spectrum of £y,
we shall establish the exact exponential growth of Qy,(t).

The lower bound on the spectral radius of L; is a consequence of the following lemma, guaranteeing
that the weighted complexity of long elements of Ws grows at the rate Qn(t,g).

Proposition 3.14. Let ty € (0,1), t; € (1,t.) and t1 € (1,s1). For any v > 0, there exists
c1 = c1(v) > 0, with ¢1(V") > ¢1(v) if V' € [0,v], such that, for any W € W* with |[W| > 61/3,

(3.33) Yoo 1w T o€ cow,) = 1Qn(t,g), Yn > 1, Vit € [to, 1],

for any g € C* with |Vg|co < v and such that (3.6) and ([3.30) hold.

Proof. As usual we first consider g = 0. The main idea of the proof is to show that for each curve
W € W* with |W| > 61/3, the image T~"W intersects a positive fraction of elements of M%H
weighted by |J*T"|!, for n large enough. The mixing property of uggrp is instrumental here.

To do this, we recall the construction of locally maximal homogeneous Cantor rectangles from
[CM| Section 7.12] (and similar to those used in [BD| Section 5.3] where we Workedlﬂ with W?*
instead of Wyj). We call D C M a solid rectangle if D is a closed, simply connected region whose
boundary consists of two homogeneous unstable and two stable manifolds. Given such a rectangle
D, the maximal Cantor rectangle R(D) in D is the union of all points in D whose homogeneous
stable and unstable manifolds completely cross D. Note that R(D) is closed and contains the
boundary of D [CM, Section 7.11], but is not simply connected due to the effect of the singularities,
which create, for any € > 0, a dense set of points with stable and unstable manifolds shorter than e.

In what follows, we restrict to Cantor rectangles with sufficiently high density, i.e.,

(3.34) i e V(@) O R)

zeR myyw (W%(x) N D(R))
where my« denotes arclength measure along an unstable manifold. We say that a homogeneous
stable curve W ¢ Wfﬁ properly crosses a maximal homogeneous Cantor rectangle R = R(D)
satisfying if W crosses both unstable sides of D, and, in addition, for every x € R, the point
W N WH(z) divides the curve W*(z) N D(R) in a ratio between 0.1 and 0.9, and on either side of
W N W% (x), the density of R in W"(z) N D(R) is at least 0.9. Reversing the roles of stable and
unstable manifolds, we obtain the analogous definition of an unstable curve properly crossing a
Cantor rectangle.

By [CM) Lemma 7.87], we choose a finite number of locally maximal homogeneous Cantor
rectangles R(d2) = {Ry1, ..., Ry} satisfying and its analogue along stable manifolds, with the
property that any homogeneous stable or unstable curve of length at least d2/3 properly crosses at
least one of them. Let ¢, be the minimum diameter of the rectangles in R(d2) and note that d5 is a
function only of ds.

Now fix n > 1 and let A} C A,(d2) denote those elements A € A,(d2) such that B, _1(A)
contains an homogeneous unstable curve of length at least do that properly crosses R;. Due to
Lemma for t <1 and Lemma for t > 1, there exists i* such that
(3.35) Z sup | JST"(x)|" > %Qn(t).

> 0.99,

25The construction in [CM, Section 7.12] uses Wy, but since each V' in W* are unions of manifolds W; in Wy, if
the W, cross properly, so does V.
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Fix an arbitrary homogeneous W € W* with [W| > 61/3, and let R; € R(d2) denote the Cantor
rectangle that is properly crossed by W (recalling that d2 < 40;). By the mixing property of
psge and [CM, Lemma 7.90], there exists N; = N1(d2) > 1 such that 7~ R; has a homogeneous
connected component that properly crosses R, for all i = 1,..., k. In particular, 7-N1 R; properly
crosses R;«, so an element of Gy, (W) properly crosses R;«.

Let W1 € Gy, (W) denote the component of T~N1WW that properly crosses R;« and note that
Wy crosses B,_1(A) for all A € Aﬁ:. Since W7 is homogeneous and Ny > 1, Wj cannot cross a
singularity line in T~1Sy (since then the curve would have been subdivided at time N; — 1), and so
for each such A, W) crosses an element B/, € M—n—i—l’ B/, C B,—1(A). Let V) = Wi N B/, and let
Va=T _”+1V’ Then V4 is a homogeneous component belonging to an element of Gn-1+n, (W).
By Lemma recalling the notation [J*T*|Y), = sup,c yimpp |J5TF(z)|! from (3.17),

:I:tC|JS

1t 1t
[T oo, = T peniap, y(a)

since T~"t!1B, _1(A) € M{}‘LH \/ T~"*1H. By definition, T-"*'B,,_1(A) contains A. Thus,
(336) ’JSTn 1|t < etC|JVATn 1|CO W)

Next, we wish to compare J*T on T" ' A with JVAT~ Since V} C Wy C T-MW . we have that
TV} is a stable curve, and so is TW7, so that JVAT = eiCdJWIT = e*Caf~9 where k is the index
of the homogeneity strip containing Wy. But since |W;| > &4 (since Wi properly crosses R;+), we

have k < (05)~ Y@+ and so Jw, T > C(8,)9/@*tD. Since J*T < ¢4, we have using (3.36), that
|JsT™ |l < C(6h) 4/ @tV | g, T, o, .. Then summing over A € A%, we obtain,
A 2 A CO(Vy) n

(3:37) > Ty < @) S T oo
Ae Ay Vi€Gn (TW1)

Next, we express the sum over G, n,—1(WW) in two ways. On the one hand, by Lemma

> | Jy, T+ 1|160(vj) < > |JWiTn|tCO(Wi) > | Ty, TN 1|160(VJ)
Vi€Gnt Ny —1(W) W;€Gn (W) Vi€Gn, —1(Ws)
(3.38)
<C0Qn 1) Y [Iw T o, -

On the other hand, letting W] be the element of Gy, 1 (W) containing TW7,

Z |J ntNi— 1’75 > e tcd’JW TNi— 1’00 W) Z ’JViTn’tCO(Vi)
‘/jegn+N171(W) ‘/zegn(Wll)

> T o,

Vi€Gn (W)

(3.39)

+1)N171

> e—tcdc’((sé)t( 2qq+1

where the lower bound on [Jy TN, (wry comes from the fact that |W{| > 65 and for a stable
1

+1
curve V such that V and T-'V are both homogeneous, |T~1V| < C|V|2’qflﬁ, and this bound can
be iterated Nj — 1 times as in [BD eq (5.3)].

Combining (3.37] , and , and recalling (3.35) yields,
S T ogr = (Calo) Q) 3y

21) ™ ¢
2Qu(t)

which completes the proof of the proposition if g = 0.



24 VIVIANE BALADI AND MARK F. DEMERS

If g # 0, starting as above, we choose the finite family of Cantor rectangles R(d2) in the same
way, and find an index i* such that the analogue of ([3.35))

sup (1T (@)|'e90) > S2Qu(t.g)
holds, using Lemma [3.6]if ¢ < 1 and Lemma [3.12]if ¢ > 1. Fixing W € W?, choosing N; as above,
and using the same notation introduced there, we obtain the modification of (3.36)),

7T 65194 < €€ (14 COTgloo) Iy, T 519 oy

applying (2.14). Next, (3.37) needs only the multiplication by e5n9 to each term on both sides, up
to replacing the constant C' by C'(14+C Cy-|Vg|co). The upper bound ({3.38)) requires only a change
of constant

to C2[0]QnN,—1(t, g), using Lemma with ¢ = 0, while the lower bound (3.39) requires the
added factor e=(M~=Dlglco on the right hand side. Since Ny is fixed (depending only on R(d2)),
these bounds are combined as in the case g = 0 to complete the proof of the proposition. ([l

The following important consequence of Proposition will be used to characterize the periph-
eral spectrum of L.

Proposition 3.15 (Exact Exponential Growth of Q,(t,g)). Let to € (0,1), t1 € (1,tx) and
t1 € (1,s1). For any v > 0 there exists ca(v) > 0, with c2(v") > ca(v) if v' € [0,v], such that for
any g € Ct with |Vg|co < v and such that (3.6) and (3.30) hold, we have

2 _
(3.40) P9 < Qu(t, g) < ="t i e [to, t1], Vn>1.

C2

Proof. The lower bound follows immediately from submultiplicativity of @, (¢, g) (obtained in the
proof of Proposition for any ¢ > 0 and g € C') since then P, (t,g) = inf, % log Qn(t, g).

To obtain the upper bound for g = 0, we first prove the following supermultiplicative property:
There exists ca > 0 such that for all ¢ € [tg,?1] and for any j,n > 1,

(3.41) Qn+j(t) = c2Qn(t)Q;(1) .
Let W € W* with |W| > 01/3. For n, j > 1, by Lemmawith ¢=0,
Z |JWiTn+j‘tC'0(Wi) < Co[0] Qn+j (t).
WGyl (W)
On the other hand, if n > ny, then using Lemma [2.1

Yoo I T oy =C 0 Y T oy D 1w T o
WieGh (W) Vi€gal (W) WG] (Vi)

n+j
=>C Z |JVan|E’0(Vk) Z |‘]WiTj|tC°(Wi)
V€L (W) Wiegfl (Vi)
>C Y \JVan%O(Vk)ClQJ‘(t)
V€LY (W)
>CaQit)] > T o, = C'EQ;(1HQ(),
Vi€Gat (W)

where in the third and fifth inequalities, we have used Proposition and in the fourth inequality
we have applied . This proves for n > nq, and the case n < ny follows by adjusting the
constant ca. (Note that co is uniform in ¢.) The proof of the upper bound on @, (¢) then proceeds
precisely as in the proof of [BD, Proposition 4.6]. The case of nonzero g is identical. O
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3.6. Growth Lemmas and Exact Exponential Growth for ¢ € (s1,t,). The main result of
this section is Proposition [3.18 which extends Propositions [3.14] and [3.15| to all ¢ < t.. The constant
t, > 1 is defined by , while s1 > 1 is introduced in Definition What we have proved up
to now suffices to establish all the results of Sections for t € (0,s1). In particular Theorem
holds in a neighbourhood of £ = 1, so we know that s; < t,.

Recall that ¢; € (1,t,) is fixed in Definition determining 6 € (A=, A='/?) and our main
statements are for ¢ € [tg,t1]. If s1 > ¢, there is nothing to do. Otherwise, 6! < eP(s1) < ePr(s1) 1y
Proposition Since P (t) is convex and decreasing, the left-hand slopes are lower semi-continuous,
so we may choose t1 € (1,s1) so that the intersection point s2(#1) between the tangent line to Py (t)
(from the left) at ¢t = t1 and the line tlog 6 satisfies sy > s1. Indeed, we have
(3.42) sy = so(ty) := M, where y2 = x2(t1) := lim M > log A,

X2 + log 6 s, t1— s
where (by convexity of P.(t)) the limit defining y2 exists and P,(t) lies above its tangents, so that
0t < P for all ¢ < so.

Our next lemma is an analogue of Lemma interpolating now from ¢; to ss.

Lemma 3.16. Fizty € (0,1) and ty € (1,t.), and let t1 € (1,51) and s2(t1) > s1 be as above. For
any ta € (s1,s2) and any K > 0, there exist C,, > 0, 1. > 0 such that for all g € C°, all § > 0, all
W e W? with |[W| >§/3, and alln > 1,

(343) Z ‘JWiTnPC'O(Wi)’esng|CO(Wi) > 055—1/77:46—n(X2+H)(t—t_1)+nP*({1)—n|g‘co , YVt € [{1,52} .
WieG (W)

Proof. We adapt the proof of Lemma First assume g = 0. For ¢t > s1, let s € (1,¢;), and
n(s) € (0,1] such that nt + (1 — n)s = ¢;. Then again using the Holder inequality, for any W € W*
with [W| >6/3 and all n > 1,

i\ /1 -
(344) Z ‘JWTn|t > (ZW’LegéL(W) ‘JWZT | 1) S (ClenP*(tl)) /n

(I-n)/n = 5 2 _np.(s)\(1—1)/n "’
W,€G3 (W) (Zwlegg(W) |JWZTn|S) mm (02[0]%%6 Py ( )) n)/n

where we have used Propositions[3.14]and [3.15|for the lower bound in the numerator, and Lemma [3.4
with ¢ = 0 and Proposition |3.15| for the upper bound in the denominator. Since n = (t1 —s)/(t — s),

o n(P(s)=Pulf) ngnPuls) _ ~n(t=9) P ()

For fixed k > 0, by (3.42)), we may choose s = s(x) € (1,%1) and 1, > 0 such that (t—s)%ﬂ*@ <

(t — t1)(x2 + k), completing the proof for g = 0 since Pi(s) > Pi(t1). For g # 0, the lemma follows,
again using the bound |eS"9\CO(WZ_) > e l9lco O

By definition, gtex2(t=t)=P:(t1) < 1 if ¢ < s5. Thus for #5 € (s1,82), there exists ko = k(ta) > 0
such that
(3.45) piz O tr)(l=t)=Put1) < 1 and thus et -0)-P@) o1 yr <1,
Our next lemma extends Lemma for t € [t1, to].
Lemma 3.17. Let tg € (0,1) and t1 € (1,t.). Let ty € (s1,52), and let ky = k(t2) satisfy (3.45).

Then for any € > 0 there exist 61 > 0 and n1 > 1, such that for all W € W* with |W| > 01/3, and
for alln > nq,

Z |JWiTn|tCO(WZ_)|€S"g’CO(WZ.) <e Z |JWiTn|tCO(WZ_)|€S"g’CO(WZ.) , Vit € [1,7?2] R

Wiegat (W) Wiegat (W)
|Wi|<61/3
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for all g € C satisfying (3.6)), (3.30) and such that, in addition,
(3.46) 2|g|co < —talogh — (xa + ka)(f2 — t1) + Pu(ty), ice. g2ebetr2)a—t)=Pt)+2glco <1

Proof. The proof of Lemma [3.17] proceeds with the analogous modifications used in the proof of
Lemma using the lower bound (3.43) in place of (3.27). The proof goes through due to the
contraction provided by (3.45) and (3.46)). O

Let [to,ta] C (0,52). For all g € O satisfying (3.6)), (3.30)), (3.46)), Lemmas and for
e =1/4 give n; > 1 and §; > 0 such that for all n > n; and all W € W?* with [W| > 6;/3,

347 > I T ool ooy =5 Y0 [Tw T coawy €™ cow, » VE € [to 2] -
WieLSL (W) WieGnt (W)

At this point it is clear that Lemma [3.12] (with the same constant d > 0, but possibly smaller
co > 0), and Propositions [3.14 and [3.15| (with possibly smaller constants ¢y, ¢z > 0) hold with #;
replaced by to € (s1,52).

The interpolation can now be continued inductively. Suppose we have created a sequence
1<t <81 <tr<s<...<t,<s, <t <ty so that Propositions and hold with #;
replaced by t,. Then since s, < t, we have °» < e"(») and we may define

Xn+1 = lim M >logA, and sp41 = Piltn) + Xnln
st In =S Xn + log 6

where s,,11 > s, by choice of t,. Following the proof of Lemma, with 1,%2, x2 replaced by
tnytnt1, Xnt1, it follows that the conclusion of the lemma holds for all ¢ € [t,,t,+1]. Analogous
modifications to Lemma [3.17 imply that Lemma and the propositions of Section [3.5 hold with
t1 replaced by t,41 € (Sn, Snt1)-

Finally, the sequence (s;,) cannot accumulate on any so, < t1. For if it does, then by definition
of 8, it follows that #%= < ef*(5=) o we may repeat the construction above, finding a point of
intersection s’ > s, between tlog 6 and the left hand tangent to P.(t) at some t,, < ss. It follows
that this sequence of interpolations can be chosen so that t; < ¢, < t, for some n > 1. At this
point we stop, and since we have made only finitely many choices of the required constants, we

have extended the analogues of Propositions and to all t; < t4:
Proposition 3.18. Let tg € (0,1) and t; € (1,t.). For any v > 0, there exists c1(v), ca2(v), with

info  ¢i > ¢i(v) > 0, i = 1,2, such that, for any g € C' with |Vglco < v and such that |g|co is
sufficiently small (depending on the number of interpolations required to reach t),

a) for any W € W* with |W| > 91/3,

Yo 1w T o€ cow,) = 1Qn(t,g), Yn > 1, Vit € [to, 1] ;

mn o

2
b) for all n > 1, we have "9 < Q,(t,g) < —e™™>19) vt € [to, t1].
C2

4. SPECTRAL PROPERTIES OF L; (THEOREM {4.1))

4.1. Definition of Norms and Spaces B and B,,. For fixed tp > 0 and t; € (max{tg,1},%.),
we choose O(t;) € (A™', A~Y/2) satisfying 61 < (1) ¢ > min{1,2/ty}, ko = ko(to,t1) (for
the homogeneity strips (2.1)), and dy = 8o(to,t1) from Definition These choices affect the
definitions of W*® and Wy, as well as conditions and below on the parameters «, 3, v, p,
€0, determining spaces B = B(tg, t1) and B,, = By,(to,t1) on which £; will be bounded for all ¢ > .
An additional condition on the parameter p depending on t; < t, will be needed to obtain the
Lasota—Yorke bound (see Lemma and thus the spectral gap of £; on B for all ¢ € [t, t1].
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First we define notions of distancd®0 between stable curves and test functions as follows.
Since the slopes of stable curves are uniformly bounded away from the vertical, we view each
W € W¢ as the graph of a function of the r-coordinate over an interval Iy,

W ={Gw(r):rely}={(r,ow(r)) :r € Iw}.

By the uniform bound on the curvature of W € Ws, we have B := SUPyy s loty| < oo.
Next, given Wy, Wy € W* with functions Wy, YWy, we define

dys (W1, Wa) = [Twy & Tw, | + lowy — ewalen (i, ) »

if W1 and Ws lie in the same homogeneity strip, and dyys (Wi, Wa) = 3B + 1 otherwise.
Finally, if dyys (W1, Wa) < 3B + 1, then for ¢1 € CO(W7), b9 € C°(W3), define

(1, ¥2) = [¥1 0 Gw, = 12 0 Gwy|cory, niy,) -
while if dyys (W1, Wa) > 3B + 1 and 11 € CO(W7y), 1 € CO(Wy), we set d(11,19) = oc.

We next define the norms, introducing parameters «, 3, v, p, and &g. Choosﬂ

1 1 ol 1
(4.1) a € (O,ﬁ] , p>q+1, pe (;9,04), v € (O,mln{i,a—ﬁ,m}) .
(This implies a < 1/3, v < 1/p, and min(f,t) > %) Finally for Cyerr < 00 to be determined in
(4.21)), let g satisty
3
(4.2) 0 < Cperrer/ W™ <=

4
For f € CY(M), recalling C"(W) and W$, from Section define the weak norm of f by@

|flw = sup sup /fwdmw,
%%

WeWy; [¥lcaw)<1

define the stable norm of f by

(43) 1flo= swp  swp [ fodmy,
WEW?{ ‘¢‘C5(W>S|W|_1/p w

and the unstable norm of f by

[fllu=sup  sup sup e
eseo Wi,WaeWyp  [¢ilcaw,)<1

dws (W1,W2)<e d(31,32)=0

[ dmyy, — /W [ by dmyy,

Wh

Finally, define the strong norm of f to be

1flls = 1[f1ls + cull fllu

for a constant ¢, = ¢, (8,7,p) > 0 (so that ¢, depends on [tg,?1]) to be chosen in (4.9). Define B
to be the completion of C*(M) in the || - ||g norm, and B,, to be the completion of C*(M) in the
| - | norm.

26The triangle inequality is not satisfied, but this is of no consequence for our purposes.

2TThe condition v < Tl-w is used in Lemma

28Using weakly homogeneous curves implies that Lebesgue measure belongs to B, see Remark
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4.2. Statement of the Spectral Result. Embeddings. The equilibrium measure in Theo-
rem [I.1] and its properties will be obtained by letting the transfer operator £; act on B.

Theorem 4.1 (Spectrum of £; on B). For each ty € (0,1) and t1 € (1,ts) there exists a Banach
space B = B(to,t1) such that for each t € [to,t1], the operator L; is bounded on B with spectral
radius equal to e™® and, recalling 0(t1) from Lemma essential spectral radius not larger than

max{AATP) git=1/p)g=Pe(t) A=7}Pe() < Pe ()

Moreover Ly has a spectral gap: the only eigenvalue of modulus e™®) is e™®) and it is simple.

Let vy denote the unique element of B with (1) = 1 satisfying Livy = POy, and let oy
denote the maximal eigenvector for the dual, LiDy = e 5, Then the distribution p, defined by
ue() = % s in fact a T-invariant probability measure. This measure is mixing, correlations
for C'% observables decay exponentially with rate v for any

(4.4) v > vp(t) = sup{ Al | A € sp(e PO L)\ {1}},
and correlations for Holder observables of arbitrary exponent decay exponentially.

Recall that # < 1/v/A < 1. Note that since gty > 1 while 3 < 1/(¢ + 1) and v < min{1/(¢q +
1),1/(g+ 1) — B}, our bound on the essential spectral radius tends to e"*(0) as t; — 0. Similarly,
as t1 — t, we need to let p — 0o to ensure gh—1/p < oPx(t1) (see Lemma and our bound on the
essential spectral radius tends to ePr(te) a5 t1 — ts.

As usual, Hennion’s theorem is the key to prove the above theorem. It requires two ingredients:
the compact embedding proposition below and the Lasota—Yorke estimates in Proposition

Proposition 4.2 (Embeddings). For any to € (0,1) and t1 € (1,t.), the continuous inclusions
CYM) c Bc B, c (C'M))*

hold, so that CY(M) C (B,)* C B* C (CY(M))*. In addition, the inclusions C'(M) C B and
B C By are injective, and the embedding of the unit ball of B in By, is compact.

The embedding B,, C (C'(M))* is understood in the following sense: For f € Cl(M), we
identify f with the measure fdusgs € (C'(M))*. Then, for f € B, there exists Cy < oo such
that, letting f,, € C*(M) be a sequence converging to f in the B, norm, for every 1 € C*(M) the
limit f(¢) := limp 00 [ fn1) dusrp exists and satisfies | f(1)| < CflY|cr(ar)- See Lemma for a
strengthening of this embedding.

Proof of Proposition[[.3 The proof of the claims in the first sentence is the same as the proof of
[BD, Prop. 4.2, Lemma 4.4]. The injectivity of the first inclusion is obvious, while the injectivity
of the second follows from our definition of C#(W): if |f|,, = 0 then ||f|l, = 0 since the class of
test functions is the same, but also || f||s = 0 since C1(W) is dense in C#(W), proving injectivity.
The proof of the compact embedding follows exactly the lines of that of [BDlL Prop. 6.1], using
W¢. The only differences are that, in the unstable norm, [Yleswy < |log |W|[7 there is replaced
by |¥]cswy < |W|~1/P, while the logarithmic modulus of continuity |loge|~¢ there is replaced by
a Holder modulus of continuity €”. ([l

To show that the transfer operator £; is bounded on B, we require the following lemma.

Lemma 4.3. For any f € CY(M) and any t > to, the image Lif belongs to the closure of C*(M)
in the strong norm || - ||g, for B = B(to,t1).

We prove Lemma in Section [£.4]
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Remark 4.4 (Lemma 4.9 in [BD]). We remark that the proof of [BD, Lemma 4.9], which is
the analogue of the present Lemma was omitted there. The reference given there to [DZI]
Lemma 3.8] is not correct since J*T is not piecewise Holder. However, its statement is correct as
the proof in Section [{.4) and Remark [{.11] demonstrate.

Remark 4.5 (Lebesgue measure belongs to B). Since we identify f € C'(M) with the measure
fdusrp, Lebesque measure is identified with the function f = 1/cos, which is not in C*(M).
However, it follows from [DZ2, Lemma 3.5], that 1/ cosp can be approzimated by C* functions in
the B norm, so that Lebesque measure belongs to B. (The proof requires that our norms integrate
on weakly homogeneous stable manifolds, rather than on all W € W? as was done in [BD].)

4.3. Lasota—Yorke Inequalities. Using the exact bounds for @, (¢) from Proposition we
prove the following proposition (under more general conditions than Theorem [4.1J).

Proposition 4.6. Fiz tg € (0,1) and t; € (1,t) and let B = B(to,t1), 6 = 0(t1). Fiz ta € (to, 00).
There exists C = C(to,t2) < oo and, for every n > 0, there exists C,, = Cy(to,t2) < 0o such that,
for any t € [to,ta], the operator L, extends continuously to By, and B and

(45) L8l < CQu(t)|flu . VS € Bu,
(46) L flls < CQu(t) [(ACHHYPIM 1 gu=1/PnQ ()| (| flls + Cul flu, ¥ f € B,
A7) Ll < CQu(E) [nAT I fllu + Qut = 1/P)Qu() M Ils] . ¥ € B.

Moreover, if to = t1, then, up to taking p large enough, for any

o € (max{A~PH/P A=Y gt 1/Pe=P-(D} 1)
there exists ¢, = cu(to,t1) > 0, and C,, > 0, such that, for all f € B,
(4.8) 1L Flls < Ce™ O o™ £l + Cul flu] , ¥n > 1.

Proving (4.8)) will use the following lemma:
Lemma 4.7. For any t; € (1,t,) there exists p > 1 such that '~/ < PO for all t € (1/p,t1].

Proof. If t € (0,1] then P.(t) > 0 so that #/7 < 1 < P® for all # < 1, all p > 1 and
all t € (1/p,1]. For t € (1,t1], since the slopes of Py (t) are at most —logA by the proof of
Proposition ﬁ, we have W < —log A < log#, so that §te= (1) < gt1e=P+(t1)  The choice
of # = 6(t1) in Definition gives §1e~P+(11) < 1. Choosing p > 1 such that #11—1/Pe=Px(1) < 1
ends the proof. O

Proof of Proposition [{.6. We first show that ., -, and imply that if ¢to = ¢1 < t, and
p is large enough, then £; satisfies the Lasota—Yorke 1nequahty 1-) for f € B(to,t1): Choosing p
according to Lemma [4.7] observe that '~ 1/Pe=P=() < 1 implies #*~1/PQ,, (t)~! < gt=1/P)ne=P(tin <
1 for all n > 1, since Qn(t ) > ()" by Proposition Next, recalling that P, (t) is strictly
decreasing by Propomtlon 5l and fixing

€1:= P*(t— 1/p) — P(t) € (0, Pu(to — 1/p) — Pi(t1))
we find, using both the lower and upper bounds from Proposition (b),

Qult = 1/p)Qu(t) ™ < P tm1mme=Pan < Z e v > 1,
Cc2 02
Next, fix 1 > o > maX{A*ﬁH/p,A*V, thl/pefp*(t)} and choose N > 1 such that

gmax{NAfwv,Q(A (B=1/P)N 4 g(t=1/p)N ,—Pu(t)N )} <N
c2
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Choosing ¢, > 0 to satisfy

. BoN
v = RO P-Go1/m PN’

we estimate, using once more the upper bound for @, (t) from Proposition [3.18(b),
£ Flls = 1L flls + cull £2 fllu

4cu -
<e (t)Nl 1F1ls + eud™ 1 fllu + 2 M1

(4.9)

"‘CN’f‘w

< eP*(t)N [O_NHf”B+67P*(t)NCN‘f|w} ]

Iterating this equation and using the first claim of (recalling one more time the upper bound
for Qn ) from Prop051t10n 3.18(b)) yields for n = /N, with ¢ > 1. The general case follows
since (4.6)) and (4.7) 1mply|£tf||B<C_’||f||B fork:<N.

By Lemma 4 it suffices to prove the bounds , , and for f € CY(M), and they
also imply that L; extends to a bounded operator on B and B,. This is similar to the proof of
[DZ1l, Proposition 2.3] and is the content of Sections 4.3.3 O

4.3.1. Proof of Weak Norm Bound (4.5)). Let f € C1(M), W € W?* and ¢ € C%(W) such that
[¥|cewy < 1. Then for n > 0, we have

[ ciredmy = ¥ /fon”leT”ltdmw

(4.10) Wi€Gn (W

< D>l o T camn | 7T f oy -
The contraction along stable manifolds implies for z,y € W; € G, (W), recalling (2.2)),
(4.11) [W(T"z) = p(T"y)| < Hyy (V)d(T"z, T"y)* < Hyy (V)T T [Co o d(@, y)*

This implies Hyy, (o T™) < \JST”\CO HW( ) and [t o T"|caw,) < Cfllwlca(w), with C from
.

Moreover, since aw < 1/(q + 1), the distortion bound of Lemma [2.1] implies
(4.12) HJST”MCQ )< (1+ 2th)|JsT"|EO(Wi) , VIW; € G (W).
Using (4.11)) and ( - in , we obtain,
/ £3 f b dmy < Z [l (1 + 21 Ca) T T oy < ClAw@n(?)
W Wi €Gn (W)
where in the last inequality, we have used Lemma with ¢ = 0. Taking the suprema over
Y € CYW) with [Y|cay <1 and W € W? yields (4.5).

4.3.2. Proof of Stable Norm Bound (4.6). Let f € CY(M), W € W*, and ¢ € C(W) be such that
[Vlcswy < [W|=1/P. Forn > 0 and W; € G,,(W), we define the average ¢, = |[W;| ™! Jw, 0o T™ dmy;,.
Then as in (4.10]), we write,

(4.13) [ giredmy = ¥ /fon" 0TI dmy,

WieGn (W

_ m/ £ 1IT ) dim,

WieGn (W)
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Note that by (4.11]),
[0 T = Bilcany < 21T T Zogyy [¥leowy < 20T T 2oy, WP
Therefore, replacing o by 3 in - the definition of the strong stable norm gives
> / f@poT™ — )| J5T™|" dmw,
WieGn (W
W[ !/P
Wi

(4.14)

< Y 20 +2C)llfs T
WiEgn(W)
< 2(1+ 2Cy)CT AT BTIP)| £1,C5[0] Qu(t)

where in the second inequality we have used Lemma [3.4 with ¢ = 1/p (recall 3 > 1/p).
For the second sum in ([4.13), note that [¢;| < |W|~YP. If [W| > &y/3, then we simply estimate

S [ ST dmy, < 1/ e +2C) Y 1T ogwy < Clf1u@a(®),
W;€Gn (W) W;€Gn (W)
by Lemma [3.4 with ¢ = 0.
If |W]| < d9/3, we handle the estimate differently, splitting the sum into two parts as follows.

We decompose the elements of G, (W) by first long ancestor as follows: Recalling the sets Z,, (W)
defined in we call V; € G, (W) the first long ancestor of W; € G, (W) if

(4.15) T "W, c Vi, |Vj| >d0/3, and TV; is contained in an element of Zj,_1(W).

We denote by P, (W) the set of such V; € G (W) that are long for the first time at time k. Note
that W; has no long ancestor if and only if W; € Z,,(W).

Grouping the terms in the second sum in by whether they belong to Z, (W) or not, we
apply the weak norm to those elements that have a first long ancestor, and the strong stable norm
to those that do not. Thus,

ST ST <3 W T g

wieZ,(w) Wi WL, (W)
(4.16) W1/
< (1+2Ca)llflls D [T T oy < (14 2'Ca) || f]|sCot™ /P,

1
WiEZn(W) |W| /p

where in the last estimate we applied Lemma [3.3[ with ¢ = 1/p sincﬂ 1/p <min{l/2,t/2}.
For the terms that have a first long ancestor in Py(WW), we again apply Lemma from time 0
(since |W| < 09/3) to time k, setting Go(V) = {V'},

DD DEND DENRCY AT

k=1V;eP,(W) W;€G,,_1(V;)

<D Y VTP 2'Cy)

k=1V;ep,(W)

[V3[1/7
W

P oy D 1T leoqwy
ergn_k(‘/])

n 1/p
<D I3 P+ 2C M 75 17T ey, CC2l0] Qui ()

| w30y /P (1 + 2Cy)CCa[0] Cob* = 1P 0, (1),
1

29This bound holds since p > ¢+ 1 in the definition of the norms, yet ¢ > 2/t from (2.1)).
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applying Lemma for ¢ = 0 in the second inequality and Lemma (for ¢ = 1/p) in the third.
Putting these estimates together with (4.14)) in (4.13) yieldﬂ

/ L3 f b dmwy < CQu(t) (A" HP) 4 g1 Qu () |Ifls + € moax Qj(1)]flw
w SJsn
and taking the appropriate suprema proves (4.6)) (C,, depends on ¢ only through [to,?1]).

4.3.3. Proof of Unstable Norm Bound . Let € < g and let W, W?2 € W* with dyys (W, W?) <
e. For n > 1 and ¢ = 1,2, we partition T-"W* into matched pieces Uf and unmatched pieces V;Z
like in [DZ1] as follows.

To each homogeneous connected component V of T-"W!, we associate a family of vertical
segments {7 }yev of length at most C} LA="¢ such that if 4, is not cut by an element of SH its
image 7", will have length Ce and will intersect W?2. According to [CM], Sect. 4.4], for such a
segment, T%v, will be an unstable curve for i = 1,...,n and so will remain uniformly transverse to
the stable cone and undergo the minimum expansion given by .

Repeating this procedure for each connected component of T-"W!, we obtain a partition of
W1 into subintervals for which 7™, is not cut and intersects W? and subintervals for which this
is not the case. This also defines an analogous partition on W2 and on the images T-"W'! and
T—"W?2. We call two curves in T7"W' and T~"W? matched if they are connected by the foliation
v, and their images under 7" are connected by T",. We further subdivide the matched pieces if
necessary to ensure that they have length < ég and that they remain homogeneous stable curves.
Thus there are at most two matched pieces U f corresponding to each element of G,,(W*). The rest

of the connected components of T-"W* we call unmatched and denote them by Vf. Once again,
there are at most two unmatched pieces Vf corresponding to each element of Qn(Wz).

Recalling the notation of Section we have constructed a pairing on matched pieces U f defined
over a common r-interval I; such that for each j,

(4.17) Ul = Gue(l) ={(rppe(r) :im € I}, £=1,2

Now let ¢, € C*(W?*) with Vel caqwey < 1 and d(31,92) = 0. Decomposing W' and W? into
matched and unmatched pieces as above, we write,

@) [ epe [ s

SZ‘/UlfwloTn|JsTn|t_/U?waOTn‘JSTn‘t
J J J

| focorm Ty

+2
0

We estimate the unmatched pieces first. For this we use the fact that unmatched pieces Vf occur
either because T ”V;e is near the endpoints of W* or because a vertical segment 7™, intersects
Sﬁﬂn. In either case, due to the uniform transversality of the stable and unstable cones, we have
|T"V{¥| < Ce for some uniform constant C' > 0, independent of n and W*, since dyys (W', W?) < ¢.
Thus, we estimate the sum over unmatched pieces using the strong stable norm,

0

— n Srn -1
(4.19) < Cr (L + 2Ca) 3 T VAP T™ iR
0

< 4C[0] Oy (1 + 2'Ca) | f 158 Qu(t = 1/p).

< S U IFI VP e o T s vy (1 + 2" C)l T T (o ey,
i

| focorm Ty

301t is in fact possible to show maxo<;<n Q;(t) < max{Qy(t), Qn(1)}, but we shall not use this.
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where (] is from and we have used in the first inequality, (4.11) in the second, and
Lemma (for ¢ = 0) in the third since there are at most two unmatched pieces corresponding to
each element of G, (W*).

To perform the estimate over matched pieces in , we need the following sublemma.

Sublemma 4.8. There exists C > 0, independent of t, n, W', and W? such that
a) dys(U},U?) < CnA™"e =t ey, for all j;
b) [¢h1 o T"|J*T"|" — ¢2\J8Tn‘t’CB(Uj1) < CQt’JSTn’tCO(U;)Ea_ﬁ; Jor all j.

Proof. Part (a) of the sublemma is [DZ1, Lemma 4.2]. To prove part (b), note that due to the
uniform bound on slopes of stable curves, it follows

(4.20) 1< JGw(r) =1+ (i (r)? < 1+ (Kinax + 7h)? =2 Cy < 00
Therefore 1 < |JGUJe\CO(Ij) < Cy, and we have
|31 0 Tn|JSTn|t - 77Z2|J~8Tn|t|c/3(U]1)
< Cyl(r o T JT"") o Gur = (2l J°T™[") o Guzles )
< Cylin 0 T s sy |1 °T" o G — |°T" " 0 Gialenry
+ Cll 7T oo |1 0 T" 0 Gyr — 2 0 T 0 Gz
< CgCl_lHJSTn’t °© GU} — 7T o GUJ.2|CB(IJ-)
Gy 2Ca) | T ooy 0 T™ 0 Gyys — 162 0 T 0 Gl
where we have used and for the final inequality. We first observe that
[h1 0 T" 0 Gy =2 0 T™ 0 Gy ln(ry) < Ce* P
by [DZ1, Lemma 4.4]. For brevity, set J, = J*T™ o G- Byﬂ [DZ1], eq. (4.16)], we have

Ji(r)
Ja(r)
for some constant Cyerr > 0 depending only on the uniform angle between the vertical direction
and the stable and unstable cones. Thus, since €y > 0 satisfies and ¢ < gg, this implies that
% < :gg:; < %. Then, estimating as in Lemmaﬁ7 we have

< Coert 51/(q+1) , Vr e Ij )

(4.21) ‘1 -

|JE(r) — ()| < 2 o1,y Coert €/ 0D
Following [DZ1l eq. (4.17) and (4.18)], yields,
HP(J; = J3) < C2'J{| o) sup min{e/ @] — 5|77, |p — /(@D

r,s€l;

where H7(-) is the Hélder constant with exponent 3 on I;. This bound is maximized when & = |r—s|,
which yields H?(Jt — Jb) < CZt\JﬂCO(Ij)el/(q*l)*fB. Putting these estimates together yields,

1T 0 Gy = [T 0 Gyalonqryy < C2TT" gognye 77

Together with the previous estimate on ), this completes the proof of the sublemma since a <
1/(g+1). O

31The case q = 2 is treated there, the general case is similar.
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Returning to (4.18)), we split the estimate over matched pieces as follows. First, recalling (4.17)),
define on each Uj,

{52 =poT"o GUJ.Q oGui, and JT"=JT"o Gyzo Gl}} '

U :
Then,
[ e = [ punem T < | [ f o T T < dul T
UJ.1 U].Q U].l
(4.22) +/ szZ\JST”\t—/ fabg o TV | JST| .
Ujl U]?

We estimate the first term on the right side using the strong stable norm and Lemma b),

Py o T [T — o T )| < [ fllbg P C2! T T™ | 1y
Ul ;)
J

Then, noting that d(iy o T™ \JST”\t,zzg\jsT”\t) = 0 by definition, and the C'* norm of each test
function is bounded by C’2t|J5T”|tCO(Ij), using (4.11)) and (4.12)), we estimate the second term on
the right side of (4.22)) using the strong unstable norm:

‘/U FURIPTY = [ it o TP < | flludor (U} U C2 T o
J J

(4.23)

< O AN T g
J

where we used Lemma |4.8(a) in the second inequality. Putting these estimates into (4.22)), then

combining with (4.19)) in (4.18]), and summing over j (since there are at most two matched pieces
corresponding to each element of G,(W1)), yields,

[ cipo— [ e

< C (Ifln™AE1Qu(t) + £ 1157 Qu(t = 1/p) + 2 Qu(r))) -

Dividing through by €7 and taking the appropriate suprema over W* and 1, proves (4.7) since
v <min{l/p,a — 5}.

4.4. Proof of Lemma (L:(CY) € B). We assume 0 < t < 1. The proof for ¢ > 1 is similar,
but simpler, since L;f is bounded when ¢ > 1. Without loss of generality, we also assume that
to < 1/2, so that, by Definition g>8andp>09.

We introduce a mollification in order to approximate £;f by functions in C1(M): Let p : R? — R
be a C'°° nonnegative, rotationally symmetric function supported on the unit disk with [po pd?z=1
and |p|cn < 2. For f € C*(M) and 5 > 0, define

gn(x) = /Bn(z) np (d(a;z)) Lif(2)dz,

where By (z) is the ball of radius 7 centered at z. Viewing M as a subset of R?, we set Lif =0
outside M so that the integral is well-defined even when By (z) ¢ M. We first develop bounds on
|gnlco(ary and |gnlor(ary, for any ¢ > 0.

Since t < 1, the operator L; f is unbounded in neighborhoods of T'Sp, so the bounds on g, will be
greatest in such neighborhoods. Suppose  and 1 are such that B, (z) N'T'Sy # ) and note that there
can be at most Tmax/Tmin + 1 connected components of B, (x) \ TSy. Fix one such component with
boundary S € T'Sy such that S is the accumulation of the sequence of sets, By (x) N THy, k > k.
On each such set, |J*T|'=t = C*F1E=90-8) " Also, due to the uniform transversality of TSE with the

(4.24)
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stable cone, we have diam®(B,(z) N TH) < Ck~2¢~!, and diam™(B,(z) N THy) < Cn. Moreover,
since the boundary of THj, has distance approximately k=27 from S, we have By (z) N THy = 0
unless k > Cn~1/(29) Assembling these facts, we estimate,

wie T [ pwsezan 5 e
k>Cn—1/(20) 7 Bn(@NTSo k>Cn=1/(20)

We conclude that, for any 0 <t < 1,@

3
2

t_1 . t
(4.25) gnlcoary < Clfleon?™ 2,  and similarly, [gylcra) < C|floon?

To prove Lemma we must to control g, — L; f integrated along stable manifolds. To this end,
we will need the following two lemmas. (The first one is classical and the second uses bounds on
the auxiliary foliation constructed in [BDIL, Section 6].)

Lemma 4.9. Let W € W?* be weakly homogeneous and for n > 0 let W, (n) C W denote the
set of points in W whose unstable manifold extends at least length n on both sides of W. Then
mw (W \ Wy(n)) < Cn for some constant C' > 0 independent of W and n.

Proof. This is precisely [CM, Theorem 5.66]. See also the corrected proof in [BDT]. O

Lemma 4.10. There exist constants C,Cs > 0 such that for any weakly homogeneous unstable
curve U and any o > 0, there exists a set U' C U with my(U \ U’) < Cp such that

’ JT(x)
J5T(y)

- 1) < € (T ) + () V) L Ve e U,

where ky is the index of the homogeneity strip containing U .

Proof. Fixing a length o < k:l;q_l, we define a foliation of stable curves transverse to U, following the
procedurﬁ in [BDL, Sections 6.1, 6.2]: Choose n € N arbitrarily large and define a smooth “seeding”
foliation of homogeneous stable curves transverse to connected components of T"U; elements of
the seeding foliation are then pulled back under T~ and those that are not cut form a foliation
of homogeneous stable curves of length at least ¢ and transverse to U. Letting U}, C U denote the
set covered by this surviving foliation, we have my (U \ U},) < Cp, for some C > 0 independent of
n [BDL Section 6.1]. Moreover, expressing the foliation in local coordinates (s, u) adapted to the
stable and unstable directions defines a function G(s,u) such that each stable curve can be expressed
as {(8, G(8,u)) }se[—o,0)» and G(0,u) = u, so that the unstable manifold U corresponds to the vertical
segment {(0,u)}y,eo, ;). It follows that the slope V(u) of the tangent vector to the foliation at (0,u)
is just 95G(0,u). By [BDI, Lemma 6.5], 9,05G € C° with [0,05G|e < Co~ /@ VE; (where we
have adapted the exponent according to the spacing of our homogeneity strips).

Note that the foliation of stable curves constructed in this way has tangent vectors in DT~"C*%.
Since the bounds on my (U \ U},) and |0,0sG | are independent of n, we conclude there exists a
set U' C U with my (U \ U’) < Cp such that the stable manifolds passing through U’ have length
at least o and satisfy |0,0:G|oc < C.qu/(q“)kgq (see also [BDL, Remark 1.1]).

Finally, for u,v € U’ we estimate as in (2.7) (with n = 1), using (2.8) for log zgzz%zg and

V(u) — V(v)| < Co~9@* Dk 9d(u,v) from the construction in [BDL]. Putting these estimates
together proves the lemma. O

32For t = 0, any choice of ¢ > 1 gives the same bound.
33[BDLj constructs this as a foliation of unstable curves transverse to a stable curve. By the time reversal property
of the billiard, the same construction holds with stable and unstable directions exchanged.
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We record for future use that for any measurable set V. C W € W*,
[ cetvdmy = [ f1lT G o Tdmp oy
1% -1V
< U looloo| T VIV < O flooltbloo|VITH72,

where |V| denotes the arc length measure of V', and we have used the Holder inequality for the first
inequality and the bound |T~'V| < C|V|"/2 in the second.

Approzimating the strong stable norm. Fix n > 0, and let W € W? and ¢ € CP(W) with
[Vlcsmwy < |W|~1/P. 1f |W| < n, then using ([#.25) and ([#.26)), we write, simply, using p > 9,

(4.27) /W(Etf — g0 dmw < C| oo WIVP(IW5 + (W2 =3) < C| floon?*5 .

(4.26)

In what follows, we assume |W| > 7. Let W, denote the curve W minus the n-neighborhood of its
boundary. Treating the integral over the two components of W'\ W, in the same way as (4.27), we
estimate, using that my (W \ W,") < 2n,

(4.28) Jo (€2 =g < Cfloon5.

Next, since W intersects at most N = Tyjax/Tmin+1 elements of T'Sy, the set WnN (Uanfl/(qu) T]I-]Ik)
comprises at most N intervals of length Cn2¢/(2¢+1) We estimate as in (4.27) using V.= W N
(Uk2n71/<2q+1) THy) in (4.26), and that p>¢g+1>9

(Lof — go)tb dmw < C|f]oonz 10 .

Sle

(4.29) /
WUz, -1/(2041) THR)

Finally, we estimate £;f — g, on those portions of W~ that intersect THj, for k < n~1/Qat1) et
x be such a point in W,". Due to the restriction on &, the ball B,(z) lies in a bounded number of
homogeneity strips, so we may use bounded distortion in conjunction with Lemma to bound
the difference in each such interval. Let S, = W \ Wy (n) denote the exceptional set of points in
Lemma We write A,(x) for the subset of B,(x) foliated by unstable manifolds of length at
least 2, and let E;(x) = By (x) \ A,(x). Then,

@30 Lf@ =g = [ () (L (@) - Lof ()

()

[ e L (@) - Luf (@)
Ey(z)

We first estimate the integral over E,(z) using the bound £ f(z) < CL,f(x) for z € By(x), since
By (x) lies in a bounded number of homogeneity strips. Then, using the fact that the unstable
foliation is absolutely continuous, we disintegrate as follows,

(4.31) /E " N2 (M) (L f (x) — Lof (2))d*2 < CLf ()01 |Sy N By ()]

Next, we estimate the integral over A,(x). Since each point y € A,(z) N W, has an unstable

1
manifold U, extending a length at least n on either side of W, we set o = nHﬂ and denote by
Aj () those points contained in sets Uy C Uy satisfying Lemma m It follows from that lemma
and the absolute continuity of the unstable foliation that

(4.32) 22 (L, (2) — L4 (2))d%= < OLuf (@),

/An(w)\A’n (z)
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where we have again used the bound L f(z) < CL;f(x) on By (x).

For z € A} (), we bound the difference L;f(x) — Lif(2) as follows. Let y = [, 2] denote the
point of intersection between the stable manifold of x (which is W) and the unstable manifold of z,
which is U,. By definition, z € Ul’/ and it is always the case that y € Uz// since the stable manifold
of y, W, has length at least n > 0. Thus,

[Lef(z) — Lof(2)]

f(r ') f(Ty) f(rly) [T
TNETINT ) ST HT ) | ([T HTy) [ TST (T 2)

< Lol (@)[| flerd(T e, T™y) + | fleoCd(T ™, T 1y) /@t D)

+

F1flerd(T ™Yy, T712) + | fleoColn™ 202 d(T ™y, TV 2) + d(T 1y, T=12) @4y |

where we have used Lemma along W and Lemma [4.10| along U, with o = 7 2¢ . Next,
d(T~ 'y, T~'2) < Cd(y,z) < Cn, while for x € THy,

1

d(T 'z, T7ly) < Ckld(z,y) < C'T]2q¢1+T

since k < n~1/(2¢+1) Putting these estimates together we obtain,
Lof(2) = Lof (2)] < [Flor LA (@)Cnmrz for 2 € Ay(a),
and combining this with (4.31]) and (4.32)) in (4.30) yields,
1 _
(4.33) ILif(z) — gy(2)] < O|f|cr Lel(z)n2272 + O|f|coLel(z)n Sy N By(w)| .
We must integrate this bound over W~ N (ngnfl/(2q+1)THk>. We estimate the integral of the

first term in (4.33)) simply using (4.26)),
(4.34) C\flcmﬁ/ Lol dmy < C|floinme |

n (Yo, ~1/(2g+1) THE)

Finally, to bound the second term in (4.33), we write I,,(x) = By(x) N W and

1S4 By(a)| = |

n(z

n
1Sn(z)dmw(z) = /_77 s, (z + Gw(z; r)JGw (x;r)dr,

where Gy (x;r) denotes the (local) graph of the function defining W in a neighborhood of z, as in
(4.17)), and we have centered the local r-interval at » = 0. Then,

n
/ £ @D [ 15,0+ Guw 1) o o 7) i dm (2
W_Q(ngn—1/(2q+1)THk) n -n

n

W
< Iflen = /T7 [ L@, (@ + G (i) TG (i) dmay () dir
n

\W‘—l/p

(435) < Clflev——— [ 18,0*0/2dr < Clflomitt,
-1
where we have used and the fact that translations of W~ up to length n are subsets of W
in order to apply for the second inequality, and Lemma with |[WW] > n and p > 9 for the
final inequality.
Finally, using (4.34) and (4.35)) in (4.33), and adding the contributions from (4.28]) and (4.29) in
addition to yields,

(4.36) /W(Etf — gy) ¥ dmyy < C|f|rn7e,
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for some C' > 0 independent of W, since min{%—f—l%, ﬁ} = ﬁ whenever ¢ > 1 and ¢ > 0. Taking
1

the appropriate suprema over ¢ and W yields the required estimate ||L.f — gylls < C|f|cinZa2.

Approximating the unstable norm. Let ¢ < gy and Wy, Wy € W# with dyys (W7, Ws) < e. Let
Vi € CY(W;) with [i|caqw,) <1, = 1,2, and d(31,%2) = 0. We must estimate,

/ (Lef — gn)r dmwy, —/ (Lef — gn)b2 dmw, .
W1 Wa

We consider two cases.
1
Case 1: n72 < 27, We apply (4.36)) to each term separately and obtain

/Wl (L1f = go)brdmw, = [ (£af = gy)2 dm,

Wa

1
e < Clflerntats.

1 i .
Case 2: n2a+2 > 2. In this case, we write

/W (Lof — go)n dmu, — /W (Lof — gn)tb2 dmuw,
(4.37) ! :

=/ Ly f 1 dmwy, —/ Lyt f o dmyy, +/ Gn Y2 dmyy, —/ gn Y1 dmyy, .
Wi Wa W2 W

We estimate the difference involving L, f using the estimates in Section but using the fact
that f € C'(M) to obtain stronger bounds. In particular, the integral over unmatched pieces from

(4.19)) is bounded by C|f|coe. The bound on the first term of (4.22)) remains the same, but the
bound on the second term from (4.23)) is improved to C|f|o1e. Putting these estimates together as

in (4.24]) and dividingjﬂ by €7 implies,

a—fB—
(438) e 7 Lif Y1 dmyy, — /W Lif Yo dmpw,| < C‘f|015a7677 < C’f‘01774’v(q+;3 .
2

W1

Next, we turn to the second difference in . Using the notation of Section we split the
integrals up into one integral over the common r-interval I; N I» and at most two integrals over
I A Ir. The (at most two) curves Vf C Wy corresponding to intervals in I; A Is have length
bounded by Ce by definition of dyys (W7, Wa). Thus using (4.25)), we have

(4.3 |, gwtsdmy; < Cflcont~He < Clflcon

_1 -y
PRI CESY) v,

[VE

On the curves Uy, U, which are the graphs of the functions ¢y, , ¢, over I N Ia, we have,

(4.40) /U1 g Y1 dmw, — /U gy Y2 dmw, < [JGu, (gnt1) o Gu, — JGuy (gyt2) © Gu,lco(nny) »
2
where Gy, (r) = (r, oy, (r)). Then estimating as in the proof of Sublemma we have

t_ 34 1-v
(4.41) |JGu, (ggth1) © Gu, — JGuy(gyiha) © Guyleo(mm) < Clanler e < Clflaon? 2 D@D ET

where we have used the fact that d(y1,%2) = 0 and [py;, — ¢p,| < €. Putting these estimates

together with (4.38]) in (4.37) yields,

(4.42) e /W (Lof — gn)tor dimay, — /W (Lof — gn)iba dmuy,

a—f—y E,QJ’, 1—vy
< C|f’cln47(q+l) +C’|f|00n2 2Ty (e+1) |

34We use here the strict inequality v < a — .
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and we use v < 6ar7 +7 from (4.1) to deduce that —3 34 4V(q+1) > 0. This completes Case 2, which,

together with Case 1, implies the required bound ||£;f — gylu < |f|Cl(M)T] , for some ¢ > 0, ending
the proof of Lemma [.3]

Remark 4.11 (Adapting the proof of Lemma to the case t = 0). Homogeneity strips are not
used in [BD], so one requires a nonhomogeneous version of Lemma but it is not hard to show
directly that there exists C' > 0 such that my (W \ Wy(n)) < C\/n for any W € W?* and n > 0, and
this weaker bound suffices (see discussion of below). Lemma can be kept unchanged as
it is only needed on unstable manifolds contained in a single homogeneity strip.

We show how to adapt the proof of Lemma to the norm from [BD) §4.1] with ¢ = 2, and
parameters 3, v, and s: FEq and @ get better since the test function satisfies |¢| <
|log [W||", so we find n/?|1logn|?. Similarly, [4.29) has the bound /1% logn|?. Eq (4.30)—(4.34)
remain as written. Eq proceeds as above until the last line, at which point we use |S,| < C\/7,
so that the final bound becomes C|f|son'/*|logn|?. Thus we arrive at with a bound C| f|c1m'/S.
The factor |logn|? can be absorbed by the various exponents, all being greater than 1/6. So there is
no extra restriction the parameter vy from [BD] from the stable norm estimate.

For the unstable norm estimate, one distinguishes between the case n'/% < |loge|~2, which

yields a bound with n'/'2, and the case n'/% > |loge|~%, which implies that & < exp(—n_%),

which is superexponentially small in n, so that 4.37} remains the same, while (4.38) is bounded
a—f )

by e*P|logel* < exp(—n~ 2% ). Similarly, [ is bounded by |loge|™° times a factor superex—

ponentially small in 1. (We have a power of € whzch ] factored into |loge|™° times 5 S for

a8
any 6.) The same is true of -7- Finally, in , we end up with exp(—n_ 245 ) plus

n=3/2 exp(—n 24), and this goes to 0 as n goes to 0, for any ¢ > 0 (in particular, there is no extra
condition on ¢ from this estimate).

4.5. Spectral Gap for £;. Constructing u; (Proof of Theorem [4.1)). We harvest the results
from the previous subsections to show Theorem [£.1] at the end of this section. Our first result
follows from Proposition [4.6| and the exact growth for Qn(t) (Propositions [3.15 and [3.18)).

Proposition 4.12 (Quasi-compactness). Let to € (0,1) and t; € (1,t.). Then we can choose
parameters for B such that for any t € [to,t1], the operator Ly acting on B is quasi-compact: its
spectral radius is e and its essential spectral radius is at most oe™®) | where

o := max{A TP gt=1/Pe=P(M) ATV} <1,
Moreover, the peripheral spectrum of L; contains no Jordan blocks.

Proof. Since to > 0 and t; < t., we can choose p > 1 such that p > 2/ty > 2/t and (by Lemma
g(t=1/P)e=P<(t) < 1 for any t € [to,t1]. Then and Proposition |3.18|(b) imply that the spectral
radius of £; on By, is at most e/*(®). Combining from Proposition with Hennion’s theorem
and compactness of the unit ball of B in B,, from Proposition the essential spectral radius of
L; on B is at most oef*® < () Hence the spectral radius of £; on B is at most ef>(®).

Next, notice that by Lemma (2.1} u and our choice of §; in , we have for W € W?* with
‘W| > 51/ 3,

=

/ﬁ”ldmw_ Z /|JST"|tde> S L2 T ey,
W;egot W;eL2H (W)

= %512_ Z |J8Tn’00 > 512 CIQTL( )a
WieGnt (W)

(4.43)
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where for the final inequality we have applied Proposition [3.18(b). Then, since Q,,(t) > e"* ® by
the lower bound in Proposition |3.18(b), we conclude

1€2 s > 1€ s(1Ls) ™! = (1L]5) " Core™ " = 1Ly = P

lim
n—oo
Thus the spectral radius of £; on B is in fact e/*® and £; is quasi-compact on B.

Finally, to prove there are no Jordan blocks in the peripheral spectrum, assume to the contrary
that there exist fo, f1 € B, fo # 0, and X € C, |A\| = ()| such that £;fo = Afo and L;f1 = Mf1+ fo.
Then L f1 = A" f1 +nA""!fy, so that

1| folw < PO i)y + e VO L0 f |,

and dividing by n, letting n — oo and applying (4.5) and Proposition [3.18(b) yields | fo|,, = 0. The
injectivity of B,, into B given by Proposition implies fo = 0 in B, a contradiction. O

For w € [0,1), let V., denote the eigenspace of £, on B corresponding to the eigenvalue P (1) g2mizs
Due to Proposition [£.12] we have the following decomposition of £; on B,

(4.44) L= W= Ry,

where the sum is over finitely many w due to the quasi-compactness of £;, and H2w =1, I Il =
RIl, =TI Ry =0 for w # @’ (mod 27), and the spectral radius of Ry is strictly less than eFx(®),

1 n—1
Lemma 4.13. Define v, = lim — Z e_P*(t)kEfl.
a) Then vy # 0 is a nonnegative Radon measure, and eP*() s in the spectrum of Ly.
b) All elements of V.= ©5V are complex measures, absolutely continuous with respect to vy.

Lemma is standard, adapting what has been done in the SRB case. We give a proof for
completeness.

Proof. (b) The lack of Jordan blocks enables us to define spectral projectors by
1 n—1 ]
(4.45) o :B— Vg, Iof= nh—>nc}o - ;.;o o~ P-(Ok—2riwh ok ¢
where convergence in the B norm is guaranteed by Propositions and (b)._Moreover, since
C1(M) is dense in B and Vg is finite-dimensional, for each v € V, there exists f, € C'(M) such
that Il f, = v.
Taking v € V5 and ¢ € C*(M), we have

. 1 n—1 - _ _ 3
(@) < lim — kz_%e PORLE L )] < 1 FulooTlo1 (1)) < |foloolt/looTTo1(1) -
The last two inequalities show respectively that v is a complex Radon measure, and is absolutely
continuous with respect to vy, with density f, € L*°(1;). It may be that f, # f,.

(a) Ttem (b) implies also that 14 is a nonnegative Radon measure since f,, = 1 and Iy is nonnegative.
Also, if vy = 0, then all elements of V are 0, contradicting the fact that the spectral radius of L;
is @) Thus v, #£0 and e (1) is in the spectrum of £; since Ly = eP*By,. ]

The dual operator £f acting on B* has the same spectrum as £; on B. Define

n—o0o n,

1 n—1
(4.46) = lim — > e O£ dpgpy
k=0
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which converges in the dual norm due to the absence of Jordan blocks. By the analogous arguments
to item (b) of Lemma the distribution 7 # 0 is a nonnegative Radon measure, and every other
eigenvector corresponding to the peripheral spectrum is a Radon measure, absolutely continuous
with respect to 4, with bounded density.

With 7y, we will define our candidate p; for the equilibrium state in Proposition 4 For this
(and in (6.23))), we shall use the following lemma (proved exactly as in [BD), Lemma 4.4]) which
gives more precise information about the inclusion B,, C (C'(M))* in Proposition Recalling

22), let Hy, (v) = supweyys Hiy (¥)-
Lemma 4.14. There exists C > 0 such that for oll f € By, and ¢ € C*(WVg),
[f W) < Clflw([Ploe + Hyys (¥)) -

Proposition 4.15 (Constructing p;). For v € B and v € B* we set (v,0) := v(v).
a) The measure 0y € B* is in fact an element of B;,.

b) We have (v, 1) # 0, and the distribution p; defined for ¢ € C“(Wyy) by
Vg, U
Ut(w) — <¢ t t>

(ve, o)
is a T-invariant probability measure.

Proof. a) Let g, =n~" > heo Le POk (LYEdpgrp. By definition, ||gn, — 7||s+ — 0 as n — oo. Thus
for f € B, we have
|<fvﬁt>| < |<f7’7t _gn>| + |<f7.gn>| < ‘(fv v — gn>| + C|f’wa

where for the last inequality, we used the bound,

1(f, (LF)* dpspp)| = [(LF f, dusrs)| < C|LFflw < C'e>OF|f], |

by Lemma and Proposition Taking n — oo yields the bound |(f,7;)| < C|f|, for all f € B
and since B is dense in B, the distribution 7; extends to a bounded linear operator on B, as
required.

b) First we show the expression (v, ) is well-defined for ¢ € C*(Wj). According to our
convention, for f € C*(M), we define for n > 0,

(0L dusnn) = [ £2(£0) dissr < CQuIlulblom v

by the proof of Lemma [£.14] Thus 1(£?)*dusrs extends to a bounded linear functional on B,,.
Applying Proposition |3.18(b) and (4.46]), we obtain

(4.47) Yoy € B* with [(f, 0| < C'|flwlt]ca( wg)s Vf € By
(We do not claim or need that ¢ f € By, i.e. that ¢/f can be approached by a sequence of C!
functions in the weak norm.) Thus (Yuy, 7t) := (14, 91,) is well-defined. Remark that the above

argument also shows that (1) = (fuy, i) for all f € CH(M), o € CO‘(WH?’H).
Next, suppose (v, ;) = 0. Then for any f € C*(M), and n > 1, using (& ,

: —Pi(t 7 E* —Pi(t)k ﬁk’ ,
(4.48) (fs o) Ze f ) kz%@ (Lif, o)

<Ho(f), ) = co(f) v, ) =0.

n—oo
By density of C'(M) in B, this implies that 7 = 0 as an element of B*, a contradiction. Thus
(v, ) # 0, and indeed ¢ (f) = 7). 5o that e is a well-defined element of B* C (C1(M))*. It is

(ve,0t)
then easy to see that u; is a nonnegative distribution and thus a Radon measure. The fact that u;

is T-invariant is an exercise, using that 14 and 7 are eigenvectors of £; and Lj. O
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Following [BD], Definition 7.5], we remark that elements of B and B, can be viewed both as
distributions on M, as well as families of leafwise distributions on stable manifolds. In particular,
for f € CY(M), W € W, the map defined by

Dy (1) 1= /wadmw, v e CUW),

can be viewed as a distribution of order a on W. Since |Dw, ()| < |fl|wlt|cew), the map Dy,
can be extended to all f € B,. We will use the notation [, ¢ f for this extension and call the
associated family of distributions the leafwise distributions (f, W)wews corresponding to f. If f
satisfies [ f > 0 for all f > 0, then the leafwise distribution is a leafwise measure.

Next, we introduce the notation regarding the disintegration of the measure pusrg. We fix a
foliation of F = {W¢}eez C Wy of maximal, homogeneous local stable manifolds belonging to Wg.

The conditional measures are defined by pSgp = [We| ™t pedmy,, where pg satisfies [CM, Cor 5.30],

4.49 0 < ¢, < inf inf ps < su o <C,< .
(4.49) p_geawgpg_geg!pg!c we) < Cp

Denoting the factor measure on the index set Z by fisgp, we get an analogue of [BD, Lemma 7.7]:

Lemma 4.16 (1, as a leafwise measure). Let uf and Dy denote the conditional measure on Wy

and the factor measure on =, respectively, obtained by disintegrating vy on the foliation of stable
manifolds F. For all ¢ € C*(M),

st (0 Pe Vi

Ve €S, and dz?§:W_1/p1/ diisn(€) .
fwgpé’/t t() |§’ (ngt SRB()

¥ dvt =
We

Moreover, viewed as a leafwise measure, v, (W) > 0 for all W € Wg.

Proof. We begin by showing that v(W) > 0 for all W € Wy. If |IW| > §;/3 (recalling that our
choice of ¢; in is uniform for ¢ € [tg,t1]), then the positivity follows immediately from the
uniform lower bound ([4.43). So assume W € Wy with |[W| < §1/3.

First, we claim that there exists ny = O(log |W|) such that at least one element of gglw(W) has
length at least 6;/3. For any n > 1, if no elements W; € G2 (W) have length at least d1/3, then
GO(W) = T2 (W) so that by Lemma [3.3| with ¢ = 0, Siw,eatt [T loow,y < Cob™, while by

(13-9)), P W) [T T | coqw,y = C1|W|6; . This can continue only so long as

log(Cl|W|)
CLIW|67 < Cpf" = n < ——00 2 .y
log 0

Next, letting V' € Qzlw(W) be such that |V| > 6;/3, we estimate as in (3.39)), using the fact that

+1\"W
since V' and T"WV are both homogeneous, |V| < C|T"W V| (35%) for some C' > 1, so that

2q

m t
> el VL 5 —tca(s, (30 U

- VI

sy |t )nW
ST [ o vy
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Finally, recalling our choice of ny from (3.47)), and using the fact that |V| > §;/3, we estimateﬂ

n—1 n—1
l Z e_P*(t)kﬁfl de Z e—P*(t)TlWl Z e—P*(t)(k‘—nw) / Eiﬁ)*ﬂ,wl |J5an|t di
n k=0 n k=ni+nw 14
n n—1
(4.50) > o~ Pe(t)nw ,~tCy (?ﬁ%)t(iqjll) w l Z e~ P () (k—nw) / [’f—nwl dmy
B 1%

k=ni+nw
2¢+1)"W
—P.()nw ,—tCq ( o1 t( +1) n-l-ni—nw 1 —t
>e * e (30) g n 4(512 C1,

where in the last line we have applied and Proposition (b)
These lower bounds depend only on |W| and carry over to v(W) since they are uniform in n.
With the lower bounds established, the remainder of the proof follows precisely as in [BD)
Lemma 7.7], disintegrating the measure (% ZZ;(l) e kP *(t)ﬁfl) dusgs on the foliation of stable
manifolds F, using that convergence in B to 4 implies convergence of the integral on each W¢ € F.
I W Y pe vt

The lower bounds on v4(W) imply that the ratio ————
J we PEVt

is well-defined for each W, € F. OJ

In view of (4.52)) in the proof of Lemma below (and also (6.25))), it is convenient to define
L; acting explicitly on distributions. For any point x € M that has a stable manifold of zero length,
we define W#(x) = {x}, and extend W?* to a larger collection WW? including these singletons. For
a<1,let

C*(W?) := {¢ bounded and measurable | |¢|Ca(v~vs) = sup |[Y[cam) < o0}
Wwews
Let C2,(W*) denote the set of measurable functions t such that ¢ cosp € C*(W#). 1t follows from
the uniform hyperbolicity of 1" that if ¢p € C*(W?), then ¢ o T € C*(W?) (see (4.11))). Also, as in
the proof of Lemma [2.2] by [CM, eq. (5.14)], we have J*T'(z) ~ cos p(z) for € M'. We extend J*T
to all z € M by defining it to be 1 on M\ M’. Then using (2.3), we have Yo T/|JTHt € Céos(WV?)
whenever ¢y € C*(W?) and o < 1/(¢q +1). Using these facts, for a distribution u € (C&s(W?*))",
define L : (CE,(W9))* — (C*(W?9))* by
Yol

To reconcile this definition with (L.11)), for f € C*(W?), we identify f with the measure fdusgs.
Such a measure belongs to (C%.(W?*))* since 1/cosp € L'(usrs). With this convention, the

measure L f has density with respect to usgp given by (1.11)). Finally, note that B C (C’é’gs(f\j‘9 ),
due to Lemma [£.14] and Remark .5

We are finally ready to prove that £; enjoys a spectral gap, using Lemma (which exploited
that pusrs has smooth stable conditional densities, a very nongeneric property in the setting of
hyperbolic dynamics).

Lemma 4.17 (Spectral Gap). Ly has a spectral gap on B, i.e., e s a simple etgenvalue and

all other eigenvalues of Ly have modulus strictly less than eP=®).

Proof. Step 1: the spectrum of e L, consists of finitely many cyclic groups; in particular,

each w in (4.44]) is rational. To prove this, suppose v € V, v # 0, and ¢» € C*(M). Then by

351n fact, estimating more carefully for ¢ < 1, one can obtain the more precise lower bound C’5%7t|W|CNP*(t) (W
for some C’, C” > 0, but we will not need this here.
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Lemma b) and viewing v as a distribution in the sense of (4.51))

_ _ _—P.(t)-2miw __—P.(t)—2miw YpoT )
/M¢fu dvy=v() =e Liv(p) =e v <|J5T|1—t

. oT .
(4.52) = ¢~ (D)= 2mizy, (fv \ﬁTIl-t) = O L, (”‘/’ fvo Tﬁl)

_ ey (g g 07)

so that f, o T~ = 2™, 1;-almost everywhere.

Defining v, ; = (f)Fvy, for k € N, we claim that el ()+2miwk helongs to the spectrum of £; and
Vgt € Vi The claim completes the proof of Step 1 since the peripheral spectrum is finite, forcing
wk = 0 (mod 1) for some k > 1, so that w must be rational.

To prove the claim, set f, = 0 outside the support of v, and define the measure (f,v, ) =
(v, - ). We claim that this measure is not identically zero. If it were, then for any ¢ € B*, making

the dual argument to ,
<’/7"¢> = <HWV7 Tﬁ) = <V,H; > = <V7 fwﬁt>éw(¢) =0,

where we have used that every eigenvector corresponding to the peripheral spectrum of L} is
absolutely continuous with respect to %, i.e. 7y = fwﬁt, as explained after . Thus v =0, a
contradiction.

Since (f,v4,- ) is not identically zero, it follows that ((f,)*vs, - 74) is not identically zero. Thus
there exists ¢ € C*(M) such that ((f,)*vs, vi;) # 0.

For ¢ > 0, choose g € C*(M) such that pu(|lg — (f,)¥]) < e. Note that giy € B by [DZ2,
Lemma 5.3]. We will show that II_;(grt) # 0. For ¢ € C*(M) and each j > 0,

e—P*(t)j—Zm'wkj<£g(gyt)7 bin) = e~ Pr(t)j—2micokj (gu, ¥ o T (LY i)
= PN (uy, i) (g ap o T7)

P.(t)

where we have used (£})/7, = ef*(0ip,. Also, due to the invariance of py,

((fu) v, din) = e ™= ((f,)F 0 T vy, i) = €275 (uy, i) e ((f)F 0 0 T7) .
Putting these two expressions together, we estimate,

1 n—1

S e P OS2 ] (), ) — () )

lim —
n—oo n,
Jj=0

1 n—1

< Jim = 3 (v 7) pullg = (F) Dl < (v, ) e
j=0

Since {(f,)*vy,-74) # 0 and e > 0 was arbitrary, this estimate shows that (i) I (gs) # 0, so that
Vk is not empty, and (ii) v = ( f.,)Fvy can be approximated by elements of Vo, and so must
belong to Vi, as claimed.

Step 2: Ly has a spectral gap. It suffices to show that the ergodicity of (T, usrp) implies that the
positive eigenvalue e"(®) is simple. For then applying Step 1, suppose v € Vo, for @ = a/b. Then
both Llv = eP(Mby and Loy, = el by, so that LY has eigenvalue e (b of multiplicity 2, and this
is also its spectral radius, contradicting the fact that (T, usgg) is also ergodic.

Now, suppose v € V. By Lemma [4.13(b), there exists f, € L*(v;) such that dv = f,dv,. We
will show that f, is v4-a.e. a constant.
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By (4.52)) f, oT = f,, vi-a.e. so that setting
n—1

Snfv = ZfVOTj7
=0

we see that %Sn fu = f, for all n > 1. Thus f, is constant on stable manifolds. Next, since the
factor measure 7 is equivalent to [isgg on the index set = by Lemma it follows that f, = f,oT
on figgp-a.e. We € F. So f, = f, oT, pgrp-a.e. Since ugrg is ergodic, f, is constant pgrp-a.e. But
since f, is constant on each stable manifold W, € F, it follows that there exists ¢ > 0 such that
fu, = c for fisgp-a.e. £ € E, and once again using the equivalence of [isgg and 4, we conclude that
f, is constant vs-a.e. O

Proof of Theorem [{.1l All claims except the last sentence of the theorem follow from Proposi-
tions [£.12] and and Lemma [{.17] Exponential decay of correlations for C* functions with rate
v satisfying (4.4]) follows from the classical spectral decomposition

LFf =P Ole,(f) - v + RF(F)], where 3C < 0o s. t. |RFf|| < CO¥||f||,VE >0, Vf € B,
and ¢(f) = 7). Tndeed, by [DZ2, Lemma 5.3] for ¢ € C*(M),

RZEON

(4.53) YoTIfeB and || oT 7 f|s < Cjl|cal fllg forall j>1,
we find for fi, fo € C*(M) (using with j = k),
/(f1 o T fadyir = (fr-fooT7 v, 2n) .oy (HLE(Favi), 70)
! (v, ) (v, D)
(frive, o) ([IRE(fowe), 1) (AR} (favr), )
(ve, D) " (ve, o) B /fld#t/ﬁdﬂt * (ve, D)

and we have, using again (4.53) (with j = 0),

= ci(forr)

9

‘<f1Rf(f2w),ﬂt> < | filoa |RY (fare)ll < Clfilcav®|| farll < Cfilcal folcan® .

Exponential mixing for Holder functions of exponent smaller than « then follows from mollification
(a lower exponent may worsen the rate of mixing). Finally, mixing is obtained by a standard
argument: Since p is a Borel probability measure and M is a compact metric space (and thus
a normal topological space), any f € L?(u) can be approximated by a sequence of continuous
functions in the L?(j) norm, using Urysohn functions. So, by Cauchy-Schwartz, we may reduce to
proving mixing for continuous test functions. Clearly, Lipschitz functions form a subalgebra of the
Banach algebra of continuous functions, the constant function =1 is Lipschitz, and for any x # y
in M there exists a Lipschitz function f with f(z) # f(y). Since M is a compact metric space the
Stone—Weierstrass theorem implies that any continuous function on M can be approached in the
supremum norm by a sequence of Lipschitz functions on M. To conclude, use Cauchy—Schwartz. [

5. FINAL PROPERTIES OF p; (PROOF OF THEOREM [1.1| AND THEOREM |[2.4))

In this section we show Proposition [5.1 Corollary [5.3] Proposition [5.5, Lemma [5.6] and Proposi-
tion 5.7, which, together with Theorem 4.1} give Theorem [I.1]

5.1. Measuring Neighbourhoods of Singularity Sets — u; is T-adapted. In this section, we
show Proposition [5.1 which gives in particular that u; is T-adapted. For any e > 0 and any A C M,
we set Nz(A) = {z € M | d(z, A) < €}. The proof will be based on controlling the measure of small
neighbourhoods of singularity sets.

Proposition 5.1. Let y; be given by Theoremfor t € [to,t1], with p > 2 the norm parameter.
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a) For any C' curve S uniformly transverse to the stable cone, there exists C > 0 such that
1t (N=(S)) < CeYP for all e > 0.

b) The measure p; has no atoms. We have 1(Sy,) =0 for any n € Z, and (W) =0 for any
local stable or unstable manifold W'

c) The measure p; is adapted, i.e., [ |logd(x,S+1)|du < oo.

d) For any p’ > 2p, pt-almost every x and each n € Z, there exists C' > 0 such that

(5.1) ATz, 8,) > Cj" Vj>0.
e) u-almost every x € M has stable and unstable manifolds of positive lengths.

Proof. We proceed as in [BD| Corollary 7.4]. The key fact is that for any n € N there exists C;, < oo
such that for all € > 0

(5.2) (e(Ne(S—n)) < Cre'? 1 (Ne(Sn)) < Cre/ P
Denoting by 1,, . the indicator function of the set NV:(S_,), Proposition a) implies
Mt(/\/’s(sfn)) = <1n,€7/ta ﬂt> < C|1n,67/t|wa

for n > 0. The bound |1, . flw < Au|/flls|e]'/? for all f € B follows exactly as the proof of [BD,
Lemma 7.3], replacing the logarithmic modulus of continuity |loge|™" in the strong stable norm
there by our Holder modulus of continuity !/?, and using the fact that S_,, is uniformly transverse
to the stable cone. This proves the first inequality in . The second follows from the invariance
of pu, together with the fact that T(N:(S,)) C Nger/2(S—p).

Claim a) of the proposition follows from the proof of , since the only property required of
S_,, is that it comprises finitely many smooth curves uniformly transverse to the stable cone. The
bound applied to arbitrary stable curves immediately implies that p; has no atoms, and that
1t (Sp) = 0 for any n € Z. Next, if we had p (W) > 0 for a local stable manifold, then p(7"W) > 0
for all n > 0. Since p is a probability measure and 7™ is continuous on stable manifolds, U,,>oT"™W
must be the union of finitely many smooth curves. Since |T"W| — 0, there is a subsequence (n;)
such that Nj>oT™ W = {x}. Thus p({z}) > 0, a contradiction. For an unstable manifold W, use
the fact that 77" is continuous on W. So we have established b).

To show c), choose p’ > 2p. Then by (5.2)

/ |log d(x,S1)|dus = Z/ | log d(x, S1)| dput
M\N1(81) 1IN (SOW( oy (S1)
<p' > log(j+1)- Mt(N—p (S1)) <PC1Y log(j+1) - 57/ < oo,
7>1 j>1

A similar estimate holds for [ |logd(z,S_1)|dus.
Next, fix n > 0, p’ > 2p and n € Z,. Since both sums

(5.3) > N, - )) < CC nnﬂz,f? > W i (Sn)) < C n772PZJ 2”7
7>1 j>1 j>1 i>1

are finite, the Borel-Cantelli Lemma implies that p-almost every x € M visits Nnj_p/ (S,) only
finitely many times. This gives and thus claim d). Finally, the existence of nontrivial stable
and unstable manifolds claimed in e) follows from the Borel-Cantelli estimate by a standard
argument, choosing p’ > 2p and > 1 such that A7 > p~'j7' for all j (see [CM, Sect. 4.12]). O

5.2. p; is an Equilibrium State. Variational Principle for P.(t). For ¢ > 0, x € M, and
n > 1 denote by B, (x,¢) the dynamical (Bowen) ball for 77!

(5.4) Bu(z,e)={ye M |d(T 7 (y), T (z)) <e, VO < j<n}.
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Proposition 5.2 (Upper Bounds on the Measure of Dynamical Balls). Let ty € (0,1) and t; €
(1,ty). There exists A < 0o such that for all small enough ¢ > 0, all x € M, and all n > 1, the
measure p; constructed in Theorem for t € [to, t1] satisfies

(5.5) 110(Bn(z, €)) < AP+t log JST(T ()

Corollary 5.3 (Equilibrium State for —tlog J*. Variational principle for Py (t).). The measure
constructed in Theorem[{.1] for t € (0,t.) satisfies P,,(—tlog J“T) = P.(t) = P(t).

Proof of Corollary[5.3. By definition we have P, (T) < P(t), and Proposition[2.3|gives P(t) < P.(t),
so it is enough to show P, (T') > P.(t). We follow [BD], Cor. 7.17]. Since [ |logd(x,S+1)|dps < oo
by Proposition and p, is ergodic, we may apply [DWY] Prop. 3.1] (a slight generalization of
the Brin-Katok local theorem [BK], using [M], Lemma 2], continuity of the map is not used) to 7!,
This gives that for ,ut—almost every r € M,
lim lim 1nf —1 log 114(By(,€)) = lim lim sup — 1 log py (By (2, €)) = hy, (T™1) = h,, (T).
e=0 n—oco

e—0 n—

Using (5.5)) it follows that for any e sufficiently small,
lim sup — 2 log 11( By (,€)) > Pu(t) — lim N log JT(T*(z)) > Pu(t) — t/ log J°T dyy
n—00 n—0oo 1 M

for all p-typical . Thus applying (1.6), we get P, (—tlog J*T) > P.(t). O

Proof of Proposition[5.3. For x € M and n > 0, let 15’6 denote the indicator function of By, (z,€).

Since v is attained as the (averaged) limit of e=™>(®)£21 in the weak (and strong) norm and since
we have [;,(L}1)dmwy > 0 whenever ¢ > 0, it follows that, viewing v; as a leafwise distribution,

(5.6) / Y, >0, forall > 0.
w

Then the inequality | [, ¥ 4| < [y [#| ¢ implies that the supremum in the weak norm can be
obtained by restricting to ¢ > 0. In addition, for each n > 0,

/ v LYy :lime_kp*(t)/ Y LP(LF1) dmyy
w k w

(5.7)
- lime_kp*(t)/ G o T L1 J5T dmp1yy :/ G o T | T T 1y,
k T-"W T-"W
for each W € W* and + € CA(W).
Let W € W? be a curve intersecting By, (z, €), and let ¢ € C*(W) satisfy 1 > 0 and [h|capy < 1.

Pu(t)

Then, since Liv; = e v, we have

(5.8) / V1P v = / 1B ey, = e 0 %" / WoT™) (18 oT™)|J*T"| 1y

w W;€Gn (W
In the proof of [BD, Prop. 7.12] we showed that 15_f € By, (and B) for each f € B and n > 0.
In the proof of [BD, Lemma 3.4], we found (using our strong notion of finite horizon) & > 0 such
that there if 2,y lie in different elements of MJ, then maxo<;<, d(T'x, T'y) > &. Since B, (z,€) is
defined with respect to T~', we will use the time reversal counterpart of this property: If € < &,
we conclude that B, (z,¢) is contained in a single component of M?_ i.e., B,(x,¢) NS_,, = 0, so

that 77" is a diffeomorphism of By, (z, €) onto its image. Note that 7" (B, (x,¢)) is contained in a
single component of My, denoted Ay, . Thus, W; N A4, . = W; for each W; € G,(W). By .,

[ o) ol T < [ @0 TIT
W Wi

In the proof of [BD, Prop. 7.12] we observed that there are at most two W; € G,(W) hav-
ing nonempty intersection with 7-"(B,(x,€)). Using these facts together with (4.11)) and (4.12)
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(which implies [[J*T"™*|caw,) < C|[JT"["|coqw,)), we sum over W/ € G,(W) such that W N
T~ "(Bp(z,€)) # 0, to obtain

J o wiEon <em P OS [ (o) |2y < 206 OH D s Ty,

where we also used the distortion bounds from Lemma to switch to J*T™ (T "x) since T "x
may not belong to W/. This yields flgth‘w < 2Ce P (O)Ftlog JPT™(T™ ) | Applying Proposi-

tion [4.15](a) gives (5.5). O

5.3. Definition of h,. Sparse Recurrence. Proof that lim; o P(t) = h.. In [BD), Lemma 3.3]
we showed that the limit below exists

.1 n
hy 1= nh_)rgo Elog #My .

The number h, generalises topological entropy, in particular, P(0) < h, [BD, Theorem 2.3].
Using h., we can state the sparse recurrence condition:

Definition 5.4 (Sparse Recurrence to Singularities). For ¢ < m/2 and n € N, define so(p,n) €
(0,1] to be the smallest number such that any orbit of length n has at most son collisions whose
angles with the normal are larger than ¢ in absolute value. We say that T satisfies the sparse
recurrence condition if there exist oo < w/2 and ng € N such that h. > so(¢o,no) log 2.

We refer to [BD| §2.4] for a discussion of the sparse recurrence condition. We proved in [BD]
that sparse recurrence implies P(0) = h,. The following proposition connects h, to Py(t) for t > 0,

despite the use of different partitions, Mg and MS’H.
Proposition 5.5. If T' satisfies sparse recurrence then limy g Py (t) = limy g P(t) = h.

Assuming the sparse recurrence condition [BD, Theorem 2.4] we have P(0) = h,. So in this case
the function P(t) is continuous on [0, ). In the general case, we cannot exclude P(0) < h, even if
we can show limy o P(t) = P(0).

Proof. Recall that P(t) = Py(t) for t € (0,t.) (using Proposition and Corollary [5.3).

Showinﬁ lim; o P(t) < h. does not require the sparse recurrence condition: Any invariant
probability measure p satisfies [;,log J*T'dp > log A due to (1.2). Also, h,(T) < h. by [BD,
Theorem 2.3]. Thus for ¢ > 0, we have P(t) < hy, —tlogA, so that, lim; o P(t) < hs.

To prove the upper bound, assume the sparse recurrence condition and let pg denote the measure
of maximal entropy for T' constructed in [BDl Theorem 2.4] (called p. in that paper). Since pg is T-
adapted [BD) Theorem 2.6], the Jacobian J“T is defined po-almost everywhere and [ log J“T dpg =
X/To < 00. Thus for ¢ > 0,

P(t) > Puy(—tlog J*T) = hyyy — ¢ / log J"T dyig = h. — x|
M
and limy o P(t) > hs. O

5.4. Full Support of ;. It follows from Lemma [£.16] that the measure v is fully supported on M.
In this section, we will prove the analogous property for p; combining mixing of the SRB measure
and a direct use of Cantor rectangles, bypassing the absolute continuity argument which was used
in [BDl Section 7.3] to show full support of the measure of maximal entropy there. Recall the
definition of maximal Cantor rectangle R = R(D) comprising the intersection of all homogeneous
stable and unstable manifolds completely crossing a solid rectangle D as described in the proof
of Proposition The boundary of the solid rectangle D comprises two stable and unstable
manifolds which also belong to R. Let =g C W?* denote the family of stable manifolds corresponding
to R (i.e. the set of homogeneous stable manifolds that completely cross D).

36Note that the limit exists since P(t) = P,(t) is monotonic.
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Lemma 5.6. For any mazimal Cantor rectangle R, if pspp(Uwez,W) > 0 then we also have
pt(Uwez, W) > 0. Consequently, for any nonempty open set O C M, we have p(O) > 0.

Proof. Let ¢ € C'(M) such that 1) > 0 and ¢ = 1 on UwezyW. Due to the spectral decomposition
of L}, setting ¢ = (v, 7)1, we have

(5.9) pe(y) = c?}Lm e PO (Y (L) dpsgrs) = ¢ hm e PO (L (), dpsre) -

Then, using the disintegration of usrp, introduced before Lemma into conditional measures
on a fixed foliation F = {W¢}¢cz of stable manifolds, and a transverse measure fisgg on the index
set =, and recalling (5.7)), we estimate for n > 0,

(€ ) dpsns) = [ IWel s (€) [ £300m) e

= [ IWel disnn(€) [, ol T oo T
= Wegn(W5
> C/:|W§|_1dﬂSRB(£) > | T T" o wy /W‘ Vv,
= Wi€Gn (We) i

where in the last line we have used (4.49)), bounded distortion for J*T" and the positivity of v;. Next,
note that if W; € G, (W) properly crosseﬂ R, then using again the positivity of v, we have

(5.10) /W. Yy > C(lR),

where (g is the minimum length of a stable manifold in Zr and ( is a function depending only on ¢

(uniform in [to, t1]) and &y (to, t1) from (3.47) via (4.50). Thus letting GZ*(W) denote those elements
of G, (W) that properly cross R, we have

(5.11) (L} (1), dpsre) = C'C(LR) | IWelHdpsre(©) D [T T [coq,
= W; €GB (W)
As in the proof of Proposition by [CM, Lemma 7.87], we choose a finite number of locally
maximal homogeneous Cantor rectangles R(d1) = {Ri,. .., R} such that there exists n. = n.(d1, R)

such that T~™ (D(R;)) contains a homogeneous connected component that properly crosses R for
alli=1,...,k. Therefore, if V€ W?* has |V| > 6;/3, then at least one element of G, (V') properly
crosses R. Thus, if [We| > 61/3 and n — n. > nq, then using (3.31)), and letting 8] denote the
minimum length of a stable manifold belonging to any of the R;,

2 Ty = e > T ooy T oo,
WieG/H(We) WieLL, (We)

241\ "*

%e—thc((;i)t( PES} ) Z | ST |tC°(Wj)
W;eGo | (We)

(5.12)

Y

Z 3 *tcdc((s/) ( e )n* 016(n7n*)P*(t) 7

where in the second line we have estimated J*T™* from below on W; as in (3.39)) using the fact that
|W;| > 61, and in the third line we have applied Propositions [3.14] and [3.15,
Substituting (5.12) into (5.11)) and letting Z°! denote those elements W € F with [W¢| > d1/3,

PO (L0 (Y dpssus) > C"¢(0)on(8) CHE) " emne PO pg (21

37See the proof of Proposition for the definition of proper crossing.
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Since this lower bound is independent of n, by we have p(10) > 0, and since this holds for all
Y € CY(M) with ¢ =1 on Uwez, W, the first statement of the lemma is proved. Then the second
statement of the lemma follows from the fact that any nonempty open set O C M has a locally
maximal Cantor set R such that D(R) C O and psgp(R) > 0. O

5.5. Uniqueness of Equilibrium State. (Strong) Variational Principle for P, (t,g). In this
section, we prove the following uniqueness result:

Proposition 5.7. For any 0 < t < t, the measure y; from Theorem[{.1] is the unique equilibrium
state for —tlog JUT.

The proof of the proposition will give a more general statement (shown at the end of this section):

Theorem 5.8 (Strong Variational Principle for Pi(t,g)). For any [to,t1] C (0,t.) there exists
v > 0 such that for any C* function g : M — R with |g|cr < vo we have

P.(t,g) = P(t,g) = max{h, + /(—tlog JUT + g)dp : p a T-invariant probability measure }
and the equilibrium state for —tlog J* + g is unique.

(We restrict to C*! functions g for simplicity. The result also holds Hélder g of suitable exponent.)
Fix 0 < tg < t; < t.. For ¢ € C1(M), t € [tg,t1], and v € R, define the transfer operator
ﬁt,u = ﬁt,v,¢ by .

f o~ vgpoT 1
et
Since Li,f = e”¢°T71£t f and the discontinuities of ¢ o T~! are uniformly transverse to the
stable cone, [DZ2, Lemma 5.3] implies that L, f € B (with B = B(to,t1) the space for L;)
and ||Leoflls < C|lfllle"®|c1, so that Ly, defines a bounded linear operator on B. By [DZI]
Lemma 6.1] the map v — L;, is analytic. Thus since £; = L, has a spectral gap, so does L;,,
for |v| sufficiently small, and the leading eigenvalue A, varies analytically in v [Kal VII, Thm 1.8,
I1.1.8]; moreover, A\ro = eF'® and, with z; from Theorem {.1, we have [Kal, 11.2.1, (2.1), (2.33)]

d
f)\t,v = BP(t) /qbdut, Vit € [to, tl] .
dv v=0

Recalling the definition P(t,v¢) in (|1.8)), the following result will give Proposition
Proposition 5.9. Fiz 0 < tg < t; < t.. For p € CY(M), t € [to,t1], and v € R, with |v| sufficiently
small, the spectral radius of Ly, on B(to,t1) is Mwe = eF(tve)

Linf = for all f € C1(M).

(5.13)

Proof of Proposition[5.7. We use tangent measures, inspired by the proof of [Br, Theorem 16]
If 4 is an equilibrium state for —tlog J*T then pu is a Cl-tangent measure at ¢ (see e.gﬁ
Theorem 9.14]) in the sense that,

(5.14) P(t,¢) > P(t,0) + /qbd/L for all ¢ € CH(M).
Thus, Proposition together with (5.13) imply that,

/qbd,u—l (t“¢) (t’o)z/wu and

Thus [ ¢dps = [ ¢du for all ¢ € C1(M). Since M is a compact metric space, C1(M) is dense in
C°(M) and so i = p; showing the uniqueness claim in the proposition. O

38The standard definitions use C° rather than C' in (5.14) For our purposes, C* will suffice.
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Proof of Proposition[5.9. Let |v| be small enough such that g := v¢ satisfies (3.6)), (3.30), (3.46)

and their analogues for the number of interpolations needed to reach t; < t, in Section @ The
constants ny, no, 1, d2, Co, co, c1, co, and Cy from Section [3| then hold for all g = v'¢ with
|v'| < |v] and all t € [tg,t1]. In particular the constants ¢;(v’) > 0 from Proposition and
Proposition [3.18|(a) and c3(v') > 0 in Proposition and Proposition [3.18(b) are uniform in
|V'| < |v| and t € [to, t1].

Step 1. The Spectral Radius ¢, of Lt on B is eP+(tvd) - Possibly reducing |v| further, £, has a
spectral gap on B, as observed above. The upper bound on A;, < eP+(tv9) can thus be proved as
in Proposition once we know that the spectral radius of L;, on B, is at most eP+(tvd)  For
this, by the upper bound in Proposition (b), it suffices to find C' < oo such that

(5.15) L8 flw < CQn(t,v0)|flw, VfeC.
To prove (5.15)), note that due to (2.9), we have for W € W* and W; € G, (W),
(5.16) €7 caqwyy < (1+ CulVéleo - 85 e ooy »

then, for W € W* and ¢ € C*(W) with [¢|cay < 1, we follow (4.10) and apply (4.11)), ,
Lemma and (5.16) to write,

| grtodmy < S flult o Tl T e S ou
W WG, (W)

< flCr L+ 2 Ca) (1 + CulVleo) D0 1T T oqwy €™ leow,) < Clflw@nlt, vg).-
Wi€Gn (W)

The lower bound A¢,, > eP*(tv9) on the spectral radius follows as in the proof of Proposition m

Step 2. Pi(t,v¢) = P(—tlog J*T + v¢). Denoting by 14, the eigenmeasure associated to el (tvd)
and by 7, the eigenmeasure of the dual operator £j,,, defined as in Lemma and (4.46)), we
construct an invariant probability measure i, as in Proposition

We claim the following analogue of Proposition [5.2} There exists A < oo such that for all
sufficiently small |v|, all € > 0 sufficiently small, all z € M and n > 1,
(5'17) i U(Bn(x, 6)) < Ae—nP*(t,Uqb)-i-tlog JST™ (T~ "z)+vSnp(T "x)

I

where B, (x, €) is the Bowen ball defined in . Using , the proof of Corollary yields that
P, (—tlog J*T' +v¢) > Pi(t,v¢), and this, together with Proposition yields P(—tlog J“T +
vo) = Pi(t,v¢). By Step 1, this ends the proof of Proposition (In addition, we have established
that fu,, is an equilibrium state for —tlog J*T + v¢.)

Finally, follows easily from the proof of Proposition The property in extends
to 14, due to its definition as a limit of e~ (t7v¢)£gv1. The analogue of holds for the same
reason, so that the modification of yields,

/ $18 vy, = P09 3 / (b o T)(AE, o T I "' 1y,
w WG (w) Wi

where 15 . denotes the indicator function of B, (x,€). The subsequent estimates in the proof of
Proposition [5.2] go through with the obvious changes, so that

)

‘ 1§5Vt " ’w < C/efnP* (t,wp)+tlog JST™ (T~ "x)+vSnp(T "x)

where the only additional factor needed is the distortion constant Cy|V@|co from (2.9). Applying
the analogue of Proposition a) completes the proof of ([5.17)). O
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Proof of Theorem[5.8 The upper bound P(t, g) < P.(t,g) is the content of Proposition Taking
¢ = g, the equilibrium state for —tlog J* 4 g is 4,1 constructed in Step 2 of the proof of Proposi-
tion[5.9] The proof of uniqueness can be obtained by a straightforward adaptation of the argument
proving uniqueness of the equilibrium state for —¢log J", up to taking small enough |g|c:1. ]

6. DERIVATIVES OF P(t) AND STRICT CONVEXITY (PROOF OF THEOREM [1.2))

This section contains the proof of Theorem [I.2] and Corollaries [1.4] and [1.5]

The maximal eigenvalue of L} is exp(nP(t)). Showing that nP(t) is analytic for some integer
n > 1 is equivalent to showing that P(t) is analytic. Recall the one-step expansion factor =1 > 1
from Lemma [3.1] In the remainder of this sectionPt

1
Fix ng > 1 such that [J°T"°| < Cpf™ < 7 and set 7 :=1T"°.

By standard results on analytic perturbations of simple isolated eigenvalues [Kal, analyticity of
P(t) = P.(t) will be an immediate consequence of the following result:

Proposition 6.1 (Analyticity of t — £}°). Fiz 0 < tg < t1 < tx. Then the map t — L} is analytic
from (to,t1) to the space of bounded operators from B to B, with

(6.1) O] LI (Fli=w = L ((log J*TY ), Vi > 1, Yw € (to,t1), Vf € B.
Proof. We claim that it suffices to prove that, for any 0 < ty < t; < t., we have
(6.2) there exists C' < oo such that ||£20((log J*T) f)|ls < §(C5) || fllz, Vf € B,

for all w € (to,?1) and all j > 0. (The bound (6.2) is the content of Proposition [6.3])
Indeed, by the Stirling formula, (6.2 implies
L5 (f(og J*T))lls _
J!

Now, for w € (to,t1) and t € C, first write

(63) C]C,]S'tzrlmngHB .

foT ! (w—t) log J*ToT 1 foT ™! - 1
no p __ w og ° _ sT\J
['t f_ |Js7‘|17wo7'716 - |Js7"17wo7‘ 1 Z IOgJ T) °oT

where (6.3)), with w = 1 and f = 1, gives that the series converges in norm for |w—t| < (CClstirting) ™+
Then note that

fOT_l - t s ] — - (w_t)j no S j
64) o 12 (log T o T T2 AU Y

where the sum commutes with £7° due to (6.3]), with w and f, so that this series also converges in
norm for |w —t| < (C’Cgtirlmg)*l. The radius of convergence is independent of w € (to,t1), giving
the claimed analyticity there. The power series representation (6.4) immediately implies (6.1). O

The key to the analyticity result in this section is the following elementary lemma which extends
the distortion estimate Lemma [2.1|to expressions of the type (log |J*T])7|J*T|*:

Lemma 6.2 (Distortion for exp(V)(¥)7). Fiz I C R a compact interval and let ¥ : T — R_. Then,
for any v > 0, there exists C,, < 0o such that

(6.5) | exp(V0) | ooy < (Cuf), Vi 2 1.

39The value 1 /2 below is for convenience, giving the number — log 2 in Lemma what is important is Co0" < 1.



THERMODYNAMIC FORMALISM FOR DISPERSING BILLIARDS 53

In addition, if |sup ¥| = inf |¥| > log 2 and there exist o € (0,1) and Cy < 0o such thaﬂ

(6.6) |¥(z) —¥(y)| < Cylz —y|*, Vo,yel,
then
(6.7) |log |¥(z)| —log [¥(y)|| < 4Cy|x —y|*, Vz,yel,

and, for anyt > 0,
(6.8) | exp(t®) | |ca(ry < (14 eCy (4] + 1)) exp(t) |V} |co(py, Vi >0.

(The lemma will be applied to ¥ = log |J°T|, with a < 1/(¢ + 1), and I an interval giving an arc
length parametrisation of a weakly homogeneous stable manifold.)

Proof. The proof of is a straightforward exercise in calculus (with C, = (e-v)~1): Tt suffices
to show that supx¢pg 1 |logX]JXU (T)J

Next, for any x,y € I, the Mean Value Theorem applied to the logarithm yields, for some Z
between |¥(z)| and |¥(y)|,

Cylr —y|*

< 4C — .
log 2 - vl =yl

69)  |log|¥(x)| ~ log [ (y)]| < L ¥(x) ~ ¥(y) <

From (6.9) we get (6.7) and also, for any z,y € I,

o SR @) V()
exp(t (1) ()

< jllog |W(x)| —log [¥(y)[| + t|¥(x) — ¥(y)]
< (]4C\1; + th;)|l‘ — y|°‘ .
This implies

exp(t(2))| (@)
exp(tW(y))[¥(y)l ~
For |z — y|® < (4jCy + tCy) ! (other pairs (x,y) are trivial to handle), implies
_ exp(t¥(2)) ¥ ()]
exp(t¥ (y)[¥(y)l | ~
Multiplying both sides above by exp(t¥(y))|¥(y)|’ < |exp(t®)|¥|7|co(y), proves (6.8). O

(6.10) exp(—Cy(4] + t)|z — y|?) < < exp(Cy (4] + t)|z —y|*).

<eCy(4) +t)|z—y|*.

Recalling that 7 = T™ for fixed ng, we define, for all integers j > 0,
(6.11) M) = L0 ((log | 7TV f)
acting on measurable functions. We first prove (6.2)):
Proposition 6.3. For any 0 < tg < t1 < t,, there exists C < oo such that
(6.12) IMP flls < €T 55 || flls, Vi >1,¥f € B, ¥t € [to, t1].

Remark 6.4. A modification of the proof of Lemma shows that for any f € CY(M), ng)f
can be approximated by C’l( ) functions in the B norm, using the fact that Lemma holds
for the function (log |JST|) ]JST]t by Lemma[6.9. By density of C*(M) in B, this, together with
Pmposztzon implies /\/lt f € B forall f € B and j > 0.

40The bound is equivalent to exp(—Cy|z — y|*) < exp(¥(z))/exp(¥(y)) < exp(Cw|z — y|*) or, for small
enough |z —yl, to [1 —exp(¥(z))/ exp(¥(y))| < Ca,w|z —y[*.
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Proof of Proposition [6.3. Tt is enough to consider f € C*(M). We first bound the stable norm. Fix
W € W?, and v € C?(W) such that [Uleswy < |W|~1/P. For t > 0, we have

| MO gvdmy = ¥ / (4 0 TYI"T (g |J*T ) dmy

Wi €Gnq (W
(6.13) W1/ |
< Z Hf||s’1/fOT|C/3(W)WHJSTV(10€’JSTD”Cﬂ(W

On the one hand, we have seen in 1| that |1,b o T‘Cﬁ(W) < C|¢|C@ (w)- On the other hand,
recalling that supyyy, [T |cow,) < 1, and using (6.5)) from Lemman 6.2, for any v > 0, there exists
C,, such that for any W; € G, (W ) all t € [to, t1], and all j>1,

(6.14) sup(|log [J*T?||J5T|) < (§Cu) sup [T
W; W;

Therefore, since 8 < a, choosingjﬂ v < tp/2—1/p and applying Lemma , we deduce from ([6.13)
and (6.14)) that for all j > 1 and f € C*, takig C), = 1+eCy(4 + t) from (6-8),

. VVZ 1
[ MO svamy <cics S sl
w Wi€Gng (W)
S Cc/lCQ[O]j(jcv)ij”sQno(t - ’U—l/p) )

where Cy = Cy by (12.3)), and we used Lemmawith ¢ = 1/p. Taking the suprema over ¢ € C#(W)
with [¢cs ) < |W|~1/P and W € W* yields C, < oo such that

(JC )/

(6.15) IMP (D) < 5

For the unstable norm, let ¢ < g and let W1 W?2 € W?* with dyys (W1, W <e. Fortl=1,2,
we partition 7~ 'TW* into matched pieces U,f and unmatched pieces Ve as in ~ and we find, for
any ¢y € C*(W*) with [¢g]cepey < 1 and d(¢1, ¢2) = 0,

©1) | [ MO [ P,

=2

I flls, ¥§ >1, VfeCh, Vtelt,t1].

Joy £ o DI T Qg T = [ 20 )T (08| 7°T1)

(e 0 T) [T (log |J*T1)?

2
ti

For the unmatched pieces, adapting (4.19), by using Lemma combined with Lemma and
(6.14), we find, for £ = 1,2 (choosing again v < tz/2 — 1/p so that t —v — 1/p > to/2),

i

(6.17) (e o T) 1T (log | J*T1)!

<||f|| CrCHGCY YTV PIT TP oy
0,0

< [If1s4Co[0]CT ' C(iCuY e P Quy (t — v = 1/p) , Vit € [toﬂfl] vjz1,
using Lemma with ¢ = 0. Next, we consider matched pieces. Recalling (4 , we define
(logJ*T )’ (z) == (log J*T) o Gz o G;]i (z), Ve e UL, ¥Vj>1.

U This is always possible since p > ¢+ 1 and toq > 4 from Definition
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Now, using ¥, and J¥T = J*T™ as defined above (4.22), and injecting Lemma in the proof of
Sublemma [4.8|(b) gives, for v as above,

(1 0 T)(log J*T Y| T T | =t (log J*T) T o Ul
(6.18) < C(CL) jC’d2t]JST”°|CO(U B Vk, Vi, Yt € [to, 1] .
Then we split

|/fwﬂTM%ﬁﬂWWV—/fWNTW%Pﬂ%V
U} U2

(6.19) < /U f (10 T) (log J*TY|J*T|" = $a(logJ*T)| I T|")

k

| [ 100w TYIFTE = [ f a0 T) 0 5T
Ui Ui
We estimate for all t € [to,t1] and j > 1 using ,
[, (@ oT)og T 11T1! = ol J°T ')

(6.20)

< 11158675 CoCug 21T T 227

Then, noting that d(v; o T (log J*T)7|J*T|t, Jg(l&gﬁ'ﬂ”j‘sﬂt) = 0 by definition, and that the C¢
norms of both test functions are bounded by C(jC,)?jC|J 57'|t0_(f(’ 1) Using Lemma we estimate
6.20) for all f € C! and t € [to, t1] as follows

L/fmeﬂfﬂt¢M%ﬁﬂ(ﬁ))

< || flludws (Ui, UZ) 5C4(5Cu Y ClI* T 601,

< C'(§C) jCall flluno™ A~ ”°”€”|JST!CO(1k
where we used Lemma a) in the second inequality. Putting these estimates into ({ , combining
with (6.17) in (6.16)), and summing over k gives, for all ¢ € [to,¢1] and j > 1,
[P [ MO p e,

< GOV (Fluno” A7 Qug (t = v) + [ flls (/P Qo (t = 1/p = v) + £ Quy (t — 0))).
Finally, since a« — 8 <y and 1/p < ~, while ng is fixed, we have found C,, < oo such that

; (jCu)? .
IME £l < SESL e 171 v € OO e fto,t) ¥ 2 1
With (6.15), taking C' = max{Cj, C,}, this concludes the proof of Proposition O

Proof of Theorem[I.2. Since exp(noP(t)) > 0 is a simple isolated eigenvalue of £}°, analyticity of
exp(noP(t)) is an immediate consequence of Proposition and [Ka, VII, Theorem 1.8, II.1.8].
Since infy, ;) exp(noP(t)) > 0, the function P(t) is also analytic. The formulas

noP'(t) exp(ngP(t)), noP"(t)exp(noP(t)) 4+ no>P'(t)% exp(noP(t))
can be read off [Kal I11.2.2, (2.1), (2.33) p.?%(taking m = 1 there). It is then easy to extract the

claimed formula ((1.12)) for P’(¢). In order tgd*“| establish ((1.13)) for P”(t), use (1.12), and note that,
recalling x; = P'(t) = [log J*T dy,

> [/(log |J*T| o T*) log |.J°T| diy — X?}

k>0

42Formulas (T.12)~(T.13) are classical in smooth hyperbolic dynamics, see [Ru, Chap. 5, ex. 5b] for P”(t).
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— {log |°7](1 — e 0.) ™ ((log|/*T| — xohw ) 1)

If there exists f € L?(u) such that log |J*T|—x; = f — foT then it is easy to see that P"(t) = 0.
For the converse statement, we will use a martingale CLT result & la Gordin (see e.g. Viana [BDV]
Theorem E.11)) as in [DRZ]: Let Ay be the sigma-algebra generated by the (u;-mod 0) partition
of M into maximal connected, strongly homogeneous local stable manifolds for 7" (this partition is
measurable since it has a countable generator, see e.g. [CM, §5.1]). Then A,, = T~ " Ay, for n € Z,
is a decreasing sequence of sigma algebras. Therefore, if P”(t) = 0, to obtain f € L?(u;) such that
log|J*T| = x¢t + f — f o T from Gordin’s Theorem ([BDV], Theorem E.11] or [DRZ, Theorem 5.1]),
we only need to check the following two conditions:

(6.21) Z [log |J*T| — E((log |.J*T| — x¢)| Al 12 () < 00
n=0
o0

(6.22) Z |E((log |J°T| — Xt)|v4n)||L2(m) < 00.
n=0

We first discuss (6.21). If n > 0, then the elements of A_, are of the form T"(V*(x)) where
V#(x) is the maximal connected, strongly homogeneous stable manifold of (almost every) x. From
Lemma the function log |J*T| is (Ho6lder) continuous on 7"(V*(x)) for any n > 1, so, letting
A_,(z) be the element of A_,, containing x, we have

E(log [J*T||A-n)(z) = log|J*T]|(y) ,
for some y € A_,(z). Thus (see the proof of [DRZ, (5.3)]), (6.7) with o = 1/(q + 1) gives
[[og [J°T| — E((log [J*T'| = x¢) | A-n) |l L2 ()
< ||log |J*T| — E((log |J*T| — x¢)| A=)l zoe () < CATY T wn > 1. vt € [to, 4]

(The length of any element T"(V*(z)) in A_,, is bounded by CyA~"™.) This proves (6.21)).
To establish (6.22]), we also adapt the argument in [DRZ], starting from

> I E((og [7°T| = xo)lAn) || L2 )
n=0

= Z sup { /(log |J5T| — x¢) - (¢ o T™) dpg | 1 € L*(Ag, py) with Hi/JHLa(m):l}.
n=0
The key new ingredient is the fact that since v = e PO L1y, with v € B, we get from
Proposition [6.3] and Remark [6.4] that
(6.23) (log [ J°T™| 0o T~"0), = e PO MMV (1)) e BC B, .

By definition, any Ap-measurable function % is constant on each curve in Ag. If in addition 1) is
bounded, then for any k > 0, v o T* € C*(Wg) and |3 o Tk|ca(wﬁ_5]‘]) = [Y[coowz) =t [¥]ec- Thus by

Lemma [4.14) and ([1.47),
(6.24) boT o € By and |(f,4 0 T*0)| < C'|flwlt]oo ,V.f € Buy -

Then, recalling that p.(f) = (fve, o)/ (v, ) for suitable f, following [DRZ], we write for n > ny,
and any bounded .4p-measurable function ),

1
J Gog T =x0) - w0 T dia = [ Qog |77 0 T = moxa) - (6 0 T )

43Since f =1 € B, Remarkﬂalso implies log | J*T™ | o T~ ™ = log|J*T|oT * = Mgl)(l) €B.
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1 -n n—no\ -, ~
- fo<<10g\JsTn°! o T7™ —noxi)ve, (o T ") iy) /(vt, )

1 —Mn n—m Srn, —n ~ ~
(6.25) = n—o(e(" OFP®) L1710 ((log [JST™0| 0 T~ — ngxi)ve) , )/ (s, D) -

(The expressions in the first line are well defined and coincide because (log |J*T| — x;) € L' (du;)
and 1 is bounded. The expression in the second line is well defined by (6.23]) and (6.24]). Therefore,
the second equality holds due to the definition of y; in Proposition [4.15(b). The last equality is
clear.) Clearly oy (vi(log|JT™| o T~™)) = ngx:, so that Corollary |1.4]and (6.23)) give constants
p < 1and C7,Cy < oo such that for all n > ng and all ¢ € [to, t1]
(=m0 P®) L1710 (1, (log | J5T™ | 0 T7™ — ngxt)) |uw
< [|et ol PO L2710 (1, (log | T T™ | 0 T70) = noxa)) |15
(6.26) < C1p" |lue(log | J*T™ [ o T70)||5 < Cop"

Next, (6.25)) together with the bounds ((6.24)) and (6.26]), gives C' < oo such that, for any bounded
function 1 which is Ag-measurable,

(6.27) y/ log |J°T| — x¢) - (4 0 T™) dpsy| < Cp™[blpmary, ¥n > 1, Vi € [to, 1]

Then the proof of Lemma (c) (the T-adapted property of ;) not only implies that log |J*T'|(z) <
C'log(d(x,S1)) is in L*(dyy) but also in L(du,) for all £ > 1 (use that Zj>1(log(j+1))ej_p//(2p) < 00
for all £ if p’ > 2p). It follows that [DRZ, Lemma 5.2] holds for 5 = (log|.J*T|) — X, bootstrapping
the L°° bound @ to the required L? control . The only change required in the proof (since
the observable s in [DRZ, Lemma 5.2] is bounded while ours is not), is to replace the second term
on the right-hand side of [DRZ, eq. (5.7)] by the Holder bound ([ |53du:)/3([ [¢ — ¢p|?/2dps)?/?
(where vy (x) = (z) if |¢(x)] < L and 91 (x) = 0 otherwise). Then using the fact that 1 € L?(j),

/WJ — [ Pdp, = /1\w\>L PR dpy < LT3

using the Markov bound p(|y| > L) < L™2[4|2,. Setting L = p~3"/* instead of L = p~™/2 in [DRZ,
eq. (5.8)] completes the proof of [DRZ, Lemma 5.2] with modified rate p/* for our observable .
This verifies (| and concludes the proof that log |JT| is cohomologous in L?(u;) to the constant
Xt <OifP//( ) :0

Flnally, P"(t) 2 implies that P’(t) is increasing so that [log J“T du, = —P'(t) is decreasing,
while h,, = P(t) — tP'(t) is decreasing since P(t) and —tP’(t) are decreasing. O

Proof of Corollary[I.4 For a compact subinterval I of (0,¢,) the bound o(¢) in Proposition
satisﬁes a[ = sup;e; 0(t) < 1. Ifeach Ly, for t € I, has its spectrum on B contained in e U{|z| <

or- e} the corollary follows. Otherwise, use Proposition and continuity [Kal, §IV.3.5] of any

(ﬁmte) set of eigenvalues of finite multiplicities of bounded operators O

Proof of Corollary[1.5. The corollary follows from (6.21]) and (6.22)), using Gordin’s Theorem ([BDV],

Theorem E.11] or [DRZ, Theorem 5.1]). O
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