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Abstract

We construct Birkhoff cones for dispersing billiards, which are contracted by the action of
the transfer operator. This construction permits the study of statistical properties not only of
regular dispersing billiards but also of sequential billiards (the billiard changes at each collision
in a prescribed manner), open billiards (the dynamics exits some region or dies when hitting
some obstacle) and many other examples. In particular, we include applications to chaotic
scattering and the random Lorentz gas.

1 Introduction

Billiards are a ubiquitous source of models in physics, in particular in statistical mechanics. The
study of the ergodic properties of billiards is of paramount importance for such applications and
also a source of innovative ideas in ergodic theory. In particular, starting at least with [Kry], it has
become clear that a quantitive estimate of the speed of convergence to equilibrium is pivotal for this
research program. The first strong result of this type dates back to Bunimovich, Sinai and Chernov
[BSC] in 1990 but it relies on a Markov-partition-like technology that is not very well suited to
producing optimal results. The next breakthrough is due to Lai-Sang Young [You98, You99] who
put forward two techniques (towers and coupling) well suited to study the decay of correlations
of a large class of systems, billiards included. The idea of coupling was subsequently refined by
Dolgopyat [Do04a, Do04b, Do05] who introduced the notion of standard pairs, which have proved
a formidable tool to study the statistical properties of dynamical systems in general and billiards
in particular [C1, C2, CD, CZ]. See [CM, Chapter 7] for a detailed exposition of these ideas and
related references.

In the meantime another powerful idea has appeared, following the seminal work of Ruelle
[RS, Ru76] and Lasota-Yorke [LY], to study the spectral properties of the associated transfer
operator acting on spaces of functions adapted to the dynamics. After some preliminary attempts
[Fr86, Ru96, Ki99], the functional approach for hyperbolic systems was launched by the seminal
paper [BKL], which was quickly followed and refined by a series of authors, including [B1, GL, BT,
GL2]. Such an approach, when applicable, has provided the strongest results so far, see [B2] for a
recent review. In particular, building on a preliminary result by Demers and Liverani [DL], it has
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been applied to billiards by Demers and collaborators [DZ1, DZ2, DZ3, D2, BD1, BD2]. This has
led to manifold results, notably the proof of exponential decay of correlations for certain billiard
flows [BDL].

Yet, lately there has been a growing interest in non-stationary systems, when the dynamical
system changes with time. Since most systems of interest are not isolated, not even in first ap-
proximation, the possibility of a change to the system due to external factors clearly has physical
relevance. Another important scenario in which non-stationarity appears is in dynamical systems in
random media, e.g. [AL]. The functional approach as such seems not to be well suited to treat these
situations since it is based on the study of an operator via spectral theory. In the non-stationary
case a single operator is substituted by a product of different operators and spectral theory does
not apply.

There exist several approaches that can be used to overcome this problem, notably:

1. consider random systems; in this case, especially in the annealed case, it is possible to re-
cover an averaged transfer operator to which the theory applies. More recently, the idea
has emerged to study quenched systems via infinite dimensional Oseledets theory, see e.g.
[DFGV1, DFGV2] and references therein;

2. consider only very slowing changing systems that can be treated using the perturbation theory
in [KL99, GL]. For example, see [DS], and references therein, for some recent work in this
direction;

3. use the technology of standard pairs, which has the advantage of being very flexible and
applicable to the non-stationary case [SYZ]. Note that the standard pair technology and the
previous perturbation ideas can be profitably combined together, see [DeL1, DeL2, DLPV];

4. use the cone and Hilbert metric technology introduced in [L95a, L95b, LM].

The first two approaches, although effective, impose severe limitations on the class of nonstationary
systems that can be studied. The second two approaches are more general and seem more or less
equivalent. However, coupling arguments are often cumbersome to write in detail and usually
provide weaker quantitative estimates compared to the cone method.

Therefore, in the present article we develop the the cone method and demonstrate that it can
be successfully applied to billiards. Indeed, we introduce a relatively simple cone that is contracted
by a large class of billiards. This implies that one can easily prove a loss of memory result for
sequences of billiard maps. To show that the previous results have concrete applications we devote
more than one third of this paper to developing applications to several physically relevant classes
of models.

We emphasize that the present paper does not exhaust the possible applications of the present
ideas. To have a more complete theory one should consider, to mention just a few, billiards with
corner points, billiards with electric or magnetic fields, billiards with more general reflection laws,
measures different from the SRB measure (that is transfer operators with generalized potentials as
in [BD1, BD2]), etc. We believe that most of these cases can be treated by small modifications of
the present theory; however, the precise implementation does require a non-negligible amount of
work and hence exceeds the scope of the this presentation which aims only at introducing the basic
ideas and producing a viable cone for dispersing billiards.

The plan of the paper is as follows. In Section 2 we introduce the type of billiards we will
study and summarize our main results. In Section 3 we present some basic estimates (growth
lemma) needed in the following and introduce one of our main characters, the transfer operator. In
Section 4 we introduce our protagonist, the cone (see Section 4.3). Section 5 is devoted to showing
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that the cone so defined is invariant under the action of the transfer operators of the billiards in
question. In Section 6 we show that in fact the cone is eventually strictly invariant (the image has
finite diameter in the associated Hilbert metric) thanks to some mixing properties of the dynamics
on a finite scale. The strict cone contration implies exponential mixing for a very large class of
observables and densities as is explained in Section 7. Finally, Section 8 contains the announced
applications, first to sequential systems with holes (open systems), then to chaotic scattering and
finally to the Random Lorentz gas. Note that the last two applications are not fully satisfactory
because it is necessary to introduce artificial boundaries for the theory to apply. This is due to the
fact that the billiard dynamics takes some amount of time to strictly contract the cone and hence
we enforce that the billiard does not change until this happens. Note however that this is not a
conceptual limitation: it only means that to remove the artificial boundaries it is necessary to show
that the needed finite size mixing properties hold also for a sequence of billiards and not only for a
fixed one. This has nothing to do with the cone approach; it is a matter of billiard geometry and
should be addressed independently.

2 Setting and Summary of Main Results

Let {Bi}Ki=1 denote a finite number of pairwise disjoint convex sets in T2 = R2/Z2. We assume ∂Bi
is a C3 curve with strictly positive curvature. The billiard flow is defined by the motion of a point
particle traveling at unit speed in Q := T2 \ (∪iBi) and reflecting elastically at collisions.

The associated billiard map T is the discrete-time collision map which maps a point on ∂Q to
its next collision. Parameterizing ∂Q according to an arclength parameter r (oriented clockwise on
each obstacle Bi) and denoting by ϕ the angle made by the post-collision velocity vector and the
outward pointing normal to the boundary yields the cannonical coordinates for the phase space M
of the billiard map. In these coordinates, M = ∪i(∂Bi × [−π/2, π/2]).

For x = (r, ϕ) ∈ M , let τ(x) denote the time until the next collision for x under the flow. We
assume that τ is bounded on M , i.e. the billiard has finite horizon. Thus since the scatterers are
disjoint, there exist constants τmin, τmax > 0 such that τmin ≤ τ(x) ≤ τmax <∞ for all x ∈M .

It is a standard fact that T preserves a smooth invariant probability measure, µSRB = c cosϕdr dϕ,
where c is the normalizing constant [CM].

As announced in the introduction, the main analytical tool developed in this paper is the
construction of a convex cone of functions Cc,A,L(δ), depending on parameters δ > 0, c, A, L > 1, as
defined in Section 4.3, that is contracted under the action of the transfer operator Lf = f ◦ T−1,
defined in Section 3.3. This is summarized in the following theorem.

Theorem 2.1. Suppose c, A and L satisfy the conditions of Section 5.3, and that δ > 0 satisfies
(6.6) and (6.17). Then there exists χ < 1 and NT ∈ N such that if n ≥ NT , then LnCc,A,L(δ) ⊂
Cχc,χA,χL(δ).

In addition, for any χ ∈
(

max{1
2 ,

1
L ,

1√
A−1
}, 1
)

, the cone Cχc,χA,χL(δ) has diameter at most

log
(

(1+χ)2

1−χ)2 χL
)
<∞ in Cc,A,L(δ), provided δ > 0 is chosen sufficiently small to satisfy (6.19).

The first statement of this theorem is proved in two steps: first, Proposition 5.1 shows that the
parameters c and A contract due to the hyperbolicity of the map, subject to the constraints listed
in Section 5.3; second, Theorem 6.10 proves the contraction of L using the mixing property of T .
The second statement of Theorem 2.1 is proved by Proposition 6.11.

From this theorem follow the usual results on decay of correlations and convergence to equilib-
rium, starting from initial distributions of the form fdµSRB (Theorem 7.4) as well as distributions
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supported on individual stable curves (Theorem 7.3). These results and the necessary preliminaries
are proved in Section 7.

Next, with this tool in hand, we are interested in studying the statistical properties of sequential
billiards. This means that the obstacle configuration can change from one collision to the next,
hence we have a sequence of phase spaces Mi and billiard maps Ti : Mi → Mi+1. In addition, we
want to include the case of open billiards, that is we allow the presence of holes in the system such
that if the particle reaches one such hole, it exits the system and hence the dynamics is terminated.
If Hi are the holes in the phase space Mi, and 1Hi denotes their indicator function, then our object
of interest is

ˆ
M0

ψ ◦ Tn−1 ◦ · · · ◦ T0(x)

n−1∏
i=0

1Hi(Ti−1 ◦ · · · ◦ T0(x))f(x)µSRB(dx) (2.1)

which, depending on the way one interprets it, expresses the correlation between a measurement at
time zero and a measurement at time n, or expresses the expectation of the observable ψ at time
n, when the system, at time zero, was distributed according to the measure fdµSRB.

A basic tool to study (2.1) are the Ruelle transfer operators Li defined by Lif = f ◦T−1
i . If we

consider Li as an operator from L2(Mi+1, µSRB) → L2(Mi, µSRB), then this is nothing other than
the adjoint of the Koopman operator T ∗i defined by T ∗i = ψ ◦ Ti. If we define Li,Hif = Li(1Hif),
then we can rewrite (2.1) as ˆ

Mn

ψ(x)Ln−1,Hn−1 · · · L0,H0f(x)dµSRB.

If the billiard tables and the holes do not change with time, then we haveˆ
M
ψ(x)LnHf(x)dµSRB.

and the expression is determined by the spectral properties of LH . Unfortunately, the spectral
properties of such an operator, when acting on L2 are very poor. The key step in this line of
thought has been achieved in [DZ1, D1, D2] where the authors have constructed Banach spaces of
distributions where the operators LH are quasi compact, hence the needed information can be read
from their spectra.

Unfortunately, in the sequential case, such as (2.1), spectral theory cannot be applied since the
operators keep changing in time. As mentioned in the introduction, we will overcome this problem
by proving that Li,HiCc,A,L(δ) ⊂ Cχc,χA,χL(δ) for some choice of c, A, L and δ with finite diameter
measured in the Hilbert metric (see [L95a] for details). The strict cone contraction implies that
the images of a bounded set of densities f , under the action of the transfer operators in (2.1) are
contained in smaller and smaller sets, hence the loss of memory with respect to the original density.

This will allow us to prove theorems of the following type (see Theorem 8.10 for a precise
formulation).

Theorem 2.2. Under appropriate technical conditions, there exists ϑ < 1 such that for each
ψ, f, g, h ∈ C1, there exits C > 0 such that, for all n ≥ 0,∣∣∣∣ˆ

Mn

ψ(x)

Zn(f)
Ln−1,Hn−1 · · · L0,H0f(x)dµSRB −

ˆ
Mn

ψ(x)

Zn(g)
Ln−1,Hn−1 · · · L0,H0g(x)dµSRB

∣∣∣∣ ≤ Cϑn ,
where Zn(h) =

ˆ
Mn

Ln−1,Hn−1 · · · L0,H0h(x)dµSRB.

In turn this will allow us to apply our theory to relevant physical problems such as chaotic
scattering, see Section 8.4, and a variant of the random Lorentz gas, see Section 8.5.
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3 Hyperbolicity, Singularities and Transfer Operators

We start by recalling some fundamental properties of billiards that will be needed in the sequel.

3.1 Hyperbolicity and singularities

The map T is uniformly hyperbolic in the following sense. T has a family of invariant stable cones
Cs, defined by

Cs(x) = {(dr, dϕ) ∈ R2 : −Kmax − τ−1
min ≤ dϕ/dr ≤ −Kmin}, for x ∈M ,

where Kmin and Kmax denote the minimum and maximum curvature of the boundaries of the
scatterers, respectively. This family of cones is strictly invariant, DT−1Cs(x) ⊂ Cs(T−1x), and
T−1 enjoys uniform expansion of vectors in the stable cone: There exist C1 ∈ (0, 1] and Λ > 1 such
that,

‖DT−n(x)v‖ ≥ C1Λn‖v‖, for all v ∈ Cs(x). (3.1)

T has a family of unstable cones Cu defined similarly, but with Kmin ≤ dϕ/dr ≤ Kmax + τ−1
min.

Near tangential collisions, ‖DT (x)v‖ ≈ ‖v‖
cosϕ(Tx) , for v ∈ Cu(x). Due to this unbounded expan-

sion, we define the standard homogeneity strips, following [BSC]. For some k0 ∈ N, to be chosen
later in (3.5), we define

H±k = {(r, ϕ) ∈M : (k + 1)−2 ≤ | ± π
2 − ϕ| ≤ k

−2}, for all k ≥ k0. (3.2)

Set S0 = {(r, ϕ) ∈ M : ϕ = ±π
2 }. The singularity set for Tn is denoted by Sn = ∪ni=0T

−iS0, for
n ∈ Z. On M \ Sn, Tn is a C2 diffeomorphism onto its image.

In order to achieve bounded distortion, we will consider the boundaries of the homogeneity
strips as an extended singularity set for T . To this end, define SH0 = S0 ∪ (∪k≥k0(∂Hk ∪ ∂H−k)),
and SHn = ∪ni=0T

−iSH0 , for n ∈ Z.
We call a curve W ⊂M a stable curve if for each x ∈W , the tangent vector to W at x belongs

to Cs. A stable curve is called homogeneous if it lies in one homogeneity strip or outside their
union. Denote by Ws the set of homogeneous stable curves with length at most δ0 (defined by
(3.5)) and with curvature at most B̄. We may choose B̄ sufficiently large that T−1Ws ⊂ Ws, up
to subdividing the curves of length larger than δ0.

Similarly, we define an analogous set of homogeneous unstable curves by Wu.
We have the following distortion bound for homogeneous stable curves. Suppose W ∈ Ws is

such that T iW ∈ Ws for i = 0, . . . n. There exists Cd > 0, independent of W and n, such that for
all x, y ∈W ,

| log JWT
n(x)− log JWT

n(y)| ≤ Cdd(x, y)1/3, (3.3)

where JWT
n is the (stable) Jacobian of Tn along W and d(·, ·) denotes arclength on W with respect

to the metric dr2 + dϕ2.
Similar bounds hold for stable Jacobians lying on the same unstable curve. Suppose V1, V2 ∈ Ws

are such that T iV1, T
iV2 ∈ Ws for 0 ≤ i ≤ n, in particular they are not cut by any singularity,

and there exists a foliation of unstable curves {`x}x∈V1 ⊂ Wu creating a one-to-one correspondence
between V1 and V2 and such that {Tn`x}x∈V1 ⊂ Wu creates a one-to-one correspondence between
TnV1 and TnV2. For x ∈ V1, define x̄ = `x ∩ V2. Then there exists Cd > 0, independent of V1, V2,
n and x, such that,

| log JV1T
n(x)− log JV2T

n(x̄)| ≤ Cd(d(x, x̄)1/3 + φ(x, x̄)), (3.4)
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where φ(x, x̄) denotes the angle between the tangent vectors to V1 and V2 at x and x̄, respectively.
For simplicity, we use the same symbol Cd to represent the distortion constants in (3.3) and (3.4).
The proofs for these distortion bounds in this form can be found in [DZ1, Appendix A] (see also
[CM, Section 5.8]).

3.2 Growth lemma

The control on complexity for the billiard is given by the following one-step expansion condition
due to Chernov. Recalling (3.2), for k0 sufficiently large, there exist δ0 > 0 and θ0 < 1 such that

sup
W∈Ws

|W |≤δ0

∑
Vi

|JViT |∗ = θ0, (3.5)

where Vi are the homogeneous components of T−1W and |JViT |∗ is the supremum of the Jacobian
of T along Vi in an adapted metric [CM, Lemma 5.56].

In Section 6.1, we will find it convenient to increase the contraction by replacing T with a higher
iterate Tn and choosing δ0 sufficiently small so that (3.5) holds for T∗ = Tn with constant θn0 . This
is possible since if W is a stable curve, then |T−1W | ≤ C|W |1/2 [CM, Exercise 4.50], so we may
choose δ0 so small that no connected component of T−k(W ) is longer than δ0 for k = 0, . . . , n.
Since no artificial subdivisions are necessary, we apply (3.5) inductively in k to obtain the desired
contraction.

Choose n̄ and fix δ0 ∈ (0, 1) such that θ1 := θn̄0 satisfies

3C0
θ1

1− θ1
≤ 1

4
and sup

W∈Ws

|W |≤δ0

∑
Vi

|JViT n̄|∗ ≤ θ1, (3.6)

where Vi are the homogeneous components of T−n̄W . Note that if we shrink δ0 further, then (3.6)
will continue to hold for the same value of n̄.

We shall work with the map T∗ = T n̄ throughout the following. To simplify notation we will
call T∗ again T as no confusion can arise.

The following growth lemma is contained in [DZ1, Lemmas 3.1, 3.2], but we include the proof
of item (b) here for convenience and to draw out the explicit dependence on the constants.

For W ∈ Ws, we denote by Gn(W ) the homogeneous components of T−nW , where we have
subdivided the elements of T−nW longer that δ0 into elements with length between δ0 and δ0/2 so
that Gn(W ) ⊂ Ws. We call Gn(W ) the nth generation of W . Let In(W ) denote the set of curves
Wi ∈ Gn(W ) such that T j(Wi) is not contained in an element of Gn−j(W ) having length at least
δ0/3 for any j = 0, . . . n

Lemma 3.1. There exists C̄0 > 0 such that for all W ∈ Ws and n ≥ 0,

a)
∑

Wi∈In(W )

|JWiT
n|C0(Wi) ≤ C0θ

n
1 ;

b)
∑

Wi∈Gn(W )

|JWiT
n|C0(Wi) ≤ C̄0δ

−1
0 |W |+ C0θ

n
1 .

Proof. Item (a) follows by induction on n from (3.6) and the constant C0 comes from translating
from the adapted metric to the Euclidean metric at the last step (the two metrics are uniformly
equivalent; see [DZ1, Lemma 3.1]). We focus on proving item (b).
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For W ∈ Ws, let Lk(W ) ⊂ Gk(W ) denote those elements of Gk(W ) having length at least δ0/3.
For k ≤ n and Wi ∈ Gn(W ), we say that Vj ∈ Lk(W ) is the most recent long ancestor of Wi if
k ≤ n is the largest time that Tn−kWi is contained in an element of Lk(W ). Then by definition,
Wi ∈ In−k(Vj). Note that if Wi ∈ Ln(W ), then k = n and Wi = Vj . Now we estimate,

∑
Wi∈Gn(W )

|JWiT
n|C0(Wi) ≤

n∑
k=1

∑
Vj∈Lk(W )

∑
Wi∈In−k(Vj)

|JWiT
n−k|C0(Wi)|JVjT

k|C0(Vj)

+
∑

Wi∈In(W )

|JWiT
n|C0(Wi)

≤
n∑
k=1

∑
Vj∈Lk(W )

C0θ
n−k
1 eCdδ

1/3
0
|T kVj |
|Vj |

+ C0θ
n
1 ,

where we have used item (a) of the lemma to sum over Wi ∈ In−k(W ) and (3.3) to replace

|JVjT k|C0(Vj) with
|TkVj |
|Vj | . Now since ∪Vj∈Lk(W )T

kVj ⊂W , and |Vj | ≥ δ0/3, we have

∑
Wi∈Gn(W )

|JWiT
n|C0(Wi) ≤

n∑
k=1

C0θ
n−k
1 3δ−1

0 |W |e
Cdδ

1/3
0 + C0θ

n
1 ,

which proves the lemma with C̄0 := 3C0
1−θ1 e

Cdδ
1/3
0 .

Remark 3.2. It is not necessary to work with T = T n̄ in Lemma 3.1. It follows equally well from
(3.5) with θ1 replaced by θ0. Moreover, if |W | ≥ δ0/3, then all pieces Wi ∈ Gn(W ) have a long
ancestor and can be included in the sum over k; in this case, the second term on the right side of
item (b) is not needed, and the value of C̄0 remains unchanged.

3.3 Transfer operator

We define the transfer operator L associated with T acting on scales of spaces of distributions as
in [DZ1]. We denote by T−nWs the set of curves W ∈ Ws such that T iW ∈ Ws for all i = 0, . . . n.
For α ≤ 1/3, let Cα(T−nWs) denote the set of complex valued functions on M that are Hölder
continuous on elements of T−nWs. Then for ψ ∈ Cα(Ws), we have ψ ◦ Tn ∈ Cα(T−nWs) (see
Lemma 5.2(a)). Define

Lnµ(ψ) = µ(ψ ◦ Tn), for µ ∈ (Cα(T−nWs))∗ .

This defines L : (Cα(T−nWs))∗ → (Cα(T−n+1Ws))∗ for any n ≥ 1. See [DZ1] for details.
Recall that T preserves the smooth invariant measure µSRB = c cosϕdrdϕ, where c is the

normalizing constant. When dµ = fdµSRB is a measure absolutely continuous with respect to µSRB,
we identify µ with its density f . With this identification, the transfer operator acting on densities
has the following familiar expression,

Lf = f ◦ T−1.

We choose this identification of functions in order to simplify our later work: using the reference
measure µSRB, the Jacobian of the transformation is 1, making L simpler to work with.

7



4 Cones and Distributions

Given a closed,1 convex cone C satisfying C ∩ −C = ∅, we define an order relation by f � g if and
only if g − f ∈ C ∪ {0}. We can then define a projective metric by

ᾱ(f, g) = sup{λ ∈ R+ : λf � g}
β̄(f, g) = inf{µ ∈ R+ : g � µf}

ρ(f, g) = log

(
β̄(f, g)

ᾱ(f, g)

)
.

(4.1)

4.1 A cone of test functions

For W ∈ Ws, α ∈ (0, 1] and a ∈ R+, define a cone of test functions by

Da,α(W ) =

{
ψ ∈ C0(W ) : ψ > 0,

ψ(x)

ψ(y)
≤ ead(x,y)α

}
,

where d(·, ·) is the arclength distance along W .
The Hilbert metric associated with this cone and defined by (4.1) depends on the constant a

and the exponent α determining the regularity of the functions. For each such choice, the Hilbert
metric has the following convenient representation.

Lemma 4.1 ([L95a, Lemma 2.2]). Choose α ∈ (0, 1]. For ψ1, ψ2 ∈ Da,α(W ), the corresponding
metric ρW,a,α(·, ·) is given by

ρW,a,α(ψ1, ψ2) = log

[
sup

x,y,u,v∈W

ead(x,y)αψ1(x)− ψ1(y)

ead(x,y)αψ2(x)− ψ2(y)
· e

ad(u,v)αψ2(u)− ψ2(v)

ead(u,v)αψ1(u)− ψ1(v)

]
.

A corollary of this lemma is that Da,α(W ) has finite diameter in Da,β(W ) if β < α and |W | < 1.
The next two lemmas are simple consequences of the regularity of functions in Da,α(W ) for

W ∈ Ws. We denote by mW the measure induced by arclength along W .

Lemma 4.2. For any α ∈ (0, 1] and W ∈ Ws with |W | ∈ [δ, 2δ], any ψ ∈ Da,α(W ) and x ∈W , we
have

δψ(x)´
W ψ dmW

≤ |W |ψ(x)´
W ψdmW

≤ ea|W |α .

Proof. The estimate is immediate since infy∈W ψ(y) ≥ ψ(x)e−a|W |
α
.

Lemma 4.3. Given α ∈ (0, 1], W ∈ Ws, ψ1, ψ2 ∈ Da,α(W ) and x, y ∈W ,

e−ρW,a,α(ψ1,ψ2) ≤ ψ1(x)ψ2(y)

ψ2(x)ψ1(y)
≤ eρW,a,α(ψ1,ψ2)

Proof. According to (4.1), we must have,

ψ2(x)− ᾱψ1(x) ≥ 0 ∀x ∈W and ψ2(y)− β̄ψ1(y) ≤ 0 ∀y ∈W.

This in turn implies that

ρW,a,α(ψ1, ψ2) = log
β̄(ψ1, ψ2)

ᾱ(ψ1, ψ2)
≥ log

[
ψ1(x)ψ2(y)

ψ2(x)ψ1(y)

]
∀x, y ∈W.

1 Closed here means that for all f, g ∈ C and sequence {αn} ⊂ R such that limn→∞ αn = α and g + αnf ∈ C for
all n ∈ N we have g + αf ∈ C ∪ {0}.
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4.2 Distances between curves and functions

Due to the global stable cones for the map T , we may consider stable curves W ∈ Ws as graphs of
C2 functions over an interval IW in the r-coordinate:

W = {GW (r) = (r, ϕW (r)) : r ∈ IW }.

Using this representation, we define a notion of distance between W 1,W 2 ∈ Ws by

dWs(W 1,W 2) = |ϕW 1 − ϕW 2 |C1(IW1∩IW2 ) + |IW 1 4 IW 2 |, (4.2)

ifW 1 andW 2 lie in the same homogeneity strip and |IW 1∩IW 2 | > 0; otherwise, we set dWs(W 1,W 2) =
∞. Note that dWs is not a metric, but this is irrelevant for our purposes.

We will also find it necessary to compare between test functions on two different stable curves.
Given W 1,W 2 ∈ Ws with dWs(W 1,W 2) <∞, and ψi ∈ Da,β(Wi), define

d∗(ψ1, ψ2) = |ψ1 ◦GW 1‖G′W 1‖ − ψ2 ◦GW 2‖G′W 2‖ |Cβ(IW1∩IW2 ), (4.3)

to be the (Hölder) distance between ψ1 and ψ2, where ‖G′W ‖ =
√

1 + (dϕW /dr)2.
Also, by the bound B̄ on the curvature of elements of Ws, there exists B∗ > 0 such that

B∗ = sup
W∈Ws

|ϕ′′W |C0(W ) <∞ . (4.4)

Remark 4.4. Note that if IW 1 = IW 2 and d∗(ψ1, ψ2) = 0, then

ˆ
W 1

ψ1 dmW1 =

ˆ
W 2

ψ2 dmW2 .

4.3 Definition of the cone

In order to define a cone of functions adapted to our dynamics, we will fix the following exponents,
α, β, γ, q > 0 and constant a > 1 large enough. Choose q ∈ (0, 1/2), β < α ≤ 1/3 and finally
γ ≤ min{α− β, q}.

For a length scale δ ≤ δ0/3, define Ws
−(δ) to be those curves in Ws with length |W | ≤ 2δ and

Ws(δ) to be those curves in Ws with length |W | ∈ [δ, 2δ].
Let A denote the set of functions on M whose restriction to each W ∈ Ws is integrable with

respect to the arclength measure dmW . For f ∈ A define,

|||f |||+ = sup
W∈Ws(δ)
ψ∈Da,β(W )

´
W fψ dmW´
W ψ dmW

, |||f |||− = inf
W∈Ws(δ)
ψ∈Da,β(W )

´
W fψ dmW´
W ψ dmW

, (4.5)

Note that if f ∈ A, it must be that |||f |||− <∞.
Denote the average value of ψ on W by

ffl
W ψ dmW = 1

|W |
´
W ψ dmW . Since all of our integrals

in this section and the next will be taken with respect to the arclength dmW , to keep our notation
concise, we will drop the measure from our integral notation in what follows.
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Now for a, c, A, L > 1, and δ ∈ (0, δ0/3], define the cone

Cc,A,L(δ) =
{
f ∈ A : |||f |||+ ≤ L|||f |||−; (4.6)

sup
W∈Ws

−(δ)
sup

ψ∈Da,β(W )
|W |−q

|
´
W fψ|ffl
W ψ

≤ Aδ1−q|||f |||−; (4.7)

∀W 1,W 2 ∈ Ws
−(δ) : dWs(W 1,W 2) ≤ δ, ∀ψi ∈ Da,α(Wi) : d∗(ψ1, ψ2) = 0,∣∣∣∣

´
W 1 fψ1ffl
W 1 ψ1

−
´
W 2 fψ2ffl
W 2 ψ2

∣∣∣∣ ≤ dWs(W 1,W 2)γ δ1−γcA|||f |||−
}
. (4.8)

We write the constants c, A, L explicitly as subscripts in our notation for the cone since these will
be the parameters which are contracted by the dynamics.

By contrast, the exponents α, β, γ, q are fixed and will not be altered by the dynamics, while the
constant a, which will be chosen in Lemma 5.2, will not appear directly in the contraction constant
of the cone.

For convenience, we will require that δ0 is sufficiently small that

e2aδβ0 ≤ 2 . (4.9)

This will imply similar bounds in terms of δ since δ ≤ δ0/3.

Remark 4.5. As will become clear from our estimates in Sections 5 and 6, in order to prove that
the parameters contract, we will need to choose A large compared to L, and c large compared to A.
This yields the compatible set of restrictions, 1 < L < A < c.

By contrast, the exponents are fixed by the regularity properties of the map: α ≤ 1/3 due to
(3.3), and β < α so that Da,β(W ) has finite diameter in Da,α(W ), while γ ≤ α−β is convenient to
obtain the required contraction in Lemma 5.5. See Section 5.3 for all the conditions the constants
must satisfy for Proposition 5.1. Several further conditions are specified in Theorem 6.10 to prove
the strict contraction of the cone.

Remark 4.6. Note that condition (4.6) implies (L − 1)|||f |||− ≥ |||f |||+ − |||f |||− ≥ 0, hence for all
W ∈ Ws(δ), ψ ∈ Da,β(W ),

ˆ
W
fψ dmW ≥ |||f |||−

ˆ
W
ψ dmW ≥ 0. (4.10)

In addition, condition (4.7) implies

A|||f |||− ≥ sup
W∈Ws

−(δ)
sup

ψ∈Da,β(W )
δq−1|W |1−q

|
´
W fψ|´
W ψ

≥ |||f |||+.

However condition (4.6) is not vacuous since we assume A > L.

We will need the following lemma in Section 6.2.

Lemma 4.7. For all f ∈ Cc,A,L(δ), W ∈ Ws(δ) and all ψ1, ψ2 ∈ Da,β(W ),∣∣∣∣
´
W fψ1ffl
W ψ1

−
´
W fψ2ffl
W ψ2

∣∣∣∣ ≤ 2δLρW,a,β(ψ1, ψ2)|||f |||− .
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Proof. Let f ∈ Cc,A,L(δ), W ∈ Ws(δ) and ψ1, ψ2 ∈ Da,β(W ). For each λ, µ > 0 such that λψ1 �
ψ2 � µψ1, hence also λψ1 ≤ ψ2 ≤ µψ1, we have

´
W fψ2ffl
W ψ2

=
λ
´
W fψ1 +

´
W f(ψ2 − λψ1)ffl
W ψ2

≥
λ
´
W fψ1

µ
ffl
W ψ1

,

where we have dropped the second term above due to (4.10) since ψ2 − λψ1 ∈ Da,β(W ). Taking
the sup on λ and the inf on µ, and recalling (4.1), yields

´
W fψ1ffl
W ψ1

−
´
W fψ2ffl
W ψ2

≤
´
W fψ1ffl
W ψ1

(1− e−ρW,a,β(ψ1,ψ2)) ≤ ρW,a,β(ψ1, ψ2)

´
W fψ1ffl
W ψ1

.

Then, since |W | ≥ δ, we use (4.6) to estimate,

´
W fψ1ffl
W ψ1

≤ |W ||||f |||+ ≤ 2δL|||f |||− .

Reversing the roles of ψ1 and ψ2 completes the proof of the lemma.

5 Cone Estimates

In this section, we will prove the following proposition. Let n0 ≥ 1 be such that AC0θ
n0
1 ≤ 1/16.

Proposition 5.1. If the conditions on δ, n0, a, c, A, L specified in Section 5.3 are satisfied, then
there exists χ < 1 such that for all n ≥ n0,

LnCc,A,L(δ) ⊆ Cχc,χA,3L(δ) .

Before proving Proposition 5.1 we need some facts concerning the behaviour of the test functions
under the dynamics.

5.1 Contraction of test functions

For W ∈ Ws, ψ ∈ Da,β(W ), and Wi ∈ Gn(W ), define

T̂nWi
ψ = T̂ni ψ := ψ ◦ TnJWiT

n.

The following lemma is a consequence of the hyperbolicity of T .

Lemma 5.2. Let n ≥ 0 be such that C−1
1 Λ−βn < 1, where C1 ≤ 1 is from (3.1), and fix a >

(1 − C−1
1 Λ−βn)−1Cdδ

1/3−β
0 . For each β ∈ (0, 1/3], there exist σ, ξ̄ < 1 such that for all W ∈ Ws

and Wi ∈ Gn(W ),

a) T̂ni (Da,β(W )) ⊂ Dσa,β(Wi);

b) ρWi,a,β(T̂ni ψ1, T̂
n
i ψ2) ≤ ξ̄ρW,a,β(ψ1, ψ2) for all ψ1, ψ2 ∈ Da,β(W ).

Proof. (a) We need to measure the log-Hölder norm of T̂ni ψ for ψ ∈ Da,β(W ). For x, y ∈ Wi, we
estimate,

T̂ni ψ(x)

T̂ni ψ(y)
=
ψ(Tnx)JWiT

n(x)

ψ(Tny)JWiT
n(y)

≤ ead(Tnx,Tny)β+Cdd(x,y)1/3 ≤ e(aC−β1 Λ−βn+Cdδ
1/3−β
0 )d(x,y)β ,
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where we have used (3.1) and (3.3) as well as the fact that β ≤ 1/3. This proves the first statement

of the lemma since aC−1
1 Λ−βn + Cdδ

1/3−β
0 < a.

(b) Using Lemma 4.1, if ψ1, ψ2 ∈ Dσa,β(Wi), then,

ρWi,a,β(ψ1, ψ2) = log

[
sup

x,y,u,v∈Wi

ead(x,y)βψ1(x)− ψ1(y)

ead(x,y)βψ2(x)− ψ2(y)
· e

ad(u,v)βψ2(u)− ψ2(v)

ead(u,v)βψ1(u)− ψ1(v)

]

≤ log

[
sup

x,y,u,v∈W

e(a+σa)d(x,y)β − 1

e(a−σa)d(x,y)β − 1

e(a+σa)d(u,v)β − 1

e(a−σa)d(u,v)β − 1

ψ1(y)ψ2(v)

ψ2(y)ψ1(u)

]

≤ log

[
(a+ σa)2

(a− σa)2
e2a(1+σ)δβ0 e2aδβ0

]
=: K.

(5.1)

Thus the diameter of Dσa,β(Wi) is finite in Da,β(Wi). Part (b) of the lemma then follows from
[L95a, Theorem 1.1], with ξ̄ = tanh(K/4) < 1.

Corollary 5.3. Let n1 denote the least positive integer satisfying C−1
1 Λ−βn < 1 and aC−1

1 Λ−βn1 +

Cdδ
1/3−β
0 < a. Define ξ = ξ̄

1
2n1 < 1. Then for W ∈ Ws, n ≥ n1 and Wi ∈ Gn(W ),

ρWi,a,β(T̂ni ψ1T̂
n
i ψ2) ≤ ξnρW,a,β(ψ1, ψ2) for all ψ1, ψ2 ∈ Da,β(W ).

Proof. The proof follows immediately from Lemma 5.2 once we decompose n = kn1 + r, where
r ∈ [0, n1) and write

T̂nWi
ψ = T̂n1+r

Wi
◦ T̂n1

Tn1+rWi
◦ T̂n1

T 2n1+rWi
◦ · · · ◦ T̂n1

T (k−1)n1+rWi
ψ.

Each of the operators T̂n1

T jn1+rWi
satisfies Lemma 5.2 with the same σ and ξ̄. The corollary then

follows using the observation that ξ̄bn/n1c ≤ ξn, ∀n ≥ n1.

It is important for what follows that the contractive factor ξ̄ < 1 is explicitly given in terms of
the diameter K, which depends only on a and σ, and not on δ. While n1 depends on the parameter
choice β, it also is independent of δ.

In what follows, we require n0 ≥ n1 by definition, so that Lemma 5.2 and Corollary 5.3 will
hold for all n ≥ n0.

5.2 Proof of Proposition 5.1

This section is devoted to the proof of Proposition 5.1.

5.2.1 Preliminary estimate on L

Denote by Shn(W ; δ) the elements of Gn(W ) of length less than δ and by Lon(W ; δ) the elements
of Gn(W ) of length at least δ.

Lemma 5.4. Fix δ ∈ (0, δ0/3) so that 4Aδδ−1
0 C̄0 ≤ 1/4, then, for all f ∈ Cc,A,L(δ) and n ≥ n0,

|||Lnf |||+ ≤
3
2 |||f |||+ and |||Lnf |||− ≥

1
2 |||f |||−.
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Proof. Let W ∈ Ws(δ), ψ ∈ Da,β(W ). Then,

ˆ
W
Lnf ψ =

∑
Wi∈Lon(W ;δ)

ˆ
Wi

f ψ ◦ Tn JWiT
n +

∑
Wi∈Shn(W ;δ)

ˆ
Wi

f ψ ◦ Tn JWiT
n. (5.2)

Now since ψ ◦ TnJWiT
n ∈ Da,β(Wi) by Lemma 5.2, we subdivide elements Wi ∈ Lon(W ; δ) into

curves U` having length between δ and 2δ and use the definition of |||f |||+ on each such curve to
estimate, ˆ

Wi

f ψ ◦ Tn JWiT
n ≤

∑
`

|||f |||+
ˆ
U`

ψ ◦ TnJVjTn = |||f |||+
ˆ
TnWi

ψ .

To estimate the short pieces, we apply (4.7) and use Lemma 3.1-(b) since Shn(W ; δ) ⊂ Gn(W ).∑
Wi∈Shn(W ;δ)

ˆ
Wi

f ψ ◦ Tn JWiT
n ≤

∑
Wi∈Shn(W ;δ)

|||f |||−A|Wi|qδ1−q
 
Wi

ψ ◦ Tn JWiT
n

≤ δA|||f |||−e
a(2δ)β

 
W
ψ (C̄0δ

−1
0 |W |+ C0θ

n
1 ).

Putting these estimates together in (5.2) and using that |W | ≥ δ, we obtain,

ˆ
W
Lnf ψ ≤

∑
Wi∈Lon(W ;δ)

|||f |||+
ˆ
TnWi

ψ +A|||f |||−e
a(2δ)β

ˆ
W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≤ |||f |||+
ˆ
W
ψ
(

1 +Aea(2δ)β (δδ−1
0 C̄0 + C0θ

n
1 )
)
,

where we have used Lemma 4.2. Now (4.9) implies ea(2δ)β ≤ 2, and our choices of n0 and δ imply
2Amax{C̄0δδ

−1
0 , C0θ

n0
1 } ≤ 1/4, which yields the required estimate on |||Lnf |||+ for all n ≥ n0.

For the bound on |||Lnf |||−, we perform a similar estimate, except noting that for Wi ∈
Lon(W ; δ), ˆ

Wi

fψ ◦ TnJWiT
n ≥ |||f |||−

ˆ
TnWi

ψ,

we follow (5.2) to estimate,

ˆ
W
Lnf ψ ≥

∑
Wi∈Lon(W ;δ)

|||f |||−
ˆ
TnWi

ψ −A|||f |||−e
a(2δ)β

ˆ
W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≥ |||f |||−
ˆ
W
ψ
(

1− 2Aea(2δ)β (δδ−1
0 C̄0 + C0θ

n
1 )
)
.

Again using our choice of n0 and δ, we have 4AC0θ
n
1 ≤ 1/4 and 4Aδδ−1

0 C̄0 ≤ 1/4, which yields
|||Lnf |||− ≥

1
2 |||f |||−.

In particular the above implies the estimate: for all n ≥ n0,

|||Lnf |||+
|||Lnf |||−

≤ 3
|||f |||+
|||f |||−

≤ 3L. (5.3)
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5.2.2 Contraction of the parameter A

We prove that the parameter A contracts in (4.7). Choose f ∈ Cc,A,L(δ). Let W ∈ Ws with
|W | ≤ 2δ, ψ ∈ Da,β(W ) and x ∈ W . From now on, we will refer to Lon(W ; δ) and Shn(W ; δ) as
simply Lon(W ) and Shn(W ). We follow (5.2) to write∣∣∣∣ˆ

W
Lnf ψ

∣∣∣∣ ≤ ∑
Wi∈Lon(W )

ˆ
Wi

f ψ ◦ Tn JWiT
n +

∑
Wi∈Shn(W )

∣∣∣∣ˆ
Wi

f ψ ◦ Tn JWiT
n

∣∣∣∣
≤

∑
Wi∈Lon(W )

|||f |||+
ˆ
Wi

ψ ◦ Tn JWiT
n +

∑
Wi∈Shn(W )

Aδ1−q|Wi|q|||f |||−
 
Wi

ψ ◦ Tn JWiT
n

≤
∑

Wi∈Lon(W )

|||f |||−L
ˆ
TnWi

ψ +Aδ1−q|W |q|||f |||−|ψ|C0

∑
Wi∈Shn(W )

|Wi|q

|W |q
|TnWi|
|Wi|

,

where in the second line we have used (4.7) for the sum on short pieces. Since |W | ≤ 2δ, the first
sum above is bounded by

|||f |||−L|W |
 
W
ψ ≤ ‖f |||−2Lδ1−q|W |q

 
W
ψ .

For the sum on short pieces, we use Lemmas 3.1-(b) and a Hölder inequality to estimate

∑
Wi∈Shn(W )

|Wi|q

|W |q
|TnWi|
|Wi|

≤

 ∑
Wi∈Shn(W )

|TnWi|
|W |

q ∑
Wi∈Shn(W )

|JWiT
n|C0(Wi)

1−q

≤ (C̄0δ
−1
0 |W |+ C0θ

n
1 )1−q

Combining these two estimates with Lemma 4.2 yields,

|
´
W L

nf ψ|ffl
W ψ

≤ Aδ1−q|W |q|||f |||−
(

2LA−1 + ea(2δ)β (C̄0δ
−1
0 |W |+ C0θ

n
1 )1−q

)
. (5.4)

This contracts the parameter A if 2LA−1 + ea(2δ)β (2C̄0δδ
−1
0 +C0θ

n
1 )1−q < 1, which we can achieve

if ea(2δ)β ≤ 2,
A > 4L, and (2C̄0δδ

−1
0 + C0θ

n0
1 )1−q < 1/4 . (5.5)

Remark that since L ≥ 1, we have A > 4, and so according to the assumption of Lemma 5.4,
2C̄0δδ

−1
0 ≤ 1/32. Moreover, C0θ

n0
1 ≤ 1/64 by choice of n0, and since 1 − q ≥ 1/2, the second

condition in (5.5) is always satisfied under the assumption of Lemma 5.4.

5.2.3 Contraction of the parameter c

Finally, we verify the contraction of c via (4.8). Let f ∈ Cc,A,L(δ) and W 1,W 2 ∈ Ws with |W k| ≤ 2δ
and dWs(W 1,W 2) ≤ δ2. Take ψk ∈ Da,α(W k) with d∗(ψ1, ψ2) = 0.

Without loss of generality we can assume |W 2| ≥ |W 1| and
ffl
W1

ψ1 = 1. Next, note that cone
condition (4.7) implies (see section 5.2.2)∣∣∣∣

´
W 1 Lnfψ1ffl
W 1 ψ1

−
´
W 2 Lnfψ2ffl
W 2 ψ2

∣∣∣∣ ≤ 2Aδ1−q|W 2|q|||Lnf |||−
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It follows that the contraction of the parameter c is trivial for |W 2|q ≤ δq−γ dWs (W 1,W 2)γc
4 . Thus it

suffices to consider the case

|W 2|q ≥ δq−γ dW
s(W 1,W 2)γc

4
. (5.6)

We claim that (5.6) implies that IW1 ∩ IW2 6= ∅. Define Cs :=
√

1 + (Kmax + τ−1
min)2 to be the

maximum absolute value of the slopes of curves in the stable cone defined in (3.1). If IW 1∩IW 2 = ∅,
then dWs(W 1,W 2) = |IW 1 4 IW 2 | = |IW 1 |+ |IW 2 |, so it must be that |IW 2 | ≤ δ. Yet (5.6) implies
that

Cs|IW 2 | ≥ |W 2| ≥ δ(q−γ)/qdWs(W 1,W 2)γ/q( c4)1/q ≥ δ(q−γ)/q|IW 2 |γ/q( c4)1/q,

so we obtain the contradiction |IW 2 | ≥ δ · 21/(q−γ) provided

q > γ ; c ≥ 8Cqs . (5.7)

Next, for any two manifolds U i ∈ Ws
−(δ) defined on the intervals Ii with J = I1 ∩ I2 6= ∅, by

the distance definition (4.2) we have,

| |U1| − |U2| | ≤
ˆ
J
(‖G′1‖ − ‖G′2‖)dr +

1∑
i=1

ˆ
Ii\J
‖G′i‖dr

≤
ˆ
J
‖G′2 −G′1‖dr + Cs|I1∆I2| ≤ (|U1|+ Cs)dWs(U1, U2).

(5.8)

Since
ffl
W1

ψ1 = 1, we have |ψ1|∞ ≤ ea(2δ)α . On the other hand, since IW 1 ∩ IW 2 6= ∅
and d∗(ψ1, ψ2) = 0, there must exist r ∈ IW 1 ∩ IW 2 such that ψ1 ◦ GW 1(r)‖G′W 1(r)‖ = ψ2 ◦
GW 2(r)‖G′W 2(r)‖. Thus since,

‖G′W 1(r)‖
‖G′

W 2(r)‖
=

√
1 + (ϕ′

W 1(r))2

1 + (ϕ′
W 2(r))2

=

√
1 +

(ϕ′
W 1(r)− ϕ′

W 2(r))(2ϕ′
W 2(r) + (ϕ′

W 1(r)− ϕ′
W 2(r)))

1 + (ϕ′
W 2(r))2

≤
√

1 + dWs(W 1,W 2)(2 + dWs(W 1,W 2)) ≤
√

1 + 3δ ≤ 2 ,

where we use δ < 1, we estimate,

|ψ2|∞ ≤ 2ea(2δ)α |ψ1|∞ ≤ 2e2a(2δ)α . (5.9)

Then recalling Remark 4.4, it follows that∣∣∣∣ˆ
W 1

ψ1 −
ˆ
W 2

ψ2

∣∣∣∣ ≤ ea(2δ)αCs|IW 1 \ IW 2 |+ e2a(2δ)α2Cs|IW 2 \ IW 1 | ≤ 2Cse
2a(2δ)αdWs(W 1,W 2).

Putting this together with (5.8) and using
´
W1

ψ1 = |W1|, we estimate,∣∣∣∣|W 2| −
ˆ
W 2

ψ2

∣∣∣∣ ≤ ∣∣|W 2| − |W 1|
∣∣+

∣∣∣∣ˆ
W 1

ψ1 −
ˆ
W 2

ψ2

∣∣∣∣
≤ (|W 1|+ Cs)dWs(W 1,W 2) ≤ 6CsdWs(W 1,W 2) ,

(5.10)

where we have used (4.9) and α > β. Hence, recalling Lemma 5.4 and (5.4), dWs(W 1,W 2) ≤ δ and
using (5.6), (5.7) and (5.10), we have∣∣∣∣

´
W 1 Lnfψ1ffl
W 1 ψ1

−
´
W 2 Lnfψ2ffl
W 2 ψ2

∣∣∣∣ ≤ ∣∣∣∣ˆ
W 1

Lnfψ1 −
ˆ
W 2

Lnfψ2

∣∣∣∣+

∣∣∣∣ˆ
W 2

Lnfψ2

∣∣∣∣ ∣∣∣∣ |W 2|´
W 2 ψ2

− 1

∣∣∣∣
≤
∣∣∣∣ˆ
W 1

Lnfψ1 −
ˆ
W 2

Lnfψ2

∣∣∣∣+A

[
δ

|W 2|

]1−q ∣∣∣∣|W 2| −
ˆ
W 2

ψ2

∣∣∣∣ 2|||Lnf |||−
≤
∣∣∣∣ˆ
W 1

Lnfψ1 −
ˆ
W 2

Lnfψ2

∣∣∣∣+ 23−1/q3CqsAδ
1−γdWs(W 1,W 2)γ |||Lnf |||− .

(5.11)
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To conclude it suffices then to compare
´
W 1 Lnf ψ1 and

´
W 2 Lnf ψ2. To this end, define Gδn(W k)

to be the nth generation homogeneous components of T−nW k with long pieces subdivided to have
length between δ and 2δ. We split Gδn(W 1) and Gδn(W 2) into matched and unmatched pieces as
follows. On each curve W 1

i ∈ Gδn(W 1), we place a foliation of vertical line segments {`x}x∈W 1
i

of

length C1Λ−ndWs(W 1,W 2). Due to the uniform hyperbolicity of T , the images T i`x are unstable
curves for i ≥ 1 and remain uniformly transverse to the stable cone. Thus Tn`x undergoes the
uniform expansion given by (3.1) and, if not cut by a singularity, will intersect both W 1 and
W 2. When these segments Tn`x survive uncut, we declare the subcurves U1

j , U2
j connected by the

original vertical segments `x to be ‘matched.’ Note that, by [CM, Proposition 4.47] there must
exists two piecewise smooth curves in SHn that connect the boundaries of U1

j and U2
j forming a

rectangle that does not contain any element of SHn in its interior.
All other subcurves we label V 1

j , V 2
j and declare them to be ‘unmatched.’ It follows that there

can be at most one matched curve Ukj and two unmatched curves V k
j for each elementW k

i ∈ Gδn(W k),

k = 1, 2. Thus we have defined a composition Gδn(W k) = ∪jUkj ∪ ∪jV k
j , such that U1

j and U2
j are

defined as the graphs of functions GUkj
over the same r-interval Ij for each j.

Using this decomposition, and writing T̂n
Ukj
ψk = ψk ◦TnJUkj T

n and similarly for T̂V kj
ψk, we write

ˆ
Wk

Lnf ψk =
∑
j

ˆ
Ukj

f T̂n
Ukj
ψk +

∑
j

ˆ
V kj

f T̂n
V kj
ψk. (5.12)

We estimate the contribution from unmatched pieces first. To do so, we group the V k
j as follows.

We say V k
j is ‘created’ at time 0 ≤ i ≤ n − 1 if i is the smallest t such that either an endpoint of

Tn−tV k
j is created by an intersection with T (SH0 ), or Tn−tV k

j is contained in a larger unmatched

piece with this property (this second case can happen when both endpoints of V k
j are created by

subdivision of long pieces rather than cuts due to singularities). Due to the uniform transversality
of the stable cone with curves in T (SH0 ) as well as the uniform transversality of the stable and
unstable cones, we have |Tn−iV k

j | ≤ C̄3Λ−idWs(W 1,W 2), for some constant C̄3 > 0. Define

P (i) = {j : V 1
j created at time i}.

Although we would like to change variables to estimate the contribution on the curves Tn−iV 1
j

for j ∈ P (i), this is one time step before such cuts would be introduced according to our definition
of Gδn(W ), so Lemma 3.1 would not apply since there may be many such Tn−iV 1

j for each W 1
` ∈

Gδi (W 1). However, there can be at most two curves Tn−i−1V 1
j , j ∈ P (i), per element of W 1

` ∈
Gδi+1(W 1), so we will change variables to estimate the contribution from curves of the form Tn−i−1V 1

j

instead. We have two cases.

Case 1. The curve in T (SH0 ) that creates V 1
j at time i is the preimage of the boundary of a

homogeneity strip. Then Tn−i−1V 1
j still enjoys uniform transversality with the boundary of the

homogeneity strip and the unstable cone, and so |Tn−i−1V 1
j | ≤ C̄3Λ−i−1dWs(W 1,W 2) as before.

Case 2. The curve in T (SH0 ) that creates V 1
j at time i is not the preimage of the boundary of a

homogeneity strip. Then V 1
j undergoes bounded expansion from time n− i to time n− i− 1. Thus

|Tn−i−1V 1
j | ≤ CC̄3Λ−idWs(W 1,W 2), where C > 0 depends only on our choice of k0, the minimum

index of homogeneity strips.

In either case, we conclude that |Tn−i−1V 1
j | ≤ C3Λ−idWs(W 1,W 2), for a uniform constant

C3 > 0. Since dWs(W 1,W 2) ≤ δ2 (δ
1+ γ

q−γ would suffice), it follows that all curves Tn−i−1V k
j have

length shorter than 2δ, thus we may apply (4.7).
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∣∣∣∣∣∣
∑
j

ˆ
V 1
j

f T̂nV 1
j
ψ1

∣∣∣∣∣∣ ≤
n−1∑
i=0

∣∣∣∣∣∣
∑
j∈P (i)

ˆ
Tn−i−1V 1

j

Ln−i−1f · ψ1 ◦ T i+1 JTn−i−1V 1
j
T i+1

∣∣∣∣∣∣
≤

n−1∑
i=0

∑
j∈P (i)

Aδ1−q|Tn−i−1V 1
j |q|||Ln−i−1f |||−|ψ1|C0(W 1)|JTn−i−1V 1

j
T i+1|C0(Tn−i−1V 1

j )

≤
n−1∑
i=0

Aδ1−qCq3Λ−iqdWs(W 1,W 2)q|||Ln−i−1f |||− (2C̄0 + C0θ
i+1
1 )|ψ1|C0(W 1),

where we have used Lemma 3.1-(b) for the sum over j ∈ P (i) since there are at most two curve
Tn−i−1V 1

j for each element W 1
` ∈ Gδi+1(W ).2

Since n ≥ 2n0, we have either that i + 1 ≥ n0 or n − (i + 1) ≥ n0. In the former case,
|||Ln−i−1f |||− ≤ 2|||Lnf |||− by Lemma 5.4. In the latter case,

|||Ln−i−1f |||− ≤ |||L
n−i−1f |||+ ≤

3
2 |||f |||+ ≤

3
2 L|||f |||− ≤ 3L|||Lnf |||−, (5.13)

where we have used Lemma 5.4 twice, once on |||Ln−i−1f |||+ and once on |||f |||−. Since the latter
estimate (5.13) is the larger of the two, we may use it for all i.

Also, using the assumption that dWs(W 1,W 2) ≤ δ and (5.7) yields,

δ1−qdWs(W 1,W 2)q ≤ δ1−γdWs(W 1,W 2)γ .

Collecting these estimates and summing over the exponential factors yields (since the estimate for
V 2
j is the same),

∑
j,k

∣∣∣∣∣
ˆ
V kj

f T̂n
V kj
ψk

∣∣∣∣∣ ≤ C4ALδ
1−γdWs(W 1,W 2)γ |||Lnf |||−, (5.14)

for some uniform constant C4 depending only on T and not on the parameters of the cone.
Next, we estimate the contribution on matched pieces Ukj . To do this, we will need to change

test functions on the relevant curves. Define the following functions on U1
j ,

ψ̃2 = ψ2 ◦ Tn ◦GU2
j
◦G−1

U1
j

; J̃U2
j
Tn = JU2

j
Tn ◦GU2

j
◦G−1

U1
j
,

T̃nU2
j
ψ2 = ψ̃2 · J̃U2

j
Tn
‖G′

U2
j
‖ ◦G−1

U1
j

‖G′
U1
j
‖ ◦G−1

U1
j

.
(5.15)

Note that d∗(T̂
n
U2
j
ψ2, T̃

n
U2
j
ψ2) = 0 by construction. Also we define

ψ−j = min{T̂nU1
j
ψ1, T̃

n
U2
j
ψ2}

ψ∆
1,j = T̂nU1

j
ψ1 − ψ−j ; ψ∆

2,j = T̃nU2
j
ψ2 − ψ−j .

(5.16)

We will need the following lemma to proceed.

2Notice that since we subdivide curves in Gδn(W ) according to length δ and not δ0, the estimate of Lemma 3.1-(b)
becomes C̄0δ

−1|W |+ C0θ
n
1 ≤ 2C̄0 + C0θ

n
1 .
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Lemma 5.5. If c > 4(1 +M0)q, M0 is defined in (5.26), then there exists C5 ≥ 1, independent of
n, W 1 and W 2 satisfying (5.6), such that for each j,

a) dWs(U1
j , U

2
j ) ≤ C5nΛ−ndWs(W 1,W 2) ;

b) e−C5dWs (W 1,W 2)α ≤
T̂n
U1
j
ψ1(x)

T̃n
U2
j
ψ2(x)

≤ eC5dWs (W 1,W 2)α ∀x ∈ U1
j ;

c) setting B = 8
[
C5a

−1
]α−β

α dWs(W 1,W 2)α−β we have ψ∆
i,j +Bψ−j ∈ Da,β(U1

j ), i = 1, 2.

Moreover, T̃n
U2
j
ψ2 and ψ−j belong to Da,α(U1

j ).

We postpone the proof of the lemma and use it to conclude the estimates of this section.
For future use note that Lemma 5.5(b) implies

0 ≤ ψ∆
k,j(x) ≤ 2C5dWs(W 1,W 2)αψ−j (x). (5.17)

Since d∗(T̃
n
U2
j
ψ2, T̂

n
U2
j
ψ2) = 0 by construction, and recalling Remark 4.4, Lemma 5.5(c), condition

(4.7), and (5.16), (5.17),∣∣∣∣∣
ˆ
U1
j

f T̂nU1
j
ψ1 −

ˆ
U2
j

f T̂nU2
j
ψ2

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
U1
j

f T̂nU1
j
ψ1 −

ˆ
U1
j

f T̃nU2
j
ψ2

∣∣∣∣∣
+

∣∣∣∣∣∣
´
U1
j
f T̃n

U2
j
ψ2ffl

U1
j
T̃n
U2
j
ψ2

−

´
U2
j
f T̂n

U2
j
ψ2ffl

U2
j
T̂n
U2
j
ψ2

∣∣∣∣∣∣
 
U2
j

T̂nU2
j
ψ2 +

∣∣∣∣∣∣
´
U1
j
f T̃n

U2
j
ψ2ffl

U1
j
T̃n
U2
j
ψ2

∣∣∣∣∣∣
∣∣∣∣∣ |U2

j | − |U1
j |

|U1
j |

∣∣∣∣∣
 
U2
j

T̂nU2
j
ψ2

≤ Aδ1−q|U1
j |q

[ffl
U1
j
(ψ∆

1,j +Bψ−j ) +
ffl
U1
j
(ψ∆

2,j +Bψ−j )
]

ffl
U2
j
T̂n
U2
j
ψ2

 
U2
j

T̂nU2
j
ψ2|||f |||−

+ dWs(U1
j , U

2
j )γδ1−γcA

 
U2
j

T̂nU2
j
ψ2|||f |||−

+Aδ1−q|U1
j |q
∣∣∣∣∣ |U2

j | − |U1
j |

|U1
j |

∣∣∣∣∣
 
U2
j

T̂nU2
j
ψ2|||f |||− ,

(5.18)

where for the first term, we have used that |T̂n
U1
j
ψ1 − T̃nU2

j
ψ2| = ψ∆

1,j + ψ∆
2,j , and for the second and

third terms that T̃n
U2
j
ψ2 ∈ Da,α(U1

j ) by Lemma 5.5. Then, recalling Lemma 3.1(b), (5.9) and (4.9),

we can estimate∑
j

 
U2
j

T̂U2
j
ψ2 ≤

∑
j

 
U2
j

|J
Uj2
Tn|∞ψ2 ◦ Tn ≤ (C̄0δ

−1|W 2|+ C0θ
n
1 )2e2a(2δ)α ≤ 24C̄0 . (5.19)

Next, recalling (5.8), we have3

|U2
j | ≤ |U1

j |(1 + dWs(U1
j , U

2
j )) ≤ 2|U1

j |
3Since the Ukj are vertically matched, the term on the right hand side of (5.8) proportional to Cs is absent here.
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provided we impose
C5n0Λ−n0δ ≤ 1 (5.20)

where C5 is from Lemma 5.5-(a) and Λ is defined in (3.1). Moreover, remembering the definition
of B in Lemma 5.5-(c) and equation (5.17),
 
U1
j

(ψ∆
k,j +Bψ−j ) ≤

 
U1
j

10C5T̃
n
U2
j
ψ2dWs(W 1,W 2)γ

≤ 10C5

|U2
j |
|U1
j |

 
U2
j

T̂nU2
j
ψ2dWs(W 1,W 2)γ ≤ 20C5

 
U2
j

T̂nU2
j
ψ2dWs(W 1,W 2)γ ,

(5.21)

where we have used the assumption α− β ≥ γ.
Again using (5.8) and Lemma 5.5-(a) we have∣∣∣∣∣ |U2

j | − |U1
j |

|U1
j |1−q

∣∣∣∣∣ ≤ dWs(U2
j , U

1
j )|U1

j |q ≤ (2δ)qC5nΛ−ndWs(W 2,W 1). (5.22)

Inserting (5.19), (5.21) and (5.22) in (5.18) and recalling Lemmas 5.4 and 5.5-(a) yields,

∑
j

∣∣∣∣∣
ˆ
U1
j

f T̂U1
j
ψ1 −

ˆ
U2
j

f T̂U2
j
ψ2

∣∣∣∣∣
≤ 48C̄0Aδ

1−γdWs(W 1,W 2)γ |||Lnf |||−
(
2q40C5δ

q−γ + cC5n
γΛ−nγ + 2qC5nΛ−nδ

) (5.23)

Then using this estimate in (5.11), and recalling (5.12) and (5.14) yields∣∣∣∣
´
W 1 Lnf ψ1ffl
W 1 ψ1

−
´
W 2 Lnf ψ2ffl
W 2 ψ2

∣∣∣∣ ≤ {23−1/q3Cqs + C4L

+ 48C̄0

(
2q40C5δ

q−γ + cC5n
γΛ−nγ + 2qC5nΛ−nδ

)}
Aδ1−γdWs(W 1,W 2)γ |||Lnf |||−

(5.24)

which yields the wanted estimate, provided

23−1/qCqs + C4L+ 48C̄0

(
2q40C5δ

q−γ + cC5n
γΛ−nγ + 2qC5nΛ−nδ

)
< c. (5.25)

5.2.4 Proof of Lemma 5.5

Proof. (a) This is [DZ1, Lemma 4.2].

(b) Recall that Ukj is defined as the graph of a function GUkj
(r) = (r, ϕUkj

(r)), for r ∈ Ikj , k = 1, 2.

Due to the vertical matching, we have I1
j = I2

j .

Now for x ∈ U1
j , let r ∈ I1

j be such that GU1
j
(r) = x. Set x̄ = GU2

j
(r) and note that x and x̄ lie

on the same vertical line in M since U1
j and U2

j are matched. Thus by (3.4),

JU1
j
Tn(x)

J̃U2
j
Tn(x)

=
JU1

j
Tn(x)

JU2
j
Tn(x̄)

≤ eCd(d(Tnx,Tnx̄)1/3+φ(x,x̄)) ≤ eCdM0dWs (W 1,W 2)1/3
, (5.26)

where M0 is a constant depending only on the maximum and minimum slopes in Cs and Cu.
Next, for x ∈ U1

j consider

ψ1 ◦ Tn(x)

ψ̃2(x)

‖G′
U1
j
‖ ◦G−1

U1
j
(x)

‖G′
U2
j
‖ ◦G−1

U1
j
(x)

.
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Let Tn(x) = (r,GW 1(r)) and Tn(x̄) = (r̄, GW 2(r̄)), then

|r − r̄| ≤M0dWs(W 1,W 2) .

If r ∈ IW 2 , then since d∗(ψ1, ψ2) = 0,

ψ1 ◦GW 1(r)

ψ2 ◦GW 2(r̄)
=
ψ1 ◦GW 1(r)

ψ2 ◦GW 2(r)

ψ2 ◦GW 2(r)

ψ2 ◦GW 2(r̄)
≤
‖G′W 2(r)‖
‖G′

W 1(r)‖
ead(GW1

(r),GW2 (r̄))α .

Next, since ‖G′W 1 −G′W 2‖ = |ϕ′W 1 − ϕ′W 2 | and ‖G′
Wk‖ ≥ 1, we have

‖G′W 2(r)‖
‖G′

W 1(r)‖
≤ e‖G

′
W1−G′W2‖ ≤ edWs (W 1,W 2) .

Similarly,
‖G′

U1
j

‖◦G−1

U1
j

(x)

‖G′
U2
j

‖◦G−1

U1
j

(x)
≤ edWs (U1

j ,U
2
j ). Hence, using part (a) of the lemma and assuming

C5n0Λ−n0δ1−α ≤ 1, (5.27)

yields

ψ1 ◦ Tn(x)

ψ̃2(x)

‖G′
U1
j
‖ ◦G−1

U1
j
(x)

‖G′
U2
j
‖ ◦G−1

U1
j
(x)
≤ e(aMα

0 +2)dWs (W 1,W 2)α .

The same estimate holds if r̄ ∈ IW 1 . Otherwise it must be that

|IW 1 ∩ IW 2 | ≤M0dWs(W 1,W 2)

but then, since |IW 1∆IW 2 | ≤ dWs(W 1,W 2) we would have |W 2| ≤ (1 + M0)dWs(W 1,W 2), which
violates (5.6) together with the assumption, provided

c > 4(1 +M0)q. (5.28)

The estimates with the opposite sign follow similarly. Putting together these estimates yields part
(b) of the lemma with C5 = M0Cdδ

1/3−α + aMα
0 + 2.

(c) As noted in (5.17), by (b) it immediately follows that∣∣ψ∆
i,j(x)

∣∣ ≤ ∣∣∣T̂nU1
j
ψ1(x)− T̃nU2

j
ψ2(x)

∣∣∣ ≤ 2C5dWs(W 1,W 2)αψ−j (x).

Next, for x, y ∈ U1
j , let x̄ = GU2

j
◦G−1

U1
j
(x), ȳ = GU2

j
◦G−1

U1
j
(y), and note these are well-defined due

to the vertical matching between U1
j and U2

j . Let r = G−1
U1
j
(x) and s = G−1

U1
j
(y). Recalling (4.4), we

have
‖G′

U1
j
(r)‖

‖G′
U1
j
(s)‖

≤ e
‖G′

U1
j

(r)−G′
U1
j

(s)‖
≤ eB∗|r−s| ≤ eB∗d(x,y) ,

and similarly for ‖G′
U2
j
‖. Using this estimate together with the proof of Lemma 5.2-(a),

T̃n
U2
j
ψ2(x)

T̃n
U2
j
ψ2(y)

=
T̂n
U2
j
ψ2(x̄)

T̂n
U2
j
ψ2(ȳ)

‖G′
U2
j
(r)‖

‖G′
U1
j
(r)‖

‖G′
U1
j
(s)‖

‖G′
U2
j
(s)‖

≤ e(aC−1
1 Λ−αn+Cd(2δ)1/3−α)d(x̄,ȳ)α+2B∗d(x,y) ≤ ead(x,y)α ,

(5.29)
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since d(x̄, ȳ) ≤M0d(x, y) and provided

(aC−1
1 Λ−αn0 + Cd(2δ)

1/3−α)Mα
0 +B∗(2δ)

1−α < a. (5.30)

To abbreviate what follows, let us denote g1 = T̂n
U1
j
ψ1 and g2 = T̃n

U2
j
ψ2. Then, given x, y ∈ U1

j ,

we have ψ−j (x) = gk(x), ψ
−
j (y) = gk(y). If k(x) = k(y), then, by Lemma 5.2(a) and (5.29),

ψ−j (x)

ψ−j (y)
=
gk(y)(x)

gk(y)(y)
≤ ead(x,y)α .

If k(x) 6= k(y), then without loss of generality, we can take k(x) = 1 and k(y) = 2. By definition,
g1(x) ≤ g2(x) and g2(y) ≤ g1(y). Hence,

e−ad(x,y)α ≤ g1(x)

g1(y)
≤
ψ−j (x)

ψ−j (y)
=
g1(x)

g2(y)
≤ g2(x)

g2(y)
≤ ead(x,y)α .

It follows that ψ−j ∈ Da,α(U1
j ), and by (5.29), T̃n

U2
j
ψ2 ∈ Da,α(U1

j ).

Then, for each 1 > B ≥ 2C5dWs(W 1,W 2)α and x, y ∈ U1
j ,

ψ∆
i,j(x) +Bψ−j (x)

ψ∆
i,j(y) +Bψ−j (y)

≤
(B + 2C5dWs(W 1,W 2)α)ψ−j (x)

(B − 2C5dWs(W 1,W 2)α)ψ−j (y)
≤ ead(x,y)α+4B−1C5dWs (W 1,W 2)α ≤ ead(x,y)β

provided 8B−1C5dWs(W 1,W 2)α ≤ ad(x, y)β and

(2δ)α−β ≤ 1

2
. (5.31)

It remains to consider the case 8B−1C5dWs(W 1,W 2)α ≥ ad(x, y)β. Again we must split into
two cases. If k(x) = k(y) = k, then, setting {`} = {1, 2} \ {k},

ψ∆
`,j(x) +Bψ−j (x)

ψ∆
`,j(y) +Bψ−j (y)

≤ g`(x) + (B − 1)gk(x)

g`(y) + (B − 1)gk(y)
≤ ead(x,y)αg`(y) + e−ad(x,y)α(B − 1)gk(y)

g`(y) + (B − 1)gk(y)

≤ ead(x,y)α
[
1 +

2ad(x, y)α

B

]
≤ ea[d(x,y)α−β(1+2B−1)]d(x,y)β ≤ e

a
2
d(x,y)β

(5.32)

provided that

d(x, y)α−β(1 + 2B−1) ≤ 4B
−α
β
[
8C5dWs(W 1,W 2)αa−1

]α−β
β ≤ 1

2
.

That is,

B ≥ 8
[
C5a

−1
]α−β

α dWs(W 1,W 2)α−β.

The second case is k = k(x) 6= k(y) = `. In this case, there must exist x̄ ∈ [x, y] such that
ψ−j (x̄) = g1(x̄) = g2(x̄). Then,

ψ∆
`,j(x) +Bψ−j (x)

ψ∆
`,j(y) +Bψ−j (y)

=
g`(x) + (B − 1)gk(x)

Bg`(x̄)

g`(x̄) + (B − 1)gk(x̄)

g`(x̄) + (B − 1)gk(x̄)
≤ ead(x,y)β

by the estimate (5.32). A similar estimate holds for ψ∆
k,j . It follows that we can choose

B = 8
[
C5a

−1
]α−β

α dWs(W 1,W 2)α−β (5.33)

and have ψ∆
i,j +Bψ−j ∈ Da,β(U1

j ).
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5.3 Conditions on parameters

In this section, we collect the conditions imposed on the cone parameters during the proof of
Proposition 5.1. Recall the conditions on the exponents stated before the definition of Cc,A,L(δ):
α ∈ (0, 1/3], q ∈ (0, 1/2), β < α and γ ≤ min{α− β, q}.

From (4.9) and Lemma 5.4 we require,

ea(2δ)β < e2aδβ0 ≤ 2 and 4AC̄0δδ
−1
0 ≤ 1/4 .

From the proof of Lemma 5.4 and Lemma 5.2, we require the following conditions on n0,

AC0θ
n0
1 ≤ 1/16 and C−1

1 Λ−βn0 < 1 .

From Lemma 5.2, Corollary 5.3 and the proof of Lemma 5.5, we require

a > aC−1
1 Λ−βn0 + Cdδ

1/3−β
0 and a > (aC−1

1 Λ−αn0 + Cd(2δ)
1/3−α)Mα

0 +B∗(2δ)
1−α

(recall that we have chosen n0 ≥ n1 after Corollary 5.3).
From the bound on (4.7), we require in (5.5),

A > 4L .

For the contraction of c, we require (see (5.7), the proof of Lemma 5.5 and (5.25))

c > max {8Cqs , 4(1 +M0)q} ; C5n0Λ−n0δ1−α ≤ 1 ; (2δ)α−β ≤ 1
2 ;

23−1/q3Cqs + C4L+ 48C̄0

(
2q40C5δ

q−γ + cC5n
γ
0Λ−n0γ + 2qC5n0Λ−n0δ

)
< c.

Finally, in anticipation of (6.19), we require,

cA > 2Cs . (5.34)

These are all the conditions we shall place on the parameters for the cone, except for δ, which we
will take as small as required for the mixing arguments of Section 6.

6 Contraction of L and Finite Diameter

In this section, we use the mixing property of T to prove that the parameter L also contracts.
This is done in two steps. In Section 6.1, we use a length scale δ0 ≥

√
δ and compare averages

on the two length scales, δ and δ0, culminating in Proposition 6.3. In Section 6.2, we obtain a
bound on averages in the length scale δ0. This leads to the strict contraction of L established in
Theorem 6.10, which proves the first statement of Theorem 2.1. We prove the second statement
of Theorem 2.1 in Section 6.3, showing that the cone Cχc,χA,χL(δ) has finite diameter in the cone
Cc,A,L(δ) (Proposition 6.11).

6.1 Comparing averages on different length scales

Recall the length scale δ0 from (3.6) and that δ < δ0/2. We choose δ so that δ ≤ δ2
0 . Define

|||f |||0+ = sup
W∈Ws(δ0/2)
ψ∈Da,β(W )

´
W f ψ dmW´
W ψ dmW

, |||f |||0− = inf
W∈Ws(δ0/2)
ψ∈Da,β(W )

´
W f ψ dmW´
W ψ dmW

.
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Recall thatWs(δ0/2) denotes those curves inWs with length between δ0/2 and δ0. By subdividing
curves of with length in [δ0/2, δ0] into curves with length in [δ, 2δ], we immediately deduce the
relations,

|||f |||− ≤ |||f |||
0
− ≤ |||f |||

0
+ ≤ |||f |||+ . (6.1)

Lemma 6.1. Recall eaδ
β
0 ≤ 2 from (4.9) and Aδ ≤ δ0/4 from Lemma 5.4. For all n ∈ N,4

|||Lnf |||0+ ≤ |||f |||0+ + 3C0

n∑
i=1

θi1|||f |||+ ≤ |||f |||
0
+ +

1

4
|||f |||+ , (6.2)

|||Lnf |||0− ≥ 3

4
|||f |||0− . (6.3)

Proof. We prove (6.2) by induction on n. It holds trivially for n = 0. We assume the inequality
holds for 0 ≤ k ≤ n− 1 and prove the statement for n.

Let W ∈ Ws(δ0/2). Define L̂1(W ) to be those elements of G1(W ) having length at least δ0/2.
For k > 1, let L̂k(W ) denote those curves of length at least δ0/2 in Gk(W ) that are not already
contained in an element of L̂i(W ) for any i = 1, . . . , k − 1. For Vj ∈ L̂k(W ), let Pk(j) be the
collection of indices i such that Wi ∈ Gn(W ) satisfies Tn−kWi ⊂ Vj . Denote by I0

n(W ) those
indices i for which Tn−kWi is never contained in an element of Gk(W ) of length at least δ0/2,
1 ≤ k ≤ n, and δ ≤ |Wi| < δ0/2. Let In(W ) denote the remainder of the indices i for curves in
Gn(W ), i.e. those curves Wi of length shorter than δ and for which Tn−kWi is not contained in an
element of Gk(W ) of length at least δ0/2. By construction, each Wi ∈ Gn(W ) belongs to precisely
one Pk(j) or I0

n(W ) or In(W ).
Now, for ψ ∈ Da,β(W ), note that∑

i∈Pk(j)

ˆ
Wi

f ψ ◦ Tn JWiT
n =

ˆ
Vj

Ln−kf ψ ◦ T k JVjT k.

Using this equality, we estimate,ˆ
W
Lnf ψ =

n∑
k=1

∑
Vj∈L̂k(W )

ˆ
Vj

Ln−kf ψ ◦ T k JVjT k +
∑

i∈I0
n(W )

ˆ
Wi

f ψ ◦ Tn JWiT
n

+
∑

i∈In(W )

ˆ
Wi

f ψ ◦ Tn JWiT
n

≤
n∑
k=1

∑
Vj∈L̂k(W )

|||Ln−kf |||0+
ˆ
Vj

ψ ◦ T k JVjT k +
∑

i∈I0
n(W )

|||f |||+
ˆ
Wi

ψ ◦ Tn JWiT
n

+
∑

i∈In(W )

Aδ1−q|Wi|q|||f |||−|ψ|C0(W )|JWiT
n|C0(Wi)

≤
n∑
k=1

∑
Vj∈L̂k(W )

(
|||f |||0+ + 3

n−k∑
i=1

C0θ
i
1|||f |||+

)ˆ
TkVj

ψ

+
∑

i∈I0
n(W )

|||f |||+
δ0

2
|ψ|C0(W )|JWiT

n|C0(Wi) +A
δ

δ0
δ0|ψ|C0(W )|||f |||+C0θ

n
1

≤
ˆ
W
ψ
(
|||f |||0+ + 3

n−1∑
i=1

C0θ
i
1|||f |||+

)
+
(

1 + 2A
δ

δ0

)
eaδ

β
0

ˆ
W
ψ |||f |||+C0θ

n
1 ,

4The second inequality in (6.2) follows from equation (3.6).
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where for the second inequality we have used the inductive hypothesis, and for the second and third
we have used Lemmas 3.1-(a) and 4.2. This proves the required inequality if δ0 is small enough

that eaδ
β
0 ≤ 2 and δ is small enough that Aδ ≤ δ0/4, both of which we have assumed.

We prove (6.3) similarly, although now the inductive hypothesis is |||Lkf |||0− ≥ (1−3
∑k

i=1C0θ
i
1)

for each k = 0, . . . , n − 1. We begin with the same decompostion of Gn(W ), although we simply
drop the terms in I0

n(W ) since they are all positive.

ˆ
W
Lnf ψ =

n∑
k=1

∑
Vj∈L̂k(W )

ˆ
V j
Ln−kf ψ ◦ T k JVjT k +

∑
i∈I0

n(W )

ˆ
Wi

f ψ ◦ Tn JWiT
n

+
∑

i∈In(W )

ˆ
Wi

f ψ ◦ Tn JWiT
n

≥
n∑
k=1

∑
Vj∈L̂k(W )

|||Ln−kf |||0−
ˆ
V j
ψ ◦ T k JVjT k −

∑
i∈In(W )

Aδ1−q|Wi|q|||f |||−|ψ|C0(W )|JWiT
n|C0(Wi)

≥
n∑
k=1

∑
Vj∈L̂k(W )

ˆ
TkVj

ψ |||f |||0−
(

1− 3

n−k∑
i=1

C0θ
i
0

)
−A δ

δ0
δ0|ψ|C0(W )|||f |||−C0θ

n
1

≥
ˆ
W
ψ |||f |||0−

(
1− 3

n−1∑
i=1

C0θ
i
1

)
− 2A

δ

δ0
eaδ

β
0

ˆ
W
ψ |||f |||0−C0θ

n
1

− |||f |||0−
(

1− 3

n−1∑
i=1

C0θ
i
1

) ∑
i∈In(W )∪I0

n(W )

|Wi||ψ|C0(W )|JWiT
n|C0(Wi)

≥
ˆ
W
ψ |||f |||0−

(
1− 3

n−1∑
i=1

C0θ
i
1 − 2A

δ

δ0
eaδ

β
0C0θ

n
1 − eaδ

β
0C0θ

n
1

)
,

where again we have used Lemmas 3.1(a) and 4.2 as well as the bound |||f |||− ≤ |||f |||
0
−. This proves

the inductive claim, and from this, (6.3) follows from (3.6).

Next, we have a partial converse of Lemma 6.1.

Lemma 6.2. For all n ≥ log(8C0(Lδ0δ−1+2A))
| log θ1| , we have

|||Lnf |||+ ≤ max
k=0,...n−1

|||Lkf |||0+ +
1

8
|||f |||−

|||Lnf |||− ≥
3

4
min

k=0,...n−1
|||Lkf |||0− −

1

8
|||f |||−

Proof. The proof follows along the lines of the proof of Lemma 6.1, using the same decomposition
into L̂k(W ), I0

n(W ) and In(W ), except that now we begin with W ∈ Ws(δ) and ψ ∈ Da,β(W ). We
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have,

ˆ
W
Lnf ψ ≤

n∑
k=1

∑
Vj∈L̂k(W )

|||Ln−kf |||0+
ˆ
V j
ψ ◦ T k JVjT k +

∑
i∈I0

n(W )

|||f |||+
ˆ
Wi

ψ ◦ Tn JWiT
n

+
∑

i∈In(W )

Aδ1−q|Wi|q|||f |||−|ψ|C0(W )|JWiT
n|C0(Wi)

≤
ˆ
W
ψ max
k=0,...n−1

|||Lkf |||0+ + |||f |||+C0θ
n
1

δ0

δ

ˆ
W
ψ + 2A|||f |||−C0θ

n
1

ˆ
W
ψ

≤
ˆ
W
ψ
(

max
k=0,...n−1

|||Lkf |||0+ + |||f |||−C0θ
n
1 (Lδ0δ

−1 + 2A)
)
,

which proves the first inequality, given our assumed bound on n.
The second inequality follows similarly, again along the lines of Lemma 6.1.

ˆ
W
Lnf ψ ≥

n∑
k=1

∑
Vj∈L̂k(W )

|||Ln−kf |||0−
ˆ
V j
ψ ◦ T k JVjT k −

∑
i∈In(W )

Aδ1−q|Wi|q|||f |||−|ψ|C0(W )|JWiT
n|C0(Wi)

≥ min
k=0,...n−1

|||Lkf |||0−

ˆ
W
ψ −

∑
i∈In(W )∪I0

n(W )

|Wi||ψ|C0(W )|JWiT
n|C0(Wi)

− 2A

ˆ
W
ψ |||f |||−C0θ

n
1

≥
ˆ
W
ψ

(
min

k=0,...n−1
|||Lkf |||0−(1− δ0δ

−1C0θ
n
1 )− 2AC0θ

n
1 |||f |||−

)
,

and our bound on n suffices to complete the proof of the lemma.

Finally, we collect these estimates in the following proposition. Set

N(δ)− =
log(8C0(Lδ0δ

−1 + 2A))

| log θ1|
, (6.4)

from Lemma 6.2.

Proposition 6.3. For all n ≥ N(δ)−, either,

|||Lnf |||+
|||Lnf |||−

≤ 8

9

|||f |||+
|||f |||−

,

or

|||Lnf |||+ ≤ 8|||f |||0+ and |||Lnf |||− ≥
9

20
|||f |||0− .

Proof. Since n ≥ N(δ)− ≥ n0, we may apply both Lemmas 5.4 and 6.2. Now, by Lemma 6.2,

|||Lnf |||− ≥
3

4
max

k=0,...n−1
|||Lkf |||0− −

1

8
|||f |||− ≥

9

16
|||f |||0− −

1

4
|||Lnf |||− ,

applying Lemma 6.1 to the first term and Lemma 5.4 to the second. This yields immediately,
|||Lnf |||− ≥

9
20 |||f |||

0
−, which is the final inequality in the statement of the lemma.

Now consider the following alternatives. If |||Lnf |||+ ≤
2
5 |||f |||+, then

|||Lnf |||+
|||Lnf |||−

≤
2
5 |||f |||+
9
20 |||f |||

0
−
≤ 8

9

|||f |||+
|||f |||−
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proving the first alternative. On the other hand, if |||Lnf |||+ ≥
2
5 |||f |||+, then using Lemmas 6.2, 6.1

and 5.4,

|||Lnf |||+ ≤ max
k=0,...n−1

|||Lkf |||0+ +
1

8
|||f |||− ≤ |||f |||

0
+ +

1

4
|||f |||+ +

1

4
|||Lnf |||−

≤ |||f |||0+ +
7

8
|||Lnf |||+ ,

which yields the second alternative.

6.2 Mixing implies contraction of L

The importance of Proposition 6.3 is that either L contracts within N(δ)− iterates or we can
compare ratios of integrals on the length scale δ0 (which is fixed independently of δ). In the latter
case we will use the mixing property of T in order to compare the value of

´
W L

nfψ for different
W of length approximately δ0. To this end, we will define a Cantor set R∗ comprised of local stable
and unstable manifolds of a certain length in order to make our comparison when curves cross this
set.

We construct an approximate rectangle D in M , contained in a single homogeneity strip, whose
boundaries are comprised of two local stable and two local unstable manifolds as follows. Choose
δ̄0 > 0 and x ∈ M such that dist(T−nx,SH1 ) ≥ δ̄0Λ−|n| for all n ∈ Z. This implies that the
homogenous local stable and unstable manifolds of x, W s

H(x) and W u
H(x), have length at least δ̄0

on either side of x. By the Sinai Theorem applied to homogeneous unstable manifolds (see, for
example, [CM, Theorem 5.70]), we may choose δ0 < δ̄0 such that more than 9/10 of the measure of
points in W u

H(x)∩Bδ0(x) have homogeneous local stable manifolds longer than 2δ0 on both sides of
W u

H(x), and analogously for the points in W s
H(x)∩Bδ(x). Let D′δ0 denote the minimal solid rectangle

containing this set of stable and unstable manifolds. There must exist a rectangle D fully crossing
D′ in the stable direction and with boundary comprising two stable and two unstable manifolds,
such that the unstable diameter of D is between δ4

0 and 2δ4
0 and the set of local homogeneous stable

and unstable manifolds fully crossing D comprise at least 3/4 of the measure of D with respect to
µSRB; otherwise, at most 3/4 of the measure of W u

H(x) ∩ Bδ0(x) would have long stable manifolds
on either side of W u

H(x), contradicting our choice of δ0.
Let R∗ denote the maximal set of homogeneous stable and unstable manifolds in D that fully

cross D. By construction, µSRB(R∗) > (3/4)µSRB(D) ≈ δ5
0 . Below, we denote D by D(R∗) since it

is the minimal solid rectangle that defines R∗.
We say that a stable curve W properly crosses a Cantor rectangle R (in the stable direction)

if W intersects the interior of the solid rectangle D(R), but does not terminate in D(R), and does
not intersect the two stable manifolds contained in ∂D(R).

Lemma 6.4. There exists n∗ ∈ N, depending only on δ0, such that for all W ∈ Ws with5 |W | ≥
δ0/(6C̄0), and all n ≥ n∗, T

−nW contains a connected, homogeneous component that properly
crosses R∗.

Proof. By [CM, Lemma 7.87], there exist finitely many Cantor rectangles R(δ0) = {R1, . . . , Rk},
with µSRB(Ri) > 0 for each i, such that any stable curve W ∈ Ws with |W | ≥ δ0/(6C̄0) properly
crosses at least one of them. Let εR to be the minimum length of an unstable manifold in Ri, for
any Ri ∈ R(δ0).

Consider the solid rectangle D′(R∗) ⊂ D(R∗) which crosses D(R∗) fully in the stable direction,
but comprises the approximate middle 1/2 of D(R∗) in the unstable direction, with approximately

5Recall that C̄0 is from Lemma 3.1.
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1/4 of the unstable diameter of D(R∗) on each side of D′(R∗). Let R′∗ := R∗ ∩ D′(R∗) and note
that µSRB(R′∗) > 0 since µSRB(R∗) > (3/4)µSRB(D) by construction.

Now given W ∈ Ws with |W | ≥ δ0/(6C̄0), let Ri ∈ R(δ0) denote the Cantor rectangle which
W crosses properly. By the mixing property of T , there exists n∗i > 0 such that for all n ≥ n∗i ,
Tn(R′∗) ∩ Ri 6= ∅. We may increase n∗i if necessary so that Λn

∗
i δ4

0/8 ≥ εR. We claim that Tn(R∗)
properly crosses Ri in the unstable direction for all n ≥ n∗i . If not, then the unstable manifolds
comprising R∗ must be cut by a singularity curve in SH1 before time n∗i (since otherwise they would
be longer than 2εR by choice of n∗i ), and the images of those unstable manifolds must terminate
on the unstable manifolds in Ri. But this implies that some unstable manifolds in Ri will be cut
under T−n, a contradiction.

Since Tn(R∗) properly crosses Ri in the unstable direction, it follows that Tn(D(R∗)) contains
a subinterval of W (here we use the fact that the stable manifolds of R∗ cannot be cut under
Tn, as well as that the singularity curves of Tn can only terminate on other elements of SHn [CM,
Proposition 4.47]), call it V . Thus T−nV properly crosses R∗, as required.

Since R(δ0) is finite, setting n∗ = max1≤i≤k{n∗i } <∞ completes the proof of the lemma.

Lemma 6.5. Let W 1,W 2 ∈ Ws and n ≥ 0. Suppose U1 ∈ Gn(W 1) and U2 ∈ Gn(W 2) properly
cross R∗ and define Ūi = Ui ∩ D(R∗), i = 1, 2. Then there exists C7 > 0, depending only on the
maximum slope and maximum curvature B̄ of curves in Ws, such that dWs(Ū1, Ū2) ≤ C7δ

2
0.

Proof. Define a foliation of vertical line segments covering D(R∗). Due to the uniform transversality
of the stable cone with the vertical direction, it is clear that the length of the segments connecting
Ū1 and Ū2 have length at most C3δ

4
0 , where C3 > 0 depends only on the maximum slope in Cs(x).

Moreover, the unmatched parts of Ū1 and Ū2 near the boundary of D(R∗) also have length at most
C3δ

4
0 .
Recalling the definition of dWs(·, ·), it remains to estimate the C1 distance between the graphs

of Ū1 and Ū2. Denote by ϕ1(r) and ϕ2(r) the functions defining Ū1 and Ū2 on a common interval
I = IŪ1

∩ IŪ2
. Let ϕ′i = ϕi

dr . For x ∈ Ū1 over I, let x̄ ∈ Ū2 denote the point on the same vertical
line segment as x.

Suppose there exists x ∈ Ū1 over I such that |ϕ′1(r(x)) − ϕ′2(r(x̄))| > Cδ2
0 for some C > 0,

where r(x) denotes the r-coordinate of x = (r, ϕ). Since the curvature of each Ui is bounded by B̄
by definition, we have |ϕ′′i | ≤ B̄(1 + (Kmax + τ−1

min)2)3/2 =: C̄7.
Now consider an interval J ⊂ I of radius δ2

0 centered at r(x). Then |ϕ′1(r) − ϕ′1(r(x))| ≤
C̄7|r − r(x)| for all r ∈ J , and similarly for ϕ′2. Thus,

|ϕ′1(r)− ϕ′2(r)| ≥ Cδ2
0 − 2C̄7δ

2
0 = (C − 2C̄7)δ2

0 for all r ∈ J.

This in turn implies that there exists r ∈ J such that |ϕ1(r) − ϕ2(r)| ≥ (C − 2C̄7)δ4
0 , which is a

contradiction if C − 2C̄7 > C3. This proves the lemma with C7 = 2C̄7 + C3.

Recall that by Lemma 4.1, for W ∈ Ws the cone Da,α(W ) has finite diameter in Da,β(W ) for
α > β, so that

ρW,a,β(g1, g2) ≤ D0 for all g1, g2 ∈ Da,α(W ) (6.5)

for some constant D0 > 0 depending only on a, α and β. Without loss of generality, we take D0 ≥ 1.

Lemma 6.6. Suppose W 1,W 2 ∈ Ws with |W 1|, |W 2| ∈ [δ0/3, δ0] and dWs(W 1,W 2) ≤ C7δ
2
0.

Assume ψ` ∈ Da,α(W `) with
´
W 1 ψ1 =

´
W 2 ψ2 = 1.
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Recall that δ ≤ δ2
0. Let C > 0 be such that if n ≥ C log(δ0/δ) then C5nΛ−n ≤ δ/δ2

0, where C5 is
from Lemma 5.5. For all n such that n ≥ C log(δ0/δ) ≥ 2n0, we have

´
W 1 Lnf ψ1´
W 2 Lnf ψ2

≤ 2

provided[
2C̄0C3C7(3LAδ1−qδ2q

0 + 3Lδ2
0)

1− Λ−q
+ 2C̄0Aδ

1−q(2δq + cδγ+q +D0δ
q + 3δq0)

]
6e2aδα0 ≤ δ0.

Remark 6.7. Since δ ≤ δ2
0, the condition of Lemma 6.6 will be satisfied if[

2C̄0C3C73LAδ0 + 3Lδ0)

1− Λ−q
+ 2C̄0Aδ

1−q
0 (2δq0 + cδ2γ+q

0 +D0δ
q
0 + 3)

]
6e2aδα0 ≤ 1. (6.6)

This will determine our choice of δ0.

Proof. We will change variables to integrate on T−nW `, ` = 1, 2. As in Section 5.2.3, we split
Gn(W `) into matched pieces {U `j }j and unmatched pieces {V `

j }j . Corresponding matched pieces

U1
j and U2

j are defined as graphs GU`j
over the same r-interval Ij and are connected by a foliation

of vertical line segments. Following (5.12), we write,

ˆ
W `

Lnf ψ` =
∑
j

ˆ
U`j

f T̂n
U`j
ψ` +

∑
j

ˆ
V `j

f T̂n
V `j
ψ`,

where T̂n
U`j
ψ` := ψ` ◦ Tn JU`jT

n, and similarly for T̂n
V `j
ψ`, ` = 1, 2.

We perform the estimate over unmatched pieces first, following the same argument as in Sec-
tion 5.2.3 to conclude that |Tn−i−1V 1

j | ≤ C3Λ−idWs(W 1,W 2) ≤ C3C7Λ−iδ2
0 , for any curve V 1

j

created at time i, 0 ≤ i ≤ n− 1.
Recalling the sets P (i) from Section 5.2.3 of unmatched pieces created at time i, we split the

estimate into curves P (i;S) if |Tn−i−1V 1
j | < δ and curves P (i;L) if |Tn−i−1V 1

j | ≥ δ.
The estimate over short unmatched pieces is given by,

n−1∑
i=0

∑
j∈P (i;S)

∣∣∣∣∣
ˆ
V 1
j

f T̂nV 1
j
ψ1

∣∣∣∣∣ =
n−1∑
i=0

∑
j∈P (i;S)

∣∣∣∣∣
ˆ
Tn−i−1V 1

j

Ln−i−1f · ψ1 ◦ T i+1 JTn−i−1V 1
j
T i+1

∣∣∣∣∣
≤

n−1∑
i=0

∑
j∈P (i;S)

Aδ1−qCq3Λ−iqdWs(W 1,W 2)q|||Ln−i−1f |||−|ψ1|C0 |JTn−i−1V 1
j
T i+1|C0

≤ C̄0A

1− Λ−q
Cq3C

q
7δ

2q
0 3L|||Lnf |||−δ

1−q|ψ1|C0 ,

(6.7)

where we have used Lemma 3.1-(b), |W | ∈ [δ0/3, δ0], and Remark 3.2 to estimate the sum over the
Jacobians, as well as (5.13) to estimate |||Ln−i−1f |||− ≤ 3L|||Lnf |||−.

For the estimate over long pieces, we subdivide them into curves of length between δ and 2δ
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and estimate them by |||Ln−i−1f |||+, then we recombine them to obtain,

n−1∑
i=0

∑
j∈P (i;L)

∣∣∣∣∣
ˆ
V 1
j

f T̂nV 1
j
ψ1

∣∣∣∣∣ =
n−1∑
i=0

∑
j∈P (i;L)

∣∣∣∣∣
ˆ
Tn−i−1V 1

j

Ln−i−1f · ψ1 ◦ T i+1 JTn−i−1V 1
j
T i+1

∣∣∣∣∣
≤

n−1∑
i=0

∑
j∈P (i;L)

|||Ln−i−1f |||+
ˆ
Tn−i−1V 1

j

ψ1 ◦ T i+1 JTn−i−1V 1
j
T i+1

≤ 3L|||Lnf |||−
n−1∑
i=0

∑
j∈P (i;L)

|Tn−i−1V 1
j ||ψ1|C0 |JTn−i−1V 1

j
T i+1|C0

≤ C3C7C̄0

1− Λ−1
δ2

03L|||Lnf |||−|ψ1|C0 ,

(6.8)

where, in third line we used (5.13), and in the fourth line, since |W 1| ≥ δ0/3, we used Remark 3.2
to drop the second term in Lemma 3.1(b).

Next, we estimate the integrals over the matched pieces U1
j . We argue as in Section 5.2.3, but

our estimates here are somewhat simpler since we do not need to show that parameters contract.
We first treat the matched short pieces with |U1

j | < δ much as we did the unmatched ones.

By Lemma 5.5, dWs(U1
j , U

2
j ) ≤ C5nΛ−ndWs(W 1,W 2) ≤ δ, since we have chosen n ≥ C log(δ0/δ).

Thus if |U1
j | < δ then |U2

j | < 2δ, and the analogous fact holds for short curves |U2
j | < δ. With this

perspective, we call U `j short if either |U1
j | < δ or |U2

j | < δ. On short pieces, we apply (4.7)

∑
j short

∣∣∣∣∣
ˆ
U1
j

f T̂nU1
j
ψ1

∣∣∣∣∣ ≤ ∑
j short

2Aδ|||f |||−|ψ1|C0 |JU1
j
Tn|C0 ≤ 4Aδ|||Lnf |||−C̄0|ψ1|C0 , (6.9)

where we have again used Lemmas 3.1(b) and 5.4 for the second inequality. Remark that the same
argument holds for W 2 with test function ψ2.

Finally, to estimate the integrals over matched curves with |U1
j |, |U2

j | ≥ δ we follow equation
(5.18), recalling (5.15), although we no longer have Lemma 5.5(c) at our disposal,∣∣∣∣∣

ˆ
U1
j

f T̂nU1
j
ψ1 −

ˆ
U2
j

f T̂nU2
j
ψ2

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
U1
j

f T̂nU1
j
ψ1 −

ˆ
U1
j

f T̃nU2
j
ψ2

∣∣∣∣∣
+

∣∣∣∣∣∣
´
U1
j
f T̃n

U2
j
ψ2ffl

U1
j
T̃n
U2
j
ψ2

−

´
U2
j
f T̂n

U2
j
ψ2ffl

U2
j
T̂n
U2
j
ψ2

∣∣∣∣∣∣
 
U2
j

T̂nU2
j
ψ2 +

∣∣∣∣∣∣
´
U1
j
f T̃n

U2
j
ψ2ffl

U1
j
T̃n
U2
j
ψ2

∣∣∣∣∣∣
∣∣∣∣∣ |U2

j | − |U1
j |

|U1
j |

∣∣∣∣∣
 
U2
j

T̂nU2
j
ψ2

≤

∣∣∣∣∣
ˆ
U1
j

f T̂nU1
j
ψ1 −

ˆ
U1
j

f T̃nU2
j
ψ2

∣∣∣∣∣+ dWs(U1
j , U

2
j )γδ1−γcA|||f |||−|JU2

j
Tn|C0 |ψ2|C0

+AδdWs(U1
j , U

2
j )|||f |||−|JU2

j
Tn|C0 |ψ2|C0 ,

(6.10)

where we have used (5.22) to estimate

∣∣∣∣ |U2
j |−|U1

j |
|U1
j |

∣∣∣∣.
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To estimate the first term on the right side above, we use (4.7) and Lemma 4.7,∣∣∣∣∣
ˆ
U1
j

f T̂nU1
j
ψ1 −

ˆ
U1
j

f T̃nU2
j
ψ2

∣∣∣∣∣ ≤
∣∣∣∣∣∣
´
U1
j
f T̂n

U1
j
ψ1ffl

U1
j
T̂n
U1
j
ψ1

−

´
U1
j
f T̃n

U2
j
ψ2ffl

U1
j
T̃n
U2
j
ψ2

∣∣∣∣∣∣
 
U1
j

T̂nU1
j
ψ1

+

´
U1
j
f T̃n

U2
j
ψ2ffl

U1
j
T̃n
U2
j
ψ2

∣∣∣∣∣
 
U1
j

T̂nU1
j
ψ1 −

 
U1
j

T̃nU2
j
ψ2

∣∣∣∣∣
≤ 2δLρ(T̂nU1

j
ψ1, T̃

n
U2
j
ψ2)|||f |||−|JU1

j
Tn|C0 |ψ1|C0

+Aδ1−qδq0|||f |||−
(
|JU1

j
Tn|C0 |ψ1|C0 + 2|JU2

j
Tn|C0 |ψ2|C0

)
,

where we have used |U1
j | ≤ δ0 in the last line. We may apply (6.5) since T̂n

U1
j
ψ1, T̃

n
U2
j
ψ2 ∈ Da,α(U1

j )

by Lemma 5.5. Now putting the above estimate together with (6.10), recalling dWs(U1
j , U

2
j ) ≤ δ,

and using Lemma 3.1-(b) and Remark 3.2 as well as Lemma 5.4, we sum over j to obtain,

∑
j long

∣∣∣∣∣
ˆ
U1
j

f T̂nU1
j
ψ1 −

ˆ
U2
j

f T̂nU2
j
ψ2

∣∣∣∣∣
≤ 2Aδ1−q|||Lnf |||−C̄0

(
cδγ+q + δ1+q +

2LD0δ
q

A
+ 3δq0

)
(|ψ1|C0 + |ψ2|C0).

(6.11)

Collecting (6.7), (6.8), (6.9) and (6.11), and recalling D0 ≥ 1 and A > 4L, yields

ˆ
W 1

Lnf ψ1 ≤
C̄0C3C7(3LAδ1−qδ2q

0 + 3Lδ2
0)

1− Λ−q
|||Lnf |||−|ψ1|C0 + 4C̄0Aδ|||Lnf |||−|ψ1|C0

+
∑
j

ˆ
U2
j

f T̂U2
j
ψ2 + 2Aδ1−q|||Lnf |||−C̄0(cδγ+q +D0δ

q + 3δq0)(|ψ1|C0 + |ψ2|C0)

≤

{
1 +

[2C̄0C3C7(3LAδ1−qδ2q
0 + 3Lδ2

0)

1− Λ−q

+2C̄0Aδ
1−q(2δq + cδγ+q +D0δ

q + 3δq0)
] |ψ1|C0 + |ψ2|C0´

W 2 ψ2

}ˆ
W 2

Lnf ψ2 .

Now since
´
W i ψi = 1, we have e−aδ

α
0 ≤ |W i|ψi ≤ eaδ

α
0 . Thus since |W i| ≥ δ0/3,

|ψ1|C0 + |ψ2|C0´
W 2 ψ2

≤ 6

δ0
e2aδα0 ,

which proves the Lemma.

Our strategy will be the following. For W 1, W 2 ∈ Ws(δ0/2) and n sufficiently large, we wish to
compare

´
W 1 Lnf ψ1 with

´
W 2 Lnf ψ2, where we normalize

´
W 1 ψ1 =

´
W 2 ψ2 = 1. By Lemmas 6.4

and 6.5, we find U `i ∈ Gn∗(W `), ` = 1, 2, such that U `i properly crosses R∗, and dWs(Ū1
i , Ū

2
i ) ≤ C7δ

2
0 ,

where Ū `i = U `i ∩D(R∗).

Next, for each i, we wish to compare
´
Ū1
i
Ln−n∗f T̂n∗

U1
i
ψ1 with

´
Ū2
i
Ln−n∗f T̂n∗

U2
i
ψ2, where, as usual,

T̂n∗
U`i
ψ` = ψ` ◦ Tn∗JU`i T

n∗ . However, the weights
´
Ū`i
T̂n∗
U`i
ψ` may be very different for ` = 1, 2 since

the stable Jacobians along the respective orbits before time n∗ may not be comparable. To remedy
this, we adopt the following strategy for matching integrals on curves.
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For each curve U `i ∈ Gn∗(W ) which properly crosses R∗, we redefine Ū `i to denote the middle
third of U `i ∩D(R∗). Let M ` denote the index set of such i.

Let p`i =
´
Ū`i
T̂n∗
U`i
ψ`, and let m` =

∑
i∈M` p`i . Without loss of generality, assume m2 ≥ m1.

We will match the integrals
∑

i∈M1

´
Ū1
i
Ln−n∗f T̂n∗

U1
i
ψ1 with

∑
j∈M2

m1
m2

´
Ū2
j
Ln−n∗f T̂n∗

U2
j
ψ2. The

remainder of the integrals
∑

j∈M2
m2−m1
m2

´
Ū2
j
Ln−n∗f T̂n∗

U2
j
ψ2 as well as any unmatched pieces (in-

cluding the outer two-thirds of each U `i ) we continue to iterate until such time as they can be
matched as the middle third of a curve that properly crosses R∗.

Set T̂n∗
U2
j
ψ̃2 = m1

m2
T̂n∗
U2
j
ψ2, and consider the following decomposition of the integrals we want to

match, ∑
i∈M1

j∈M2

ˆ
Ū1
i

Ln−n∗f T̂n∗
U1
i
ψ1

p2
j

m2
and

∑
i∈M1

j∈M2

ˆ
Ū2
j

Ln−n∗f T̂n∗
U2
j
ψ̃2

p1
i

m1

For each pair i, j in the first sum, the test function has integral weight
p1
i p

2
j

m2
, and the same is true

for the corresponding pair in the second sum. Thus these integrals are paired precisely according
to the assumptions of Lemma 6.6. It follows that if n− n∗ ≥ C log(δ0/δ), then

∑
i∈M1

ˆ
Ū1
i

Ln−n∗f T̂n∗
U1
i
ψ1 =

∑
i∈M1

j∈M2

ˆ
Ū1
i

Ln−n∗f T̂n∗
U1
i
ψ1

p2
j

m2

≤ 2
∑
i∈M1

j∈M2

ˆ
Ū2
j

Ln−n∗f T̂n∗
U2
j
ψ̃2

p1
i

m1
= 2

∑
j∈M2

ˆ
Ū2
j

Ln−n∗f T̂n∗
U2
j
ψ̃2 .

(6.12)

We want to repeat the above construction until most of the mass has been compared. To this end
we set up an inductive scheme. Consider the family of curves W `

i ∈ Gn∗(W `) that have not been

matched. Each carries a test function ψ`,i := T̂n∗
W `
i

ψ̃`. Renormalizing by a factor r`,1 < 1, we have∑
i

´
W `
i
ψ`,i = 1.

Definition 6.8. Given a countable collection of curves and test functions, F = {Wi, ψi}i, with
Wi ∈ Ws, |Wi| ≤ δ0, ψi ∈ Da,α(Wi) and

∑
i

´
Wi
ψi = 1, we call F an admissible family if

∑
i

 
Wi

ψi ≤ C∗ , where C∗ := 3C̄0δ
−1
0 . (6.13)

Notice that any stable curve W ∈ Ws(δ0/2) together with test function ψ ∈ Da,α(W ) normalized
so that

´
W ψ = 1 forms an admissible family since |W | ≥ δ0/2. The content of the following lemma

is that an admissible family can be iterated and remain admissible; moreover, a family with larger
average integral in (6.13) can be made admissible under iteration.

Lemma 6.9. Let {Wi, ψi}i be a countable collection of curves Wi ∈ Ws, |Wi| ≤ δ0, with functions
ψi ∈ Da,α(Wi), normalized so that

∑
i pi = 1, where pi =

´
Wi
ψi. Suppose that

∑
i |Wi|−1pi = C].

Choose n] ∈ N so that C0θ
n]
1
C]
C∗
≤ 1/6. Then for all n ≥ n], the dynamically iterated family

{V i
j ∈ Gn(Wi), T̂

n
V ij
ψi}i,j is admissible.

Proof. Setting pij =
´
V ij
T̂n
V ij
ψi =

´
V ij
ψi ◦ TnJV ij T

n, it is immediate that
∑

i,j p
i
j = 1.
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Now fix Wi and consider V i
j ∈ Gn(Wi). Then using Lemmas 3.1 and 4.2 we estimate,∑

j

|V i
j |−1pij =

∑
j

 
V ij

ψi ◦ Tn JV ij T
n ≤

∑
j

|ψi|C0(Wi)|JV ij T
n|C0(V ij )

≤ |ψi|C0(C̄0δ
−1
0 |Wi|+ C0θ

n
1 ) ≤ C̄0δ

−1
0 eaδ

α
0 pi + C0θ

n
1 e
aδα0 |Wi|−1pi .

Using that eaδ
α
0 ≤ 2, we sum over i and use the assumption on the family {Wi, ψi}i to obtain,∑
i,j

∑
j

|V i
j |−1pij ≤

∑
i

(
2C̄0δ

−1
0 pi + 2C0θ

n
1 |Wi|−1pi

)
≤ 2C̄0δ

−1
0 + 2C0θ

n
1C] . (6.14)

Thus if n ≥ n], the above expression is bounded by C∗, as required.

Theorem 6.10. Let L ≥ 60. Suppose a, c, A and L satisfy the conditions of Section 5.3, and that
in addition, δ ≤ δ2

0 satisfy (6.6) and (6.17). Then there exists χ < 1 and k∗ ∈ N such that if
n ∈ N satisfies n ≥ N(δ)− + k∗n∗,

6 with k∗ depending only on δ0, L, n∗ (see equation (6.16)), then
LnCc,A,L(δ) ⊂ Cχc,χA,χL(δ).

Proof. As before, we take f ∈ Cc,A,L(δ), W 1, W 2 ∈ Ws(δ0/2) and test functions ψ` ∈ Da,β(W `)
such that

´
W 1 ψ1 =

´
W 2 ψ2 = 1. In order to iterate the matching argument described above, we

need upper and lower bounds on the amount of mass matched via the process described by (6.12).

Upper Bound on Matching. By definition of Ū `i , for each curve U `i that properly crosses R∗ at

time n∗, at least 2/3 of the length of that curve remains not matched. Thus if pi =
´
U`i
T̂n
U`i
ψ̃i, then

at least (1 − eaδα0 /3)pi remains unmatched. Using eaδ
α
0 ≤ 2, we conclude that at least (1/3)pi of

the mass remains unmatched. Thus if r denotes the total mass remaining after matching at time
n∗, we have r ≥ 1/3. Renormalizing the family by r, we have

∑
i |Wi|−1 pi

r ≤ 3C∗.
By the proof of Lemma 6.9 with C] = 3C∗, we see that choosing n] such that 6C0θ

n]
1 ≤ 1/3,

then the bound in (6.14) is less than C∗, and the family recovers its regularity in the sense of
Lemma 6.9 after this number of iterates.

Lower Bound on Matching. By definition of admissible family, for each ε > 0,
∑
|Wi|<ε pi ≤ C∗ε.

So choosing ε = δ0/(6C̄0), we have that ∑
|Wi|≥δ0/(6C̄0)

pi ≥
1

2
.

On each Wi with |Wi| ≥ δ0/(6C̄0), we have at least one U ij ∈ Gn∗(Wi) that properly crosses R∗ by

Lemma 6.4. Then denoting by Ū ij the matched part (middle third) of U ij , we have

ˆ
Ū ij

T̂n∗
U ij
ψ̃i =

ˆ
Ū ij

ψ̃i ◦ Tn∗ JU ijT
n∗ ≥ δ0

3 inf ψ̃i inf JU ij
Tn∗

≥ 1
3e
−aδα0 pie

−Cdδ
1/3
0
|Tn∗U ij |
|U ij |

≥ 1

12
pi
Cn∗δ

(5/3)n∗

0

δ0
=: εn∗pi ,

where we have used the fact that if W ∈ Ws and T−1W is a homogeneous stable curve, then
|T−1W | ≤ C−1|W |3/5 for some constant C > 0 (see, for example [DZ3, eq. (6.9)]).

6Recall that n∗ is defined in Lemma 6.4 while N(δ)− is defined in equation (6.4).
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Thus a lower bound on the amount of mass coupled at time n∗ is εn∗
2 > 0.

We are finally ready to put these elements together. For k∗ ∈ N and k = 1, . . . k∗, let M `(k)
denote the index set of curves in Gkn∗(W `) which are matched at time kn∗. By choosing δ0 small,
we can ensure that n] ≤ n∗, where n] from Lemma 6.9 corresponds to C] = 3C∗. Thus the family
of remaining curves is always admissible at time kn∗. Let M `(∼) denote the index set of curves
that are not matched by time k∗n∗. We estimate using (6.12) at each time n = kn∗,

ˆ
W 1

Lnf ψ1 =

k∗∑
k=1

∑
i∈M1(k)

ˆ
Ū1
i

Ln−kn∗f T̂ kn∗
U1
i
ψ̃1 +

∑
i∈M1(∼)

ˆ
V 1
i

Ln−k∗n∗f T̂ k∗n∗
V 1
i

ψ̃1

≤
k∗∑
k=1

∑
i∈M2(k)

2

ˆ
Ū2
i

Ln−kn∗f T̂ kn∗
U2
i
ψ̃2 +

∑
i∈M1(∼)

ˆ
V 1
i

Ln−k∗n∗f T̂ k∗n∗
V 1
i

ψ̃1

(6.15)

We estimate the sum over unmatched pieices M `(∼) by splitting the estimate in curves longer than
δ, M `(∼;Lo), and curves shorter than δ, M `(∼;Sh).∑
i∈M`(∼)

ˆ
V `i

Ln−k∗n∗f T̂ k∗n∗
V `i

ψ̃` =
∑

i∈M`(∼;Lo)

ˆ
V `i

Ln−k∗n∗f T̂ k∗n∗
V `i

ψ̃` +
∑

i∈M`(∼;Sh)

ˆ
V `i

Ln−k∗n∗f T̂ k∗n∗
V `i

ψ̃`

≤
∑

i∈M`(∼;Lo)

|||Ln−k∗n∗f |||+
ˆ
V `i

T̂ k∗n∗
V `i

ψ̃` +
∑

i∈M`(∼;Sh)

A|||Ln−k∗n∗f |||−δ|ψ`|C0 |JV `i T
k∗n∗ |C0

≤ (1− εn∗
2 )k∗3L|||Lnf |||− +A2|||Lnf |||−δ|ψ`|C0C̄0 .

where we have used (5.13) and the fact that k∗n∗ ≥ n0. For the sum over long pieces, we used that
the total mass of unmatched pieces decays exponentially in k, while for the sum over short pieces,
we used Lemma 3.1 and Remark 3.2 to sum over the Jacobians since |W 1| ≥ δ0/2. Finally, since
|ψ1|C0 ≤ eaδα0

ffl
W 1 ψ1 ≤ 4

δ0
, we conclude,

∑
i∈M1(∼)

∣∣∣∣∣
ˆ
V 1
i

Ln−k∗n∗f T̂ k∗n∗
V 1
i

ψ̃1

∣∣∣∣∣ ≤ (3L(1− εn∗
2 )k∗ + 8AC̄0

δ
δ0

)
|||Lnf |||−

≤
(

3L(1− εn∗
2 )k∗ + 8AC̄0

δ
δ0

)ˆ
W 2

Lnf ψ2 ,

using the fact that
´
W 2 ψ2 = 1. A similar estimate holds for the sum over curves in M2(∼). Finally,

we put together this estimate with (6.15) to obtain,

ˆ
W 1

Lnf ψ1 ≤
k∗∑
k=1

∑
i∈M2(k)

2

ˆ
Ū2
i

Ln−kn∗f T̂ kn∗
U2
i
ψ̃2 +

∑
i∈M1(∼)

ˆ
V 1
i

Ln−k∗n∗f T̂ k∗n∗
V 1
i

ψ̃1

≤ 2

ˆ
W 2

Lnf ψ2 + 2
∑

j∈M2(∼)

∣∣∣∣∣
ˆ
V 2
j

Ln−k∗n∗f T̂ k∗n∗
V 2
j

ψ̃2

∣∣∣∣∣
+

∑
i∈M1(∼)

∣∣∣∣∣
ˆ
V 1
i

Ln−k∗n∗f T̂ k∗n∗
V 1
i

ψ̃1

∣∣∣∣∣
≤
ˆ
W 2

Lnf ψ2

(
2 + 3

(
3L(1− εn∗

2 )k∗ + 8AC̄0
δ
δ0

))
.
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We choose k∗ such that

3L(1− εn∗
2

)k∗ <
1

6
. (6.16)

Note that this choice of k∗ depends only on δ0 via εn∗ , and not on δ. Next, choose δ > 0 sufficiently
small that

8AC̄0δ/δ0 <
1

6
. (6.17)

These choices imply that ˆ
W 1

Lnf ψ1 ≤ 3

ˆ
W 2

Lnf ψ2 .

Finally we prove that the first alternative of Proposition 6.3 must happen. Suppose the contrary.
Since this bound holds for allW 1,W 2 ∈ Ws(δ0/2) and test functions ψ1, ψ2 with

´
W 1 ψ1 =

´
W 2 ψ2 =

1, we conclude that, for k ≥ k∗ and m ≥ N(δ)−,

|||Lkn∗+mf |||+
|||Lkn∗+mf |||−

≤ 160

9

|||Lkn∗f |||0+
|||Lkn∗f |||0−

≤ 160

3
≤ 8

9
L ,

if we choose L ≥ 60.

6.3 Finite diameter

In this section we prove the following proposition, which completes the proof of Theorem 2.1.

Proposition 6.11. For any χ ∈
(

max{1
2 ,

1
L ,

1√
A−1
}, 1
)

, the cone Cχc,χA,χL(δ) has diameter less

than ∆ := log
(

(1+χ)2

(1−χ)2χL
)
<∞ in Cc,A,L(δ), assuming δ > 0 is sufficiently small to satisfy (6.19).

Proof. For brevity, we will denote C = Cc,A,L(δ) and Cχ = Cχc,χA,χL(δ). For f ∈ Cχ, we will show
that ρ(f, 1) <∞, where ρ denotes distance in the cone C. Fix f ∈ Cχ throughout.

According to (4.1) if we find λ > 0 such that f − λ � 0, then ᾱ(1, f) ≥ λ.
Notice that |||f − λ|||± = |||f |||± − λ. Hence f − λ satisfies (4.6) if

|||f |||+ − λ ≤ L(|||f |||− − λ) ⇐= λ ≤ L(1− χ)

L− 1
|||f |||− =: ᾱ1 ,

where we have used that f ∈ Cχ.
Similarly, f − λ satisfies (4.7) if, for all W ∈ Ws

−(δ) and ψ ∈ Da,β(W ),

|W |−q
∣∣´
W fψ − λ

´
W ψ

∣∣ffl
W ψ

≤ Aδ1−q(|||f |||− − λ) ⇐= λ ≤
(1− χ)A|||f |||−

A+ 1
=: ᾱ2 .

Next, notice that for any λ ≥ 0, W 1,W 2 ∈ Ws
−(δ) and ψ` ∈ Da,α(W `),∣∣∣∣

´
W 1(f − λ)ψ1ffl

W 1 ψ1
−
´
W 2(f − λ)ψ2ffl

W 2 ψ2

∣∣∣∣ =

∣∣∣∣
´
W 1 f ψ1ffl
W 1 ψ1

−
´
W 2 f ψ2ffl
W 2 ψ2

− λ(|W 1| − |W 2|)
∣∣∣∣

≤ χ2dWs(W 1,W 2)γδ1−γcA|||f |||− + λ(δ + Cs)dWs(W 1,W 2) ,

(6.18)

where we have used (5.8), so that f − λ satisfies (4.8) if

χ2dWs(W 1,W 2)γδ1−γcA|||f |||−+λ(δ+Cs)δ
1−γdWs(W 1,W 2)γ ≤ dWs(W 1,W 2)γδ1−γcA(|||f |||−−λ) .
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This occurs whenever

λ ≤
cA|||f |||−(1− χ2)

δ + Cs + cA
⇐= λ ≤ (1− χ)|||f |||− =: ᾱ3 ,

provided that δ is chosen sufficiently small that

δ + Cs ≤ χcA , (6.19)

which is possible since cA > 2Cs by (5.34) and χ > 1/2.
Note that ᾱ2 ≤ ᾱ3 ≤ ᾱ1, so that ᾱ2 = mini{ᾱi}. Thus if λ ≤ ᾱ2, then f − λ ∈ C, i.e.

ᾱ(1, f) ≥ ᾱ2.
Next, we proceed to estimate β̄(1, f) for f ∈ Cχ. If we find µ > 0 such that µ− f ∈ C, this will

imply that β̄(1, f) ≤ µ. Remarking that |||µ− f |||± = µ−|||f |||∓, we have that µ− f satisfies (4.6) if

µ ≥
L|||f |||+ − |||f |||−

L− 1
⇐= µ ≥ L

L− 1
|||f |||+ =: β̄1 ,

while µ− f satisfies (4.7) if for all W ∈ Ws
−(δ), ψ ∈ Da,β(W ),

|W |−q
|µ
´
W ψ −

´
W f ψ|ffl

W ψ
≤ Aδ1−q(µ− |||f |||+) ⇐= µ ≥ (1 + χ)A

A− 21−q |||f |||+ =: β̄2 .

Finally, recalling (6.18) and again (5.8), we have that µ− f satisfies (4.8) whenever

χ2dWs(W 1,W 2)γδ1−γcA|||f |||−+µ(δ+Cs)δ
1−γdWs(W 1,W 2)γ ≤ dWs(W 1,W 2)γδ1−γcA(µ−|||f |||+) .

This is implied by,

µ ≥ cA(1 + χ2)

cA− (δ + Cs)
|||f |||+ ⇐= µ ≥ 1 + χ2

1− χ
|||f |||+ =: β̄3 ,

where again we have assumed (6.19).
Defining β̄ = maxi{β̄i}, it follows that if µ ≥ β̄, then µ − f ∈ C. Thus β̄ ≥ β̄(1, f). Since

χ > 1/L and χ2 > 1/(A − 1), it holds that β̄3 ≥ β̄2 ≥ β̄1. Thus β̄ = β̄3. Our assumption also
implies χ > 1/A, so that ᾱ2 ≥ 1−χ

1+χ |||f |||−.
Finally, recalling (4.1), we have

ρ(1, f) = log

(
β̄(1, f)

ᾱ(1, f)

)
≤ log

(
β̄3

ᾱ2

)
≤ log

 1+χ2

1−χ
1−χ
1+χ

|||f |||+
|||f |||−

 ≤ log

(
(1 + χ)2

(1− χ)2
χL

)
,

for all f ∈ Cχ, completing the proof of the proposition.

Remark 6.12. Note that, setting χ∗ = max{1
2 ,

1
L ,

1√
A−1
}, for χ ≤ χ∗ Proposition 6.11 implies only

that the diameter of Cχc,χA,χL(δ) ⊂ Cχ∗c,χ∗A,χ∗L(δ), in Cc,A,L(δ), is bounded by log
(

(1+χ∗)2

(1−χ∗)2χ∗L
)

. If

needed, a more accurate formula can be easily obtained, but it would be more cumbersome.
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7 Convergence to Equilibrium and Decay of Correlations

In this section we show how Theorem 2.1 (i.e. Theorem 6.10 and Proposition 6.11 ) imply the (by
now classical) result on decay of correlations and convergence to equilibrium. To be more precise,
the results are comparable with the ones obtained in [DZ1] since they apply to a similar (very)
large class of observables (and possibly even distributions). Before stating the exact results (see
Theorems 7.3, 7.4 and Corollary 7.5), we establish a key lemma that integration with respect to
µSRB against suitable test functions respects the ordering in our cone. Recall the vector space of
functions A defined in Section 4.3.

Lemma 7.1. Let δ > 0 be small enough that 2C`Ch(1 + A)(δ4/3 + δ1/3+βa`max) < 1, where
C`, Ch > 0 are from (7.4) and `max is the maximum diameter of the connected components of
M .

Suppose ψ ∈ C1(M) satisfies 2(2δ)1−β|ψ′|C0(M) ≤ aminM ψ. If f, g ∈ A with f � g, then´
f ψ dµSRB ≤

´
g ψ dµSRB.

Proof. Let ψmin = minM ψ. The assumption on ψ implies that ψ ∈ Da
2
,β(W ) for each W ∈ Ws

−(δ)
since, ∣∣∣∣log

ψ(x)

ψ(y)

∣∣∣∣ ≤ 1

ψmin
|ψ(x)− ψ(y)| ≤

|ψ′|C0(M)

ψmin
d(x, y) ≤

|ψ′|C0(M)

ψmin
(2δ)1−βd(x, y)β .

Suppose f, g ∈ A satisfy f � g. If g− f = 0, then the lemma holds trivially, so suppose instead
that g − f ∈ Cc,A,L(δ). Then according to (4.5) and (4.7), for all ψ ∈ Da,β(W ),

|||g − f |||−
´
W ψ ≤

´
W (g − f)ψ dmW ≤ |||g − f |||+

´
W ψ ∀W ∈ Ws(δ) (7.1)∣∣´

W (g − f)ψ dmW

∣∣ ≤ |||g − f |||−Aδ1−q|W |q
ffl
W ψ ∀W ∈ Ws

−(δ). (7.2)

Next, we disintegrate µSRB according to a smooth foliation of stable curves as follows. Since the
stable cones for T are globally constant, we fix a direction in the stable cone and consider stable
curves in the form of line segments with this slope. Let kδ ≥ k0 denote the minimal index k of a
homogeneity strip Hk such that the stable line segments in Hk have length less than δ. Due to the
fact that the minimum slope in the stable cone is Kmin > 0, we have

kδ = Chδ
−1/3, (7.3)

for some constant Ch > 0 independent of δ.
Now for k < kδ, we decompose Hk into horizontal bands Bi such that every maximal line segment

of the chosen slope in Bi has equal length between δ and 2δ. We do the same on M \(∪k≥k0Hk). On
each Bi, define a foliation of such parallel line segments {Wξ}ξ∈Ξi ⊂ Ws(δ). Using the smoothness
of this foliation, we disintegrate µSRB into conditional measures cosϕ(x)dmWξ

on Wξ and a factor
measure µ̂ on the index set Ξi. Note that our conditional measures are not normalized - we
include this factor in µ̂. Finally, on each homogeneity strip Hk, k ≥ kδ, we carry out a similar
decomposition, but using homogeneous parallel line segments of maximal length in Hk (which are
necessarily shorter than length δ). We use the notation {Wξ}ξ∈Ξk ⊂ Ws

−(δ) for the foliations in
these homogeneity strips. Note that in both cases, we have µ̂(Ξi), µ̂(Ξk) ≤ C`, for some constant
C` depending only on the chosen slope and spacing of homogeneity strips.

Also, it follows as in (3.3), that for x, y ∈W ∈ Ws
−(δ),

log
cosϕ(x)

cosϕ(y)
≤ Cd(2δ)1/3−βd(x, y)β ,
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so that cosϕ ∈ Da
2
,β(W ) by the assumption of Lemma 5.2. Thus ψ cosϕ ∈ Da,β(W ) for all

W ∈ Ws
−(δ).

Using this fact and our disintegration of µSRB, we estimate the integral applying (7.1) on Ξi and
(7.2) on Ξk,ˆ
M

(g − f)ψ dµSRB =
∑
i

ˆ
Ξi

ˆ
Wξ

(g − f)ψ cosϕdmWξ
dµ̂(ξ) +

∑
k≥kδ

ˆ
Ξk

ˆ
Wξ

(g − f)ψ cosϕdmWξ
dµ̂(ξ)

≥ |||g − f |||−

∑
i

ˆ
Ξi

ˆ
Wξ

ψ cosϕdmWξ
dµ̂(ξ)−Aδ

∑
k≥kδ

ˆ
Ξk

 
Wξ

ψ cosϕdmWξ
dµ̂(ξ)


≥ |||g − f |||−

ψminµSRB(M \ (∪k≥kδHk))−AδC`|ψ|C0

∑
k≥kδ

k−2


≥ |||g − f |||−

(
ψmin(1− 2C`Chδ

4/3)− |ψ|C0AC`Ch2δ4/3
)
,

(7.4)

where we have estimated
∑

k≥kδ k
−2 ≤ 2k−1

δ and µSRB(∪k≥kδHk) ≤ 2C`Chδ
4/3.

Now |ψ|C0 ≤ ψmin + `max|ψ′|C0 , where `max is the maximum diameter of the connected compo-
nents of M . Then by the assumption on ψ, we have

2C`Ch(1 +A)δ4/3|ψ|C0 ≤ 2C`Ch(1 +A)δ4/3ψmin(1 + `max
a
2 (2δ)β−1)

≤ ψmin2C`Ch(1 +A)(δ4/3 + a`maxδ
1/3+β) ≤ ψmin ,

where for the last inequality we have used the assumption on δ in the statement of the lemma. We
conclude that the lower bound in (7.4) cannot be less than 0.

Remark 7.2. Lemma 7.1 implies there exists C̄ ≥ 1 such that
´
M f dµSRB ≥ C̄−1|||f |||− > 0 for all

f ∈ Cc,A,L(δ).
Using instead the upper bound in (7.1) and following the estimate of (7.4) yields,

0 <

ˆ
M
fψ dµSRB ≤ |||f |||+C|ψ|C0 ,

for all f ∈ Cc,A,L(δ) and ψ as in the statement of Lemma 7.1. This can be extended to all ψ ∈ C1(M)
by defining Cψ as in (7.8) below to concludeˆ

M
fψ dµSRB ≤ |||f |||+C|ψ|C1 .

Convergence to equilibrium, including equidistribution, and decay of correlations readily follow
from the contraction in the projective metric ρC(·, ·) of the cone Cc,A,L(δ). Set µSRB(f) =

´
M f dµSRB.

Theorem 7.3. Let δ > 0 satisfy the assumption of Lemma 7.1. There exists C > 0 and ϑ < 1
such that for all n ≥ 0, f, g ∈ Cc,A,L(δ) with

´
M f dµSRB =

´
M g dµSRB, all W1,W2 ∈ Ws(δ) and all

ψi ∈ C1(Wi) with
ffl
W1

ψ1 =
ffl
W2

ψ2, we have∣∣∣∣ 
W1

Lnf ψ1 dmW1 −
 
W2

Lng ψ2 dmW2

∣∣∣∣ ≤ Cϑn (|ψ1|C1 + |ψ2|C1)µSRB(f) .

In particular, for all W ∈ Ws(δ) and ψ ∈ C1(W ),∣∣∣∣ 
W
Lnf ψ dmW − µSRB(f)

 
W
ψ dmW

∣∣∣∣ ≤ Cϑn |ψ|C1µSRB(f) . (7.5)
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Proof. It is convenient to extend the definition of ||| · |||+ to all of A by

|||f |||+ = sup
W∈Ws(δ)
ψ∈Da,β(W )

∣∣´
W fψ dmW

∣∣´
W ψ dmW

.

Note that, with this definition, ||| · |||+ is an order-preserving semi-norm in A.7 Also µSRB(f) :=´
M f dµSRB is homogeneous and order preserving in Cc,A,L(δ) by Lemma 7.1 applied to ψ ≡ 1. Then

[LSV, Lemma 2.2] implies that, for all f, g ∈ Cc,A,L(δ) with µSRB(f) = µSRB(g),8

|||Lnf − Lng|||+ ≤
(
eρC(Lnf,Lng) − 1

)
min{|||Lnf |||+, |||L

ng|||+}. (7.6)

Hence by Theorem 6.10, Proposition 6.11 and [L95a, Theorem 2.1], there exists C > 0 such that
for all n ≥ n(δ) := N(δ)− + k∗n∗,

|||Lnf − Lng|||+ ≤ Cϑ
n min{|||f |||+, |||g|||+}, (7.7)

where ϑ = [tanh(∆/4)]1/n(δ). Hence, applying (7.7) with g = µSRB(f) implies,∣∣∣∣ 
W
Lnf ψ dmW − µSRB(f)

 
W
ψ

∣∣∣∣ =

 
W
ψ

∣∣∣∣
´
W L

nf ψ dmW´
W ψ

−
´
W L

n(µSRB(f))ψ´
W ψ

∣∣∣∣
≤ Cϑn |ψ|C0µSRB(f) .

Since Ln1 = 1 and |||µSRB(f)|||+ = µSRB(f), the above proves (7.5) for ψ ∈ Da,β(W ). To extend this

estimate to more general ψ ∈ C1(W ), define ψ̃ = ψ + Cψ, where

Cψ = |ψmin|+ 2
a |ψ
′|C0(2δ)1−β . (7.8)

Then ψ̃′ = ψ′ and minW ψ̃ ≥ 2
a |ψ̃
′|C0(2δ)1−β, so that ψ̃ ∈ Da

2
,β(W ) by the proof of Lemma 7.1.

Then since also Cψ ∈ Da,β(W ), the estimate for (7.5) follows by writing ψ = ψ̃−Cψ and using the
triangle inequality. Finally, the first assertion of the theorem follows from another application of
the triangle inequality.

Theorem 7.4. Let δ > 0 satisfy the assumption of Lemma 7.1. There exists C > 0 such that for
all n ≥ 0, ψ ∈ C1(M) and f, g ∈ Cc,A,L(δ), with µSRB(f) = µSRB(g),∣∣∣∣ˆ

M
Lnf ψ dµSRB −

ˆ
M
Lng ψ dµSRB

∣∣∣∣ ≤ Cϑn|ψ|C1(M) min{|||f |||+, |||g|||+} . (7.9)

In particular,∣∣∣∣ˆ
M
f ψ ◦ Tn dµSRB −

ˆ
M
f dµSRB

ˆ
M
ψ dµSRB

∣∣∣∣ ≤ Cϑn|ψ|C1(M)

ˆ
M
f dµSRB .

Proof. Following the strategy of Theorem 7.3, given ψ ∈ C1(M) satisfying the assumption of
Lemma 7.1, we define a pseudo-norm for f ∈ A by

‖f‖ψ =

∣∣∣∣ˆ
M
f ψ dµSRB

∣∣∣∣ . (7.10)

7A semi-norm ‖ · ‖ is order preserving if −g � f � g implies ‖f‖ ≤ ‖g‖. The space A is defined just before (4.5).
8[LSV, Lemma 2.2] is stated for order preserving norms but its proof holds verbatim for order preserving semi-

norms.
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By Lemma 7.1, ‖ · ‖ψ is an order-preserving semi-norm, and as in (7.6), invoking again [LSV,
Lemma 2.2], Theorem 6.10, Proposition 6.11 and [L95a, Theorem 2.1], we have for f, g ∈ Cc,A,L(δ)
with µSRB(f) = µSRB(g) and n ≥ n(δ),

‖Lnf − Lng‖ψ ≤ Cϑn min{‖Lnf‖ψ, ‖Lng‖ψ} ≤ Cϑn|ψ|C0 min{|||f |||+, |||g|||+} ,

where we applied (7.7) and Remark 7.2. This proves (7.9) for ψ satisfying the assumption of
Lemma 7.1. We extend to more general ψ ∈ C1(M) by defining ψ̃ = ψ+Cψ, where Cψ is given by
(7.8), and arguing as in the proof of Theorem 7.3.

Next, by definition of L and using that Ln1 = 1, we haveˆ
M
f ψ ◦ Tn dµSRB −

ˆ
M
f dµSRB

ˆ
M
ψ dµSRB =

ˆ
M
Ln(f − µSRB(f))ψ dµSRB .

Thus applying (7.9) to g = µSRB(f) yields the second claim of the Theorem since |||µSRB(f)|||+ =
µSRB(f).

Corollary 7.5. The convergence in Theorems 7.3 and 7.4 extend to all f, g ∈ C1(M), with
|f |C1(M), |g|C1(M) on the right hand side.

The proof of this corollary relies on the following lemma.

Lemma 7.6. If f ∈ C1(M), then λ+ f ∈ Cc,A,L(δ) for any

λ ≥ max

{
L+ 1

L− 1
|f |C0 ,

A+ 21−q

A− 21−q |f |C0 ,
cA+ 8Cs
cA− 2Cs

|f |C1

}
.

Proof of Corollary 7.5. Let f, g ∈ C1(M) with µSRB(f) = µSRB(g) and let ψ ∈ C1(M). Let λf , λg
be the constants from Lemma 7.6 corresponding to f and g, respectively, and set λ = max{λf , λg}.
Then f +λ, g+λ ∈ Cc,A,L(δ) and µSRB(f +λ) = µSRB(g+λ), so that by Theorem 7.4, for all n ≥ 0,∣∣∣∣ˆ

M
Ln(f − g)ψ dm

∣∣∣∣ =

∣∣∣∣ˆ
M
Ln(f + λ− (g + λ))ψ dm

∣∣∣∣ ≤ C ′ϑn|ψ|C1(M) max{|f |C1(M), |g|C1(M)} ,

since |||f + λ|||+ ≤ λ+ |f |C0 , and by Lemma 7.6, λf ≥ C ′′|f |C1(M), with analogous estimates for g.
This proves (7.9) and the second claim of Theorem 7.4 follows from the first by setting g = µSRB(f)
as in the proof of that theorem.

The extension of Theorem 7.3 to f, g ∈ C1(M) follows analogously, replacing the integral over
M with the integral over W to prove (7.5), and then using the triangle inequality to deduce the
first statement of the theorem.

Proof of Lemma 7.6. We must show that λ+ f satisfies conditions (4.6) - (4.8) in the definition of
Cc,A,L(δ). Since

|||λ+ f |||+ ≤ λ+ |f |C0 , and |||λ+ f |||− ≥ λ− |f |C0 , (7.11)

to guarantee (4.6), we need

λ+ |f |C0

λ− |f |C0

≤ L ⇐= λ ≥ |f |C0

L+ 1

L− 1
.

Next, to guarantee (4.7), for W ∈ Ws
−(δ), ψ ∈ Da,β(W ), we need,

|W |−q
´
W (λ+ f)ψffl

W ψ
≤ Aδ1−q(λ− |f |C0) ⇐= λ ≥ |f |C0

A+ 21−q

A− 21−q .
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Lastly, we need to show that (4.8) is satisfied. For this, we prove the claim:∣∣∣∣∣
´
W1

fψ1ffl
W1

ψ1
−
´
W2

fψ2ffl
W2

ψ2

∣∣∣∣∣ ≤ 8Csδ
1−γdWs(W1,W2)γ |f |C1 , (7.12)

for W1,W2, ψ1, ψ2 as in (4.8). Recalling the notation Wk = {GWk
(r) = (r, ϕWk

(r)) : r ∈ IWk
}

for k = 1, 2 from Section 4.2, we set W̄k = GWk
(IW1 ∩ IW2) and W c

k = Wk \ W̄k. As in Sec-
tion 5.2.3, we assume without loss of generality that |W2| ≥ |W1| and

ffl
W1

ψ1 = 1. Also, we

may assume |W2| ≥ 2Csδ
1−γdWs(W1,W2)γ ; otherwise, (7.12) is trivially bounded by 2|W2||f |C0 ≤

4Csδ
1−γdWs(W1,W2)γ |f |C0 .

Next,∣∣∣∣∣
´
W1

fψ1ffl
W1

ψ1
−
´
W2

fψ2ffl
W2

ψ2

∣∣∣∣∣ ≤
∣∣∣∣∣
´
W̄1

fψ1 −
´
W̄2

fψ2ffl
W1

ψ1

∣∣∣∣∣+
∣∣∣∣∣
´
W̄2

fψ2ffl
W2

ψ2

(ffl
W2

ψ2ffl
W1

ψ1
− 1

)∣∣∣∣∣+
2∑

k=1

∣∣ ´
W c
k
fψk

∣∣
ffl
Wk

ψk
(7.13)

To estimate the first term above, recalling (4.3) and d∗(ψ1, ψ2) = 0, we have for r ∈ IW1 ∩ IW2 ,

|(fψ1) ◦GW1(r)‖G′W1
(r)‖ − (fψ2) ◦GW2(r)‖G′W2

(r)‖|
= ψ1 ◦GW1(r)‖G′W1

(r)‖|f ◦GW1(r)− f ◦GW2(r)| ≤ ψ1 ◦GW1(r)‖G′W1
(r)‖|f ′|C0dWs(W1,W2) ,

and integrating over IW1 ∩ IW2 yields,∣∣∣∣∣
´
W̄1

fψ1 −
´
W̄2

fψ2ffl
W1

ψ1

∣∣∣∣∣ ≤
´
W̄1

ψ1ffl
W1

ψ1
|f ′|C0dWs(W1,W2) ≤ 2δ|f ′|C0dWs(W1,W2) . (7.14)

For the second term in (7.13), note that our assumption |W2| ≥ 2Csδ
1−γdWs(W1,W2)γ implies as

in the estimate following (5.6) that IW1 ∩ IW2 6= ∅. Thus we may apply (5.9) and (5.10) and useffl
W1

ψ1 = 1 to obtain,∣∣∣∣∣
´
W̄2

fψ2ffl
W2

ψ2

(ffl
W2

ψ2ffl
W1

ψ1
− 1

)∣∣∣∣∣ ≤ |f |C0

∣∣∣∣ˆ
W2

ψ2 − |W2|
∣∣∣∣ ≤ |f |C06CsdWs(W1,W2) . (7.15)

Finally, the third term in (7.13) can be estimated by∑
k

|
´
W c
k
fψk|ffl

Wk
ψk

≤ |f |C0ea(2δ)α
(
|W c

1 |+ |W c
2 |
)
≤ 2Cs|f |C0dWs(W1,W2) .

Collecting this estimate together with (7.14) and (7.15) in (7.13), we obtain∣∣∣∣∣
´
W1

fψ1ffl
W1

ψ1
−
´
W2

fψ2ffl
W2

ψ2

∣∣∣∣∣ ≤ 8CsdWs(W1,W2)|f |C1 ,

proving the bound in (7.12) since dWs(W1,W2) ≤ δ.
With the claim proved, we proceed to verify (4.8). Using (5.8) we estimate,∣∣∣∣∣

´
W1

(f + λ)ψ1ffl
W1

ψ1
−
´
W2

(f + λ)ψ2ffl
W2

ψ2

∣∣∣∣∣ ≤
∣∣∣∣∣
´
W1

fψ1ffl
W1

ψ1
−
´
W2

fψ2ffl
W2

ψ2

∣∣∣∣∣+ λ||W1| − |W2||

≤ 8Csδ
1−γdWs(W1,W2)γ |f |C1 + λ2CsdWs(W1,W2) .

Thus (4.8) will be verified if

8Csδ
1−γdWs(W1,W2)γ |f |C1 + λ2CsdWs(W1,W2) ≤ cAδ1−γdWs(W1,W2)γ(λ− |f |C0) ,

which is implied by the final condition on λ in the statement of the Lemma since dWs(W1,W2) ≤ δ
and cA > 2Cs by (5.34).
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8 Applications

Suppose that we have a billiard table Q = T2 \ ∪iBi and that the particle can escape from the
table by entering certain sets G ⊂ Q, which we call gates or holes, but only at times kN for some
N ∈ N. One could easily consider also the case of G ⊂ Q × S1 (i.e. some velocity directions are
forbidden), however we prefer to keep things simple. On the contrary the limitation that the holes
are “open” only at times kN is not very natural and is introduced only since it drastically simplifies
the following arguments. To remove such a limitation means that we would have to contend with a
limited amount of hyperbolicity from two consecutive visits to a neighborhood of the hole. In turn
this would not allow us to use directly the results developed in the previous sections and would
force us to redo all the arguments while keeping track of the combinatorics of the trajectories that
either fall or do not fall into the holes. To do that is a highly non trivial job (see [LM, AL] for an
implementation in simpler situations) which exceeds our current objectives.

A hole G ⊂ Q induces a hole H ⊂M in the phase space of the billiard map T . We formulate here
two abstract conditions on the set H, and then provide examples of concrete, physically relevant
situations which induce holes satisfying our conditions.

(H1) (Complexity) There exists P0 > 0 such that any stable curve of length at most δ can be cut
into at most P0 pieces by ∂H, where δ is the length scale of the cone Cc,A,L(δ).

(H2) (Uniform transversality) There exists Ct > 0 such that, for any stable curve W ∈ Ws and
ε > 0, mW (Nε(∂H)) ≤ Ctε.

Remark 8.1. Assumption (H2) can be weakened to, e.g., mW (Nε(∂H)) ≤ Ctε
1/2, but this would

then require dWs(W 1,W 2) ≤ δ2 in our definition of cone condition (4.8). Similar modifications
are made to weaken the transversality assumption in the Banach space setting, see for example
[DZ3, D2].

We let diams(H) denote the maximal length of a stable curve in H, which we call the stable
diameter.

Denoting by 1A the characteristic function of the set A, the relevant operator is given by
LH = LN1Hc , where Hc denotes the complement of H in M , and L is the usual transfer operator
for the billiard map. The main objective is to control the action of the multiplication operator 1Hc

on the cone Cc,A,L(δ).

8.1 Small holes

Lemma 8.2. Under assumptions (H1) and (H2), if diams(H) ≤ δ
[

1
4P0A

]1/q
, we have

1Hc [Cc,A,L(δ)] ⊂ Cc′,A′,L′(δ),

where

L′ = 2P 1−q
0 ea(2δ)βA , A′ = 2P 1−q

0 ea(2δ)βA ,

c′ = P q0 e
a(2δ)α + 2

(
2qδ + 3

4c
)

+ 4(P0 + 2)P q−1
0 Cqt .

Proof. Letting f ∈ Cc,A,L(δ), we must control the cone conditions one by one. We begin with (4.6).
Given W ∈ Ws(δ), let G0 denote the collection of connected curves in W \H. Then applying (4.7)
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to each W ′ ∈ G0, for ψ ∈ Da,β(W ), we estimate

ˆ
W

(1Hcf)ψ dmW =
∑
W ′∈G0

ˆ
W ′
fψ dmW ′

≤
∑
W ′∈G0

 
W ′
ψdmW ′ |W ′|qAδ1−q|||f |||−

≤ P 1−q
0 ea(2δ)βA|||f |||−

ˆ
W
ψ dmW .

(8.1)

On the other hand, if the collection of disjoint curves {Wi} is such that ∪iWi = W ∩H,

ˆ
W

(1Hcf)ψ dmW =

ˆ
W
fψ dmW −

ˆ
W

(1Hf)ψ dmW

≥ |||f |||−
ˆ
W
ψ dmW −

∑
i

|Wi|qAδ1−q|||f |||−
 
Wi

ψ dmWi

≥
{

1− ea(2δ)βAP0δ
−qdiams(H)q

}
|||f |||−

ˆ
W
ψ dmW .

Hence, for diams(H) small enough,

|||1Hcf |||− ≥
1

2
|||f |||−. (8.2)

Accordingly, taking the supremum over W,ψ in (8.1),

|||1Hcf |||+ ≤ 2P 1−q
0 ea(2δ)βA|||1Hcf |||− =: L′|||1Hcf |||−

Next, to verify (4.7), if W ∈ Ws
−(δ), then estimating as in (8.1),

ˆ
W

(1Hcf)ψdmW =
∑
W ′∈G0

ˆ
W ′
fψdmW ′

≤
∑
W ′∈G0

ea(2δ)β |W ′|qAδ1−q|||f |||−
 
W
ψdmW

≤ P 1−q
0 |W |qea(2δ)βAδ1−q|||f |||−

 
W
ψdmW

≤ 2P 1−q
0 |W |qea(2δ)βAδ1−q|||1Hcf |||−

 
W
ψdmW

=: A′|W |qδ1−q|||1Hcf |||−
 
W
ψdmW ,

(8.3)

where we have used (8.2) for the third inequaity.
We are left with the last cone condition, (4.8). We take W 1,W 2 ∈ Ws

−(δ) with dWs(W 1,W 2) ≤
δ, and ψi ∈ Da,α(Wi) with d∗(ψ1, ψ2) = 0.

As in Section 5.2.3, we may assume w.l.o.g. that |W 2| ≥ |W 1| and
ffl
W 1 ψ1 = 1. First of all note

that, by condition (4.7) and our estimate above,

´
Wk 1Hcfψkffl

Wk ψk
≤ A′|W k|qδ1−q|||1Hcf |||− ≤

1

2
dWs(W 1,W 2)γδ1−γcA′|||1Hcf |||−,
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for k = 1, 2, provided |W 2|q ≤ δq−γ c2dWs(W 1,W 2)γ . Accordingly, it suffices to consider the case
|W 2|q ≥ δq−γ c2dWs(W 1,W 2)γ .

It follows from (5.8) that |W 1|q ≥ 1
2δ
q−γ c

2dWs(W 1,W 2)γ , recalling that dWs(W 1,W 2) ≤ δ and
(5.7). By (H2), we may decompose W k ∩ Hc into at most P0 ‘matched’ pieces W k

j such that

dWs(W 1
j ,W

2
j ) ≤ dWs(W 1,W 2) and IW 1

j
= IW 2

j
, and at most P0 + 2 ‘unmatched’ pieces W

k
i , which

satisfy,

|W k
i | ≤ CtdWs(W 1,W 2).

Then, using condition (4.7) and noticing that d∗(ψ1|W 1
j
, ψ2|W 2

j
) = 0,∣∣∣∣

´
W 1 1Hcfψ1ffl

W 1 ψ1
−
´
W 2 1Hcfψ2ffl

W 2 ψ2

∣∣∣∣ ≤∑
j

∣∣∣∣∣
´
W 1
j
fψ1ffl

W 1 ψ1
−

´
W 2
j
fψ2ffl

W 2 ψ2

∣∣∣∣∣+
∑
i,k

|W k
i |qδ1−qA|||f |||−e

a(2δ)α

≤
∑
j

ffl
W 1
j
ψ1ffl

W 1 ψ1
dWs(W 1,W 2)γδ1−γcA|||f |||− +

∑
j

∣∣∣∣∣
´
W 2
j
fψ2ffl

W 2 ψ2

[
1−

ffl
W 1
j
ψ1

ffl
W 2 ψ2ffl

W 2
j
ψ2

ffl
W 1 ψ1

]∣∣∣∣∣
+ 8(P0 + 2)Cqt dWs(W 1,W 2)γδ1−γA|||1Hcf |||−,

(8.4)

using (8.2). Next, since IW 1
j

= IW 2
j
, recalling Remark 4.4 and (5.8) we have

´
W 1
j
ψ1 =

´
W 2
j
ψ2 and9

||W 1
j | − |W 2

j || ≤ |W 1
j |dWs(W 1,W 2). Then applying (4.7) and recalling

ffl
W1

ψ1 = 1,∣∣∣∣∣
´
W 2
j
fψ2ffl

W 2 ψ2

[
1−

ffl
W 1
j
ψ1

ffl
W 2 ψ2ffl

W 2
j
ψ2

ffl
W 1 ψ1

]∣∣∣∣∣ ≤ A|||f |||−
ffl
W 2
j
ψ2ffl

W 2 ψ2
|W 2

j |qδ1−q

∣∣∣∣∣1− |W 2
j |

|W 1
j |

 
W 2

ψ2

∣∣∣∣∣
≤ A|||f |||−e

a(2δ)α

(
|W 2

j |qδ1−q

∣∣∣∣∣1− |W 2
j |

|W 1
j |

∣∣∣∣∣+
|W 2

j |q

|W 2|q

(
δ

|W 2|

)1−q ∣∣∣∣|W 2| −
ˆ
W 2

ψ2

∣∣∣∣ |W 2
j |

|W 1
j |

)

≤ A|||f |||−2

(
|W 2

j |qδ1−qdWs(W 1,W 2) + 2
|W 2

j |q

|W 2|q

(
δ

|W 2|

)1−q ∣∣∣∣|W 2| −
ˆ
W 2

ψ2

∣∣∣∣
)
.

(8.5)

Next, recalling |W 2| ≥ δ1− γ
q [c/2]

1
q dWs(W 1,W 2)

γ
q and using (5.10) yields,(

δ

|W 2|

)1−q ∣∣∣∣|W 2| −
ˆ
W 2

ψ2

∣∣∣∣ ≤ 6Cs[2/c]
1
q

(1−q)
δ
γ
q
−γ
dWs(W 1,W 2)

1+γ− γ
q

≤ 4
− 1
q

6cδ1−γ
dWs(W 1,W 2)γ ,

where we have again used (5.7) and dWs(W 1,W 2) ≤ δ. Using this estimate and the fact that
q ≤ 1/2 in (8.5) and summing over j yields,∑

j

∣∣∣∣∣
´
W 2
j
fψ2ffl

W 2 ψ2

[
1−

ffl
W 1
j
ψ1

ffl
W 2 ψ2ffl

W 2
j
ψ2

ffl
W 1 ψ1

]∣∣∣∣∣ ≤ 2Aδ1−γ |||f |||−dWs(W 1,W 2)γ
∑
j

δ1−q|W 2
j |q +

3

4
c
|W 2

j |q

|W 2|q

≤ 2Aδ1−γ |||f |||−dWs(W 1,W 2)γP 1−q
0

(
2qδ + 3

4c
)
.

Finally, using this estimate in (8.4) concludes the proof of the lemma,∣∣∣∣
´
W 1 1Hcfψ1ffl

W 1 ψ1
−
´
W 2 1Hcfψ2ffl

W 2 ψ2

∣∣∣∣ ≤ dWs(W 1,W 2)γδ1−γA2P 1−q
0 |||1Hcf |||−

(
P q0 e

a(2δ)α +

+ 2
(
2qδ + 3

4c
)

+ 4(P0 + 2)P q−1
0 Cqt

)
,

9Since IW1
j

= IW2
j

, the term on the right side of (5.8) proportional to Cs is absent in this case.
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where we have again used (8.2).

Remark that, by Theorem 6.10, we know that there exists NT ∈ N, NT ≤ n∗ +C? ln δ−1 where
n∗, defined in Lemma 6.4, depends only T and δ0 while C? depends only on c, A, L, such that
LNT Cc,A,L(δ) ⊂ Cχc,χA,χL(δ).

Proposition 8.3. For n? ≥ KNT , with K depending only on c, A, L, P0, Ct, if assumptions (H1)

and (H2) are satisfied and diams(H) ≤ δ
[

1
4P0A

]1/q
, then, for all n ≥ n?, [Ln1Hc ]Cc,A,L(δ) ⊂

Cχc,χA,χL(δ), where Cc,A,L(δ) is given in Theorem 6.10.

Proof. Define k = N(δ)− + k∗n∗, where N(δ)−, k∗ and n∗ are defined in Theorem 6.10. Then for
n = mk, we may apply both Lemma 8.2 and Theorem 6.10 to obtain,

[Ln1Hc ]Cc,A,L(δ) ⊂ LmkCc′,A′,L′(δ) ≤ Cχmc′,χmA′,χmL′(δ) ,

for as long as χmc′ > c, χmA′ > A and χmL′ > L. Lettingm1 denote the leastm such that χmc′ < c,
χmA′ < A and χmL′ < L, and setting n? = (m1 + 1)k produces the required contraction.

Remark 8.4. Once we know the transfer operator for the open system acts as a strict contraction
on the cone, it is straight forward to recover the usual full set of results for open systems with
exponential escape, including a unique escape rate and limiting conditional invariant measure for
all elements of the cone. See Theorem 8.18 for an example.

8.2 Large holes

The above pertains to relatively small holes. For many applications large holes must be considered.
To do so requires either a much closer look at the combinatorics of the trajectories or requiring
the holes to open at even longer time intervals than what was needed before. We will pursue the
second, much easier, option with the intent to show that large holes are not out of reach. To work
with large holes it is convenient to weaken hypothesis (H1):

(H1′) (Complexity) There exists P0 > 0 such that any stable curve of length at most δ0 can be cut
into at most P0 pieces by ∂H.

When iterating T−nW for W ∈ Ws, we will need to distinguish between elements of Gn(W )
which intersect H and those that do not. Recall that Gn(W ) subdivides long homogeneous con-
nected components of T−nW into curves of length between δ0 and δ0/3. We let GHn (W ) denote the
connected components of Wi ∩Hc, for Wi ∈ Gn(W ), where Hc = M \H. Following the notation
of Section 5.2, let LoHn (W ; δ) denote those elements of GHn (W ) having length at least δ and let
ShHn (W ; δ) denote those elements having length at most δ.

Without the small hole condition, hypotheses (H1′) and (H2) are insufficient to prove Lemma 8.2;
however, one can recover the results of Proposition 8.3 and its consequences provided one is willing
to wait for a longer time. This is due to the following result.

Lemma 8.5. If (H1′) and (H2) are satisfied, then for each δ > 0 small enough (depending on
µSRB(H)) there exists nδ ∈ N, nδ ≤ C ln δ−1 for some constant C > 0, such that for all W ∈ Ws(δ)
and n ≥ nδ, ∑

W ′∈LoHn (W,δ)

|W |−1

ˆ
W ′
JW ′T

n ≥ 1

2
(1− µSRB(H)) .
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Proof. Arguing exactly as in Lemma 8.2 it follows that if (H1′) and (H2) are satisfied, then there
exists c′ ≥ c, A′ ≥ A,L′ ≥ L such that 1Hc + 1 ∈ Cc′,A′,L′(δ). Then by Theorem 7.3 applied to this
larger cone,∣∣∣∣ 

W
Ln(1Hc)− (1− µSRB(H))

∣∣∣∣ =

∣∣∣∣ 
W
Ln(1Hc + 1)− 2 + µSRB(H)

∣∣∣∣ ≤ CHϑn .
On the other hand, recalling Lemma 3.1,∣∣∣∣∣∣

 
W
Ln(1Hc)−

∑
W ′∈LoHn (W,δ)

|W |−1

ˆ
W ′
JW ′T

n

∣∣∣∣∣∣ ≤
∑

W ′∈ShHn (W,δ)

|W |−1

ˆ
W ′
JW ′T

n

≤ P0(C̄0δ
−1
0 δ + C0θ

n
1 ),

which implies the Lemma.

We are now able to state the analogue of Proposition 8.3 without the small hole condition.
Note, however, that now n? has a worse dependence on δ that we refrain from making explicit.

Proposition 8.6. Under assumptions (H1′) and (H2), for each δ > 0 small enough there exists
c, A, L > 0, χ ∈ (0, 1) and n? ∈ N such that, for all n ≥ n?, [Ln1Hc ]Cc,A,L(δ) ⊂ Cχc,χA,χL(δ).

Before proving Proposition 8.6, we state an auxiliary lemma, similar to Lemma 8.2.

Lemma 8.7. There exists n̄δ > 0 such that for n ≥ n̄δ, [Ln1Hc ]Cc,A,L(δ) ⊂ Cc′,A′,L′(δ), where

c′ = cP0, A′ = A
6

1− µSRB(H)
, and L′ = L

9

1− µSRB(H)
.

Proof of Proposition 8.6. Letting n = mk + nδ, with k = N(δ)− + k∗n∗, we may apply both
Lemma 8.7 and Theorem 6.10 to obtain,

[Ln1Hc ]Cc,A,L(δ) ⊂ LmkCc′,A′,L′(δ) ≤ Cχmc′,χmA′,χmL′(δ) ,

for as long as χmc′ > c, χmA′ > A and χmL′ > L. Letting m1 denote the least m such that
χmc′ < c, χmA′ < A and χmL′ < L, and setting n? = (m1 + 1)k + nδ produces the required
contraction.

Proof of Lemma 8.7. Let n ≥ nδ (from Lemma 8.5) and f ∈ Cc,A,L(δ). For each W ∈ Ws(δ) and
ψ ∈ Da,β(W ), we have

ˆ
W
ψLn(1Hcf) =

∑
Wi∈LoHn (W ;δ)

ˆ
Wi

T̂nWi
ψ f +

∑
Wi∈ShHn (W ;δ)

ˆ
Wi

T̂nWi
ψ f, (8.6)

where we are using the notation of Section 5.1 for the test functions. Since any element of Gn(W )
may produce up to P0 elements of ShHn (W ; δ) according to assumption (H1′), we estimate

ˆ
W
ψLn(1Hcf) ≤

∑
Wi∈LoHn (W ;δ)

|||f |||+
ˆ
TnWi

ψ +AP0|||f |||−e
a(2δ)β

ˆ
W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≤ |||f |||+
ˆ
W
ψ
(

1 +AP0e
a(2δ)β (C̄0δδ

−1
0 + C0θ

n
1 )
)
,
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where we have used |W | ≥ δ and cone condition (4.7), as well as Lemma 3.1(b) to sum over elements
of ShHn (W ; δ).

Analogously, using Lemma 8.5,

ˆ
W
ψLn(1Hcf) ≥

∑
Wi∈LoHn (W ;δ)

|||f |||−
ˆ
TnWi

ψ −AP0|||f |||−e
a(2δ)β

ˆ
W
ψ (C̄0δδ

−1
0 + C0θ

n
1 )

≥ |||f |||−
ˆ
W
ψ

(
e−a(2δ)β

2
(1− µSRB(H))−AP0e

a(2δ)β (C̄0δδ
−1
0 + C0θ

n
1 )

)
.

Let n2 be such that 2AP0C0θ
n2
1 ≤ 1

24(1− µSRB(H)), then for n ≥ n2 and δ small enough we have

|||Ln(1Hcf)|||− ≥ |||f |||−
1

6
(1− µSRB(H)). (8.7)

Accordingly, for n ≥ max{n2, nδ} =: n̄δ and δ small enough, we obtain

|||Ln(1Hcf)|||+
|||Ln(1Hcf)|||−

≤
3
2 |||f |||+

|||f |||−(1
6(1− µSRB(H))

≤ 9L

1− µSRB(H)
=: L′ . (8.8)

The contraction of A follows step-by-step from our estimates in Section 5.2.2. Taking W ∈
Ws
−(δ) and grouping terms as in (8.6) we treat both long and short pieces precisely as in Section 5.2.2

with the additional observation that each element of Gn(W ) produces at most P0 elements of
ShHn (W ; δ) by assumption (H1′). Thus (5.4) becomes,

|
´
W ψLn(1Hcf)|ffl

W ψ
≤ Aδ1−q|W |q|||f |||−

(
2LA−1 + P0e

a(2δ)β (C̄0δ
−1
0 |W |+ C0θ

n
1 )1−q

)
≤ Aδ1−q|W |q|||Ln(1Hcf)|||−

6

1− µSRB(H)
=: A′δ1−q|W |q|||Ln(1Hcf)|||− ,

(8.9)

where we have applied (8.7) and assumed n ≥ max{n2, nδ}.
Finally, we show how the parameter c contracts from cone condition (4.8). Following Sec-

tion 5.2.3, we take W 1,W 2 ∈ Ws
−(δ) with dWs(W 1,W 2) ≤ δ, and ψk ∈ Da,α(W k) with d∗(ψ1, ψ2) =

0. As before, we assume w.l.o.g. that |W 2| ≥ |W 1| and
ffl
W 1 ψ1 = 1.

We begin by recording that, by (8.9),

´
Wk ψk Ln(1Hcf)ffl

Wk ψk
≤ A′|W k|qδ1−q|||Ln(1Hcf)|||− ≤

1

2
dWs(W 1,W 2)γδ1−γcA′|||1Hcf |||−,

for k = 1, 2, provided |W 2|q ≤ δq−γ c2dWs(W 1,W 2)γ . Accordingly, it suffices to consider the case
|W 2|q ≥ δγ−q c2dWs(W 1,W 2)γ .

It follows from (5.8) that |W 1|q ≥ 1
2δ
q−γ c

2dWs(W 1,W 2)γ , recalling that dWs(W 1,W 2) ≤ δ and
(5.7).

Next, following (5.11), we decompose elements of GHn (W k) into matched and unmatched pieces,
as in (5.12). We estimate the unmatched pieces precisely as in (5.14), noting that by (H1′) and the
transversality condition (H2), each previously unmatched element of Gn(W k) may be subdivided
into at most P0 additional unmatched pieces V k

j , while each matched element may produce up to
P0 additional unmatched pieces each having length at most,

|V k
j | ≤ CtC5nΛndWs(W 1,W 2) ,

46



by Lemma 5.5(a). Thus,∑
j,k

∣∣∣∣∣
ˆ
V kj

f T̂n
V kj
ψk

∣∣∣∣∣ ≤ 9P0

1− µSRB(H)
C4ALδ

1−γdWs(W 1,W 2)γ |||Ln(1Hcf)|||− , (8.10)

where we have used (8.7) in (5.13) to estimate

|||Lnf |||− ≤ |||L
nf |||+ ≤

3
2 |||f |||+ ≤

3
2L|||f |||− ≤

9L
1−µSRB(H) |||L

n(1Hcf)|||− . (8.11)

The estimate on matched pieces proceeds precisely as in (5.18), and with an additional factor
of P0 in (5.19), we arrive at (5.23), again applying (8.7),∑
j

∣∣∣∣∣
ˆ
U1
j

f T̂U1
j
ψ1 −

ˆ
U2
j

f T̂U2
j
ψ2

∣∣∣∣∣
≤ 6P0

1−µSRB(H)24C̄0CsAδ
1−γdWs(W 1,W 2)γ |||Ln(1Hcf)|||−

(
2q40C5δ

q−γ + cC5n
γΛ−nγ + 2qC5nΛ−nδ

)
.

Combining this estimate together with (8.10) in (5.11) (with A′ in place of A in (5.11)), and recalling
(5.12), yields by (5.24),∣∣∣∣

´
W 1 Lnf ψ1ffl
W 1 ψ1

−
´
W 2 Lnf ψ2ffl
W 2 ψ2

∣∣∣∣ ≤ 6P0

1− µ(H)
cAδ1−γdWs(W 1,W 2)γ |||Ln(1Hcf)|||− ,

where we have applied (5.25) to simplify the expression. Setting c′ = P0c and recalling the definition
of A′ from (8.9) completes the proof of the lemma.

8.3 Sequential open systems

We conclude the section by illustrating several physically relevant models to which our results apply.
Admittedly, we cannot treat the most general cases, yet we believe the following shows convincingly
that the techniques developed here can be the basis of a general theory.

Dispersing billiards with small holes have been studied in [DWY, D1, D2], and results obtained
regarding the existence and uniqueness of limiting distributions in the form of SRB-like conditionally
invariant measures, and singular invariant measures supported on the survivor set. In the present
context, we are interested in generalizing these results to the non-stationary setting. Analogous
results for sequences of expanding maps with holes have been proved in [MO, GO].

We consider a family of billiard tables on T2 with uniform constants. In order that all the maps
and transfer operators act on the same space M , we first choose a number d of scatterers Bi and a
set of d arclengths (`1, . . . , `d) for the perimeters of the scatterers. Next fix τ∗,K∗ > 0 and E∗ <∞.
Let Qd(τ∗,K∗, E∗) denote the set of billiard tables Q on T2 with precisely d pairwise disjoint convex
scatterers with C3 boundaries having perimeters `1, . . . , `d, and satisfying,

τ∗ ≤ τmin ≤ τmax ≤ τ−1
∗ , K∗ ≤ Kmin ≤ Kmax ≤ K−1

∗ , and ‖∂Q‖C3 ≤ E∗ .

Let Td(τ∗,K∗, E∗) denote the associated set of billiard maps. Since we have fixed the number and
perimeter of each scatterer, all the maps in Td(τ∗,K∗, E∗) act on the same phase space M , although
maps pertaining to different arrangements of scatterers may be very different.

It is shown in [DZ2] that one can choose k0 in the definition of homoegeneity strips, and δ0 > 0
such that all T ∈ Td(τ∗,K∗, E∗) satisfy the distortion bounds, one-step expansion and growth
lemmas of Section 2 with uniform constants depending only on τ∗, K∗ and E∗. Indeed, this family
of maps preserves a common set of stable curves Ws [DZ2, Section 6.1]. In addition, an inspection
of the proof of Lemma 6.4 shows that n∗ is continuous in Qd(τ∗,K∗, E∗). Accordingly, a direct
application of Theorem 6.10 yields:
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Proposition 8.8. Fix τ∗,K∗ > 0 and E∗ <∞, and let a, c, A, L, δ and δ0 satisfy the conditions of
Theorem 6.10. There exist χ < 1 and NT > 0, such that for all T ∈ Td(τ∗,K∗, E∗) if n ≥ NT , then
LnTCc,A,L(δ) ⊂ Cχc,χA,χL(δ), where LT is the transfer operator corresponding to the map T .

Next, we introduce holes into a billiard table Q ∈ Qd(τ∗,K∗, E∗). Let H(P0, Ct) define the set
of holes H ⊂M which satisfy (H1), (H1′) and (H2) with constants P0 and Ct, respectively.

For concreteness, we give two example of physical holes that satisfy our hypotheses, following
[DWY, D2].

Holes of Type I. Let G ⊂ ∂Q be an arc in the boundary of one of the scatterers. Trajectories of the
billiard flow are absorbed when they collide with G. This induces a hole H in the phase space M
of the billiard map of the form (a, b)× [−π/2, π/2]. Note that ∂H consists of two vertical lines, so
that H satisfies assumption (H2) since the vertical direction is uniformly transverse to the stable
cone, as well as assumptions (H1) and (H1′) with P0 = 3.

Holes of Type II. Let G ⊂ Q be an open convex set bounded away from ∂Q and having a C3

boundary. Such a hole induces a hole H in M via its ‘forward shadow.’
We define H to be the set of (r, ϕ) ∈ M whose backward trajectory under the billiard flow

enters G before it collides with ∂Q. Thus points in M which are about to enter G before their next
collision under the forward billiard flow are considered still in the open system, while those points
in M which would have passed through G on the way to their current collision are considered to
have been absorbed by the hole.

With this definition, the geometry of H is simple to state: if we view G as an additional
scatterer in Q, then H is simply the image of G under the billiard map. Thus H will have connected
components on each scatterer that has a line of sight to G, and ∂H will comprise curves of the form
S0 ∪ T (S0), which are positively sloped curves, all uniformly transverse to the stable cone. Thus
holes of Type II satisfy (H2) as well as (H1) and (H1′) with P0 = 3. (See the discussion in [D2,
Section 2.2].)

Still other holes are presented in [D2] such as side pockets, or holes that depend on both position
and angle, which satisfy (H1), (H1′) and (H2), but for the sake of brevity, we do not repeat those
definitions here.

As noted, both holes of Type I and Type II satisfy (H1) and (H1′) with P0 = 3. Moreover,
holes of Type I satisfy (H2) with Ct depending only on the maximum slope of curves in the stable
cone. This slope is bounded by Kmax + 1

τmin
, so choosing Ct ≥ K∗+ τ−1

∗ suffices. Since ∂H for holes
of Type II have positive slope, the same choice of Ct will suffice for such holes to satisfy (H2).

Fixing Td(τ∗,K∗, E∗) and H(P0, Ct), we define a non-stationary open billiard by choosing a
sequence of maps and holes ((Ti, Hi))

∞
i=1 such that Ti ∈ Td(τ∗,K∗, E∗) and Hi ∈ H(P0, Ct). For

each i, the corresponding open system is defined by

T̊i : T−MTi (M \Hi)→M \Hi, T̊i(x) = TMTi (x) for x ∈ T−MTi (M \Hi) ,

where MT = NT + n?, and NT is defined in Proposition 8.8, while n? is as in Proposition 8.3 or
Proposition 8.6 depending on which hypotheses are satisfied. To concatenate these into a sequential
system, define

T̊j,i(x) = T̊j ◦ · · · ◦ T̊i(x) for x ∈ ∩jl=1T̊
−1
i ◦ · · · ◦ T̊−1

l (M \Hl) .

The transfer operator for the sequential system is defined by

L̊j,if = LMTTj 1Hc
j
· · · LMTTi 1Hc

i
f . (8.12)
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Remark 8.9. The definition of open system we adopt here permits trajectories to escape only if
they enter the hole at multiples of MT iterates. This contrasts with the usual situation in the
literature in which escape is possible at each iterate of the map. Such results rely on the assumption
that the holes are sufficiently small in an appropriate sense. Yet here we are interested instead in
situations in which the holes are large, and so we use the iterates of the map to acquire sufficient
hyperbolicity to overcome this difficulty. To extend our results for large holes to the more natural
case in which the particles can escape at each time requires an analysis of the combinatorics of the
trajectories which exceeds our present goals.

We will be interested in the evolution of probability densities under the sequential system, given

by
L̊n,kf´

M L̊n,kf dµSRB
. Note that if f ∈ Cc,A,L(δ) then

´
M L̊n,kf > 0 for each n (thus the normalization

is well defined). When f ≥ 0, this normalization coincides with the L1(µSRB) norm; however, we
use the integral rather than the L1 norm as the normalization since the integral is order preserving
with respect to our cone, while the L1 norm is not. We conclude the section with a result regarding
exponential loss of memory for the sequence of open billiards.

Theorem 8.10. Fix τ∗,K∗ > 0 and E∗ < ∞, and let a, c, A, L, δ and δ0 satisfy the conditions
of Theorem 6.10 and Lemma 7.1. There exist C > 0 and ϑ < 1 such that for all sequences
((Ti, Hi))

∞
i=1 ∈ Td(τ∗,K∗, E∗)∞ × H(P0, Ct)

∞, satisfying either (H1), (H2) or (H1′), (H2), for all
ψ ∈ C1(M), for all f, g ∈ Cc,A,L(δ) and all 1 ≤ k ≤ n,∣∣∣∣∣

ˆ
M

L̊n,kf
µSRB(L̊n,kf)

ψ dµSRB −
ˆ
M

L̊n,kg
µSRB(L̊n,kg)

ψ dµSRB

∣∣∣∣∣ ≤ CLϑn−k|ψ|C1(M) .

Proof. Proposition 8.8 implies that the constants appearing in Propositions 8.3 and 8.6 are uni-
form. Hence, if f, g ∈ Cc,A,L(δ), then for each k ≤ n ∈ N, L̊n,kf , L̊n,kg ∈ Cc,A,L(δ). Since´
M

L̊n,kf
µSRB(L̊n,kf)

dµSRB =
´
M

L̊n,kg
µSRB(L̊n,kg)

dµSRB = 1, the theorem follows arguing exactly as in the

proof of Theorem 7.4, using again the order preserving semi-norm ‖ · ‖ψ, as well as the fact that by
Remark 7.2,

‖L̊n,kf‖ψ
µSRB(L̊n,kf)

≤ C̄|ψ|C1

|||L̊n,kf |||+
|||L̊n,kf |||−

≤ C̄L|ψ|C1 .

When invoking (7.6), it holds that ρC(L̊n,kf/µSRB(L̊n,kf), L̊n,kg/µSRB(L̊n,kg)) = ρC(L̊n,kf, L̊n,kg)
due to the projective nature of the metric.

Note that, by changing variables,
´
M L̊n,kf ψ dµSRB =

´
M̊n,k

f ψ ◦ T̊n,k dµSRB, where M̊n,k =

∩ni=1T̊
−1
k ◦ · · · ◦ T̊−1

i (M \Hi). Thus the conclusion of the theorem is equivalent to the expression,∣∣∣∣∣∣
´
M̊n,k

f ψ ◦ T̊n,k dµSRB´
M̊n,k

f dµSRB

−

´
M̊n,k

g ψ ◦ T̊n,k dµSRB´
M̊n,k

g dµSRB

∣∣∣∣∣∣ ≤ CLϑn−k|ψ|C1(M) .

Remark 8.11. Taking Hi = ∅ for each i yields an exponential loss of memory for sequential
billiards without holes. Such systems have been studied and similar results obtained in [SYZ]. Note
however that we allow for drastic, occasional, changes in the billiard sequence while [SYZ] deals
only with slowly changing billiard tables.

Next we show that sequential systems with holes allow us to begin investigating some physical
problems that have attracted much attention: chaotic scattering and random Lorentz gasses.

49



Incoming particle beam

Figure 1: Obstacle configuration for which the non-eclipse condition fails and the box R (dashed
line).

8.4 Chaotic scattering (boxed)

Consider a collection of strictly convex pairwise disjoint obstacles {Bi} in R2 for which the non-
eclipse condition may fail.10 Assume that there exists a closed rectangular box R = [a, b]×[c, d] such
that if an obstacle does not intersect its boundary, then it is contained in the box. In addition, if an
obstacle intersects the boundary of R, then it is symmetrical with respect to a reflection across all
the linear pieces of the boundary which the obstacle intersects (see Figure 1 for a picture). Finally,
we will assume a finite horizon condition on the cover Q̃ defined after Remark 8.14.

Remark 8.12. The restriction regarding symmetrical reflections on the configuration of obstacles
is necessary only because we did not develop the theory in the case of billiards in a polygonal box
(see Remark 8.14 and the following text to see why this is relevant). Such an extension is not
particularly difficult and should eventually be done. Other extensions that should be within reach
of our technology are more general types of holes and billiards with corner points. Here, however,
we are interested in presenting the basic ideas; addressing all possible situations would make our
message harder to understand.

Lemma 8.13. If a particle exits R at time t0 ∈ R, then, in the time interval (t0,∞), it will
experience only a finite number of collisions and it will never enter R again.

Proof. Recall that R = [a, b] × [c, d]. Of course, the lemma is trivially true if, after exiting R, the
particle has no collisions. Let us immagine that the particle, after exiting from the vertical side
(b, c) − (b, d), collides instead with the obstacle Bi at the point p = (p1, p2). Note that Bi must
then intersect the same boundary, otherwise it would be situated to the left of the line x = b and
the particle could not collide since necessarily p1 > b. Our hypothesis that Bi be symmetric with
respect to reflection across x = b implies that also (2b − p1, p2) ∈ ∂Bi. Thus, by the convexity
of Bi, the horizontal segment joining p and (2b − p1, p2) is contained in Bi. This implies that,
calling η = (η1, η2) the normal to ∂Bi in p, it must be η1 ≥ 0. In addition, if v = (v1, v2) denotes
the particle’s velocity just before collision, it must be that v1 > 0 since the particle has crosses a

10Remember that the non-eclipse condition is the requirement that the convex hull of any two obstacles does not
intersect any other obstacle.
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vertical line to exit B. Finally, 〈v, η〉 ≤ 0, otherwise the particle would not collide with Bi. But
since the velocity after collision is given by v+ = v − 〈v, η〉η, it follows v+

1 = v1 − 〈v, η〉η1 ≥ v1.
That is, the particle cannot come back to the box B. Since all the obstacles are contained in a
larger box B1 and since there is a minimal distance between obstacles, the above also implies that
the particle can have only finitely many collisions in the future. The other cases can be treated
exactly in the same manner.

Remark 8.14. We want to consider a scattering problem: the particles enter the box coming
from far away and with random position and/or velocity, interact and, eventually, leave the box.
The basic question is how long they stay in the box or, better, what is the probability that they
stay in the box longer than some time t. This is nothing other than an open billiard with holes.
Unfortunately, the holes are large and our current theory allows us to deal with large holes only if
enough hyperbolicity is present. To extend the result to systems with small hyperbolicity is a very
important (and hard) problem as one needs to understand the combinatorics of the trajectories for
long times.

Given the above remark we modify the system in order to have the needed hyperbolicity. This is
not completely satisfactory, yet it shows that our machinery can deal with large holes and illustrates
exactly what further work is necessary to address the general case.

Fixing N sufficiently large, we suppose that when a particle enters the box, the boundaries of
the box become reflecting and are transparent again only between the collisions kN and kN + 1,
k ∈ N, counting only collisions with the convex obstacles.

More precisely, consider the billiard in R with elastic reflection at ∂R. We call such a billiard
Q. Let M =

(
∪i ∂Bi ∩R

)
× [−π

2 ,
π
2 ] be the Poincaré section,11 and consider the Poincaré map T :

M →M describing the dynamics from one collision with a convex body to the next. Unfortunately,
this is not a type of billiard that fits our hypothesis. Yet, when the particle collides with ∂R we
can reflect the box and imagine that the particle continues in a straight line. Note that, by our
hypothesis, the image of the obstacles that intersect the boundary are the obstacle themselves,
this is the reason why we restricted the obstacle configuration. We can then reflect the box three
times, say across its right and top sides and then once more to make a full rectangle with twice
the width and height of R, and identify the opposite sides of this larger rectangle. In this way we
obtain a torus T2 containing pairwise disjoint convex obstacles. Such a torus is covered by four
copies of R, let us call them {Ri}4i=1. We call such a billiard Q̃, and we consider the Poincaré map

T̃ which maps from one collision with a convex body to the next, and denote its phase space by
M̃ = ∪4

i=1M̃i.

Our final assumption on the obstacle configuration is that Q̃ is a Sinai billiard with finite horizon.
Hence T̃ : M̃ 	 falls within the scope of our theory. By construction there is a map π : M̃ → M
which sends the motion on the torus to the motion in the box. Indeed, if x̃ ∈ M̃ and x = π(x̃),
then Tn(x) = π(T̃n(x̃)), for all n ∈ N.

We then consider the maps S̃ = T̃N and S = TN , again π(S̃(x̃)) = S(π(x̃)). Define also the

projections π̃1 : M̃ → Q̃ and π1 : M → Q, which map a point in the Poincaré section to its position
on the billiard table. For x̃ ∈ M̃ , let us call Õ(x̃) the straight trajectory in T2 between π̃1(x̃)
and π̃1(T̃ (x̃)), and setting x = π(x̃), O(x) the trajectory between π1(x) and π1(T ((x)). Note that
the latter trajectory can consist of several straight segments joined at the boundary of R, where
a reflection takes place. By construction, if Õ(x̃) intersects m of the sets ∂Ri, then the trajectory

11Recall that ϕ ∈ [−π
2
, π

2
] is the angle made by the post-collision velocity vector and the outward pointing normal

to the boundary
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O(x) experiences m reflections with ∂R. Accordingly, we introduce, in our billiard system (M̃, S̃),

the following holes : H̃ = T̃{x̃ ∈ M̃ : Õ(x̃) ∩ (∪i∂Ri) 6= ∅} and set H = π(H̃).
The above makes precise the previous informal statement: the system (M,S) with hole H,

describes the dynamics of the billiard (M,T ) in which the particle can exit R only at the times kN ,
k ∈ Z. The transfer operator associated with the open system (M,S;H) is 1HcLS1Hc , yet since
(1HcLS1Hc)n = 1Hc(LS1Hc)n, it is equivalent to study the asymptotic properties of L̊S := LS1Hc .

For a function f : M → C, we define its lift f̃ : M̃ → C by f̃ = f ◦ π. The pointwise identity
then follows,

L̊S̃ f̃ := LS̃(1
H̃c f̃) = LS̃((1Hcf) ◦ π) = (L̊Sf) ◦ π . (8.13)

While H̃ is not exactly a hole of Type II, its boundary nevertheless comprises increasing curves
since it is a forward image under the flow of a wave front with zero curvature (a segment of ∂Ri).
Hence condition (H1′) of Section 8.2 holds with P0 = 3 and condition (H2) holds with Ct depending

only on the uniform angle between stable and unstable curves in M̃ . Thus Proposition 8.6 applies
to L̊S̃ with n? depending on Ct and P0 = 3. In fact, our next result shows that also L̊S contracts
Cc,A,L(δ) on M .

Proposition 8.15. Let n? ∈ N be from Proposition 8.6 corresponding to P0 = 3 and Ct > 0.
Then for each small enough δ > 0, there exist c, A, L > 0, χ ∈ (0, 1) such that choosing N ≥ n?,
L̊S(Cc,A,L(δ)) ⊂ Cχc,χA,χL(δ), where S = TN .

Proof. As already noted above, Proposition 8.6 implies the existence of δ, c, A, L and χ such that
L̊S̃(C̃c,A,L(δ)) ⊂ C̃χc,χA,χL(δ) if we choose N ≥ n?. Note that the constant Ct is the same on M̃ and

M . In fact the same choice of parameters for the cone works for L̊S .
For any stable curve W , π−1W = ∪4

i=1W̃i where each W̃i is a stable curve satisfying π(W̃i) = W .

Since π is invertible on each M̃i, we may define the restriction πi = π|
M̃i

such that π−1
i (W ) = W̃i.

Conversely, the projection of any stable curve W̃ in M̃ is also a stable curve in M .
Since each πi is an isometry, and recalling (8.13), for any stable curve W ⊂ M , each f ∈

Cc,A,L(δ), and all n ≥ 0,ˆ
W̃i

ψ ◦ π L̊n
S̃
f̃ dm

W̃
=

ˆ
W
ψ L̊nSf dmW , ∀ ψ ∈ C0(W̃ ),

where f̃ = f ◦ π. Moreover, if ψ ∈ Da,β(W ), then ψ ◦ π ∈ Da,β(W̃i), for each i = 1, . . . , 4. This

implies in particular that |||L̊nSf |||± = |||L̊n
S̃
f̃ |||± for all n ≥ 0, and that f ∈ Cc,A,L(δ) if and only if

f̃ = f ◦ π ∈ C̃c,A,L(δ). Consequently, L̊Sf ∈ Cχc,χA,χL(δ) if and only if L̊S̃ f̃ ∈ C̃χc,χA,χL(δ), which
proves the proposition.

In contrast to the sequential systems studied in Section 8.3, the open billiard in this section
corresponds to a fixed billiard map T (and its lift T̃ ). Thus we can expect the (normalized) iterates
of L̊S to converge to a type of equilibrium for the open system. Such an equilibrium is termed
a limiting or physical conditionally invariant measure in the literature, and often corresponds to
a maximal eigenvalue for L̊S on a suitable function space. Unfortunately, conditionally invariant
measures for open ergodic invertible systems are necessarily singular with respect to the invariant
measure and so will not be contained in our cone Cc,A,L(δ). However, we will show that for our
open billiard, the limiting conditional invariant measure is contained in the completion of Cc,A,L(δ)
with respect to the following norm.

Definition 8.16. Let V = span
(
Cc,A,L(δ)

)
For all f ∈ V we define

‖f‖? = inf{λ ≥ 0 : −λ � f � λ} .
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Lemma 8.17. The function ‖ · ‖? has the following properties:

a) The function ‖ · ‖? is an order-preserving norm, that is: −g � f � g implies ‖f‖? ≤ ‖g‖?.

b) There exists C > 0 such that for all f ∈ Cc,A,L(δ) and ψ ∈ C1(M),∣∣∣∣ˆ
M
f ψ dµSRB

∣∣∣∣ ≤ C|||f |||+|ψ|C1(M) ≤ C‖f‖?|ψ|C1(M) .

Proof. In this proof, for brevity we write C in place of Cc,A,L(δ).

a) First note that ‖f‖? < ∞ for any f ∈ V by the proof of Proposition 6.11 since there for any
f ∈ C, we find λ, µ > 0 such that f − λ and µ− f belong to C.

Next, if ‖f‖? = 0, then there exists a sequence λn → 0 such that −λn � f � λn, and so
λn + f, λn − f ∈ C) for each n. Since C is closed (see footnote 1), this yields f,−f ∈ C ∪ {0} and
so f = 0 since C ∩ −C = ∅ by construction.

Since f � g is equivalent to νf � νg for ν ∈ R+, it follows immediately that ‖νf‖? = ν‖f‖?.
To prove the triangle inequality, let f, g ∈ V. For each ε > 0, there exists a, b, a ≤ ε + ‖f‖?,

b ≤ ε+ ‖g‖? such that −a � f � a and −b � g � b. Then

−(‖f‖? + ‖g‖? + 2ε) � −(a+ b) � f + g � a+ b ≤ ‖f‖? + ‖g‖? + 2ε ,

implies the triangle inequality by the arbitrariness of ε. We have thus proven that ‖ · ‖? is a norm.
Next, suppose that −g � f � g and let b be as above. Then

−‖g‖? − ε � −b � −g � f � g � b � ‖g‖? + ε

which implies ‖f‖? ≤ ‖g‖?, again by the arbitrariness of ε. Hence, the norm is order preserving.

b) The first inequality is contained in Remark 7.2. For the second inequality, we will prove that

|||f |||+ ≤ ‖f‖? for all f ∈ C. (8.14)

To see this, note that if −λ � f � λ, then |||λ − f |||− ≥ 0 by Remark 4.6. Thus for any W̃ ∈ W̃s

and ψ ∈ Da,β(W̃ ),

0 ≤
´
W (λ− f)ψ´

W ψ
=⇒

´
W f ψ´
W ψ

≤ λ ,

and taking suprema over W and ψ yields |||f |||+ ≤ λ, which implies (8.14).

We now define C? to be the completion of Cc,A,L(δ) in the ‖ · ‖? norm. We remark that by
Lemma 8.17(b), C? embeds naturally into (C1(M))′, where (C1(M))′ is the closure of C0(M)
with respect to the norm ‖f‖−1 = sup|ψ|C1≤1

´
M fψ dµSRB. We shall show that the conditionally

invariant measure for the open system (M,T ;H) belongs to C?.

Theorem 8.18. Let (M,S;H) be as defined above, where S = TN . If N ≥ n?, where n? is from
Proposition 8.6, then:

a) h := lim
n→∞

L̊nS1

µSRB(L̊nS1)
is an element of C?. Moreover, h is a nonnegative probability measure

satisfying L̊Sh = νh for some ν ∈ (0, 1) such that

log ν = lim
n→∞

1

n
logµSRB(∩ni=0S

−i(M \H)) ,

i.e. − log ν is the escape rate of the open system.
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b) There exists C > 0 and ϑ ∈ (0, 1) such that for all f ∈ Cc,A,L(δ) and n ≥ 0,∥∥∥∥∥ L̊nSf
µSRB(L̊nSf)

− h

∥∥∥∥∥
?

≤ Cϑn .

In addition, there exists a linear functional ` : Cc,A,L(δ) → R such that for all f ∈ Cc,A,L(δ),
`(f) > 0 and

‖ν−nL̊nSf − `(f)h‖? ≤ Cϑn`(f)‖h‖?.

The constant C depends on Cc,A,L(δ), but not on f .

Remark 8.19. (a) The conclusions of Theorem 8.18 apply equally well to the open system (M̃, S̃; H̃).

(b) By Lemma 8.17(b), the convergence in the ‖·‖? norm given by Theorem 8.18(b) implies conver-
gence when integrated against smooth functions ψ ∈ C1(M). As usual, by standard approximation
arguments, the same holds for Hölder functions.

(c) Also by Lemma 8.17(b), the above convergence in ‖ · ‖? implies leafwise convergence as well.
First note that for W ∈ Ws(δ), each f ∈ Cc,A,L(δ) induces a leafwise distribution on W defined
by fW (ψ) =

´
W f ψ dmW , for ψ ∈ Da,β(W ). This extends by density to f ∈ C?. Since h ∈ C?

by Theorem 8.18(a), let hW denote the leafwise measure induced by h on W ∈ Ws(δ). Then by
Lemma 8.17(b) and Theorem 8.18(b), there exists C > 0 such that for all n ≥ 0,∣∣∣∣∣

´
W L̊

n
Sf ψ dmW

µSRB(L̊nSf)
− hW (ψ)

∣∣∣∣∣ ≤ Cδ−1ϑn , ∀f ∈ Cc,A,L(δ), ∀ψ ∈ Cβ(W ) ,

and also, ∣∣∣∣ν−n ˆ
W
L̊nSf ψ dmW − `(f)hW (ψ)

∣∣∣∣ ≤ Cδ−1ϑn`(f) .

In particular, the escape rate with respect to each W ∈ Ws(δ) equals the escape rate with respect to
µSRB.

Proof of Theorem 8.18. We argue as in the proof of Theorem 7.3. Recalling that ‖ · ‖? is an order-
preserving norm, we can apply [LSV, Lemma 2.2], taking the homogeneous function ρ to also be
‖ · ‖? and obtain that, as in (7.6), for all f, g ∈ Cc,A,L(δ),∥∥∥∥∥ L̊nSf‖L̊nSf‖?

−
L̊nSg
‖L̊nSg‖?

∥∥∥∥∥
?

≤ Cϑn , (8.15)

since

∥∥∥∥ L̊nSf
‖L̊nSf‖?

∥∥∥∥
∗

= 1 and similarly for g. This implies that

(
L̊nSf
‖L̊nSf‖?

)
n≥0

is a Cauchy sequence in

the ‖ ·‖? norm, and in addition, the limit is independent of f . Hence, defining h0 = limn→∞
L̊nS1

‖L̊nS1‖?
,

we have h0 ∈ C? with ‖h0‖? = 1 such that12 for all ψ ∈ C1(M),

ˆ
M
L̊Sh0ψ = lim

n→∞

1

‖L̊nS1‖?

ˆ
M̃
L̊n+1
S 1ψ = lim

n→∞

‖L̊n+1
S 1‖?
‖L̊nS1‖?

ˆ
M
h0ψ = ‖L̊Sh0‖?

ˆ
M
h0ψ =: ν

ˆ
M
h0ψ ,

12Note that L̊S extends naturally to (C1(M))′ and therefore to C?.
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where all integrals are taken with respect to µSRB. Thus, L̊Sh0 = νh0. Moreover, the definition of
h0 implies that,

|h0(ψ)| ≤ |ψ|C0 lim
n→∞

µSRB(L̊nS1)

‖L̊nS1‖?
= |ψ|C0h0(1) , ∀ψ ∈ C1(M) , (8.16)

thus h0 is a measure. Addition, by the positivity of L̊S , h0 is a nonnegative measure and since
‖h0‖? = 1, it must be that h0(1) 6= 0. Thus we may renormalize and define

h :=
1

h0(1)
h0 .

Then 1Hch
h(Hc) represents the limiting conditionally invariant probability measure for the open system

(M,S;H). However, we will work with h rather than its restriction to Hc because h contains
information about entry into H, which we will exploit in Proposition 8.20 below.

Due to the equality in (8.16), h has the alternative characterization,

h = lim
n→∞

L̊nS1

µSRB(L̊nS1)
= lim

n→∞

L̊nS1

µSRB(M̊n)
,

as required for item (a) of the Theorem, where M̊n = ∩ni=0S
−i(M \H) and convergence is in the

‖ · ‖? norm.

Remark that (8.15) implies
L̊nSf
‖L̊nSf‖?

converges to h0 at the exponential rate ϑn. Integrating this

relation and using Lemma 8.17(b), we conclude that in addition the normalization ratio
µSRB(L̊nSf)

‖L̊nSf‖?
converges to h0(1) at the same exponential rate. Putting these two estimates together and using
the triangle inequality yields for all n ≥ 0,∥∥∥∥∥ L̊nSf

µSRB(L̊nSf)
− h

∥∥∥∥∥
?

≤ Cϑnh0(1)−1 , ∀ f ∈ Cc,A,L(δ) ,

proving the first inequality of item (b).
Next, for each, f ∈ Cc,A,L(δ) let

`(f) = lim sup
n→∞

ν−nµSRB(L̊nSf) . (8.17)

Note that ` is bounded, homogeneous of degree one and order preserving. By Lemma 8.17(b), `
can be extended to C?. Since `(h) = 1, ν−nL̊nSh = h and `(ν−nL̊nSf) = `(f) we can apply, again,
[LSV, Lemma 2.2] as in (7.6) to f and `(f)h and obtain

‖ν−nL̊nSf − h`(f)‖? = ν−n‖L̊nSf − `(f)L̊nSh‖? ≤ Cϑn`(f)‖h‖? , (8.18)

proving the second inequality of item (b) of the Theorem. Note that (8.18) also implies (integrating
and applying Lemma 8.17(b) ) that the limsup in (8.17) is, in fact, a limit, and hence ` is linear.
Remark that ` is also nonnegative for f ∈ Cc,A,L(δ) by Remark 7.2.

By definition, if f ∈ Cc,A,L(δ) and λ > ‖f‖? then λ + f, λ − f ∈ Cc,A,L(δ), so that using the
linearity and nonnegativity of ` yields,

− λ`(1) ≤ `(f) ≤ λ`(1) , ∀ f ∈ Cc,A,L(δ), λ > ‖f‖? . (8.19)
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Thus either `(f) = 0 for all f ∈ Cc,A,L(δ) or `(f) 6= 0 for all f ∈ Cc,AL(δ). But if the first alternative
holds, then by the continuity of ` with respect to the ‖ · ‖? norm (Lemma 8.17(b)), ` is identically
0 on C?, which is a contradiction since `(h) = 1. Thus `(f) > 0 for all f ∈ Cc,A,L(δ).

Finally, applying (8.18) to f ≡ 1 integrated with respect to µSRB and using again Lemma 8.17(b),
we obtain

|ν−nµSRB(M̊n)− `(1)| ≤ Cϑn`(1)‖h‖? ,

which in turn implies that log ν = limn→∞
1
n logµSRB(M̊n) since `(1) 6= 0, as required for the

remaining item of part (a) of the Theorem. Note that ν 6= 0 by Remark 7.2 and (8.7), while
ν 6= 1 by monotonicity since the escape rate for this class of billiards is known to be exponential
for arbitrarily small holes [DWY, D2].

We can use Theorem 8.18 to obtain exit statistics from the open billiard in the plane. As an
example, for θ ∈ [0, 2π) let us define Hθ to be the set of x ∈ H such that the first intersection of
O(T−1x) with ∂R has velocity making an angle of θ with the positive horizontal axis. Note that
Hθ is a finite union of unstable curves since it is the image of a wave front with zero curvature
moving with parallel velocities. The fact that Hθ comprises unstable curves is not altered by the
fact that the flow in R may reflect off of ∂R several times before arriving at a scatterer because
such collisions are neutral; also, since the corners of R are right angles, the flow remains continuous
at these corner points.

If the incoming particles at time zero are distributed according to a measure with density
f ∈ Cc,A,L(δ), then the probability that a particle leaves the box at time nN with a direction in
the interval Θ = [θ1, θ2], call it Pf (xn ∈ [θ1, θ2]), can be expressed as

Pf (xn ∈ [θ1, θ2]) =

ˆ
M
1HΘ
L̊nSf dµSRB , (8.20)

where HΘ := ∪θ∈ΘHθ. Although the boundary of HΘ comprises increasing (unstable) curves as
already mentioned, the restriction on the angle may prevent ∂HΘ from enjoying the property of
continuation of singularities common to billiards. See Figure 2 (see also [D2, Sect. 8.2.2] for other
examples of holes without the continuation of singularities property).

Similarly, for p ∈ ∂R, define Hp to be the set of x ∈ H such that the last intersection of O(T−1x)
with ∂R is p. Then for an interval P ⊂ ∂R, we define HP = ∪p∈PHp, and

´
M 1HP L̊nSf denotes the

probability that a particle leaves the box at time nN through the boundary interval P .

Proposition 8.20. For any intervals of the form Θ = [θ1, θ2], or P = [p1, p2], any f ∈ C1(M)
with f ≥ 0 and

´
f dµSRB = 1, and all n ≥ 0, we have13

Pf (xn ∈ Θ) = νnh(1HΘ
)`(f) + ‖f‖C1O

(
νnϑ

q
q+1

n)
, and

Pf (xn ∈ P ) = νnh(1HP )`(f) + ‖f‖C1O
(
νnϑ

q
q+1

n)
.

Remark 8.21. If f ∈ Cc,A,L(δ), then `(f) > 0 by Theorem 8.18(b), and Proposition 8.20 provides
a precise asymptotic for the escape of particles through HΘ and HP . For more general f ∈ C1(M),
it may be that `(f) = 0, in which case Proposition 8.20 merely gives an upper bound on the exit
statistic compared to the rate of escape given by ν.

Proof. We prove the statement for 1Θ. The statement for 1P is similar.
To start with we assume f ∈ Cc,A,L(δ), f ≥ 0 with

´
f dµSRB = 1. As already mentioned, ∂HΘ

comprises finitely many unstable (increasing) curves in M and so HΘ satisfies (H1′) and (H2) with

13If instead f ∈ Cc,A,L(δ), f ≥ 0 and
´
f dµSRB = 1, then ‖f‖C1 can be dropped from the right hand side.
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B1

B2

B3

∂R
p

(a)
ϕ = −π

2

ϕ = π
2

HΘ
TS0(B1)

Hθ2

Hθ1

Hp

(b)

Figure 2: a) Sample rays with θ = θ1 and θ = θ2 striking the scatterer B2. The point p is
the topmost point of ∂B3. b) Component of HΘ on the scatterer B2. In this configuration, Hθ1

intersects the singularity curve TS0 coming from B1 while Hθ2 reaches S0 directly; however, the
left boundary of HΘ is an arc of Hp and the continuation of singularities properties fails for a hole
of this type since θ1 > 0.

P0 = 3 and Ct depending only on the uniform angle between the stable and unstable curves. Since
1HΘ

is not in C1(M), we cannot apply Lemma 8.17(b) directly; we will use a mollification to bypass
this problem.

Let ρ : R2 → R2 be a nonnegative, C∞ function supported in the unit disk with
´
ρ = 1, and

define ρε(·) = ε−2ρ(· ε−1). For ε > 0, define the mollification,

ψε(x) =

ˆ
1HΘ

(y)ρε(x− y) dy x ∈M .

We have |ψε|C0 ≤ 1 and |ψ′ε|C0 ≤ Cε−1. Note that ψε = 1HΘ
outside an ε-neighborhood of ∂Hθ

(including S0). Letting ψ̃ε denote a C1 function with |ψ̃ε|C0 ≤ 1, which is 1 on Nε(∂HΘ) and 0 on
M \N2ε(∂HΘ), we have |1HΘ

−ψε| ≤ ψ̃ε. Due to (H2), for any W ∈ Ws such that W∩Nε(∂HΘ) 6= ∅,
using first the fact that f ≥ 0 and then applying cone condition (4.7),ˆ

W
|1HΘ

− ψε| L̊nSf dmW ≤
ˆ
W
ψ̃ε L̊nSf dmW ≤

ˆ
W∩N2ε(∂HΘ)

L̊nSf dmW

≤ 21+qAδ1−qCqt ε
q|||L̊nSf |||− ,

(8.21)

where we have used the fact that W ∩ N2ε(∂HΘ) has at most 2 connected components of length
2Ctε. Then integrating over M and disintegrating µSRB as in the proof of Lemma 7.1, we obtain,

ˆ
M
|1HΘ

− ψε|
L̊nSf

µSRB(L̊nSf)
dµSRB ≤

ˆ
M
ψ̃ε

L̊nSf
µSRB(L̊nSf)

dµSRB ≤ Cεq
|||L̊nSf |||−
µSRB(L̊nSf)

. (8.22)

By Remark 7.2, µSRB(L̊nSf) ≥ C̄−1|||L̊nSf |||−, so the bound is uniform in n. Since ψ̃ε ∈ C1(M) the

bound carries over to h(ψ̃ε), and since h is a nonnegative measure, to h(1HΘ
− ψε). Thus for each

n ≥ 0 and ε > 0,ˆ
1HΘ

L̊nSf dµSRB =

ˆ
(1HΘ

− ψε) L̊nSf dµSRB +

(ˆ
ψε L̊nSf dµSRB − νn`(f)h(ψε)

)
+ νn`(f)h(ψε − 1HΘ

) + νn`(f)h(1Hθ)

= O
(
εqνn`(f)

)
+O

(
|ψε|C1νnϑn`(f)

)
+ νn`(f)h(1HΘ

) ,

(8.23)
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where we have applied (8.22) to the first and third terms and Theorem 8.18(b) and Lemma 8.17(b)
to the second term. Since |ψε|C1 ≤ ε−1, choosing ε = ϑn/(q+1) yields the required estimate for
f ∈ Cc,A,L(δ).

To conclude, note that by Lemma 7.6, there exists C[ > 0 such that, if f ∈ C1(M), then, for
each λ ≥ C[‖f‖C1 , λ + f ∈ Cc,A,L(δ). Hence, by the linearity of the integral, `(f) as defined in
(8.17) can be extended to f ∈ C1 by `(f) = `(λ+ f)− `(λ), and the limsup is in fact a limit since
since the limit exists for λ+ f, λ ∈ Cc,A,L(δ) (see (8.18) and following).

Now take f ∈ C1 with
´
f dµSRB = 1 and λ ≥ C[‖f‖C1 as above. Then, necessarily λ+ f ≥ 0,

and so recalling (8.20), we have

Pλ+f
1+λ

(xn ∈ Θ) =

ˆ
M
1HΘ
L̊nS
(
λ+f
1+λ

)
=

λ

1 + λ

ˆ
M
1HΘ
L̊nS1 +

1

1 + λ

ˆ
M
1HΘ
L̊nSf

=
λ

1 + λ
P1(xn ∈ Θ) +

1

1 + λ
Pf (xn ∈ Θ).

Hence by (8.23),

Pf (xn ∈ Θ) = (1 + λ)Pλ+f
1+λ

(xn ∈ Θ)− λP1(xn ∈ Θ)

= νnh(1HΘ
)(λ`(1) + `(f))− νnh(1HΘ

)λ`(1) + λO
(
νnϑ

q
q+1

n)
= νnh(1HΘ

)`(f) + ‖f‖C1O
(
νnϑ

q
q+1

n)
.

8.5 Random Lorentz gas (lazy gates)

Consider a Lorentz gas described in [AL, Section2]. That is, we have a lattice of cells of size one
with circular obstacles of fixed radius r at their corners and a random obstacle B(z) of fixed radius
ρ and center in a set O at their interior.14 The central obstacle is small enough not to intersect with
the other obstacles but large enough to prevent trajectories from crossing the cell without colliding
with an obstacle. We call the openings between different cells gates, see Figure 3b, and require that
no trajectory can cross two gates without making at least one collision with the obstacles. Thus
we fix r and ρ satisfying15 the following conditions:

1
3 ≤ r <

1
2 , and 1− 2r < ρ <

√
2

2 − r . (8.24)

With r and ρ fixed, the set of possible configurations of the central obstacle are described by
ω ∈ Ω = OZ2

. In order to ensure that particles cannot cross directly from R̂1 to R̂3 or from R̂2

to R̂4 without colliding with an obstacle, and to ensure a minimum distance between scatterers,
we fix ε∗ > 0 and require the center c = (c1, c2) of the random obstacle Bω, ω ∈ Ω, (the central
obstacle C5 in Figure 3b) to satisfy,

1− (r + ρ− ε∗) ≤ c1, c2 ≤ r + ρ− ε∗ . (8.25)

Note that (8.24) and (8.25) imply that all possible positions of the central scatterer Bω result in a
billiard table with τmin ≥ τ∗ := min{ε∗, 1− 2r} > 0.

On Ω the space of translations ξz, z ∈ Z2, acts naturally as [ξz(ω)]x = ωz+x, see Figure 3a.
We assume that the obstacle configurations are described by a measure Pe which is ergodic with
respect to the translations.

14The assumption that all obstacles are circular is not essential and can be relaxed by requiring that the obstacles
at the corners are symmetric with respect to reflections as described in Section 8.4.

15Finite horizon requires r ≥ 1

1+
√

2
, yet our added condition that a particle cannot cross diagonally from, say, R̂1

to R̂2 without making a collision requires further that r ≥ 1
3
.
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Bω(a) Bω(b)

Bω(0)
Bω(c)

a = (1, 0); b = (1, 1); c = (1, 0)

C2 C1

C3 C4

C5 R̂1R̂3

R̂2

R̂4

r

ρ

Fig 3a: Configuration of random obstacles Bω(z) Fig 3b: Poincaré section Ci and gates R̂i

Exactly as in the section 8.4, we assume that the gates are reflecting and become transparent
only after N collisions with the obstacles. Thus when the particle enters a cell it will stay in that
cell for at least N collisions with the obstacles, hence the lazy adjective.

As described in section 8.4, when the particle reflects against a gate one can reflect the table
three times and see the flow (for the times at which the gates are closed) as a flow in a finite horizon
Sinai billiard on the two torus. Note that the Poincaré section M = ∪5

i=1Ci × [−π
2 ,

π
2 ] in each cell

is exactly the same for each ω and z since the arclength of the boundary is always the same, while
the Poincaré map Tz changes depending on the position of the central obstacle, see Figure 3b. As
in Section 8.3 let us call T (τ∗) the collection of the different resulting billiard maps corresponding
to tables that maintain a minimum distance τ∗ > 0 between obstacles, as required by (8.24) and
(8.25). (Note that the parameters K∗ and E∗ of Section 8.3 are fixed in this class once r and ρ are
fixed.) The only difference with Section 8.4, as far as the dynamics in a cell is concerned, consists
in the fact that we have to be more specific about which cell the particle enters, as now exiting
from one cell means entering into another.

Recalling the notation of Section 8.4, if we call R(z) the cell at the position z ∈ Z2, then the
gates R̂i are subsets of ∂R(z). We denote by R̃(z) the lifted cell (viewed as a subset of T2) after

reflectingR(z) three times, and by (M̃, T̃z) the corresponding billiard map. As before, the projection

π : M̃ → M satisfies π ◦ T̃ = T ◦ π. Then the hole H̃(z) can be written as H̃(z) = ∪4
i=1H̃i(z),

where π(H̃i(z)) =: Hi(z) are the points x ∈ M such that O(T−1x) ∩ ∂R(z) ∈ R̂i.16 Due to our
assumption (8.24), this point of intersection is unique for each x since consecutive collisions with
∂R cannot occur. Then H(z) = π(H̃(z)) = ∪4

i=1Hi(z).
As discussed in Section 8.4, the holes, are neither of Type I nor of Type II, yet they satisfy (H1′)
and (H2) with P0 = 3 and Ct depending only on the uniform angle between stable and unstable
cones for the induced billiard map.

Yet for our dynamics, when a particle changes cell at the Nth collision, it is because after N −1
collisions, that particle is in Gi(z) := T−1

z Hi(z), and in fact it will never reach Hi(z). Unfortunately,
the geometry of G(z) := ∪4

i=1Gi(z) is not convenient for our machinery, yet we will be able reconcile
this difficulty after defining the dynamics precisely as follows.

The phase space is Z2 ×M . For x ∈ M , denote by p(x) the position of x in R(z) and by θ(x)

16The hole depends on the trajectory of x, which is different in different cells and hence depends on z, while the
gates R̂i are independent of z.
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the angle of its velocity with respect to the positive horizontal axis in R(z). We define

w(z, x) =



0 =: w0 if x 6∈ G(z)

e1 =: w1 if x ∈ G1(z)

e2 =: w2 if x ∈ G2(z)

−e1 =: w3 if x ∈ G3(z)

−e2 =: w4 if x ∈ G4(z).

Also we set W = {w0, . . . , w4}. If x ∈ Gi(z), then we call q̄(x) = (q, θ) ∈ R̂i × [0, 2π) the point
q̄ such that q = O(x) ∩ R̂i and θ = θ(x), i.e. without reflection at R̂i. We then consider q̄ as
a point in the cell z + w(z, x) = z + wi and call Tz,i(x) the post collisional velocity at the next
collision with an obstacle under the flow starting at q̄. Note that in the cell R(z + wi), q̄ ∈ R̂ī,
where ī = i+ 2 (mod 4*).17 Thus if Φz

t denotes the flow in R(z), then with this notation, Gi(z) is
the projection on M of R̂i under the inverse flow Φz

−t while Hī(z+w(z, x)) is the projection on M

of R̂ī under the forward flow Φz+wi
t . Thus,

Hī(z + wi) = Tz,iGi(z) =⇒ 1Gi(z) ◦ T
−1
z,i = 1Hī(z+wi)

, (8.26)

which is a relation we shall use to control the action of the relevant transfer operators below.
Differing slightly from the previous section, here is convenient to set Sz = TN−1

z , and define

F (z, x) =

{
(z, Sz ◦ Tz(x)) =: (z, Ŝz(x)) if x 6∈ G(z)

(z + w(z, x), Sz+w(z,x) ◦ Tz,i(p)) =: (z + w(z, x), Ŝz(x)) if x ∈ Gi(z).

We set (zn, xn) = Fn(z, x) and we call n the macroscopic time, which corresponds to Nn collisions
with the obstacles. The above corresponds to a dynamics in which when the particle enters a cell
it is trapped in the cell for N collisions with the obstacles; then the gates open and until the next
collision the particle can change cell, after which it is trapped again for N collisions and so on.

We want to compute the probability that a particle visits the sets Gk0(z0), · · ·Gkn−1(zn−1), in
this order, where we have set G0(z) = M \∪4

i=1Gi(z). Similarly, we define H0(z) = M \∪4
i=1Hi(z).

This itinerary corresponds to a particle that at time i changes its position in the lattice by wki .
Following the notation of [AL], we call Pω the probability distribution in the path space WN

conditioned on the central obstacles being in the positions specified by ω ∈ Ω. Hence, if the
particle starts from the cell z0 = (0, 0) with x distributed according to a probability distribution
with smooth density f ∈ Cc,A,L(δ), then we have18 zn =

∑n−1
k=0 wki and, for each obstacle distribution

ω ∈ Ω,

Pω(z0, z1, . . . , zn) =

ˆ
M
f(x)1Gk0

(z0)(x)1Gk1
(z1)(Ŝ0(x)) · · ·

· · ·1Gkn−1
(zn−1)(Ŝzn−2 ◦ · · · ◦ Ŝ0(x)) dµSRB(x)

=

ˆ
M
L̊Gkn−1

(zn−1) · · · L̊Gk0
(z0)f dµSRB

(8.27)

where L̊Gkj (zj) := LN−1
Tzj+1

LTzj ,kj1Gkj (zj), and we have set Tz,0 := Tz. See [AL] for more details. We

will prove below that if N is sufficiently large, then Theorem 8.10 applies to each operator L̊Gk .

17By (mod 4*) we mean cyclic addition on 1, 2, 3, 4 rather than 0, 1, 2, 3.
18Since z0 = (0, 0), it is equivalent to specify z1, . . . zn or wk0 , . . . wkn−1 since wkj can be recovered as wkj = zj+1−zj .
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This suffices to obtain an exponential loss of memory property (the analogue of the result obtained
for piecewise expanding maps in [AL, Theorem 6.1]), that is property Exp in [AL, Section 4.1].
This is the content of the following theorem.

Theorem 8.22. There exist C∗ > 0 and ϑ ∈ (0, 1) such that for P-a.e. ω ∈ Ω, if x is distributed
according to f ∈ Cc,A,L(δ) with

´
M f = 1 and z0 = (0, 0), for all n > m ≥ 0 and all w ∈WN,∣∣Pω(wkn | wk0 . . . wkn−1)− Pξzmω(wkn | wkm . . . wkn−1)

∣∣ ≤ C∗ϑn−m. (8.28)

Proof. Note that for m ≥ 0, ξzmω sends the cell at zm to (0,0). Thus according to equation 8.27,
for x distributed according to f ∈ Cc,A,L(δ) with z0 = (0, 0), we have

Pξzmω(wkm , . . . wkn) =

ˆ
M
L̊Gkn (zn) · · · L̊Gkm (zm)f dµSRB .

As remarked earlier, the sets Gi(z) do not satisfy assumption (H2) so that Proposition 8.6 does not
apply directly. Yet, it follows from (8.26) that for g ∈ Cc,A,L(δ),

L̊Gkj (zj)g = LN−1
Tzj+1

LTzj ,kj (1Gkj (zj)g) = LN−1
Tzj+1

(
1Hk̄j

(zj+1)LTzj ,kj g
)
,

where, as before, k̄j = kj + 2 (mod 4*). Then, just as in the proof of Proposition 8.6, it may be
the case that LTzj ,kj g is not in Cc,A,L(δ). Yet, it is immediate from our estimates in Section 5 that

LTzj ,kj g ∈ Cc′,A′,3L(δ) for any billiard map Tzj ,kj ∈ T (τ∗) for some constants c′, A′ depending only

on T (τ∗). Since the sets Hi(z) do satisfy (H1′) and (H2) with P0 = 3 and Ct depending only on the
angle between stable and unstable cones, which has a uniform minimum in the family T (τ∗), there
exists χ < 1 and N sufficiently large as in Proposition 8.6 so that19

[
LN−1
Tzj+1

1Hk̄j
(zj+1)

]
Cc′,A′,3L(δ) ⊂

Cχc,χA,χL(δ), and both χ and N are independent of zj+1 and kj . This implies in particular that

L̊Gi(z)Cc,A,L(δ) ⊂ Cχc,χA,χL(δ) for each i and all z ∈ Z2.

Now as in the proof of Theorem 7.3, using the fact that µSRB(·) is homogeneous and order pre-

serving on Cc,A,L(δ) and that µSRB(L̄mf) = µSRB(f) = 1, where L̄mf =
L̊Gkm−1(zm−1)···L̊Gk0

(z0)f´
M L̊Gkm−1(zm−1)···L̊Gk0

(z0)f
∈

Cc,A,L(δ), we estimate as in (7.6) and (7.7),

ˆ
M
L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)(f − L̄mf) dµSRB

≤ Cϑn−m min

{ˆ
M
L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)f,

ˆ
M
L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)L̄mf
}
,

(8.29)

for some ϑ < 1 depending on the diameter of Cχc,χA,χL(δ) in Cc,A,L(δ).

19Here in fact our operators are of the form Ln1H while in Proposition 8.6 they have the form Ln1Hc for some
set H. Yet, this is immaterial since the boundaries of H and Hc in M are the same so that (H1′) and (H2), and in
particular Lemma 8.5, apply equally well to both sets.

61



Finally, the left hand side of (8.28) reads∣∣∣∣∣
´
M L̊Gkn−1

(zn−1) · · · L̊Gk0
(z0)f´

M L̊Gkn−2
(zn−2) · · · L̊Gk0

(z0)f
−

´
M L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)f´
M L̊Gkn−2

(zkn−2
) · · · L̊Gkm (zm)f

∣∣∣∣∣
≤

∣∣∣∣∣
´
M L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)L̄mf −
´
M L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)f´
M L̊Gkn−2

(zn−2) · · · L̊Gkm (zm)L̄mf

∣∣∣∣∣
+

∣∣∣∣∣
´
M L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)f´
M L̊Gkn−2

(zkn−2
) · · · L̊Gkm (zm)L̄mf

−

´
M L̊Gkn−1

(zn−1) · · · L̊Gkm (zm)f´
M L̊Gkn−2

(zkn−2
) · · · L̊Gkm (zm)f

∣∣∣∣∣
≤ Cϑn−m + Cϑn−m−1 ,

where we have applied (8.29) twice and used the fact that

´
M L̊Gkn−1

(zn−1)···L̊Gkm (zm)g´
M L̊Gkn−2

(zkn−2
)···L̊Gkm (zm)g

≤ 1 for any

g ∈ Cc,A,L(δ).

In particular, Theorem 8.22, together with20 [AL, Theorem 6.4], implies that limn→∞
1
nzn = 0

for Pe almost all ω, that is, the walker has, Pe-almost-surely, no drift. See [AL, Section 6] for
details.21 This latter fact could be deduced also from the ergodicity result in [Le06, Theorem 5.4],
however Theorem 8.22 is much stronger (indeed, by [AL, Theorem 6.4], it implies [Le06, Theorem
5.4]) since it proves some form of memory loss that is certainly not implied by ergodicity alone. It
is therefore sensible to expect that more information on the random walk will follow from Theorem
8.22, although this will require further work.

We conclude with a corollary of Theorem 8.22 which implies the same exponential loss of
memory for particles distributed according to two different initial distributions. For f ∈ Cc,A,L(δ),
let Pω,f (·) denote the probability in the path space WN conditioned on the central obstacles being
in position ω ∈ Ω and with x initially distributed according to fdµSRB.

Corollary 8.23. There exist C > 0 and ϑ ∈ (0, 1) such that for all f, g ∈ Cc,A,L(δ) with
´
M f =´

M g = 1 and P-a.e. ω ∈ Ω, if z0 = (0, 0), then for all n ≥ 0 and all w ∈WN,∣∣Pω,f (wkn | wk0 . . . wkn−1)− Pω,g(wkn | wk0 . . . wkn−1)
∣∣ ≤ Cϑn.

Proof. The proof is the same as that of Theorem 8.22 since (8.29) holds as well with L̄mf replaced
by g.

20Remark that [AL, Theorem 6.4] requires µSRB(Gi(z)) to be the same for each i and z, independently of ω. This is
precisely the case here since Gi(z) is defined as the projection of R̂i under the inverse flow Φz−t, and Leb(R̂i× [0, 2π))
in the phase space of the flow is independent of i, while µSRB is the projection onto M of Lebesgue measure, which
is invariant under the flow.

21The arguments in [AL, Section 6] are developed for expanding maps, but the relevant parts apply verbatim to
the present context.
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