LOCAL LIMIT THEOREM FOR RANDOMLY DEFORMING BILLIARDS
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ABSTRACT. We study limit theorems in the context of random perturbations of dispersing billiards
in finite and infinite measure. In the context of a planar periodic Lorentz gas with finite horizon,
we consider random perturbations in the form of movements and deformations of scatterers. We
prove a Central Limit Theorem for the cell index of planar motion, as well as a mixing Local Limit
Theorem for piecewise Holder continuous observables. In the context of the infinite measure random
system, we prove limit theorems regarding visits to new obstacles and self-intersections, as well as
decorrelation estimates. The main tool we use is the adaptation of anisotropic Banach spaces to
the random setting.
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INTRODUCTION

The Lorentz process is a physically interesting mechanical system modeled by mathematical
billiards with chaotic behavior. Introduced by Sinai in [38], it has been studied extensively by many
authors, see [8, 9, 12| and other related references. It is the deterministic motion of a point particle
starting from a random phase point and undergoing specular reflections on the boundaries of strictly
convex scatterers. Throughout this paper we will consider a Z?-periodic random configuration of
scatterers, with finite horizon. The diffusion limit of the planar Lorentz process can be described
by a Wiener process [9], and is thus closely related to the Central Limit Theorem (CLT) and Local
Limit Theorem (LLT).

The history of the LLT goes back to the historic De Moivre Laplace theorem for independent
identically distributed (iid) Bernoulli random variables. It has then been generalized in many
contexts. The CLT appears as a consequence of the LLT. In the context of dynamical systems, the
first LLT was established by Guivarc’h and Hardy for subshifts of finite type [22]. The method they
used, also used by Nagaev in 28], was based on perturbations of an associated transfer operator
and has since been used for many expanding and hyperbolic dynamical systems. This method is
now often called the Nagaev-Guivarc’h method. For the Sinai billiard (with fixed scatterers), the
LLT was proved by Szasz and Varju in [36] using Young towers and the Nagaev-Guivarc’h method.
Also using Young towers, Péne established and used in |30, 31, 32] some precise versions of the LLT
to prove further limit theorems for the Sinai billiard (see also her works with Saussol [34] and with
Thomine [35] for other applications of the LLT).

The goal of this article is to prove the LLT, as well as several of its applications, in the context
of randomly deforming scatterers in a dispersing Lorentz gas with finite horizon. In this context
the use of Young towers does not appear very adequate, since a different tower is associated to
every different Z2-periodic configuration of scatterers. It is therefore much more natural to work
directly with the billiard transformations since these transformations act on the same space My and
preserve the same measure. To this end, we will work with the spaces considered in [15, 16, 17],
which are spaces B, B,, made of distributions instead of being spaces of functions contained in LP
for some p > 1 as in [22, 36]. This will complicate our study. One advantage of the approach used
by Demers and Zhang is that the Banach spaces they construct in [16] are the same for natural
families of billiard transformations.

Since we are interested in random iterations of billiard transformations, we will consider the full
random billiard system corresponding to the skew product transformation which takes in account
both the billiard configuration (position and speed) and the randomness of the configuration of
scatterers. Let us mention that Aimino, Nicol and Vaienti established in 2] an LLT (together with
other limit theorems) for random iterations of expanding dynamical systems. Their approach was
based on the Nagaev-Guivarc’h method applied to the restriction of the transfer operator of the full
random system to functions depending only on the phase space coordinate (and not on the random
coordinate). The advantage of their method is that they worked on a simple Banach space (in which
the randomness of the transformations is not taken into account). But the disadvantage is that they
had to reprove for this restricted operator theorems that were already known for transfer operators.
In the present paper, we apply directly the Nagaev-Guivarc’h method to the transfer operator of
the full random system acting on suitable Banach spaces B B,, which are easily defined using B, B,,.
As a consequence, our results apply to observables that may depend on both the position and speed
of the billiard, as well as the random coordinate.

This article is organized as follows. In Section 1, we specify our assumptions and notation. In
Section 2, we state our main limit theorems: LLT, asymptotic estimate of the return time to the
initial scatterer, asymptotic behavior of the number of self-intersections, annealed and quenched
limit theorem for a random billiard in random scenery, limit theorems for some ergodic sums of
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the planar random billiard (in infinite measure), mixing and decorrelation for the planar random
billiard (in infinite measure). In Section 3, we study the spectral properties of the transfer operator
of the full random system. Section 4 is devoted to the proof of our main results under general
spectral assumptions.

1. NOTATION AND ASSUMPTIONS

1.1. Deterministic billiard systems. Let I > 1 and let Oy,...,Or be I convex open subsets
of R?, having C? boundary with strictly positive curvature, and such that the closure of the sets
(Ui := £+ O4)i=1,...1. tez2 are pairwise disjoint. We consider the Z2-periodic billiard table Q :=
R2\Uyez2 Ule(UM). We assume moreover that every line meets 0Q) (i.e. that the horizon is finite).
We are interested in the behavior of a point particle moving in @ at unit speed, going straight inside
@, and reflecting elastically off 9Q (the reflected direction being the symmetric of the incident one
with respect to the normal line to @ at the reflection point).

We consider the planar billiard system (M, 10, 7o) modeling the behavior of the point particle
at reflection times. A configuration is given by a pair (g, ) € My representing position and velocity,
and corresponding to a reflected vector off 0Q), with

My :={(¢,7) e R*x R*: ¢ €0Q, 7] =1, (7i(q),7) > 0},

where 7i(q) is the unit vector, normal to 9@ at ¢ and directed into ). The transformation Tj
maps a reflected vector to the reflected vector at the next reflection time. This transformation
preserves the measure g given by duy = ccospdrdy (where r is the parametrized arclength

coordinate on 9@ corresponding to g and ¢ is the algebraic measure of the angle (7i(q),¥) and
where & = 1/(2327_,|80;|), the reason for the choice of & will be clear in a few lines).

For every i € {1,...,I} and every ¢ € Z?, we define M, := {(¢,%) € My : q € dU;,} for the
set of reflected vectors based on the obstacle U; o. For every £ € 72, we will call an £-cell the set
My =L, My, . i

Identifying the boundary of each scatterer 00; with a circle S; of length |00;|, we define My :=
ULSi x [-7/2,7/2]. Thus My is a parametrization of M) in the coordinates (r,¢) introduced
above. Note that many configurations of obstacles O; result in the same parametrized space M.
We shall exploit this fact when defining the classes of random perturbations that we shall consider.

Because of its Z? periodicity, the planar billiard system can be identified with a Z2-cylindrical
extension over a dynamical system (Mo, jig, Tp). Indeed, using the notation z + ¢ = (¢ + ¢, %) for
every © = (q,7) € Mg and every ¢ € Z?, we observe that there exists a transformation Ty : My — My
(corresponding to the billiard map modulo Z?) and a function ®q : My — Z? called a cell-change)
such that

To(z +£) = To(x) + £+ Po(z).
This transformation Ty preserves the probability measure fig := po| i1, (the fact that fig is a proba-
bility comes from our choice for the normalizing constant ¢).

In the following, identifying a couple (x,f) € My x Z* with z + ¢ € My, we identify (My, po, Tp)
with the Z2-cylindrical extension of (M, jig, Ty) by ®o, i.e. we identify My with Mg x Z2, pg with
flo ® m, where m := ), -, d), is the counting measure on 72,

1.2. Random perturbations of the initial billiard system. Before describing the random
perturbations we shall consider, we describe a class of maps F on My with uniform properties from
which we will draw random sequences of maps. The class F we will use is a slightly simplified
version of the one introduced in [16]. The perturbations in [16] allowed billiards with infinite
horizon, while for the present work we will assume a finite horizon condition and that the invariant
measure is absolutely continuous with respect to the Lebesgue measure, which simplifies several of
our assumptions.
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We consider a probability space (F,T,n) containing 0 and a family (7,),cx of Z2-periodic planar
Sinai billiard systems (with finite horizon) defined on My, the quotient billiard maps (modulo 7?2 for
the position) T,, of which are in F, and below we will choose ]—",90 (Tg) as a small ¥g-neighbourhood
of our original map Tp, see (5).

For any w € EN, we will consider random iterations of the form T := T, |
w = (wg)k>0, and Ty, € F, for any k > 0, where F is a collection of 72 extensions of F. This will
be formalized below. In our model, the modification of environment is applied during the reflection
time of the particle; the particle stays on the obstacle and moves with it during the modification of
the billiard system. At its k-th reflection time, the particle arrives on an obstacle in an environment
parametrized by wg_1, but when it leaves it sees the environment wg.

We identify (Mo, po,T,,) with the Z2-extension of (Mo, fig, T,,) by some function ®,, : My — Z2
which is constant on each connected component of continuity of T,. We define the random billiard
system (M, ji, T), corresponding to random iterations of maps in F, by setting:

M= My x BN, fiz=jo@n™,  T(z, (wr)k20) = (T, (Wrt1)r>0) -
We also define the planar random billiard system (M, u,T') with:
M := MO X ENa M=o @ 77®N7 T (xvgv (wk)kZO) = (Two(l‘,f), (wk+1)k20) .
This dynamical system is a Z?-extension of (M, i, T) by ® : M — Z?* given by:
D (z, (Wk)k20) = Puy (7)) -

..oT,,. Here

Observe that
™ ((x7£> (wk)k) = (Twnfl ©...0 Two(xaz)a (wn—i-k)k)
= (Twnfl 0...0 Two (:E)v l+ Sn(l‘, (wk)k)a (Wn—f—k)k) )
with

S ZQ)OTk Z‘I)wk Topy 00 Tuy(a),

corresponding to the cell change, startlng from x, after n 1terat10ns of maps labeled successively by
WOy - yWn—1.

Notation 1.1. As ezemplified by the definitions above, we will use overlines such as i, M, T
to denote objects associated with the quotient random system, defined in finite measure. When we
introduce a subscript such as fig, My, T,,, these denote objects which are not functions of the random
coordinate, but are still defined on the quotient space.

1.3. A uniform family of maps. We fix the phase space My = U/_;S; x [-7/2,7/2] as described
above. Define Sy = {¢ = £%} and for a fixed kg € N with value to be chosen in (3), for & > kg we
define the homogeneity strips,

(1) Hy ={(r,p) € Mo: 5 — 5 <9 <5~ gz )

and the strips H_j are defined similarly in a neighborhood of ¢ = —x/2. For the class of maps
defined below, we will work with the extended singularity set Sp g = So U (Ug>k,0H1x). Thus for
any F € F, the set ST := Ui o F :F’So 1 represents the singularity set for F*".

We suppose F is a class of maps F : My O such that each F € F is a C? diffeomorphism of
Mo \ SF onto My \ SF 1 and satisfies the following properties.

(H1) Hyperbolicity and Singularities. There exist continuous families of stable and unstable
cones, C*(x) and C%(z) in the tangent space of My at x € My \ S_1 and = € My \ S1, respectively,
which are strictly invariant in the following sense: DF(x)C%(x) € C*(Fx) and DF~!(2)C%(z) C
C*(F~1x) for all F € F wherever DF and DF~! are defined.
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We assume the sets U F +iSy (without homogeneity strips) comprise finitely many smooth
curves for each n € N, while the sets SL,, (with homogeneity strips) have countably many smooth
curves. SI is uniformly transverse! to C%(x) and ST, is uniformly transverse to C*(z) for each
n > 0. Moreover, C*(z) and C%(z) are uniformly transverse on My and C*(z) is uniformly transverse
to the horizontal and vertical directions on all of M.

We assume there exist constants C, > 0 and A > 1 such that for all F € F and n > 0,
(2) IDF"™(z)o| > Co A" |jv]|, Yo € C*(x), and |[|DF~"(z)v[| > C; A ||v]|, Vv € C*(x),

where [| - || is the Euclidean norm on the tangent space to M.
Finally, near singularities, we assume the maps in F behave like dispersing billiards: there exists
C, > 0 such that

Callvll < IDF~H(@)v]| cos p(F~1a) < Ctvll, Vv € C(a),

where ((2) denotes the angle ¢ at the point z = (r,) € My. We also require that the second
derivative is bounded by,?

Co < |D?*F~Y(z)|| cos® o(F1z) < C; L.

(H2) Families of stable and unstable curves. We call a C? curve W C M a stable curve
with respect to the class F if the unit tangent to W lies in C*(x) for all z € W. We say W is
homogeneous if it lies in a single homogeneity strip H. We define homogeneous unstable curves
analogously.

Let W* denote the set of C2 homogeneous stable curves in My whose curvature is bounded above
llz a constant B/>\ 0. We assume there exists B large enough that F~'W is a union of elements of
W for all W € W?® and F € F. A family W* of unstable curves is defined analogously.

(H3) One-step Expansion. Assume there exists an adapted norm || - ||« on the tangent space to
My, equivalent to || - ||, in which the constant C, in (2) can be taken to be 1. This yields a uniform
expansion and contraction in one step for maps in the class F.

Let W € WS. For F € F , we subdivide F'~!'W into maximal homogeneous curves V; = V;(F) €

W*. We denote by |Jy; F|« the minimum contraction on V; under F' in the metric induced by the

adapted norm || - ||.. We assume that k¢ in (1) can be chosen sufficiently large that,
(3) lim sup sup Z |Jv, Fle < 1,
020 peFwews
|[W|<é

where |W| denotes the arclength of W.

In addition, if we weaken the power of the Jacobian slightly, we assume that the sum above still
converges (although it need not be a contraction). Choosing Jp so that the expression in (3) is < 1
for 6 < dp, we assume there exists (o € (0,1) and Cy > 0 such that for all 6 € (0,dp) and ¢ € [¢o, 1],

sup sup Z |‘]ViF|(<10(Vi) < (.
FEFwWews ;
[W|<é

(H4) Bounded distortion. There exists a constant Cy > 0 with the following properties. Let
W' € W% and for F € F, n € N, let z,y € W C F~"W’ such that F'WW is a homogeneous stable

1The uniformity is assumed to be a lower bound on the angle between these curves and the relevant cone, which
is indepedent of x € Mo, neNand F € F.

2This is not a restrictive assumption for perturbations of the Lorentz gas since the standard cones for the associated
billiard map satisfy this property [12, Section 4.5].

3Since F~1 is C2 on M, \ (So U FSy), setting x = (r,¢) and Flz) = (r-1,¢-1), we may define the norm
|ID*F~1(z)| to be the maximum over all the second partials of (r_1,p_1) with respect to (r, ) at .



6 MARK F. DEMERS, FRANCOISE PENE, AND HONG-KUN ZHANG

curve for each 0 < i < n. Then,
JwF" (x)
(4) |

IWE 1] < Cydw (2, y) 3,
gy | < Cut e

where Jy F™ denotes the (stable) Jacobian of F™ along W with respect to arclength.

(H5) Invariant measure. All the maps F' € F have the same invariant measure fig.

Remark 1.2. Assumption (H5) can be replaced more generally with the requirement that all F € F
preserve the same measure [ which is absolutely continuous with respect to Lebesgue and mixing.
In addition, i should satisfy the following technical assumptions: For k > ko, a(Hy) = O(k™9) for
some q > 4; also, i can be disintegrated into measures o along any measurable foliation of My into
stable manifolds {Wy,a € A}, with a factor measure A, such that

=/ | 140 dnadA(@),

where dpta = padmg satisfies a regularity condition: |1n pa(z) — In pa(y)| < Cpdw, (x,y)'/3, for
some constant Cp > Cq, dw(x,y) is the distance of x and y measured along the curve W, and mq
1s arclength measure on W,.

This generalization to other smooth invariant measures is of interest, for example, when consid-
ering perturbations in the form of certain soft potentials rather than hard scatterers, or the case
of external forces due to gradient fields. See for instance [3, 11| and their inclusion in a similar
perturbative framework [16].

A crucial lemma, which will allow us to draw random sequences from the class F, is the following.

Lemma 1.3. Fiz a class F satisfying (H1)-(H5) with uniform constants. Let w € EY, and suppose
T, € F for allk > 0.

Then, for all n € N, the composition T} := T,,,_, o --- o Ty, satisfies assumptions (H1)-(H5),
with possibly larger constants (that are nonetheless mdependent of n and w), and with respect to the

singularity sets Sg;ﬂ = Uz;éfl_’w_ol 0---0 T;;SO,H.

Lemma 1.3 is proved in [16, Section 5.3].

1.4. Distance in the class F. To define a notion of distance dz(+,-) in the class of maps F, let
F|,Fy € F and for € > 0, let Ne(Sfil) denote the e-neighborhood of the singularity set Sf’l We say
dz(F1, Fy) < e if for all z ¢ N(S™ U S™2):

(C1) d((F1) @), (F2)"H(2)) < &

(C2) ’jWFZEx§—1‘<e for all W e W* and z € W, 4,7 = 1,2;
w

(C3) |D(F1)"Yz)v — D(Fy)~!(x)v|| < /€, for any unit vector v tangent to W € W* at .
For Fy € F and Yy > 0, define
(5) ﬁgo(Fo) = {F S ./f : d]t-(F, Fo) < 19()},
to be the ¥y neighborhood of Fy in F.
We remark that this definition of distance does not require the sets Sﬂ and 8521 to be close
in any sense, only that the maps are C'-close outside an e-neighborhood of the union of the two

singularity sets. Next, we describe a perturbation family of billiards that satisfying assumptions
(H1)-(H5), to illustrate that these assumptions are reasonable.
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1.5. Applications — Deterministic perturbations. Given [ intervals Ji, ... Jr, we fix the phase
Space My = UZI 1 Ji X [-7/2,m/2] on which the maps in class F are defined. We use the notation

= ({O0:}_1; {J:}_)) to denote the configuration of scatterers Oy, ..., O placed on the billiard
table such that [00;| = [J;|, i = 1,..., 1. We identify the endpoints of Ji so that each J; can be
identified with a circle and each Component of My is a cylinder. Since we have fixed Ji, ..., Jr, My
remains the same for all configurations Q that we consider. For each such configuration, we define

Tmin(Q) = inf{7(z) : 7(z) is defined for the configuration Q}.

Similarly, we define Tiax, as well as Kpin(Q) and Kipax(Q), which denote the minimum and maxi-
mum curvatures respectively of the JO; in the configuration Q. The constant Eyayx(Q) denotes the
maximum C? norm of the 80; in Q.

For each fixed 7y, K, Ex > 0, define Q1(7«, Kx, Ex) to be the collection of all configurations @Q
such that:

Te < Tmin(Q) < Tmax(@) < 7—*_17 ,C* < Kmln(@) < Kmax(Q) < K:*_ly Emax(@) < B,

Let F1(7«, Ky, E.) be the corresponding set of billiard maps induced by the configurations in Qj.
The following lemma is proved in [16].

Lemma 1.4. ([16, Theorem 2.7|) Fiz intervals Ji,...,J; and let 7., Ky, Ex > 0. The family
F1(7e, Ky, Ey) satisfies (H1)-(H5) with uniform constants depending only on Ty, K\ and E.

We fix an initial configuration of scatterers Qo € Qi(1, Ky, Ey) and consider configurations Q
which alter each 00; in Qg to a curve 00; having the same arclength as d0;. We consider each 90;
as a parametrized curve u; : J; — R? and each 0O; as parametrized by ;. Define

A(Q, Qo) = Zm il oo (g, m2).-

The following is proved in [16] .

Lemma 1.5. ([16, Theorem 2.8]) Choose ¥Jg < min{7./2,K./2} and let Fa(Qo, Ex; Vo) be the set
of all billiard maps corresponding to configurations Q) such that A(Q, Qo) < Jp and Enax(Q) <
E_;. Then ﬁA(Qo,E*;ﬂo) C .7_:1(7'*/2,]C*/2,E*) and d]t-(Fl,FQ) < CWQ,I/Z& for any Fl,FQ S
Fa(Qo, Ex; o).

The importance of these results is that together, they will imply that the transfer operators
associated to maps in the neighborhood Fy,(Tp) have a uniform spectral gap if the transfer operator
associated with Ty has a spectral gap. Moreover, small changes in the configuration of scatterers
are seen to generate small differences in the distance d#(-, -).

Remark 1.6. The assumption in the discussion above and in Section 1.3 that the perturbed scatter-
ers 0; have the same arclength as the original 00; is made so that all maps in F act on the same
phase space My, and so all the associated transfer operators act on the same Banach space. This can
be relazed slightly if all scatterers are scaled by the same constant. Then we can reparametrize each
90; (no longer according to arclength) using the same interval J; as for 00;. This will change the
derivative of the maps acting on this configuration of scatterers, but since the constants appearing
in (H1)-(H5) have some leeway built into the inequalities, for small reparametrizations the same
properties will continue to hold.

Unfortunately, to scale scatterers dO; by different constants as described in [16, Remark 2.9], one
would need to eliminate assumption (H5) since then the measure fig would not be preserved.

2. MAIN RESULTS

In this section, we consider all T, € ]:"190 (Ty), for some Y9 > 0 small enough and a fixed map
TO : M{) O.
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2.1. Local Limit Theorem. Adapting the proof of [16, Corollary 2.4| (with the slight difference
that, here, the observable ®(z,w) we are interested in depends also on w), we will prove the following
central limit theorem.

Theorem 2.1 (Central Limit Theorem for the cell index). With respect to fi, the covariance matric
of (Sn/+/n)n converges to a non-negative symmetric function

(6) w2 .— | E, [(I)(i)_q)(j)} +3 E, [@(i)@(j) o Tk 1+ o). o Tk 7
k>1 ..
= 1,7=1,2

where, for every j = 1,2, ®Y) is the j-th coordinate of ®, and using . to denote multiplication.
Moreover (S /+/n)n converges in distribution to a centered Gaussian distribution with covariance
matriz %2

The fact that X2 is positive if 9y is small enough will be proved in Lemma 3.18 (using a continuity
argument). In Section 3.2, we will define a Banach space B, containing a class of distributions on
M, and its dual B'. For a function g : M — R, define the functional H 9> by

(7) Hy(-) :==Eglg--].
Remark 3.1 and Lemma 3.3 will give conditions on g that guarantee that H, € B

Theorem 2.2 (Local limit theorem). For every f,g : M — R such that H, € B’ and such that
feB,

. eXp (_2;2@-2) _3
(8) Eq [f1(s,=3-90T"] = WEﬂ[ﬂEﬂ[Q] +0 (n 2Hfll,ngLfg|l,g/) :

Remark 2.3. Due to Lemma 3.3 and Remark A.1, it suffices for the conclusion of Theorem 2.2
that f(-,w) and g(-,w) be piecewise Holder continuous on My (with Holder bounds that are uniform

in w). For instance, the coordinates O of the displacement function ® satisfy these conditions, as
well as the free flight function for the billiard map T,,, 7(-,w).

2.2. Return time, visit to new obstacles and self intersections. We define Zy(z,w) := i
if x € Uyegze Miy as the index in {1,...,I} of the obstacle on which the particle is at time 0 and
T := Ty o T*. Since the quantity Zy(x,w) does not depend on w, we will also write Zo(z) for this
quantity. Note that Zy(x,w) does not depend on the index ¢ of the cell containing z, this allows us
to define also Zj, on M (by projection).

Observe that the fact that the point particle is on the obstacle (i, ) at the k-th reflection time
(ie. T*(z,w) € M, ;) can be rewritten:

(60 + Sk(iaﬂ)azk(jag)) = (E,Z),

if v = (z,09) € My x Z*. We are interested here in the study of the probability that a point particle
starting? from M x {0} does not come back to its original obstacle until time n, that is in fi(B,)
with

B, = {Vk‘ =1,...,n: (Ik,Sk) 75 (Io, (0,0))} Cc M.
We also study the probability that the obstacle visited at time n has not been visited before, that
is u(BY],) with

B7/1 = {Vk =0,....n—1: (Ik,Sk) % (In,Sn)} cM.
Observe that, because of the reversibility of our model, i(By,) = (By,).

4Throughout the paper, we shall use the notation 0 = (0,0) as an element of Z2.
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Theorem 2.4. We have the following asymptotics

_ 2I7Vdet X2

7i(Bn) = i(BL) = +0 ((1ogn)—%) , as m— +0o.

logn
') in a more
general context. This result will appear as an easy and direct consequence of the local limit theorem,
Theorem 2.2. We now consider the number of couples of times at which the point particle hits the
same obstacle:

In Section 4.2, we give a proof of the above asymptotic estimates of fi(By,) and (B!

n

i,j=1
Theorem 2.5. [i-almost surely, we have:
po Ve 1 31004
n—oo n logn 2 I 2"
2 mvdet X (Zb:l |aOb|)

The proof of the previous result is delicate as it uses a precise estimate of the variance of V.
As can be seen from the works by Bolthausen [5] and by Deligiannidis and Utev [14], going from
a rough to a precise estimate of the variance of the number of self intersections requires important
additional work. In section 4.3, we give a proof of this result under general spectral assumptions.
Our argument provides, in the case of random walks, an alternative argument to the one given by
Deligiannidis and Utev in [14]. Let us indicate that even if we use the general scheme of the previous
unpublished paper [32] (in which an analogous result is proved for a single billiard map), this general
scheme being just the natural decomposition already used by Bolthausen in [5] to get a non-optimal
estimate of the variance, the method we use in the present paper to establish our crucial estimates
is different from [32]|. In particular our method enables us to get rid of some assumptions (bounded
cell change function, Banach spaces continuously injected in some LP) that were satisfied and used
in 32].

The two previous results (probability to visit a new site, precise asymptotics for the number of
self-intersections), in addition to being interesting in their own right, will greatly help us to prove
the result of the next section.

2.3. Billiard in random scenery. We consider the following billiard dynamics. We assume that
the phase space for the initial configuration of the particle is My, with initial distribution fig and
that the particle will experiment random iterations of billiard maps Ty, , with (wg)r>0 a sequence
of i.i.d. random variables with common distribution 7, idependently of the initial configuration. To
each obstacle (i, /), we associate a random variable {; ¢) defined on some probability space (£2,P).
We assume that these random variables (; ) are 1.i.d., centered, and square integrable. We assume
that, each time the point particle hits the obstacle (i,¢), it wins the value - Let Z, be the
total amount won by the particle up to the n-th reflection. For every n, we consider the linearized
process (Z,(t))t>0 defined by

Zn(t) = ZI_ntJ + (nt - I_ntJ)(ZLntH-l - ZLntj) :
Formally speaking Z,, and Z,, are defined on the probability space (M x €, i ® P).

Theorem 2.6. For every T > 0, the sequence of processes ((Zn(t)/v/nlog n)efo,7])n i C([0,T])

converges in distribution with respect to i @ P to (Bi)epo, 1), where B = (Bt)i>0 is a Brownian
motion such that

0f 3411004
3.
mv det 32 (Zl{:l |60b|)

E[B}] =
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If, moreover, there exists x > 0 such that E[|£ 0)|*(log™ |£1,0))X])] < oo, then, for P-almost

every realization of (& ¢)ie, (Z~n)n converges in distribution to the same Brownian motion B.

Let us indicate that it should be possible to remove the additional assumption E[|€1 o)*(log™ [£1,0)])X[)] <
oo by using our estimates, combined with the very recent preprint [13] instead of [21].

Let us say a few words about the historical background of this result. Limit distributional the-
orems of analogous processes when S, is replaced by a random walk on Z¢ were first established
at the end of the 70’s by Borodin in [6, 7] and by Kesten and Spitzer in [27]|, by Boltausen [5] in
dimension 2 ten years later, and more recently by Deligiannidis and Utev in [14] and by Castell,
Guillotin-Plantard and the second author in [10]. Let us also remark that when the random walk
is the one dimensional simple symmetric random walk on Z, the random walk in random scenery
corresponds to an ergodic sum of a dynamical system, the so-called T, 7T~ !-transformation. This
dynamical system has been introduced in a list of open problems by Weiss [40, problem 2, p. 682] in
the early 1970’s. This dynamical system is a famous natural example of a K-transformation which
is not Bernoulli and even not loosely Bernoulli as has been shown by Kalikow in [25].

We prove Theorem 2.6 in a more general context in Section 4.4. As noticed by Deligiannidis
and Utev in [14] in the context of random walks, the estimate provided by Theorem 2.5 simplifies
greatly the proof of Theorem 2.6 compared to [5, 31] (|31] contained a proof of this result for a
single billiard map, with the use of the properties of Young towers). Furthermore, we simplify also
the tightness argument used by Bolthausen in [5].

2.4. Limit theorems in infinite measure. The following results are consequences of our pertur-
bation result (Proposition 3.17), combined with the general results of [35] and of [33].

Our next result deals with the asymptotic behavior of additive functionals of S,, that is of
quantities of the form Zz;é g(Sk), for summable functions g : Z2 — R. This can be seen as the

ergodic sum Y720 G o TF with G(z, £, w) := g(£).
Theorem 2.7 (Additive functionals of Sy,). If g is summable (i.e. Y ,cp2 |g({)| < 00), then

lim Zk 09( ) . Z
n—oo  logn 2m/det2

LeZ?

where € is an exponential random variable with expectation 1 and where the convergence is in the
sense of distribution with respect to any probability measure absolutely continuous with respect to [i.
If moreover Y ycz2 g(€) = 0 and ), y0 [€7|g(£)] < 00, for some € > 0, then

R0 9(Sk) 1
lim = o \/EN,
n—oo y/logn V2r(det$2)T 7

where the convergence is again in distribution, £ is as above, N is a standard Gaussian random
variable independent of £ and

op =Y (9O +2> [ D g(O)g(t)io(Sy =€ —1)

Lez? k>1 \L'ez?

For g : My — R, define Hy; : B— R by Hy¢(h) = Eg,[g(-,€)h]. We also obtain the decay rates
of correlations for the process generated by our random systems in infinite measure:
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Theorem 2.8 (Mixing and decorrelation in infinite measure). Let K > 1. Let f,g : My — R be
two functions such that

D PEASCONs + [ Hells) < oo

ez’
Then, there exist real numbers Co(f,qg),...,Cx(f,g) such that,

K
C,
ny __ m —-K-1
Eﬂ[f'g oT ] _/MOXENf'g % Twn 0...0 Tw1 d,UO d"? Z nm-i—l (n ) ’

m=

0
with Co(f,9) = %\/ﬁ fMo f duo fMo gdpg and setting f(x,,w) := f(x,£) and g(z,l,w) := g(x, /)
to be the extensions of f and g to My x EV.

3. TRANSFER OPERATORS

In order to prove our main limit theorems, we will study the transfer operators associated with
the random maps T and T as perturbations of the transfer operator associated with a fixed quotient
billiard map Tp.

In this section, we fix a class of maps F satisfying (H1)-(H5) with uniform constants. T denotes
the quotient of the full random map 7', while T,, w € E denotes a quotient billiard map belonging
to F, following the notation defined in Section 1.2.

Using (H3), choose dp > 0 for which there exists § < 1 so that (3) gives,

9) sup  sup Z\JVT l« < 0.
Twe]-'go wWews
[W<éo

We then define W* C W to be those stable curves in W* whose length is at most Jy.

Following [15], for any T,, € F and n > 0, define T, "W?* C W? to be the set of homogeneous
stable curves W € W? whose images T'W € W9 for 0 < i < n. For p € [0,1] and letting
CP(T;™W?) denote those functions v which are p-Hélder continuous on elements of T,;"W?, it
follows from (H1) that ¢ o T, € CP(T~""'W*). Thus if f € (CP(T; " 'W?)) is an element of the
dual of CP(T;"~'W#), then L : (CP(T;"'W*)) — (CP(T,;"W?)) is defined by

L f()=f(poT,), V¢ell(T;"W?).

If in addition, f is a finite signed measure absolutely continuous with respect to fig, then we identify
f with its density in L!(fig), which we shall also denote f, i.e. f(3) = fMo Y fdpg. With this

identification, we write L'(fio) C (CP(T,;"W?))’ for each n € N. Then acting on L'(fig), L7, has
the following familiar expression,

L%)f:foT;”, for any n > 0.

For brevity, sometimes we will denote L7, by L.
Let P be the transfer operator of T' with respect to i := jig ® n®~. This operator is given by

Py, (@i)iso) = /E Lo f (o (@ )k50) (W) dw_1).

Let us write - for the usual scalar product on R%2. We consider the family of operators (P,),cre
given by

Puf(y, (wi)i) =P (e f) (y, (wi)k) = /E/lu,wlf('y (wr—1)k>0)(y) dn(w-1),

where

Eu,w_lf = £w_1 (eiu-¢w71 f) .
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Note that
Pl f =P f).

Using results of [16], we will see that if we restrict T, to a neighborhood Fy,(Tp) according to
(5), then P is a small (depending on ¥g) perturbation of the transfer operator Py of the product
system (M, ji := jig x n®N, Ty x o), where o is the shift over EN (i.e. o((wi)r>0) = (Wkt1)r>0) and
where (Tp x o)(z,w) = (To(x), o (w)).

3.1. Banach spaces B and B,,. We start by defining Banach spaces B C B,, of distributions on
My, on which the transfer operators L., associated to T,, € F are well-behaved.

In order to define our norms, we first require a notion of distance dyys(+,-) between stable curves
as well as a distance d(-, -) defined among functions supported on these curves.

Due to the transversality condition on the stable cones C*(x) given by (H1), each W € W?* can
be viewed as the graph of a function @y (r) of the arc length parameter r. For each W € W?*| let
Jw denote the interval on which pw is defined and set Gy (r) = (r, pw (7)) to be its graph so that
W = {Gw(r) : r € Jw}. We let my denote the unnormalized arclength measure on W, defined
using the Euclidean metric.

Let Wy, Wo € W? and let pw,, Gy, denote the corresponding functions defined above, for ¢ = 1, 2.
Denote by £(Jw, AJw,) the length of the symmetric difference between Jy, and Jy,. If Wi and
Wy belong to the same homogeneity strip, we define the distance between them to be

dyys (W1, Wa) = U(Jw, Adw,) + [owr — W ler (g, 1w, )

otherwise, we set dyys (W1, Wa) = 0.

For 0 < p <1, let cp (W) denote the set of continuous complex-valued functions on W with
Holder exponent p, measured in the Euclidean metric. Denote by CP(W) the closure of C*° (W) in
the CP-norm®:

[Wlerwy = [¥]cowy) + O (),

where C&I;) (v) is the Holder constant of ¢ along W. It is remarkable to note that that with this
definition,

[b1v2ler(wy < |¥1ler o) [¥2ler )

CP(My) and CP(My) can be defined similarly.
Given two curves Wi, Wo € W?* with dyys (W7, Wa) < oo, and two test functions ; € CP(W;, C),
the distance between 11, 1y is defined® as:

d(yh1,92) = [t1 © Gwy — V2 0 Gwaleo gy, nvwy)-

We will define the relevant Banach spaces by closing C'(My) with respect to the following set of
norms. Fix 0 <p < % Given a function f € C'(My), define the weak norm of f by

(10) floi= swp s [ o dm,
Wwews yecP(W) JW
[Yler(wy<1

SWhile CP(W) is smaller than CP(W), it does contain Cp,(W) for all p’ > p.
6Note that d(1,12) is only a pseudo-metric while dyys (-, -) does not satisfy the triangle inequality, yet they both
serve as useful notions of distance when deriving the necessary Lasota-Yorke inequalities.
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Choose” ¢, v, ¢ > 0 such that ¢ <1 —(y, ¢ <pand vy < min{¢,p — q}. We define the strong stable
norm of f as

(11) |flls :== sup sup / f dmyy
)y Jw

WeWs  yeCi(W
[Yleaw)y<IW|~s

and the strong unstable norm as

1
(1) Iflui=sup  sup sup - —
e<eq Wi WaeW*  yec?(W;) €

dyys (W1,Wa)<e |¢bs|cpw)<1

d(i1,12)=0

fir dmy — [ dmw‘
W1 W2

where g9 > 0 is chosen less than dp, the maximum length of W € W?* which is determined by (9).
The strong norm of f is defined by

1£lls = [1£1ls + coll £l

where ¢y is a small constant chosen so that the uniform Lasota-Yorke inequalities in [16, Theorem 2.2]
hold.

We define B to be the completion of C'(Mjy) in the strong norm® and B,, to be the completion of
CY(Mp) in the weak norm.

Remark 3.1. Due to [16, Lemma 3.4|, we have for f € By,
@) < Ul + sup CP@)),  for all € CPV).
Wews
This permits us to extend Eg,[-] to a linear continuous form on By, (and so on B) since

Vf € C\(Wo), Enolf] = / Fdin = f(ly).

My

We begin by recalling some properties of B and B, proved in [15, 16, 17].

Lemma 3.2. a) |15, Lemma 3.7 B contains piecewise Hélder continuous functions f with

exponent ¢ > v/(1 —~) as described in Lemma 3.3 below.

b) [16, Lemma 3.5] (cos p)~! € B. Thus, Lebesque measure m = (cos ) Ljig € B and so is fm
for any f as in item (a) above.

c) |15, Lemma 2.1| L, is well-defined as a continuous linear operator on both B and By, for
any T, € F. Moreover, there exists a sequence of continuous® inclusions C¢(My) — B <
By — (Cp(MO)),} fOT all C > /7/(1 - 7)'

d) [15, Lemma 3.10| The unit ball of (B, || - ||5) is compactly embedded in (By, | - |w)-

The following lemma is crucial for describing the types of discontinuities allowed in elements of
B and for proving that the operator L, , is analytic in w.

"The restrictions on the constants are placed according to the dynamical properties summarized in (H1)-(H5).
For example, p < 1/3 due to the distortion bounds in (H4), while ¢ <1 — (o due to (H3), which is relevant for the
uniform Lasota-Yorke inequalities (Lemma 3.14).

8Asa measure, f € C*(Mp) is identified with fdfio according to our earlier convention. As a consequence, Lebesgue
measure dm = (cos @)~ 'dfio is not automatically included in B since (cos ) ™" ¢ C'(Mo). It follows from [16, Lemma
3.5] that in fact, m € B (and By).

9The first three of these are also injective. The fourth can be made injective by introducing a weight |W|™" for
test functions ¢ in the weak norm (as appears in the definition of || - ||s) and requiring 7 > p (see, for example, [17,
Lemma 3.8]).
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Lemma 3.3. Let B be a (mod 0) countable partition of My into open, simply connected sets such
that: (1) for each k € N, there is an Ny < oo such that at most Ny elements Z € B intersect Hy;
(2) there are constants K,Cy > 0 such that for each Z € B and W € W*, ZNW comprises at most
K connected components and for any'® € > 0, my (N.(0Z) N W) < Coe.

a) [17, Lemma 3.5] Let ¢ > /(1 —7). If f € CS(Z) for each Z € B and supzey | flec(z) < oo,
then f € B and ||f|lg < Csupzeq | flec(zy, for some C > 0 independent of f. In particular,
CS(My) C B for each ¢ > /(1 — 7).

b) [17, Lemma 3.7| Suppose in addition that ¢ > max{p,v/(1 — )} and there is a uniform
bound on the Ny above. If g satisfies supzeqp |glec(z) < o0 and f € B, then fg € B and
1f9lls < CllfllBsupzeq |glec(zy for some C > 0 independent of f and g.

3.2. Banach spaces B and gw. In this section, we introduce the associated Banach spaces gw and
B on M on which P acts suitably. B will correspond to a set of Lipschitz functions from EN to B
and By, will correspond to the set of uniformly bounded functions from EN to B,,. For convenience,
we will identify elements of BE" with distributions f on My x EN such that f(-,w) € B for all
w € EN. Let L(B, B) denote the set of bounded linear operators on B and let | - || (55) denote the
norm on L(B, B) induced by || - ||5.

Let 3 > sup,cp || Lwllrs,8 > 1. Let us define

Bi={feB” : |flz<oo},

with
1f(-,w) = f(-,w)|B
d(w,w') ’

| fllg = sup [[f(-.w)llB + sup
weEN wFw’

and with |
d((wk)k7 (wé)k) = 3 mln{kz():wk7£wk/}'

It is immediate from this definition and the definition of B, that B is the completion in the | - | g
norm of the set of functions

(CL(Mo))P" = {f : Mo x BN - C : f(-,w) € CY(Mp) Yw € EN}.
In particular, B is a Banach space.

Remark 3.4. It will be worthwhile to notice that, due to Lemma 3.3(a), for every w € E, the
coordinates of ®,, belong to B, so that the coordinates of ® are in B.

We also define
By :={f € (Bu)" : |fl5, <oo},
with | f|z = supyepn |f(-,w)|w . As with B, the space By, can also be realized as the completion of
(CY(Mp))E" in the | - |g, norm.

Remark 3.5. Using Remark 3.1, we extend E[-] to a continuous linear form on By (and so on B)
by setting

v € B Eilfl= [ EnlfCe)ldiw).

It follows from Lemma 3.3(a) that for any obstacle Oq, lo, € B, and from Lemma 3.53(b) that
fGw) = 1o, f(,w) is a bounded linear operator on B for each w € EN and f € B. Thus f — 1o, f
is a bounded linear operator on B as well.

1011 fact, Lemma 3.5 of [17] allows a nondegenerate tangency between &9 and the stable cone: my (N.(82)NW) <
Coc™, for some to > 0. But we will not need this weaker condition here so we assume to = 1 in order to simplify the
proofs and also the definition of the norms (which otherwise would depend on tg).
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We introduce the following notation for convenience.

Notation 3.6. For any positive integer m, any ©,, € E™ and any w € EN, we will write (&,,,w)
as the element of EN obtained by concatenation; i.e. such that the first m terms correspond to those
of w,, and that the term of order m + k corresponds to the term of order k of w.

Lemma 3.7. (a) Let n be a positive integer. Denote the norm || - ||, for o € {w,s,u}. If
(f(,@n))a, ern is a measurable (in @,,) family of elements of By, such that

sup || f(+, @,)[le < o0,
@, €En

then

(b) If (Hy)weE is a measurable (in w) family of uniformly bounded operators on B (resp. Bw)N,
then H : f(x,w) — [p Hy(f(x,(@,w)))dn(w) defines a continuous linear operator on B

En

< / V@) lo dn™(@,) < sup £ (o)lo
o E™ @, €E™

(resp. By) with operator norm dominated by suPyep | HullLs,8)-

Proof. (a) is just the triangle inequality. Let us prove Item (b). Let f € B or in By, and writing
|| - || for the associated norm, due to (a), for every w € EN. we have

IHf(wlle < §1611;\\Haf(',(®7&))llg
< sup || Hallo [ £ (@, @)lle < sup [[Hals sup [ £(w)]s
which proves (b) if f € By. If, in addition, f € B, then for all w,w’ € EV,
HHf(vg) - Hf(',@,)HB < Sl}p HH@HU Slelg Hf(7 (wvﬂ)) - f(? (wﬂgl))HU

. —_— . /
ol sup LCE2) = FC @,
w £7£/EEN d(g7 W )

where @ = (w,w) and &’ = (w,w’). O

IN

(w,w'),

Remark 3.8. The previous lemma ensures in particular that P acts continuously on both B and
By since L, acts uniformly continuously on both B and B,,.

A key step in our proof is the study of the spectral properties on B of P and of the family of
operators P, defined by ‘
P, := P(e?.).

The next lemma ensures, in particular, that P, is a linear operator on B. Denote by &) and 2
the components of the vector ®.

Lemma 3.9. For every u € R?, any positive integer m and any iy, ..., i, € {1,2}, P(®1) ., @lim)eiu®.)
is a linear operator on B and on B, with operator norms uniformly in O(sup,cg || P||5%)-

Proof. This proof is a variation of the argument used in [16, Section 5.2]. Recall that Pg(-,w) =
Je g(T;7(), (w,w)) dn(w), so that
P(@). .0l f)(. w) = / (@00 BUm e ) o T1LLF(-, (w,w)) dn(w).
E

Let w € E. The singularity set for ®, o T, 1'is contained in Sy U T,,Sy, which by assumption
(H1) is comprised of finitely many smooth curves that are uniformly transverse to C°(z). Let Z
denote the (finite) partition of My \ (Sp U T,,Sp) into its maximal connected components, and note
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that Z satisfies the hypotheses of Lemma 3.3. In particular, Z NHy consists of only a finite number
of connected components, which is bounded independently of k for |k| > k. Note that @, 0 T ! is
constant on each element of Z. We use Lemma 3.3(b) to estimate, for every f € B,

1€0(25V.. 5 £)(- w5 = [I(i- @u)" 0 Ty (Luf) (- w)lls

(13) < C'sup (@G @lme™ ) o T Yo 2| Lo f (-, (w,w)) 18

< @IS (5 (w,w) I -
Analogously, for every f € gw,
L0005 e F) (- w)lw < C'|B[IZ]F (-, (@, @)
and we conclude by Item (b) of Lemma 3.7. O
3.3. P, as a perturbation of a quasicompact operator. For the remainder of Section 3, we

fix a billiard map Tp, and for ¥y > 0, define Fy,(Tp) as in (5). Our main results in this setting will

be that for ¥g sufficiently small, both P and P, are quasi-compact and have a spectral gap in B.
These statements are contained in Proposition 3.15 and Theorem 3.17.

Recall P, := P(e?®.). Our next result states that P, is a small perturbation (as ¥9 — 0) of
Py = P(e!®0.), where P is the transfer operator Py of the direct product (M, i, Ty := T x 7), i.e.

Py, (wr)>0) = /Eﬁof(', (wWe—1)k)(y) dn(w-1),

and
Pu(f) (Y, (wWr)>0) = /Eﬁu,of(w (wWk—1)k) () dn(w-1) -
Here, Lo = L, and Ly = ETO(ei“"I)O-).
Proposition 3.10. There exists C > 0 such that for every u € R? and every f € g,
Puf = Puflz, < ClIfllg0E -
Before proving this proposition, we state the following lemma.
Lemma 3.11. There exists C' > 0 such that for allw € E and u € R?,
Luwf = Luoflw < Cllf lsd7(To, To)"?, V¥ f €B.

Proof. This lemma for w = 0 is proved in [16, Theorem 2.3]. We must show that the relevant
estimates are independent of u. For the convenience of the reader, we reproduce the main points of
the argument.

Let ¢ = dz(T,,To) and let W € W, f € C'(My) and ¢ € CP(W) with [¢|cp(y) < 1. Following
[16, Sect. 5] (also [16, Sect. 4.3]) we decompose T, 'W and T, 'W into matched and unmatched
pieces on which Ty and T,, are continuous, respectively, T, 'W = (U;U JO) U (UgVY) and T;'W =
(U;U2) U (U Vy?). The matched pieces UjO and U}’ can be connected by a foliation of vertical line
segments defined on a common 7-interval I; as in [16, eq. (4.12)]. The unmatched pieces satisfy
[ ToVP|, | TL V)| < Ce.

Thus following [16, eq. (5.2)] we write,

/ (Luwf = Luof)dmy < / fe®p o Ty Jy, Ty dmyy
w ITEALS g

(14)

fet e o Ty JysTodmw — | [ o Ty JyoTodmw | |
U Uj
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where £ € {0,w} in the first sum. We estimate the integrals over the unmatched pieces using the
strong stable norm,

£ o Ty Ty Tydm < | Fl[VEF 1™ b o Tl ooy | Fye Teleouy
vt

< CUFIITVET 1™ % © Telea vty v Tel oy

where we have used bounded distortion (H4) to bound

[Ty Telervey < CldyeTileoqyey  and \VlvagTé’c()(v,f) < C|T,Vy| .
Next, since e’ ®¢ is constant on each V]f , we have
(15) e Py o T€|Cp(vlf) < e P |oltp o T£|cp(vlf) =[¢o Té|cp(v,f) :

Finally, since |9 o Tg\cp(vkz) < ClyYlerwy by (H1) (see [16, eq. (4.6)]), we complete the estimate on
unmatched pieces,
(16)

S| e o Ty T | < €l S 1 T

0.k

and the sum is uniformly bounded by (H3) since ¢ > &.
Next we perform the estimate on matched pieces in (14). Since matched pieces lie in the same

connected component of My \ (Slfw U S{®), we have ®,, = ®; on such components. Thus,

2.

J

feWQWmeﬁ?ﬂ@mW/lfam%woﬁjwﬂdmw
U"
J

U
(17) J

/ f’(ﬁOTwJUwdemw—/ fl/JOT()JUQTode .
Uy ! g I

ju-®
<1 leowo)
J

Since |eiu'¢0]CO(UQ) = 1, this is precisely the same expression as in [16, eq. (5.4)]. Thus combining
J

[16, eq. (5.9)] with (16) proves the lemma, with constant independent of u € R2. O

Proof of Proposition 3.10. This comes directly from Lemmas 3.11 and 3.7. Indeed, for every f € g,
we have

sup [(Py — Pu)f(':gﬂw = sup / (EU,wA - £U,0) (s (wor,w)) dn(w-1)
weEN weEEN |JE w
< sup [ [(Luy = Luo) £ o, @), dnfer)
weENJE
q q
< C sup |f(,&)l95 = Cllfllgvg
w/'eEN
since T, € Fp,(Tp). O

Lemma 3.12. P is quasicompact, 1 is its only dominating eigenvalue and it is a simple eigenvalue
(with eigenspace C.fi). In particular, there exists C' > 0 and & € (0,1) such that

VfeB, |P"f—Eulfllylz < Ca"|flz

Proof. Due to [16, Theorem 2.2 and Corollary 2.4]) Ly is quasicompact, 1 is its only dominating
eigenvalue and it is a simple eigenvalue (with eigenspace C.1 Mo)' In particular, there exists C > 0,
ag € (0,1) such that

Vhe B, |C8h - Enlhlly, s < Catlihls .
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Let f € B. Observe that

P"(f)(y, (Wr)k=0) = . L3 (Wrn)k) (y) dn® (w_p, ...,w_1)

and that
Balf) = [ Bolr )] @),

First, setting @, = (w—p,...,w_1), we have, using Lemma 3.3(a),

sup P () w) = Eal 11l = sup /n(ﬁgf(v (Wk—n)k) = Eplf]) dn(w-1)...dn(w—n)

w

B

IN

sup
w

) L0 0 @reni) = Bgo S G (@hon)i)] dipfw—1).dn(—n)

B

Ego [£ (5 @n, )] = [ B (£ (@n,)))dn®N (W) ) dn®™(@n)
. /. )

+ 1115z, |3 sup
w

IA

sup | LB, @rnt) — Bgo £ (@il dnerms )]

w

+115, I sup Ezy [f(,w) = f(,0))]]

w,w' d(w,w' )<

Cay [ A il dnom)diioor)

17, 1181 B [l 5 swp [f(w) = £ w5

ww':d(w,w') <z
< (Cag + Cuie)Ifllg

since 1, is in B and Eg,[-] is in the dual of B by Remark 3.1.
Second, for every w and w’ in EN, we have

P C) = POl = | [ B o) = £ o)) ")

IN

B

IN

185 @) = £ @)l ™ ()

Ego [£(0) = £(,0®)]| + Cag1 7l g, w)se

IN

sup
w®,w® : d(w® w@)<d(w,w)sx"

IN

1Ezq []ll5 sup
M w® :d(w w®)<d(w,w)x"

Bz [llg 11l pdlew, w)se™ + Cag | fll gdw, w)o " .

This proves the lemma with & = max{ag, ¢~ 1}. O

Flow) = fw®)| |+ CagI sl gdle o)

IN

3.4. Doeblin-Fortet-Lasota-Yorke type inequality for P,. We next establish the spectral
properties of P and P, on B.

Proposition 3.13. There ezist C > 0 and 7 € (0,1), such that for everyn > 1, f € g, u € R? and
n >0,

1Piflg, < Clflz,
(18) 12zl < C(Ffls+1f15,) -

This result will follow directly from the next lemma.

A
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Lemma 3.14. There exist C > 0 and 7 € (0,1), such for everyn > 1, wy,...,w, € E, f € B,
ueR? andn >0,

|[fu,w1 T 'Eu,wnf’w S C’f‘wu
(19) [Luwr - Luw, fllB < C @[ fllB+ [flw) -

Proof. Here we denote L’ZW = Luyw, " Luw,, and Ti} = Twn 0---0 Twl. The above Lasota-Yorke
inequalities are proved!! for £ as long as each T,, € F by [16, Proposition 5.6], with w = (w,)g>1-
As in the proof of Lemma 3.11, we must show that the constants appearing in the inequalities are
independent of u € R?, and all w € EN. We will use the fact that S,,®, is constant on elements of
My \ Sz*

We perform the weak norm estimate first. For f € CY(Mp), W € W? and ¢ € CP(W) with
[Y|epwy < 1, we must estimate,

/ Lo f o dmy = / ferSn e T o T dimyy,
L RIEY

Wi€Gn (W

where G, (W) are the components of T "W, subdivided so that they each belong to W?*. Thus,

/ Logfdmw < Y [ Flule™ 52 o T ewuwy l Iwi T levoms
<Clflw D, IwTSleow,
W;€Gn (W)

u-Sn Py

where as in (15), we have used that e is constant on each W, so that

(20) €75 iy o Tl en gy < €™ 5 %20 1h 0 T |enwry < 1¥lewqwy -

The sum over the Jacobians is uniformly bounded by [16, Lemma 5.5|. Note that due to (20), the
bound is independent of u, and thus prescisely the same as in [16, eq. (5.21)].

For the strong stable norm estimate, the same observation holds, again since e
on each W;. Thus by [16, eq. 5.22],

€5 flls < CET™ + A=) f]ls + Clf |

For the strong unstable norm estimate, we must compare values of test functions on two stable
curves W1 W2 that lie close together. As in the proof of Lemma 3.11 (see also [16, Sect. 4.3]), w
decompose T,;"W? and T,;"W? into matched and unmatched pieces on which 7" is contmuous

"Wt = (UJUK) (Uka) ¢ = 1,2. The matched pieces U1 and U2 can be connected by a
transverse fohatlon of unstable curves and are defined over a common r- mterval as in [16, eq. (4.3)].

wSnPy s constant

Since for each j, Uj1 and U ]2 lie in the same component of My \ Sn*, it follows that S,®, has
the same constant value on both curves and so factors right out of the Lasota-Yorke inequalities,
precisely as in (17). Since |e®*"®«| = 1, the estimate on unmatched pieces can be performed as in

(16). Thus by |16, eq. (5.23)],
1wl < CAT [ fllu + CTI s -

Combining the inequalities for the stable and unstable components as in [16, Sect. 4] then completes
the proof of the Lasota-Yorke inequality for the strong norm. O

HThe estimates in [16, Proposition 536] include a factor n > 1, which comes from the Jacobian of T, with respect
to fip. Since we have assumed that J;,T,, = 1 in our simplified version of (H5), we have = 1 in the present setting.
Also note that the density function g for the random perturbation in [16] is identically 1 in our setting as well.
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Proof of Proposition 3.13. Observe that

(P w) = . Luw n Luw 1 [ (@k—n)k>0)(y) d77®n(w—na ey Wo1)
Due to Lemma 3.7 and to the first inequality of Lemma 3.14, for any f € gw and n > 1,
\Piflg, = sup [(Prf)(w)ly,

weEN

< sup / ‘Eu,wfn e Eu,w71f('; (wkfn)kZO)‘w d77®n(w—n7 --~aw—1)
weEN JEn

< C sup |f(&)|, =Clflg, -

w'eEN

Analogously,Nusing again Lemma 3.7 and, this time, the second inequality of Lemma 3.14, we obtain,
for any f € Band n > 1,

sup [[(Pyf)(w)llp < C (T" sup [|f(-,w)|[g + sup |f('7w)|w> :
weEN weEN weEN

Finally, using Lemma 3.7,

[P f(w) = Prf(w)ls

sup

ww' d(w,w’)
g L Luw s (FC (@,w)) = [ (@,w)) dn®™ (@)l
= sup
wHw’ d(w,w’)
= S [+ L (1 @) = £ @) s @
wHw! d(w,w’)
1L Luw  (FC5 (@0,w) = f (@, B, e, -
< oo o @
”Lu,w—n o Loyw_y (f(',gg) - f(,g{))) s g~
= /E" giii& sd(wp, wp) (@)
“n [Lwn -+ Loy (A w) — h(-,w) s
< x C;;l}ﬂ){ (o)
h(-,w) —h(-, o
< 216113 Lol (8.8 5;15 I WJ(W’J/)W)HB'

since » > sup,ep [|LulnB,), We obtain that P, satisfies Doeblin-Fortet-Lasota-Yorke conditions
for (B and B,,). O
3.5. Quasicompactness of P and of FP,.

Proposition 3.15. If ¥y is small enough, P is quasicompact on g, 1 4s its only dominating eigen-
value and it is a simple eigenvalue (with eigenspace C.1y;). In particular, there exist C > 0 and
€ (0,1), such that
VieB, |[[P"f-Eulfllylg<Ca”|flz-
Proof. For 9y sufficiently small, P satisfies the Lasota-Yorke inequalities of Proposition 3.13 uni-
formly in ¥y. Thus by Proposition 3.10 and the Keller-Liverani perturbation theorem |26, Corollary
1], the spectra and spectral projectors of P and P on B are close for Yo small. Since the Spectral

gap for P on B is uniform in Yo by Lemma 3.12, it follows that P has a spectral gap on B with
a single and simple peripherical eigenvalue, prov1ded Jg is sufficiently small. Since P is the dual
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operator of f — foT, the spectral radius of P is 1 and 1 is an eigenvalue of P. We conclude that
1 is the dominating eigenvalue and that it is simple. O

Proposition 3.16. P,, as an operator acting on B~, is an analytic perturbation of P.
Proof. Observe that the n-th derivative of u +— P, is the operator defined by
fs P (q><i1)...q><in>ei“'¢f)

Due to Lemma 3.9 and to classical results on analytic functions, we conclude that, in L(g, g),
w — P, is analytic on R? and that

Pu= " A with Auf(w) = P((iu-@)" ),
n=0

where A, f(u) is n-linear in u. O
Our main results will follow from the following technical result.

Theorem 3.17. The function 1;; is in B and E; al:] is a continuous linear form on B and B.,.
If 99 is small enough, there exist 5 € (0,7), C > 0 and o € (0 1), three analytic maps u — A, from

[—8,8)2 to C, u— Ny and u s I, from [—B, 8]% to L(B,B) such that

a) )\0 = 1, Ho = Eﬂ[-]lM,

b) for every u € [-B,P)? and every integer n > 1, P* = \'II, + N, II,N, = N,II, = 0,
2 =1, and ||N? HL ) < Ca™.
Moreover, for every mteger k>0, |[(NM)® HL(B B = = O(a™), where (N)®) means the k-th
derivative of N.

c) for every u € [—m, 7|2\ [=8, B]? and every integer n > 1, we have HPSHL(B“E) < Ca™.

d) The positive symmetric matriz $* given by (6) satisfies Ay = 1 — 3(Z%u - u) + O(|ul?).

Proof of Theorem 3.17. The fact that 1,; is in B comes from the fact that 1, isin B.

As seen in Remark 3.5, Eg[-] is a continuous form on B. The proof of the remaining part of the
theorem relies on Propositions 3.10, 3.13, 3.15 and 3.16.

Propositions 3.13, 3.15 and 3.16 immediately imply the existence of a spectral gap for P, for
|u| sufficiently small, using standard perturbation theory [19, VII.6 Theorem 9]|. This yields the
analyticity and items (a) and (b) of the proposition with § depending on ¥y and the uniform
constants depending on the family Fy,, but not on the probability measure 7.

For item (c), due to [1, Lemma 4.3|, it is enough to prove that, if ¥y is small enough, then for
every u € [—m, 7%\ [-83, B]?, P, admits no eigenvalue of modulus 1. Assume the contrary. There

would exist a sequence of operators (qu,f) )i corresponding to a sequence of vanishing neighbourhoods
(Ep)g of Ty in F and with 8 < |ug| < 7 and p(P, (k)) = 1, where p(-) denotes the spectral radius.

Up to extracting a subsequence, we also have limy_, o, U = us. But, due to Proposition 3.10 and
since u + L, is continuous from R? to L(B, B), we would deduce that

hm |PE) — Py |l s.5.) = O-

Combining this with Proposition 3.13 and with the perturbation theorem of [26], this would imply
that p(P,.) = 1, which would contradict Proposition C.2. We conclude that, as soon as vy is
sufficiently small, supg<|y < p(Pu) <1 as claimed.

It remains to prove item (d). Due to [16, Corollary 2.4|, for any initial probability measure v € B,
(Sn/v/n)n converges in distribution to a (possibly generalized) centered Gaussian random variable
with variance ¥2. As in [15, Proof of Theorem 2.6], ¥? is the variance of (S,/\/7)n, as n — oo.
Thus X2 is given by the Green-Kubo formula (6) as long as the correlations Ej (@) . ®0) o T*] are
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summable. Indeed, the spectral gap for P (Propositio_n 3.15) implies that the correlations decay
exponentially in k since P is the transfer operator for T with respect to the measure f.
Moreover, due to item (b) of the present theorem,

sup |Eg[e] — APE[IL(1)]] = O(a™)
te[—B6,8]2

and so
lim )\n 71(22#15)

= e 2
n—-+00 t/vn

with uniform convergence on any compact set of R2. This implies that

1
li log (A = ——(X%-1).
n—1>I-&I-100n Og( t/\/ﬁ) 2( )

On the other hand, log(A;/ &) ~ (Ay/m — 1) as n — +oo. Hence
. |
ngrfoon()\t/\/ﬁ — 1) = —5(2 t- t).
Setting u = t/y/n, we can then deduce the stated Taylor expansion since u — A, is analytic. The
positivity of %2 follows from the next lemma. O

Lemma 3.18. If ¥¢ is small enough, ¥? is positive.

Proof. Recall that ¥.2 has been defined in (6). We consider E% being defined by

(21) 3= B [0 0] + Y g, [@f) 0f o T + 0f 0 o T
k>1 o

4,7=1,2
It is enough to prove that ¥2 converges to E% as Yo goes to 0. We use (6) together with the fact
that 222 satisfies an analogous formula (with ®(z,w) replaced by ®¢(x) and with T'(z,w) replaced

by To(z)). Therefore
S -Nf=Ag+2> Ay,
k>1
with A, = E; [q).(boTk] — Ejo [®0.Po oT(ﬂ . Extending the definition of ®; on M by setting
Dy(z,w) := Po(x), we obtain
A, = Eg [CIMI) oTF — &y.®g o (Té)k}

- E; [P"WI).@ - 73%0.@0]

- E [(cp - @o).P’f@} +E; [@O.Pk(cp - @0)} +E; [@0.(13%0 - Pkcﬁo)] .
The two first terms of the right hand side of this formula are less than

4|13, sup fio (P, — @0 # 0),
weFE

which goes to 0 as Y9 — 0. The third term is dominated by
k—1
kmax (1Pl g5 1Pl 5,) 1P = Plegs, |olslEa@ollls, -
We deduce that this quantity goes to 0 using Remark 3.4, Lemma 3.9, and Proposition 3.10, and
since Ez[®o-] = Ez[P(Po-)] (applying Lemma 3.9 with £ = {0}).
We conclude with the use of the dominated convergence theorem, since

‘Eﬁ 0.0 oTk” - ‘Eﬁ [Pkcb@”

IN

|11 50a" |Eal®-]lz = I2ll5Ca" |ERLP(@)]l5 .
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where we used Proposition 3.15 since E;[®] = 0, and a similar bound holds for Ej, [®.®qoT§F]. O

4. LIMIT THEOREMS UNDER GENERAL ASSUMPTIONS AND PROOFS OF OUR RESULTS FOR
BILLIARDS

We start with the proof of our results which are direct consequences of Theorem 3.17 and of
general results existing in the literature.

Proofs of Theorems 2.1, 2.7 and 2.8. The convergence in distribution of Theorem 2.1 is a direct
corollary of Theorem 3.17 by Lévy’s continuity theorem (as in [28, 22, 23]) since, for every u € R?,

Eg [eiﬁ.sn] _E, [Ps/ﬁlz\z} ~ AL, o= 3 (SPuu)

the announced expression for %2.

Theorem 3.17 gives exactly [35, Hypothesis 3.1] (with (A, 4, T) = (M, 5, T), F = ®, U =[-8, ]2,
B=B, M=1,d=2 R, =N,, r =« and L = 1). Therefore applying [35, Theorem 2.4] (with
(A, i, T) = (M, i, T), (A, u,T) = (M, 5, T), F=®, a, = /n, « = 2, d = 2), we obtain Theorem
2.7.

Observe now that Theorem 3.17 implies that (Ps)s satisfies Condition (Hs) of [33, Definition 3.1]
with respect to (g, 00, 00,3, %2) (using Condition (H7) of [33, Definition 2.1]). Thus, applying [33,
Theorem 3.2] and using the formulas given in [33, Remark 3.3], we get Theorem 2.8. O

as n goes to infinity. Theorem 3.17 provides

We will prove the other results in a general context. About these results, let us mention that
Theorem 2.4 and the first part of Theorem 2.6 have been proved in [18, 30| and in [31] for a single
billiard map. We give here the proof in a more general context with a significant simplification in
the proof of Theorem 2.6 due to the better estimate of the variance of the auto-intersection and to
some simplification in the Bolthausen tightness argument. The second part of Theorem 2.6 uses a
general argument from [21|. Theorem 2.5 exists for a single billiard map, but only in an unpublished
paper by the second author [32]. Let us indicate that the generality of the proof we give in the
present paper is possible due to important modifications of the proof. Indeed we state general results
enabling the study of Z?-extension with unbounded (square integrable) step function and we do not
use the fact that the Banach space we consider is continuously injected in LP for a suitable p > 1
(this property was true for Young Banach spaces on towers constructed in [39] for a single billiard
map but not for the spaces we consider here); both of these conditions were used in the proof of [32].

We will prove the limit theorems we are interested in under the following general hypothesis.

Assumption 4.1. Let (M,u,T) be a Z2-extension of a probability preserving dynamical system
(M, 5, T) by a function ® : M — C. Let P be the transfer operator associated with T with respect
to fi and let (P, := P(e™®.)),cr2. We assume that these operators act on two Banach spaces B,
and By such that 1, € By < By (continuous inclusion) and that Ez[] s a continuous linear form'?
on ng,

Assume that there exist € (0,7), C > 0 and o € (0,1), three continuous maps u — X, from
[—8,6]? to C, u s N, and u v II, from [—f3,]? to L(gl,gg) such that

(A1) for every u € [—83, B]? and every integer n > 1,
P" = \"[I, + N, II,N, = N,II, =0, II? =TI,
and HNSHL(ELEI) < Ca™.
(A2) for every u € [—m, )2 B [—~ﬂ,5]2 and every integer n > 1, we have HPS”L(&,&) < Ca™.
(A3) w11, seen as a L(By,Ba)-valued function, is differentiable at 0 and Ily := Eg[-]1,;,
(A4) There exists a positive symmetric matriz $% such that A, = 1 — 3(Z2u - u) + O([ul?).

124p to extending by continuity the definition of Ez[/]
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In this general context, we will also use the following notation and considerations. We write S,
for the ergodic sum S, f é ® o T*. Tt will be crucial to notice that P? = P"(e/*Sn.),
We consider a partition of M in I subsets Oy, ..., Oy of [i positive measure (correspondmg to (00; x
S1) x EN in our example). We consider the functlon To which, at every € M, associates the index
Zo(z) of the atom OIO(x) of the partition containing x. We also define Zj, := Zo o T*.

We remark that our random map T with T,, € fgo (Tg) for all w € E satisfies all the items of
Assumption 4.1 due to Theorem 3.17.

4.1. Local Limit Theorem: General result and proof of Theorem 2.2. For every n € N,
¢ € 7? and h € By, we set:

(22) Honh = P" (145, -0h) .
Recall that

1 .
2 1rr p — i(k—0)u
(23) =t} = 2 /[_MP@ du

where du is understood as duidus for u = (uy,uz) € R? (integral with respect to the Lebesgue
measure), which leads us to the following formula

1 )
24 Honh = / e P h du .
( ) (27T)2 [—m,m]?

Theorem 4.2. Assume general Assumption 4.1. Then

e—ﬁz 200 5
sup [|Hep — ——F—=I11 =0(n"2).
(€72 " 2rny/det X2 ( )

L(gl,gz)
Moreover, there exists Ko > 1 such that for every integer n > 0 and every { € 72,

1 n Ky
25) IHenllia 5) < oy /[} AP

Proof. Up to a change of 3, there exists a > 0 such that, for every u € [~3, B]%, |\u| < exp(—alu|?).
Hence, using Assumption 4.1, we have the following equalities in L(Bj, Bs):

1 . 1 )
s —— / e~ NP gy 4+ O(a™)
[—m,m]? (2m) [-8.8]2
- G / e~ UAMTT, du 4+ O(a)
8,8
- & / eI (T + O(u)) du + O(a™)
8,82

l\’)

_ / et (3000 1 0((uf)) " g + O™ u]) du + ().
[-8,8]2
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Thus

o2 3
— 12 / 67’£ ﬁe—%(E RN +0 <ne—a(n—1)|,l |UL + e—alvl v > dv + O(a™)
(27[‘) n [—B+v/7,8v/n)? n2 n
— 1 / e e s, 4 O e 5 2] Lemalv? VY gy O(a™)
(2 )27”& [ 5\/’ BﬂQ n n
= e 1) / eiw'ﬁe_%(z%'v)ﬂo dv + O(n_%)
[76\/576\/m2

= @ 1)2 / eii%'ve_%(z%‘”)ﬂodv+O(n_%)
T)“n R2
e —=5720e 5

- 2mnvdet 32 Mo +0(m™2),

where we have changed variables, v = uy/n, and the O are in L(Bl, Bg) with uniform bound. This
bound is in L(By, By) and not in L(Bl, Bl) because according to Assumption (A3), the map u — II,

is differentiable from [, /5] to L(Bl, Bg) and a priori not from [/, 3] to L(Bl,Bl).
For the second estimate, we write

1 / 1
PP om 5 du = / Dl 1Tl s = du -+ O(a™)
(2m)? ) L(B1,B1) (2m)2 8.0 L£(B1,B1)
1 / ~afuf?
< e sup ||yl oz 7y du+ O(a™)
(2m)% Ji-p,912 ue[-B,4] £(B1,B1)
< o™,
using again the change of variable v = u\/n. (|

Due to Theorem 3.17, Theorem 2.2 is a direct consequence of the following result.

Corollary 4.3. Assume general Assumption j.1. Let f,g: M — R such that Hy(-) :== Ez[g-] € gé
and such that f € By. Then

) exp (_ z;im)
(26) En [f1gs,=ep-g0T"] =
Proof. Observe that we have

En [f1gs,=ep-90T"| =Eu [P"(flis,20)-9] = Hy (P" (15,01 f))
recalling (7). We conclude due to Theorem 4.2. O

T el Balg) + O (w20 fllg, 1l )

4.2. Return time to the original obstacle: General result and Proof of Theorem 2.4.
Recall that Zy(z) corresponds to the index of the atom Og,(,) containing T*z and that S,(z)

corresponds to the label of the copy of M in M containing T*(z,0). We also define Z; on M by
canonical projection. We consider the set B, of x € M such that the orbit (7" (z,0)),>0 won't
return to the initial atom Oz ;) x {0} until time n:

By, = {Vk = ]-7 TN (Ik,Sk) 7é (IOa (070))} - M.

Analogously we define B!, the set of points x € M for which the atom visited at time n has not
been visited before:

(27) Bl ={Vk=0,...,n—1: (Zt,S) # (Z,,Sn)} C M.
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We set By(a) := O, N By, and Bl (a) := T7"(0,) N B,. We prove the following result on the
probability of these sets.

Proposition 4.4. Assume general Assumption 4.1.
If1p, € By and if f = Balflp, ()] are uniformly bounded (uniformly in k) in gé, then

27V det X2

(28) ABa(@) = =

+0 ((logn)*%) :
If f— Ealflp,] is in g/2 and if Plek(a) are uniformly bounded (uniformly in k) in B, then
27V det 322

(29) AB, (@) = = +0 ((logn)~1) .

Proof. As in [30], we follow the idea of the proof of Dvoretzky and Erdés [20] and adapt it to our
context. Considering the last visit time to O, x {0} of (T*(x,0)) until time n, we write

(30) (0. =Y i (Oa n{S,=0}n T-k(ankm)))
k=0
and, analogously,
(31) 1(0) =1 (T7"0q) = > G ((T7"0a) N{Sy — Sn—k, =0} N B,,_;(a))
k=0
considering the first visit time to O, x {S,} before time n. Moreover, due to Corollary 4.3 and to
our assumptions on O, and on By(a), there exists C” > 0 such that

(A .- [ Oa)u(Bn—k(a))‘ c”
32 Vk € N*, Ou O {Sk = O} N T4(B,_(a))) — 24 .
(32) A (00 {8k =0} N T H(Buae)) = F Il <
Since fi (T7"04) N{Sn — Sp—r =0} N B,,_,(a)) = E; [1OGP’“ (1{Sk:0}P"—’le, » ))} , and using

Theorem 4.2, we also have

(33)  VkeN*

0 ((T7"0,)N{S, — S, =0NB _, (a)) — .
N(( ) { k } n k( )) Qkﬂm = ]f%

We will prove (28) using (30) and (32). The proof of (29) using (31) and (33) follows the same
scheme, and we omit it.

u(@)n(B;_k(a))‘ C

C77
> n 1— k( )) + ~
- Z 2k7r\/det22 Z k3

m k=mp

7(Oa)

> ﬂ(an))(log(n)log<mn>>2@(%+ > o
v (§) k=mn, 2
> tog(n) Ba(@) (1~ B ) 0Dy o, .

with m,, = [(logn)?], which leads to

(34) log(n) i(Bp(a)) < 2rVdet X2 + O (log logn) :

logn




LOCAL LIMIT THEOREM FOR RANDOMLY DEFORMING BILLIARDS 27

Moreover
m, —1 [nlogn]-n _, ~ -
A _ :u(Otl):u’(B[nlogn]—k’(a»
OG S B nlogmn|— a +
#(Oa) kzo F(Bin1ogn1-k(a)) kzri YR v
nlogn AN — nlogn
) (Eéw u@@MBmmﬂm»+f§§Hw
———5 3
k=[nlogn]—n+1 2k det X2 k=m], k2
my | m@>>
< "+ 4(By(a log(nlogn —n + 1) —log(m,, — 1)) ————=
< ogn T ))(( g(nlog ) — log( ) T Tois?

+log(n logn) — log(nlogn —n)
27V det X2

where we used the facts that fi( B[, 105 n1—1(a)) < fi(Bn(a)) = O((log n)~1) for every k < [nlogn]—n
and that fi(B;,(a)) <1 for k > [nlogn]| —n. This leads us to

[V

+C”(my,) "2,

P W(0q) log log n + log m, m, S 1
< _mra)
AOa) < logn — s fi(Ba(a)) <1+0( Tog O jogn T )72 )
i(0a) log log 1
Shgnmmm»@+0(l%n))+0@%ms),

2my/det $2
by taking m/, = |(log n)%j and so
(35) log(n) fi( Bu(a)) > 2rVdet X2 + O ((1ogn)—%) .
The proposition follows from (34) and (35). O

In view of applying Proposition 4.4 in our context of random iterations of billiards, we will use
the following result.

Lemma 4.5 ( Estimate for random iterations of billiard maps). Assume we are in the particular case
of billiards, with assumptions and notations of Sections 1-3. There exists K1 > 0 such that, for every
positive integer £, for every (wq, ...,wy) € E*, for every uniformly bounded function g : My — R which
is uniformly p-Hélder continuous on connected components of Mo\ (Uf;:lfw_ll o---0 Tw_kl (SQH)), and
for all f € By,

(36) B [f 9)l < Kl flw | lgloo +  sup C )
ECuwy,...owp
Moreover, for every f € B,
(37) [ Lo Luor (9F) I8 < Kil fll8 (Igloo + s CP ),
CECa oo
where Cy, ... w, 5 the set of connected components of M, \ (UiZITJll 0---0 :,jk,l (SO,H)) and where
Céfc) is the Hélder constant of g restricted to C.

The proof of Lemma 4.5 can be found in Appendix A.

Remark 4.6. The purpose of Lemma 4.5 in our billiard context is to show that Ky can be chosen
independently of £. If one wishes similar bounds on piecewise Holder continuous functions on My
with respect to a fized partition, then Remark 3.1 and Lemma 3.3 provide such estimates under
general conditions on the boundaries of partition elements.
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Indeed, we will apply the lemma to the function g = 1p, (4), where By(a) is defined in Section 2.2
(see also Section 4.2).

Next we are ready to prove the main Theorem 2.4.

Proof of Theorem 2.4. Assumption 4.1 follows from Theorem 3.17. The other assumptions of Propo-
sition 4.4 follow from Lemma 4.5 since 1p, (,) satisfies the assumptions on g in that lemma (uniformly
in n). O

4.3. Number of self-intersections: General result and proof of Theorem 2.5. We consider
the number of self-intersections V,, of the process (Z, S)r defined by

n

(38) Vn = Z l{SZ:SIm IZ:Ik}'
k=1

Theorem 4.7. Assume general Assumption 4.1 with l§2 = gl. Assume moreover:

(A5) the operator f + flp, is a linear operator on gl for every a € {1,...,1}.

Then (V,,/(nlogn)), converges ji-almost surely to m Za Ty = a)2

The proof of Theorem 2.5 will follow from the following lemmas. Recalling (38), let us write
Eig:={Sk =S, L, =Ly} and E; := Ey .

Lemma 4.8. Assume general assumptions of Theorem 4.7. For £ > k, we have
=2
(1(04))
2V det 32(¢ — k)

i (BN T7+0,) = +O0((t—k)73),

and so

[i(Ey) = +O((L—k)"2) and Ez[Va] = 2cinlogn + O(n),

E k:

with ¢; = %\/ﬁ S (T = a)?.

Proof. Since fi is T-invariant, for k < ¢, recalling (22) we have

i (Ek,z N T*’“Oa) = A(EryN0y) = i(Ty = a, Se—y = 0,Zy_y = a)
= E;[10,Hoe-r(10,)]

_ i(Oa)? .
C2mV/det X2(¢ — k) TOWE=F)

due to Theorem 4.2 since 15, € B; and since Ezllp,] € g’l Hence

) — kA ) Zé:l (:‘E(O“))2
1'u (EMHT Oa) 2mV/det $2(¢ — k)

3
2

)

+O((t—k)73),

]~

(Eye) =

a

and
n

EalVal = > alEre)=n+2 > i(Eeg)

k=1 1<k<f<n

= n+22 (n —m)a(Ey) = O(n) + 2cinlogn.
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Lemma 4.9. Assume general assumptions of Theorem 4.7. There exists C1 > 0 such that for all
non-negative integers n,m,k, for all i,7,i',5" € {1,...,I}, and for all Ny, Ny € Z?, we have

C’lozm
| COVﬂ(l{IO:i,Sn:Nl,In:i’}’ 1{In+m:j,sn+m+k—Sn+m:N2,In+m+k:i/})| < m

In particular
)| < 12 C’lam
n+m,n+m+k — (n + 1)(k, + 1) °

Proof. The covariance we are interested in can be rewritten

Covi (10,1gs,-m1 10, © T (1, Lis,-ny 1o, o TF) o T")

| COVﬂ(lEO’n, 1E

= B [P ((16,1g5,2my 0, © T = Egllo 1(s,=n) 1o, 0 T"]) (1o, 1(s:=ny 1o, o T5) o T |

Moreover, using several times P™(f goT™) = g P"™(f) and the definition of Hy,,, we obtain that
this quantity is equal to

Eg [1@, Ho k <1oj(Pm —Ep) (161-,7'[N1,n (101-)) )}
and so is bounded by

sl g, 5y - @ 1P = Eall g, 5, - @i - M al g, 516015,
K§
“(n+1)(k+1)
due to (25) and assumption (A5) of Theorem 4.7, together with (A1) of Assumptions 4.1 applied
tou = 0. Here a; := ||15, ¥ 'HL(&,&)'
This gives the first estimate of the lemma. To get the second one from the first one, we just
observe that

Caajajaillls, |5, -

I

_ . i ok
1g,, = E 16,08, _p—0yrT--05, © T" -
=1

We will use the notation A,, ~ B, for two positive quantities whenever lim,, .o g—: =1.

Lemma 4.10. Assume general assumptions of Theorem 4.7. We have Vary(Vy) ~ en? , with

(L @00)2)’ (12 1y,

= det X2 2 6
1—y) —yo —
Ji= / 2B gy, dyadys.
y12,y3 >0yt +yotys<1 Y1Y2 + Y2Y3 + Y1y3

The proof of Lemma 4.10 is rather technical and involved, so we move it to the appendix B.

Proof of Theorem 4.7. Set ny := exp(vklogk). For every £ > 0, due to the Bienaymé-Chebychev
inequality and using Lemmas 4.8 and 4.10,

3 Vi, ~ EalVill > Bl ]) < 3 iV,

= = &2 (EnlVn,])?

:ZO((lognk) 2) ZO Ylogk)™) < o0.

k>1 k>1
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Hence (Vn,/Ep[Vn,])r converges f-almost surely to 1. Due to Lemma 4.8, (V,, /(nylogng))k
converges almost surely to 2c;. Since nylogng ~ ngy1logngy; and since (V,), is increasing, if
n € {ng,...,ng41}, then

Vi (g1 10g ngey1) < Vi /(nlogn) < Vo, /(nxlogng),
and so (V,/(nlogn)), converges fi-almost surely to 2¢;. O

Proof of Theorem 2.5. Due to Remark 3.5, Theorem 3.17 and to Lemma 4.5, the assumptions of
Theorem 4.7 are satisfied. Therefore (V,,/(nlogn)), converges fi-almost surely to

2
(30) i S (200 )1 3008
mVdet 2 = T /der? =\ 23500, |00 7V det 22 (Zi—l\aOb!)Q

O

4.4. Random scenery: General result and proof of Theorem 2.6. Assume that to each
atom O; x {{} is associated a random variable &; ¢, independent and identically distributed across
i €[l,...I] and £ € Z2, centered with variance ag and defined on a common probability space

(9, F,P). We define the random variable (defined on M x €):

n—1
Zpn = Z&k,sk :
k=0

We also define a linearly interpolated version of Z, by,
Zn(t) = Z\_ntJ + (nt - \-ntJ)g(I[ntJ+175LntJ+1)'
Theorem 4.11 (Annealed and &-quenched CLT for Z). Assume general Assumption 4.1 and that,

i) for every a € {1,...,1}, f 15, f is a continuous linear operator on gl;
ii) and supjey ||Pkl]3;€(a)||g1 < oo (recalling (27));
iii) there exists ¢ > 0 such that E5[|S,|*] ~ n.

Then, (Z, = (Zn(t)/v/nlogn)iso)n converges in distribution, with respect to i @ P (and to the
uniform norm on C([0,T]) for every T > 0), to a Brownian motion B = (Byt)i>o such that E[B?] =

2

e S Ty = a)?.
If, moreover, there exists x > 0 such that E[|£ )|*(log™ [£1,0))X])] < oo, then, for P-a.e. re-

alization of (& ¢)i, (ZNn)n converges also in distribution, with respect to fi, to the same Brownian
motion B.

As said before, it should be possible to remove the additional assumption E[|£(1 o) |*(log™ [£(1,0)])X])] <
oo by using our estimates, combined with the very recent preprint [13] instead of [21].

Proof of Theorem 2.6. Using Theorem 4.11, we prove Theorem 2.6. Assumption 4.1 holds in the
setting of Theorem 2.6 due to Theorem 3.17. Moreover, assumption (i) of Theorem 4.11 follows
from Remark 3.5, while assumption (ii) follows from Lemma 4.5 and (iii) comes from Theorem 2.1.
With the hypotheses of Theorem 4.11 verified, Theorem 2.6 follows using the same calculation as

n (39). O

We proceed to prove Theorem 4.11.

For the annealed central limit theorem, we mostly follow the proof by Bolthausen for random
walks in random scenery in dimension 2 [5]. In comparison with [31], the fact that the almost sure
convergence of V,, has been proved greatly simplifies the proof.
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Lemma 4.12. Assume the general assumptions of Theorem 4.11. Fizx 9 > 0. For fi-almost every
€M, supy > i Lig,—pp = o(n”).

Proof. For every ¢ € Z? and every N € N*,

n N
(Z 1{Sk:£}> < Nt Z Iz (Sk1 = Skz == SkN = E)
k=1

1<k1<<kn<n

=N Y B [Hopy—haos o Hogoi e ()]
1<k1<-<kn<n
< N! (o)™

< 1<k1<Z~<kN<n (kl + 1)(k2 — k1 + 1) (/CN kn_1+ 1)

= O(KY N! (logn)N),

due to Theorem 4.2. Moreover, due to (iii) combined with a result by Billingsley (see [4] and [37])

Ez [kn%ax |5k|] O(n(logn)?)

yeees Tl

and so due to the Markov inequality, for every s > 0, i (man:L..‘,n |Sk| > n”s) < et =
O(n=17%). Now fix 9 > 0. Then,

_ 9 — Y =
i (s%pz lig,—ey > 1 > <n <kn}ax |Sk| > nlt ) +,u< sup Zl{Sk —p>n )

k=1 T [l <nt+? 32

<O N+ @2 +1)2 sup @ (Z lig,—ey >n >

|£| <n1+‘9 k=1

< O(n_l_ﬁ + (log n)Nn2+279—19N) ’

where we used the inequality E[X > n?] < E[XN]n=YN for any N € N* combined with (40). Now
choosing N > (3 + 39) /9, we conclude the proof of the lemma by the Borel-Cantelli lemma. O

Recall that, for z € M, the random variable Z,,(x) can be rewritten: Z,(z) = > 1_; é7,.8, =
Zle > vez2 §ieNa (i, 0) (), where Ny (i, €)(x) = Y p_) 1qg,—¢.7,—i} () is the number of visits to
the obstacle of index (i,£) up to time n and where (& ¢);¢ is a sequence of i.i.d. centered square
integrable random variables defined on some probability bpace (Q,F,P).

Note that the variance of Z,(x) (with respect to P) is J§V (x), where 02 = E[f? )] since, under

P, Z,(z) is a sum of independent random variables of respective variances o; 2N, 0) ()2

Lemma 4.13 (Convergence of finite-dimensional distributions). Assume the assumptions of The-
orem 4.11. For every m > 1, every 0 < t1 < to < ... < tym, For j-almost every x € M,

(Z;n 1G5 (Zlnth Zlnt;_ 1J> (x)/+v/nlog n) converges in distribution (with respect to P) to a cen-

tered Gaussian random variable with variance 2010£ Zj 1 ](tj ti—1).
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Proof. We fix x € M. The variance of ZTzl aj <ZLnth - ZLnt]—,lj) (x) (with respect to P) is equal
to, recalling (38),

(41)

2
I m
23D D s (Mt (6 D(@) = Ny, (0 D(@))
i=1¢c72 \ j=1
I m [nt;] Lnt ;]
=0} Z Z Z a;ag Z Z (5, =¢.1,=i,5, =01, =i} (T)
i=1¢ec72? j,5'=1 kil_ntj,1j+1 k’:\_ntj/71J+1
Lnt; ] Lnt; ]
=0} Z aja; Z Z Li8,=8, 2=, } (2)
3.J'= k=|ntj_1]+1k'=[nt;y_,]+1

Z aivlntﬂ—tntj—ﬂ o Tlrti—1

j=1

+ Z aja; ((V\.ntj’J_l_”tj—lJ - V\_ntj’—lj_l.ntj—lj> o Tls-1] 4 (VLntj/,lj—Lntjj - thtj,J—Lnth ° TLnth>

1<j<g’<m

~2010£Za ti—1)nlogn,

for fi-a.e. x € M, due to the proof of Theorem 4.7 (since (V,,/(nlogn)), converges ji-almost surely
to 2c1, as well as any sequence of random variables with the same marginal distributions).

Note that, with respect to P, ZTzl aj <ZLntj | = Zlnt; J) (x) is a sum of independent centered
random variables with variances
2

T ie() Za] Nt ) (@ O (@) = Mg,y ) (65 0)())

i,0

Hence, due to Lemma 4.12 and to the Lindeberg Theorem, for fi-almost every = € M, the sequence
of random variables

S a5 (2ot = 2oty ) (@)
VC”’(ZT:1 aj(ZLnth - Z\_ntjflj )(1’))

converges in distribution (with respect to P) to a standard Gaussian random variable. The conclu-
sion then follows from (41). O

n

Lemma 4.14. Under the assumptions of Theorem 4.11, the sequence of random variables (ZNn(t)/\/n log n)
is tight (with respect to p @ P) in C([0,T]) for every T > 0.

Proof. Due to Theorem 4.7, it is enough to prove the tightness of ( n(t)/ n) . Due to [4,
n
Lemma p. 88|, it is enough to prove that

(42) lim limsup \*(fi @ P) <k£riax |2k > )\agx/Vn> =0.

A—+00 p—+oco
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We modify the proof of tightness of Bolthausen in [5]. For completeness, we explain the adaptations
to make. Following [5] (see also [31, bottom of page 824]|, using the fact that (Z,,), has positively
associated increments knowing (S, )., we obtain that, for any A > v/2,

moP) (mex|2) 2 Moy %) <20 P) (12, > (- VEoe/ )

Now we simplify the conclusion of [5|. Since we know that (Z,/v/V,)n converges in distribution to
a Gaussian random variable Y, so

lim sup(i ® P) <m<ax 12| > /\ng/Vn> < 2P (|Y\ > (A — ﬂ)(;g) .
sn

n—-+o0o

and P (Y| > z) = O(e=¥*") for some ¢y > 0, which proves (42) and so the tightness. O

Proof of Theorem 4.11. The first result of Theorem 4.11 is a direct consequence of Lemmas 4.13
and 4.14.

Now let us prove the last point. For this, we use the general argument developed by Guillotin-
Plantard, Dos Santos and Poisat in [21]. Indeed the proof of [21] only uses the following assumptions:

e ['is a denumerable set,

e S .= (gn)nzg is a sequence of I'-valued random variables,

o & := (&)yer is a sequence of independent identically distributed real valued random variables,
which are centered and such that E[|¢,[*(log™ [£,])X|)] < oo for some y > 0,

the sequences of random variables ¢ and S are independent,

o <\/71110W( LntJ 1 &5, + (nt — |nt] )égtntJ)>te[o,1] converges in distribution in C(0,7") to the
Brownian motion B, N
e sup,cr E[Nn(y)] = O(logn) with Ny (y) := #{k =0,...,n c Sy =y} = Zk 0 15—y

being the local time of S.
Zyer(IE[(Nn(y))])2 = O(n), with the same notation.

o P(Sy & {50, ..., Sn_1}) = O((logn)™1).

We apply this to T' = {1,..., I} x Z? and S, = (Z,,Sp). For the antepenultimate condition, observe
that, due to Corollary 4.3,

n—1 n—1
E[Nn(a,0)] = > En [1gg,—ep-16, 0 T"] = > Ez [15,Her(1)] = O(logn).
k=0 k=0

For the penultimate condition,

n—1
YEN =D D Eixallg,—g -] Z Enxallg, —g]

yel’ yel' k,j=0 1,7=0
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considering an independent copy S’ = (8!, = (Z.,,5,))n of S. Now, using again (23) combined with
Assumption 4.1 with 8 and a > 0 as in the proof of Theorem 4.2, we obtain

Epxp {1§k:§;} < Epxa {1sk:s;}

= /[ . Epxp [eiu-Ske—iu-S;] du

= /[ . Eg [ei“'sﬂ Eg {e_w'sfl'] du

_ /[ LB [Pra] s [P2,1] du

= / ekl | [11,1]) eo9 B [I1,1]] du + O(aF )
[-8.8]2

— 2 il ]2 .
< /R e B [11,1]] eI B [11,1]] du + O(a* ™)

= O(1+Ek+jY.

Therefore

SEE@D =0 ¥ =] = om.
yer 0<j,k<n—1
The last condition comes from the second part of Proposition 4.4. Note that in order to invoke
Proposition 4.4, we need that the operator f — Ez[f 15, ] is continuous on Eé This follows from
the fact that we have assumed (i) in the statement of the theorem, that f — f15_is a continuous

operator on gl, and that by Assumption 4.1, E;[-] acts continuously on By. The second condition
needed to conclude (29) from Proposition 4.4 is precisely assumption (ii) in the statement of the
theorem. 0

APPENDIX A. PROOF OF LEMMA 4.5

Here we prove the Lemma 4.5, which was used in Subsection 4.2, especially used in the proof of
Theorem 2.4.

Let us prove that (36) holds true. By density, it suffices to perform the estimate for f € C'(Mj).
In the proof below, we use the fact that the invariant measure fig is absolutely continuous with
respect to the Lebesgure measure.

Choose ¢ > 1 and fix wy := (w1,...,wy). Let g be as in the statement of the lemma. For brevity,
denote by Tf@ =T, 0---0T,, the composition of random maps and by L’fdz its associated transfer

operator. Also, set H} (g) = |g|oc + SUDCeC,, o, C’S(?fc). We must estimate

Epolfg) = | fgduoz/ £l f-g0 (T5) " dpo.
MO M()

To do this, we decompose M into a countable collection of local rectangles, each foliated by a
smooth collection of stable curves on which we may apply our norms. This technique follows closely
the decomposition used in [16, Lemma 3.4].

We partition each connected component of M \ (Ujg|>koHg), into finitely many boxes B; whose
boundary curves are elements of W and W", as well as the horizontal boundaries of Hiy,. We
construct the boxes Bj so that each has diameter in (6/2,6), for some ¢ > 0, and is foliated by a
smooth foliation of stable curves {W }¢c=;, such that each curve We is stretched completely between
the two unstable boundaries of B;. Indeed, due to the continuity of the cones C*(x) from (H1), we
can choose § sufficiently small that the family {W¢}eez, is a family of parallel line segments.
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We disintegrate the measure fig on Bj; into a family of conditional probability measures dje =
ce cospdmyy,, & € Zj, where c¢ is a normalizing constant, and a factor measure Aj(€) on the
index set Z;. Since [ig is absolutely continuous with respect to Lebesgue measure on My, we have
X(E5) = fio(By) = O(82).

Similarly, on each homogeneity strip H, ¢t > kg, we choose a smooth foliation of parallel line
segments {Weleez, € H; which completely cross H;. Due to the uniform transversality of the
stable cone with OH;, we may choose a single index set =; for each homogeneity strip. We again
disintegrate fip into a family of conditional probability measures dug = c¢ cosp dmyy,, § € E¢, and
a transverse measure \;(£) on the index set =;. This implies that \(Z;) = jig(H;) = O(|t|~5) for
each [t| > ko.

Notice that on each homogeneity strip Hy, the function cos ¢ satisfies,

(43) | log cos () — log cos p(y)| < Cd(z,y)'/?

for some uniform constant C' > 0 (uniform in k). B
We are ready to estimate the required integral. Let G;(W¢) denote the components of (Tﬁe)_ll/VE,
with long pieces subdivided to have length between dp/2 and g, as in the proof of Lemma 3.14.

bt g0 @) dno = Z/ £, 000 (T Mng+ 30 [ £l g0 (TL) i

|t > ko
_ L4 f g0 (T4) " dugdhy(€ Ly, f g0 (Tg,) ™" duedAi(€)
Z/ /W ¢ té/“t/ o
_Z/ Z / fgcicosgooT Iwe. eedmwg,id)\j(f)
=J Wgzegé W§

+ Z/ Z / fgc§cosgooT£ e, Eedmwgﬁid/\t(g).

‘tlzk =t WE i€Gy WE

Next we use the assumption that ¢ is Holder continuous on connected componts of Mg\(Ui 1T o
0T, 1(So,m))- Since elements of Go(We) are also subdivided according to these singularity sets,
we have that g is Holder continuous on each We ; € Go(W¢). Thus,

0 ¢ 0 0
. fgcecospoly, Jw,, T, dmw,, < |flwlglerw, )cel cosp o Ty, lerwe oy Iwe Lo, v (we )
&1

_ C
< |f|wH5(g)’JW§7iTﬁz|CO(W571-)W,

where we used (43) in the last estimate, as well as the fact that the normalizing constant c¢ is
proportional to |[Wg|~'. This implies that

Epolf 9] < Clf 1w (9) Z/ S T o | Wel ™ dr (€)

=T We,i€Ge(We)

+ Z / Z |JW&,2'T£@|CO(W5,Z-)|W£’_1 dAt(f))
‘t|>k0 =t Wg ZEQZ(WE)
Now ZWU €Gu(We) |JW§,1‘T££‘CO(W§,Z') is bounded by a uniform constant independent of { and w, by
[16, Lemma 5.5(b)|. Moreover, ij [We|~1dA;(€) < Cdy for some constant C' > 0 since we chose our

foliation to be comprised of long cone-stable curves. We conclude that the first term to the right
hand side of the last inequality is uniformly bounded by C'|f|..H} (g) since the sum over j is finite.
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For the second term on the right hand side of the last inequality, we again use [16, Lemma 5.5(b)|
as well as the fact that [W¢|™1 = O(#3) for € € E;, while \((Z;) = O(¢t7°). Thus

Z/ Wel'd\(€) < Y Ct2 < Chg ™

It|>ko |t|>ko
We conclude that
[Egolf 9l < KalflwH (9),
for some uniform constant K depending on Fy,, but not on f, £ or w,. This completes the proof
of (36
r}o i)rove (37), we follow the proof of Lemma 3.14. Note that for f € C*(My), W € W*, and a
test function 1, we have

/ Ly - Luw (f9) Y dmy = Z/ fge™ S"%/JOTZ Jw. T} w, dmw,
W

where the sum is taken over W; € G,(W), the components of (7, e)—lw subdivided as before. This
is the same type of expression as in [16, eq. (5.24)] or [16, eq (4.4)], but now the test function is

g eiu-Se o Tée JWi w,

rather than simply v o Té JW . Since Sy is constant on each W; € Gy(W), and we have assumed
that ¢ is (uniformly in f) Holder continuous on each W; € G,(W), the proof of the Lasota-Yorke
inequalities follows as in the proof of [16, Proposition 5.6]. The bound (37) then follows as in the
proof of Lemma 3.14.

Remark A.1. As a consequence of this lemma, if g : M — R is a bounded measurable function
such that, for every w = (wg)k>0 € EN| there exists positive integer £, such that g(-,w) is p-Hélder
on every connected component (uniformly on w) of Mo\ <Uii61Tw lo...o TW% . 1(80,H)). Then,

for every f € gw, we have

Ezlgfll =

/EEﬂo[g(»w)f(x,w)] dn(w)’

= Ki|flg, (Hg\loo+ sup sup C<(§E~,w>>|c> ’

QGEN Cecwl ..... wy(w)

with the same notations as in the previous lemma. Therefore, Eg[g-] is in gfu

APPENDIX B. PROOF OF LEMMA 4.10.

Note that V,, =n + 2 Zl§k<€§n 1(S,=S).T=T;}- Hence
Var,;(vn) =4 Z Z Dy 1 ks
1<k1<l1<n 1<ko<lo<n

with Dk1,£17k2,£2 = E(Ekl,él N Ekz,fz) - /j(Ekl,& )/Z(Elm,@z)- It follows that
)

(44> |Varﬁ(Vn — 8(A2 + A3)| < 8(A1 + A4),
with
Ay = Z |Diy 0y ko tn] s A2 i= Z Dy 3 k2 5
1<k <l1<ka<tlo<n 1<k <ko<li1<l2<n
Az = > Dy sty ha by Ad = > | Dy 1 ez 8

1<ki<ko<lo<li<n (k1,k2,81,62)EE,UFy,
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with
En = {(/ﬁ,kg,ﬁl,ﬁg) S {1, ,n} : kl = kg < min(£1,€2>},

F, = {(kl,kg,gl,fg) S {1,...,77,} : max(kl,kg) </t = Ez}.

We will start with the two easiest estimates: the estimates of the error terms A; and A4. The
method we will use to estimate the main terms Ay and As differs from [32].
Due to Lemma 4.9,

Al < 12 Z - C]iakzel - — O(n(logn)Q) —_ 0(n2).
Vit Tty (b1 K1) (L2 = R2)

Let us now prove that A4 = o(n?) by writing

> 1Diytrnesl < 2 Y (A(Brey N Eggy) + (B i(Eryey)
(k1,k2,01,02)€Ey, 1<k<t1<la<n

< 2 Z (1(Se; = Sey = Sk) + 1(Se, = Sk)a(Se, = Sk))
1<k<t1<l3<n

< 20 > (BalHos—onHon k(D] +Ea Mo k(1)) Eg [Ho e, k(1))
1<k<l1<la<n

< KoY, < ! + L )

< K

l<k<lrotly<n (fl — k) (52 — ¥l + 1) (61 — ]{)wz — k‘)

for some K, > 0 due to Theorem 4.2, since Ez[-] is a continuous linear operator on B, and
since 1 € By. This leads to 3=, o r)em, | Dkt ko ota] = O(n(log n)?). Analogously, we obtain
X ks kst )€y [ Dio ko o] = O(n(logn)?). Hence Ay = o(n?).

For Aj, we study separately the terms fi(Ey, ¢, N Ek, ¢,) and the terms f(Ey, ¢, )@(Ekye,). First
by Lemma 4.8,

(45) Z ﬂ(Ek1,€1)ﬂ(Ek2,€2)

1<ki<ko<li1<to<n
=& > (k)T O = k) ) (= )T O — Ra) )
1<k <ko<l1<l2<n
1
—om+d Y ,
1<ki<ko<l1<tl2<n (61 o kl)(€2 o k;Z)

where we used the fact that

n

1 1 1 1
Z y/— 3 S Z mo +m 3
1<k1<ko<l1<l2<n ! ! (ZQ - k2)2 mi,ma,ms3,ma=1 2 3 (m3 + m4)2
n n 1 n 1
S DD D) e
ma3=1mo=1 mg +m3 ma=1 (m3 + m4)§
" _1
= 0 (n Z 10gnm32>
ms3=1

= O(n% logn) = o(n?).
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Therefore, due to the Lebesgue dominated convergence theorem, we obtain

dxdydzdt
(E (E _ 2 2 2/
Z /"L( k‘l,fl)/’b( k2,€2) O(n)+cln l§M<M<M<MS1 (M_M) (M_M)

1<ki<ko<li<ta<n n n
9 2/ dxdydzdt
~ cn —_
O<a<y<z<t<l (z —x)(t —y)
272 2 n’ ! 2 :
46 = —_n = — (Lo = .
(46) U712 T 48det 32 ;“( 0=a)

The rest of the estimate of Ay is new (it is different from [32]). Fix for the moment 1 < k; < ky <
{1 < £y < n. Note that

Ia(Ekl,fl N Ekzlz)
I
= Z 7 (T#ﬂ Oa N TﬁkQOb NnTH (Oa) N Tﬁbéb N {Sk2 — Sk1 = —(Sgl — Sk2) = Sg2 — Sgl }) .

a,b=1

Using now (23) as for (24), we observe that L(s,, — Sk, =—(Se, —Sky)=Se,—S¢, } 18 equal to the following
quantity

% / eiu'((skz_skl )+(SZ1 _Skz))eiv'((SZQ_S€1)+(Sf1 _Skg)) du dU ,

(2m)% J(=mmi2y2

which is also equal to

/ et (Sky =Sk, ) i(utv)-(Sey =Sky) 10-(Se, =Sey) Juy dw
(27’[’)4 ([—7r,7r]2)2

1 ; Fky Fkoy 70
_ ezu~5k2_k1 oT 161(“+U)‘Sél—k20T 262v~Sg2_gloT 1 du dv .
([=mm2)2

(2m)*

Now using the P-invariance and T-invariance of i and several times the formula P™(f.g o T™) =
gP™(f), we obtain

I

i(Egy 0y O Epyy) = Y (271r)4/([ e (16, P27 (16, P2 (16,P 7 (15,)) )| dudv.
a,b=1 -mT

Due to our spectral assumptions, we observe that

P} = M1, + O(a™),

up to defining A, = e~ 370U for 4 outside [—f,8]? and so, proceding as in the proof of Theorem
4.2, we obtain that, for every n > 2 and every u,v € [—7, 7|2,

Pr = e EPUUELLL 4 O(0") + O(e 2 (Ju] 4 njul))
= ¢ FTUE, )1 4 O(e N )

2 2 _n—1y2 _ 2
and [\?| < e~ 24" for some @ > 0 (such that e=27" > om max(\P—1 e™ "7 P Twu) < e~ 2anlul’)
. _ 2 —nalul? :
since n|u|?e=2mlul” = O(e~melul”), Therefore, we obtain

(47) By 16,201 (16,P07 (16,P 1 (16,)) )|

= (i(0a)(Op)2e~2Q0) 4 O ((]u\ + ]v|)e’”aQ(“’“)) ,
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where we have set

Q(u,v) = (EQ — 61)’U|2 + (61 — kg)’U + 1)’2 + (kQ — kl)\u|2
= (fg—kg)"l)’z—f—Q(El —kg)’u"l)-i- (51 —kl)\u|2
= (Aq(u,v) - (Ag(u,v)) = |[Ag(u,v)|?,

{1 — k1 0 {1 — ko 0
with AQQ =y 0 2 b 6 & 0 0 2 f 6 2 which is symmetric with determinant
1— R 2 — K2

0 V1 — ko 0 Uy — ko

8) det AY = (01 — k1)?(lo — k2)? + (01 — ka)* — 2(6y — k2)? (€1 — k1) (L2 — k2)
= ((k2 — k1)(£1 — ko) + (ko — k1) (b2 — £1) + (£1 — ko) (l2 — €1))*.

Due to the form of A%, we observe that A% has eigenvectors of the forms (x,0,*,0) and (0, *,0, ),

that it has two double eigenvalues of sum (without multiplicity) ¢ — k1 + ¢2 — ko and of product

(without multiplicity) 4/det Aé. Therefore its dominating eigenvalue is smaller than the sum and so

is less than 4 max(ky—ky, £1—ko, f2—F1) and so (using the fact that the product of the two eigenvalues

is larger than the maximum times the median of these three values) the smallest eigenvalue of Aé

cannot be smaller than a quarter of the median of ko — k1,41 — ko, o — f1, that we denote by
med(kg — /{1,51 — k‘2,€2 — 51) So

/ eI qudy = (det E)_Q/ e QW) dudy
([=m.m]?)? (B[=m7?)?
= (det Ag) ! (det ©) 2 / e @ qzdy
AQ(X([=m.m]?)?)

= (det Ag)~*(det B) 2 eT1@OF dgdy 4 O(emamedba—krfi=ka lo=t1)”
Q -

= (2m)*(det Ag) ™! (det 1) 72 (1 + O(e~mmedtha—hnfi=hata=t)®y)
Q

2)2

for some a; > 0. Moreover

/ |(u, v)|e" "R dudy = (det Ag)! / |A(’_21 (u, v)\e*‘”("’c’y)‘2 dxdy
(R?)? (R2)2

=0 ((det AQ)_l med(k:g — ]{?1,51 — ]{72,62 — 51)_%) .
Therefore

_ N2
(i1 1(0.))
(27)? det Ag det X2

(49)  A(Ekye, N Eryp,) = (1 +0 (med(k‘2 — ki, by — ko, by — 51))_%» :
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But using (48),

1
> (det Ag) ™" = 3
sk <kz<ti<tz<n 1<k1<ka<t1<lz2<n (kZ N kl)(gl B k2) + (kQ - kl)w? - Zl) + (51 - k2)(€2 - 61)
- 2. :
mi,ma,m3,ma>1 1 mi+maotmz+ma<n mams + mamy + M3my
1{ [ny1] + [nya] + [ny3] i [ny4l <1}
.2 n n Py oS
=n /(07_;.00)4 fngﬂ (ngs] + (ngz] [ngﬂ n [ng:ﬂ (ngﬂ dyy dys dy3 dy,

1
~ n2/ {y1+y2+ys+ya<l} dy dys dys dyy |
(0,400)4 Y2U3 + Y2y4 + Y3Y4

due to the dominated convergence theorem. Therefore

(50)
1—yy — — 1
Z (det AQ)—I ~ ’I’L2/ ( Y2 Y3 y4) {y2+y3+y4§1} dyQ dy3 dy4 — n2J.
1<ky<ky<t1<lz<n (0,400)3 Y2y3 + Y24 + Y3Ya
Analogously
(51)
Z (det AQ)il (med(kzg — k1,61 — ko, by — 61))7%
1<k <ko<l1<lo<n

_ 3 1

m1,ma,m3,mas>1 : mi+mot+ms+ma<n <m2m3 + mamy + m3m4) med(m2a ms3, m4)

<n Z !

1<ma<ms<ma<n (Maomg + mamy + msmy) ms

N

1 n n 3
-2
<n E 3 < nlogn E E ms
1<mo<mz<my<n m§ my mao=1m3z=mz2

=

<nlogn Z O(my 2) = O(n% logn) = o(n?).

mo=1
Equations (49), (50) and (51) lead to
N2
T oy
Z H( k1,61 k2,f2) - ((27‘(‘)2 det 22) + 0(” )

1<k <kgo<fl1<l2<n

Combining this with (46), we conclude that

n? ! ’ 1 J
- E i(Tn = a)? T
(52) Az det 322 < Aildo =a) ) <48 + 47‘(‘2) '

a=1

The study of As is the most delicate. We can observe that both sums » 3y oy 1. g, <, <y B(Eky 0,0
Epyy) and Yy o oo cor<n BBy 0)( By 4,) are in O(n?logn). However, we will see that their
difference is in n?. Once again our proof differs from the one in [32] and is based on the same idea
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as the one used to prove Ay. We set Ej, ¢(b) := Ej ¢ N{Z; = b}. Due to the first part of Lemma 4.8,

Ag= 3 Bk N Ere) = By o) B i)
1<k <ka<lo<t1<n

I
= o(n®) + > > (“Tny ey inin + AOky ads ity O Sk ko 12))
1<k1<ko<la<li<n a,b=1

= 0(n2) + Z Z Iy oy 1 o)

1<k <ko<lo<li<n a,b=1

2 el o (ot ar n0)) )

1<k <ko<lo<tli<n a,b=1

where
(ﬂ(oa))Qﬂ(Ekz,b (b))
2V det L2(0y — k1)

Ok17k2,l1,lz = Oa N T_(kQ_kl)Ob N T_(b_kl)éb N T_(El_kl)ém

Il(kla kl) l17 l2) —

Sk kol de = {Sta—ky © The=h — 0} N {Se,—e, © T = ~Shy—k1 }
Now, as we did for (47) (and using Theorem 4.2), we get that

o [10 ph—t <1Ob?'{oe2 o (1oZ,Pk2 . (1@))”

= _ (&1 —t3)+(ko—kq) o U —nalu|?
_ (,UJ(OQ))QB 1=ba) g =k1) 5y Eﬁ [16177-[0742_]921627] + O <£2|—’k26 Jul > .
Therefore
1
) aas B (10207 (1o Mo (10,257 (10,))]
(1(0a))*t (Egy 0, (b))

1
= +0 .
2 (ly — Uy + ky — k1)V/det X2 ((52 — ko) (by — by + ko — k1)3>

We will now prove that the term in O in this last formula is negligable. Indeed its sum over
{1 <k < kg <ty </t <n}isin O of the following quantity:

Z ((1)3> < nlognz Z(m4+m2)*%
ms 2

mi+mat+ma+ma<n mq +me ma=1my=1

< <nlogn Z mey ) nz logn) = o(n?).

mao=1

This combined with (54) and (55) leads to

D4))?i (B, 4, (b)) 1 1
A _ 2 2,82 —
3 =o0(n") + > Z 27r\/m —Lly+hky—ky —k)’

1<ky <k‘2<€2§f1 <n a, b=1
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ie.
I/- 2
(Zo = a)) c1 -3 ms
A320n2+2“( — 4+ 0O(ma, 2
) 21v/det %32 m1+m2+z:m+m4<n ms ) (mg + my)(mz + m3 + my)
1
2 2
= o(n?) + ¢ > 7
mi1+meo+ms+ma<n (m2 + m4)(m2 +m3 + m4)
since
1 - _1
Z T =01[n Z ms > (m2m4)_1 = o(nz) .
mi+ma+mz+ma<n m?f (m2 + m4)(m2 + ms3 + m4) mo,m3,ma=1
Therefore, due to the Lebesgue dominated convergence theorem,
Az ~ 123 / = dyrdysdysdys ~ SLn?
3~ N Y1ay20y3ays ~ N
Y1,92,Y3,¥4>0:y1+y2+ys+ya <1 (y2 +ya)(y2 + ys + ya) 2

To conclude the proof of the lemma, we use the estimate for As together with (44) and (52) to

obtain,
2
(Z ) (2 )
f 48

n? o) [27+1 1
= det 32 <;”(O“)) [ 2 _6]'

8A2 + 8A3 = 401n +

This finished the proof.

APPENDIX C. SPECTRUM OF P,

In this appendix, we are interested in the spectrum of the family of operators P,. We start by
stating a result for the unperturbed operators L, o.

Lemma C.1. Let u € R?, h € B and X € C be such that L, oh = Ak in B and |A\| > 1. Then either
h=0 oru€2rZ? \=1 and h is Jig-almost surely constant.

Proof. Recall that for ¢ € CP(My), we have ¢ o T € CP(T~"W?). Note that

Looh(1h) = h(e™ 09 o Tp).
Thus for n > 1,
L3t oh(3) = h(e™ 0y o Tg),
where S, &g = &g+ Pyo Ty + -+ Py o Té%l denotes the partial sum. By [16, Lemma 3.4|, using
the invariance of h,

(56) ()] = A" h(e™ S Poqpo T )| < CIN ™[Rl (Je™ S P00 T oo+ O, (50090 Ty)),

nW‘S
where C'¥ )"Ws( -) denotes the Hélder constant of exponent p measured along elements of T, "W*.
Since |e?* Sn n®0| =1 and S, ® is constant on each element of T, "W?, we have

Ol (@500 ap 0 TF) < |50 O (4 0 T) + [ 0 T¢'| O

iu-SnQDO)
nWs

nWs (6
< CAPCE) ().
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Using this estimate in (56) and taking the limit as n — oo yields |h(¢))| = 0 if [A] > 1 and
|h(¥)| < C|hly|t|so for all ¢ € CP(W?) if |A| = 1. From this we conclude that the spectrum of £, o
is always contained in the unit disk. Furthermore, when |[A\| = 1, then h is a signed measure. For
the remainder of the proof, we assume || = 1.

Let V,, o be the eigenspace of L, o corresponding to eigenvalue \, o, and II, o the eigenprojection
operator. Since we are assuming V,, o is non-empty, Lemma 3.14 implies that £, o is quasi-compact
with essential spectral radius bounded by 7 < 1. Moreover, Lemma 3.14 implies that [|£3 ;| 5,5
remains bounded for all n > 0, so using [15, Lemma 5.1], we conclude that £, has no Jordan
blocks corresponding to its peripheral spectrum.

Using these facts, I, ¢ has the representation

I
; —ipi
nh_)rrolo - Jz_:l A ]ﬁu,[) =1II,0.

In addition, for f € C*(My), 1 € CP(W?),

n

Mo f ()] = | im ™A F((e 509 0 T9)| < |fluckloc

j=1
Since HU,OC1 (Mp) is dense in the finite dimensional space IL,, 0B, therefore Hu70C1(]\_40) =108 =
V0. So for h € Vo, there exists f € C*(Mp) such that II,of = h. Now for each 1 € CP(M),
|h()] = Mo f ()] < [floooL(|9]) = | floofio(|2])-

Thus h is absolutely continuous with respect to fig. For simplicity, we identify h and its density
with respect to fig; then h € L (Mjy, fip). Now for any ¢ € CP(W?), we have

A hodio= [ ol ®n) b dp
My My

— / (eiu.qB'Oh) ° Tgl . ?l)dﬁo
M

Accordingly, Ah = (e™®0h) o Ty ! ho-a.e. Or equivalently, we have Ah o Ty = e ®h. Hence

A" h o T(?)m = uSn®op,

Let G\ be the closed multiplicative group generated by A and let m) be the normalized Haar
measure on Gy. (G, is finite if A is a root of unity; it is {z € C : |z| = 1} otherwise.) The
dynamical system (G, my,T)) is ergodic, where T denotes multiplication by A in G. Due to [29],
the dynamical system (My x Gy, o @ my, Tp x T)) in infinite measure is conservative and ergodic.
But the function H : My x G — C defined as follows is (T x T))-invariant:

Y(Z,4,y) € Mg x Z2 x Gy, H(T +{,y) = yh(Z)e "
Indeed, for pg @ my-a.e. (T +L4,y) € My x Gy,
H(Tox T+ Ly) = H(To(@) + €+ 0o(Z), \y) = Ayh(To(z))e ™ 20@)
= ye " A(To(x))e )

= ye "'n(z),
due to our assumption on h. We conclude that H is a.e. equal to a constant, which implies that
w € 2rZ%, A =1, and h is fip-a.s. constant. [l

Proposition C.2. Given 3 > 0, there exists C > 1 and o € (0,1) such that

Vn e N*,  sup HPSHL(&@ < Ca".
B<ul<m
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Proof. Fix 8 > 0. Due to [1, Lemma 4.3|, Lemma C.1, and the continuity in u provided by [17,
Lemma 5.4 (see also Lemma 3.16 applied to L, o rather than P,), we know that there exists C' > 1
and « € (0, 1) such that

vneN*,  sup |[|Lyollrse < Ca™.

B u| <
Therefore, for every f € l§, we have
sup [Py f(z,w)llg = sup Liof (s (@,w)) dn®" (@)
weEN weEN |[|JE™ B
< sup [ Lol @@ )
QGEN En

< sup Cansupr('aWi,)HB :
weEN W’

where we used Lemma 3.7 to obtain the second line. Analogously,

S

NP w) ~Prf@ )l e Lo UG (Gw) = S5 (@, @) dP" (@)
) d(w, w') i d(w, W)

150 (f( (@, w)) = f( (@,u)]
< u, B d XM~
<, o e
. I [— . /
< Ca™»" sup Hf(vﬁ) fgﬂ“‘i)HB
wHw' d(% Q)
We conclude by putting these two estimates together. ([l
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