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20. A transition probability matrix is said to be doubly stochastic if the sum over columns equals 1. If
such a chain is irreducible and aperiodic and consists of M + 1 states, 0, 1, . . . ,M , show that the limiting
probabilities are given by πj = 1

M+1 , j = 0, 1, . . . ,M .

Solution. First we show by induction that if P is doubly stochastic, then so is Pn for each n. The base case
n = 1 is given. Now fix n and assume that Pn is doubly stochastic and show that Pn+1 is doubly stochastic.
Since Pn+1 = PnP , by the definition of matrix multiplication, we have,

Pn+1
i,j =

M∑
k=0

Pn
i,kPk,j , for each i and j.

Summing this equation over i, we get

M∑
i=0

Pn+1
i,j =

M∑
i=0

M∑
k=0

Pn
i,kPk,j now reverse order of summation

=
M∑
k=0

M∑
i=0

Pn
i,kPk,j sum over i using the fact that Pn is doubly stochastic

=
∑
k=0

Pk,j = 1 summing over k using the fact that P is doubly stochastic.

Since this is true for each j, Pn+1 is doubly stochastic. By induction, we conclude that Pn is doubly
stochastic for each n ∈ N.

Since the chain is irreducible and aperiodic, we know by our convergence theorem that

lim
n→∞

~v0P
n = ~π for any probability vector ~v0.

If we choose ~v0 to be the vector of all zeros except for a 1 in the ith entry, then ~v0P
n is simply the ith row

of Pn. This means that the ith row of Pn converges to ~π and this is true for each i = 0, 1, . . . ,M . Thus,

lim
n→∞

Pn
i,j = πj for each i, j = 0, 1, . . . ,M.

Now let’s fix j and sum this equation over i.

lim
n→∞

M∑
i=0

Pn
i,j =

M∑
i=0

πj .

Since Pn is doubly stochastic, the sum over i on the left hand side of the equation is simply 1. Notice that
on the right hand side, πj is independent of i so we are just adding the constant πj to itself M + 1 times.
So,

1 =

M∑
i=0

πj = (M + 1)πj =⇒ πj =
1

M + 1
.

Since this is true for each j, we are done. �

Alternate Solution. Since the Markov chain is irreducible and aperiodic, we know that we have a unique
stationary distribution vector ~π that satisfies ~π = ~πP and represents the limiting probabilities of the chain.
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Since we are given that the vector should be πj = 1
M+1 , j = 0, 1, . . . ,M , we can just plug this into the

equation ~π = ~πP . If it holds true, then this must be the stationary distribution.
For each j, we have

πj =

M+1∑
i=0

Pi,jπi and if πi = 1
M+1 for each i, then

πj =

M+1∑
i=0

Pi,j
1

M + 1
=

1

M + 1

M+1∑
i=0

Pi,j =
1

M + 1
,

where in the last line we used the fact that P is doubly stochastic to sum over i. �

23. In a good weather year, the number of storms is Poisson distributed with mean 1; in a bad weather
year, the number of storms is Poisson distributed with mean 3. A good year is equally likely to be followed
by a good or bad year. A bad year is twice as likely to be followed by a bad year as a good year. Suppose
year 0 was a good year.
a) Find the expected number of storms in years 1 and 2.
b) Find the probability that there are no storms in year 3.
c) Find the long-run average of the number of storms per year.

Solution. Let Xn = 0 if year n is good and Xn = 1 if year n is bad. Let Sn denote the number of storms
in year n. The transition matrix for Xn is

P =

[
1
2

1
2

1
3

2
3

]
.

(a) Let ~v0 = 〈1, 0〉 represent the distribution of X0, i.e. definitely a good year. Then ~v1 = ~v0P represents
the distribution of X1 and ~v2 = ~v0P

2 represents the distribution of X2. We have

P 2 =

[
5
12

7
12

7
18

11
18

]
P 3 =

[
29
72

43
72

43
108

65
108

]
(1)

So
~v1 = ~v0P = 〈12 ,

1
2〉 and ~v2 = ~v0P

2 = 〈 512 ,
7
12〉.

Then recalling that Sn is Poisson with mean 1 in a good year and mean 3 in a bad year, we have

E[S1] = E[S1|X1 = 0]P (X1 = 0) + E[S1|X1 = 1]P (X1 = 1) = (1)(12) + (3)(12) = 2,

E[S2] = E[S2|X2 = 0]P (X2 = 0) + E[S2|X2 = 1]P (X2 = 1) = (1)( 5
12) + (3)( 7

12) = 13
6 .

So the expected number of storms in the next two years is E[S1] + E[S2] = 2 + 13
6 = 25

6 .

(b) Using (1), we have that the distribution of X3 is given by ~v3 = ~v0P
3 = 〈2972 ,

43
72〉. Thus conditioning on

whether year 3 is good or bad, we have,

P (S3 = 0) = P (S3 = 0|X3 = 0)P (X3 = 0) + P (S3 = 0|X3 = 1)P (X3 = 1)

= e−1
10

0!

(29

72

)
+ e−3

30

0!

(43

72

)
=

29

72
· 1

e
+

43

72
· 1

e3
≈ .18.

(c) In the long run, Sn will depend on the stationary distribution of Xn. This means we must find the
invariant vector ~π of P . We solve for ~π using the equation ~π = ~πP . This yields two equations,

π0 =
1

2
π0 +

1

3
π1, π1 =

1

2
π0 +

2

3
π1.

Solving (you can either use elimination or row reduction), we get ~π = 〈25 ,
3
5〉. Thus,

lim
n→∞

E[Sn] = lim
n→∞

E[Sn|Xn = 0]P (Xn = 0) + E[Sn|Xn = 1]P (Xn = 1)

= lim
n→∞

E[Sn|Xn = 0] · π0 + E[Sn|Xn = 1] · π1 = 1(25) + 3(35) = 11
5 = 2.2. �
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25. Each morning a runner leaves by either the front door or back door and returns by either the front or
back door. He takes a pair of shoes from the door he exits and leaves a pair at the door he enters. If he
owns a total of k pairs of shoes, what is the proportion of time that he runs barefoot?

Solution. Our runner goes running barefoot if two (independent) events occur: there are zero shoes at
either of the two doors AND he chooses that door. Let’s focus first on computing the long-run proportion
of time that there are zero shoes at either of the two doors. Let Xn denote the number of shoes at the front
door at the beginning of day n’s run. We compute the following transition probabilities,

Pi,i+1 = P (leave by back door)P (return by front door) =
1

2
· 1

2
=

1

4

Pi,i = P (he enters and returns by the same door) =
1

2
· 1

2
+

1

2
· 1

2
=

1

2

Pi,i−1 = P (leave by front door)P (return by back door) =
1

2
· 1

2
=

1

4

These probabilities are valid for i = 1, 2, . . . k − 1. For the two boundary cases, i = 0, k, we have,

P0,0 = P (leave by front door) + P (leave by back door AND return by back door) =
1

2
+

1

4
=

3

4

P0,1 = P (leave by back door AND return by front door) =
1

4

Pk,k = P (leave by back door) + P (leave by front door AND return by front door) =
1

2
+

1

4
=

3

4

Pk,k−1 = P (leave by front door AND return by back door) =
1

4

The probability transition matrix is therefore given by

P =



3
4

1
4 0 0 · · · 0 0 0

1
4

1
2

1
4 0 · · · 0 0 0

0 1
4

1
2

1
4 · · · 0 0 0

...
...

...
...

...
...

...
...

0 0 0 0 · · · 1
4

1
2

1
4

0 0 0 0 · · · 0 1
4

3
4


.

To find the long-run proportion of time that the chain spends at either of the two states 0 and k, we need
to find the stationary distribution ~π. This can be done in one of two ways. Either (1) solve the equation
~π = ~πP starting with the first component and solving for each component of ~π in terms of π0; or (2) note
that the matrix is doubly stochastic (all columns sum to 1) and use exercise 20 to conclude that all entries
of ~π must be equal. Since ~π has k + 1 entries, this means πi = 1

k+1 for each i = 0, 1, . . . , k.
Now as stated at the beginning of the problem, our runner runs barefoot if two (independent) events

occur: there are zero shoes at either of the two doors AND he chooses that door. Notice that there are 0
shoes at the back door if there are k shoes at the front door. So (all the probabilities below refer to long
run probabilities),

P (runs barefoot) = P (chooses front door|0 shoes at front door)P (0 shoes at front door)

+ P (chooses back door|0 shoes at back door)P (0 shoes at back door)

= 1
2π0 + 1

2πk = 1
k+1 .

�

34. A flea jumps around 3 vertices of a triangle with probability pi of going clockwise and qi = 1 − pi of
going counterclockwise, i = 1, 2, 3.
a) Find the proportion of time that the flea is at each vertex.
b) How often does the flea make a counterclockwise move followed by 5 consecutive clockwise moves?
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Solution. If we arrange the vertices 1, 2, 3 in clockwise order, the transition matrix is given by

P =

 0 p1 1− p1
1− p2 0 p2
p3 1− p3 0

 .
To answer (a), we need to find the stationary distribution ~π = [π1, π2, π3]. We do this by solving ~π = ~πP ,
or equivalently, (P T − I)~πT = ~0. We row reduce, assuming p1q2 − 1 6= 0. −1 1− p2 p3 0

p1 −1 1− p3 0
1− p1 p2 −1 0

 r3→r3+r2+r1−→

 −1 1− p2 p3 0
p1 −1 1− p3 0
0 0 0 0


r2→r2+p1r1−→

 −1 1− p2 p3 0
0 p1q2 − 1 1− p3 + p1p3 0
0 0 0 0

 r2→r2/(p1q2−1)−→

 −1 1− p2 p3 0

0 1 1−p3q1
p1q2−1 0

0 0 0 0


r1→−r1+q2r2−→

 1 0 −p3 + q2
1−p3q1
p1q2−1 0

0 1 1−p3q1
p1q2−1 0

0 0 0 0


This is reduced row echelon form. We now simplify the (1, 3) entry of the matrix. Some algebra yields,

−p3 + q2
1− p3q1
p1q2 − 1

=
−p3(p1q2 − 1) + q2(1− p3q1)

p1q2 − 1
=

1− p2q3
p1q2 − 1

.

Translating the augmented matrix into equations for ~π yields,

π1 =
1− p2q3
1− p1q2

π3 and π2 =
1− p3q1
1− p1q2

π3.

Now using the fact that ~π is a probability vector,

1 = π1 + π2 + π3 =
1− p2q3
1− p1q2

π3 +
1− p3q1
1− p1q2

π3 + π3 =
3− (p1q2 + p2q3 + p3q1)

1− p1q2
π3.

This implies that,

π1 =
1− p2q3

3− (p1q2 + p2q3 + p3q1)
, π2 =

1− p3q1
3− (p1q2 + p2q3 + p3q1)

,

π3 =
1− p1q2

3− (p1q2 + p2q3 + p3q1)
.

(2)

Notice that the denominator is zero only if p1q2 + p2q3 + p3q1 = 3. This can happen only if each term equals
1. But this would require both p1 and q1 to be 1, which is impossible.

We have derived these stationary probabilities assuming that 1 − p1q2 6= 0. But if 1 − p1q2 = 0, we
must have p1 = q2 = 1. This immediately implies q1 = p2 = 0 and a quick look at the diagram shows that
in this case, the flea never jumps to vertex 3 and spends time evenly in 1 and 2. Thus, π1 = π2 = 1

2 and
π3 = 0. This agrees with the formulas in (2) so that these formulas hold in all cases.

To answer (b), we condition on the flea being in each one of the 3 vertices, distributed according to the
vector ~π. For brevity, let E be the event that the flea makes the required sequence of moves and let F be
the position of the flea.

P (E) = P (E | F = 1)P (F = 1) + P (E | F = 2)P (F = 2) + P (E | F = 3)P (F = 3)

= q1p3p1p2p3p1π1 + q2p1p2p3p1p2π2 + q3p2p3p1p2p3π3

= p1p2p3(q1p1p3π1 + q2p1p2π2 + q3p2p3π3).

�
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