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Chapter 4

46. The umbrella problem.

Solution. (a) Let Xn = # umbrellas at home at the beginning of day n. The possible values of Xn

are 0, 1, . . . , r. These are the r+1 states of the Markov chain. To compute the transition probabilities,
first let i = 1, . . . r− 1 and consider how we can go from i umbrellas at home at the beginning of day
n to i− 1 umbrellas at home at the beginning of day n+ 1. Two independent events must occur: it
must be raining in the morning (so the man takes an umbrella to work) AND it must be not raining
in the evening (so the man does not take an umbrella home). Thus

Pi,i−1 = p(1− p) for i = 1, . . . , r − 1.

Similarly, to gain an umbrella at home by the next day, it must be not raining in the morning AND
it must be raining in the evening. For the number of umbrellas at home to remain the same, it is
either raining both in the morning and in the evening or it is raining neither in the morning nor in
the evening. Thus

Pi,i+1 = p(1− p) and Pi,i = p2 + (1− p)2 for i = 1, . . . , r − 1.

Now the two boundary cases are i = 0 and i = r. For i = 0, we have,

P0,0 = Prob(no rain in evening) = 1− p and P0,1 = Prob(rain in the evening) = p

since it doesn’t matter what happens in the morning since he cannot take an umbrella either way.
Similarly, for i = r, we have

Pr,r = Prob(no rain in morning) + Prob(rain in morning and rain in evening) = 1− p+ p2

and Pr,r−1 = Prob(rain in the morning and no rain in evening) = p(1− p).

(b) To find the invariant vector ~π, we set up the transition matrix.

P =



1− p p 0 0 0 · · · 0 0 0 0
p(1− p) p2 + (1− p)2 p(1− p) 0 0 · · · 0 0 0 0

0 p(1− p) p2 + (1− p)2 p(1− p) 0 · · · 0 0 0 0
0 0 p(1− p) p2 + (1− p)2 p(1− p) · · · 0 0 0 0
...

...
...

0 0 0 0 0 · · · p(1− p) p2 + (1− p)2 p(1− p) 0
0 0 0 0 0 · · · 0 p(1− p) p2 + (1− p)2 p(1− p)
0 0 0 0 0 · · · 0 0 p(1− p) 1− p+ p2


We solve for ~π using the equation ~π = ~πP . For the first component,

π0 = π0(1− p) + π1p(1− p) which yields π0 = (1− p)π1.
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For the second component,

π1 = pπ0 + (p2 + (1− p)2)π1 + p(1− p)π2 , now substitute π0 = (1− p)π1,
=⇒ π1 = p(1− p)π1 + (p2 + (1− p)2)π1 + p(1− p)π2 =⇒ π1 = π2.

Now writing the equation for the third component, π2, we have

π2 = p(1− p)π1 + (p2 + (1− p)2)π2 + p(1− p)π3 =⇒ π2 = π3 after substituting π1 = π2.

Note that the rest of the columns up to r− 1 have the same entries, just shifted by one position,
so that we get π1 = π2 = π3 = · · · = πr−1. For the last column, we have

πr = p(1− p)πr−1 + (1− p+ p2)πr =⇒ πr = πr−1 = π1 as well.

Now we use the fact that all entries of ~π add to 1,

1 = π0 + π1 + π2 + . . .+ πr = (1− p)π1 + rπ1

=⇒ π1 =
1

r + 1− p
and π0 =

1− p
r + 1− p

,

which proves (b) since π1 = π2 = · · · = πr.

(c) Our man gets wet if either:
A: there are 0 umbrellas at home in the morning and it rains in the morning
B: there are r umbrellas at home in the morning and it does not rain in the morning (so that he
does not take an umbrella to work) and it does rain in the evening.
Thus

P
( man gets

wet per day

)
= P (A) + P (B) = π0p+ πr(1− p)p =

p(1− p)
r + 1− p

+
p(1− p)
r + 1− p

=
2p(1− p)
r + 1− p

.

If we want the frequency with which the man gets wet per trip, we divide this by 2 (since there are
2 trips per day):

P
( man gets

wet per trip

)
=

p(1− p)
r + 1− p

. (1)

(d) When r = 3, we must maximize the function

f(p) =
p− p2

4− p
0 ≤ p ≤ 1.

Taking the derivative (using the quotient rule), we have

f ′(p) =
(4− p)(1− 2p)− (p− p2)(−1)

(4− p)2
=

4− 8p+ p2

(4− p)2
.

Setting this fraction equal to 0, we find the two roots of the numerator are p = 4 ±
√

12. The only
one of these roots that is between 0 and 1 is 4−

√
12. Notice also that f(0) = f(1) = 0 so that the

probability is not maximized at the endpoints. Thus p = 4−
√

12 ≈ .536 maximizes the fraction of
time that the man gets wet. �
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Alternate Solution. Alternatively, you can define the Markov chain as Xn = # umbrellas at
current location after n trips (between home and office). Now if we have i umbrellas at the current
location, there are r − i at the other location. So if it is not raining and Xn = i, then he does not
take an umbrella and arrives at the next location with Xn+1 = r − i; this occurs with probability
1− p. On the other hand, if it does rain, then he takes an umbrella and the new location gains one
umbrella: Xn+1 = r − i+ 1 with probability p. Thus the transition matrix is

P =



0 0 0 0 0 · · · 0 0 0 1
0 0 0 0 0 · · · 0 0 q p
0 0 0 0 0 · · · 0 q p 0
...

...
...

0 0 q p 0 · · · 0 0 0 0
0 q p 0 0 · · · 0 0 0 0
q p 0 0 0 · · · 0 0 0 0


Similar algebra as in part (b) above solves for the entries of the vector ~π. (Interesting fact: although
the matrices are quite different, we get the same values for π0, π1, . . . , πr using either method.) Now
we compute the probability of the man getting wet per trip on average as simply pπ0, which is the
same as (1). The calculations for part (d) are also the same. �

52. Find the taxi driver’s average profit per trip.

Solution. First notice that the information given in the problem is sufficient to find the expected
profit of a trip conditioned on starting in zone A or B. Let A→ B denote the event that a fare picked
up in zone A will have a destination in zone B with analogous definitions for the events A → A,
B → A and B → B. Then we can write

E[Profit | pickup in A] = E[Profit | pickup in A,A→ A] · P (A→ A | pickup in A)

+ E[Profit | pickup in A,A→ B] · P (A→ B | pickup in A)

= 6 · (.6) + 12 · (.4) = 3.6 + 4.8 = 8.4.

(2)

Similarly,

E[Profit | pickup in B] = E[Profit | pickup in B,B → B] · P (B → B | pickup in B)

+ E[Profit | pickup in B,B → A] · P (B → B | pickup in B)

= 8 · (.7) + 12 · (.3) = 5.6 + 3.6 = 9.2.

(3)

In order to compute the average profit per trip, we need the long run frequency with which the taxi
driver picks up fares in zones A and B. Letting zone A be state 1 and zone B be state 2, we can use
the information in the problem to write the following transition matrix describing the probabilities
of moving from one zone to the next with each new fare. The Markov chain Xn describes the zone
in which the nth fare is picked up.

P =

[
.6 .4
.3 .7

]
We find the invariant vector ~π by solving ~π = ~πP or equivalently, (P T − I)~πT = ~0. We row reduce
the augmented matrix [P T − I | ~0].[

−.4 .3 0
.4 −.3 0

]
R2→R2+R1−→

[
−.4 .3 0

0 0 0

]
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This tells us that (−.4)π1 + (.3)π2 = 0 so that π2 = 4
3
π1. Then using the fact that ~π is a probability

vector,
1 = π1 + π2 = π1 + 4

3
π1 = 7

3
π1 =⇒ π1 = 3

7
and π2 = 4

7
.

Now using ~π, we can compute the taxi driver’s average profit per trip as the expected value of the
profit based on the long run frequency of fares picked up in each zone. We condition on picking up
a fare in zone A or B and use (2) and (3).

E[Profit] = E[Profit | pickup in A] · P (pick up in A)

+ E[Profit | pickup in B] · P (pick up in B)

= 8.4π1 + 9.2π2 = 8.4(3
7
) + 9.2(4

7
) = 62

7
= 86

7
.

�

57. A particle moves among n+ 1 vertices that are ordered clockwise around a circle. If the particle
starts in vertex 0, find the probability that it visits every vertex at least once before returning to 0.

Solution. The particle moves one step clockwise with probability p and one step counterclockwise
with probability 1 − p. Picture the vertices arranged around a circle like a clock, with 0 at the 12
o’clock position and the other vertices numbered clockwise so that vertex n is near the top in the 11
o’clock position.

Suppose the first step the particle takes is clockwise to vertex 1. Now starting at vertex 1, we
must compute the probability that the particle visits vertices 2 through n before returning to 0.
Following the hint in the text, we frame this question in terms of the gambler’s ruin problem. In the
gambler’s ruin problem, the gambler starts with i units (dollars) and with each bet, wins a dollar
with probability p and loses a dollar with probability 1−p. The probability that the gambler starting
with i dollars reaches N > i dollars before reaching 0 dollars (going broke) is given on page 232 as

Pi =


1− (1−p

p
)i

1− (1−p
p

)N
, if p 6= 1

2

i

N
, if p = 1

2

. (4)

We interpret this in terms of our particle moving around the circle by identifying vertex i with
having i dollars. Winning a bet corresponds to taking one step clockwise (with probability p) and
losing a bet corresponds with taking one step counterclockwise (with probability 1− p. We have to
reach vertex n before reaching vertex 0 so that our n is the N in the gambler’s ruin. We start from
vertex 1, so i = 1. Thus using (4), the probability that starting from vertex 1, we reach vertex n
before reaching vertex 0 is

P1 =


1− (1−p

p
)

1− (1−p
p

)n
, if p 6= 1

2

1

n
, if p = 1

2

.

Next we suppose the first step the particle takes is counterclockwise to vertex n. We want to
calculate the probability of visiting vertices n − 1 down to 1 before returning to vertex 0. This is
really the same calculation as above with the roles of p and 1 − p interchanged since the steps we
want to take are oriented counterclockwise from vertex n instead of clockwise. Using this symmetry
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and interchanging the roles of p and 1− p, we find that the probability that starting from vertex n,
we reach vertex 1 before reaching vertex 0 is

Q1 =


1− ( p

1−p)

1− ( p
1−p)n

, if p 6= 1
2

1

n
, if p = 1

2

.

Let E be the event that every vertex is visited before returning to 0. Then conditioning on the first
transition, we have,

P (E) = P (E | first step is clockwise) · P (first step is clockwise)

+ P (E | first step is counterclockwise) · P (first step is counterclockwise)

= P1 · p+Q1 · (1− p)

Now if p 6= 1
2
, we use the first formula for P1 and Q1,

P (E) =
1− (1−p

p
)

1− (1−p
p

)n
p+

1− ( p
1−p)

1− ( p
1−p)n

(1− p) =
p− (1− p)
1− (1−p

p
)n

+
1− p− (p)

1− ( p
1−p)n

=
(2p− 1)pn

pn − (1− p)n
+

(1− 2p)(1− p)n

(1− p)n − pn
=

(2p− 1)(pn + (1− p)n)

pn − (1− p)n
.

On the other hand, if p = 1
2
, we use the second formula for P1 and Q1,

P (E) =
1

n
p+

1

n
(1− p) =

1

n
.

Chapter 5

20. Suppose we have a two server system with exponentially distributed service times µi, i = 1, 2.
When you arrive, Server 1 is free, person A is in service at Server 2 and person B is waiting in line
at Server 2.
a) Find PA, the probability that A is still in service when you move over to Server 2.
b) Find PB, the probability that B is still in the system when you move over to Server 2.
c) Find E[T ], where T is the time you spend in the system.

Solution. a) Due to the memoryless property of the exponential distribution, it does not matter
how long A has been at Server 2 when you walk in. The clock “resets” the moment you walk in so
that the probability PA is simply the probability that Server 1 finishes before Server 2. Letting T1
and T2 denote the service times of servers 1 and 2, we have

PA = P (T1 < T2) =
µ1

µ1 + µ2

.

b) Notice that the question asks you to find the probability that B is still in the system when you
finish at Server 1. This is different from the probability that B is in service at Server 2. The event
that B is still in the system can be split into the union of two disjoint events: either (1) A is still in
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service at Server 2 so B is still waiting when you move over to Server 2, or (2) A has finished, but B
has not finished when you move over to Server 2.

Now notice that for the first event P(1) is simply PA, the probability from part (a) that you finish
at Server 1 before A finishes at Server 2. For the second event to occur, two independent events must
occur: A finishes before you and then you finish before B. So using the memoryless property of the
exponential,

P (2) =

(
µ2

µ1 + µ2

)(
µ1

µ1 + µ2

)
=

µ1µ2

(µ1 + µ2)2
.

Since (1) and (2) are disjoint events, we can add the probabilities,

PB = P (1) + P (2) =
µ1

µ1 + µ2

+
µ1µ2

(µ1 + µ2)2
. (5)

Another way to think of PB is that the event that B is still in service is the complement of the event
that B has finished by the time you move over to Server 2. This means both A and B finish before
you. Thus,

PB = 1−
(

µ2

µ1 + µ2

)2

,

which is equivalent to the expression in (5).

(c) We follow the hint in the book and write

E[T ] = E[S1] + E[S2] + E[WA] + E[WB]

= E[S1] + E[S2] + E[WA | A still in service] · P (A still in service)

+ E[WB | B still in system] · P (B still in system)

where we have added the conditioning on the expected values of WA and WB, since if T1 > T2, then
A finishes before you move over so WA = 0; and if B is not still in service when you move over, then
WB = 0. Then using our answers from parts (a) and (b),

E[T ] = E[S1] + E[S2] + E[WA | A still in service] · PA + E[WB | B still in system] · PB

=
1

µ1

+
1

µ2

+
1

µ2

µ1

µ1 + µ2

+
1

µ2

(
µ1

µ1 + µ2

+
µ1µ2

(µ1 + µ2)2

)
=

1

µ1

+
1

µ2

+
2µ2

1 + 3µ1µ2

µ2(µ1 + µ2)2
.
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