ON THE DELTA SET AND CATENARY DEGREE OF KRULL MONOIDS WITH INFINITE CYCLIC DIVISOR CLASS GROUP

PAUL BAGINSKI, S. T. CHAPMAN, RYAN RODRIGUEZ, GEORGE J. SCHAEFFER, AND YIWEI SHE

Abstract

Let M be a Krull monoid with divisor class group \mathbb{Z}, and let $S \subseteq \mathbb{Z}$ denote the set of divisor classes of M which contain prime divisors. We find conditions on S equivalent to the finiteness of both $\Delta(M)$, the Delta set of M, and $c(M)$, the catenary degree of M. In the finite case, we obtain explicit upper bounds on $\max \Delta(M)$ and $c(M)$. Our methods generalize and complement a previous result concerning the elasticity of M.

1. Introduction

Because of their relevance to non-unique factorizations in algebraic number theory, Krull monoids M with finite divisor class group have been well-studied. It is known in this case that the sets of lengths of M are almost-arithmetic multiprogressions (see [8] for a study of such sequences). When the divisor class group of M is not finite, we know considerably less about the structure of the length sets. In particular, if each divisor class of M contains a prime divisor, then a result of Kainrath [13] implies that each finite subset of $\{2,3,4, \ldots\}$ can be obtained as a set of lengths. In [12], Hassler gives conditions on this distribution of divisor classes with primes which yield "thin" sets of lengths. About 10 years ago, a series of papers appeared ([2] and [3]) which considered problems involving the elasticity of Krull monoids with divisor class group \mathbb{Z}. In such a Krull monoid, let S represent the set of divisor classes of M which contain prime divisors and write S as a disjoint union $S^{+} \cup S^{-}$where $S^{+}=\{s \in S \mid s \geq 0\}$ and $S^{-}=\{s \in S \mid s<0\}$. The main result of [2] (Theorems 2.1 and 2.3) implies that the elasticity, $\rho(M)$, is finite if and only if either S^{+}or S^{-}is finite. In this note, we show that this result extends to the cardinality of the Delta set of $M, \Delta(M)$, as well as the catenary degree of $M, c(M)$. In particular, the results of the next two sections along with the result mentioned above from [2] will constitute a proof of the following.
Theorem 1.1. Let M be a Krull monoid with divisor class group \mathbb{Z} where $S=S^{+} \cup S^{-}$ corresponds to the set of divisor classes which contain prime divisors. The following are equivalent:
(1) $\rho(M)$ is finite,

[^0](2) $\Delta(M)$ is finite,
(3) $c(M)$ is finite,
(4) Either S^{+}or S^{-}is finite.

By [11, Theorem 1.6.3], we have for all atomic monoids that $(3) \Rightarrow(2)$. Few other general relationships exist between (1), (2), and (3). For instance, Example 4.8.11 in [11] yields a monoid M with $\rho(M)<\infty$ and $|\Delta(M)|=\infty$ (other pathological type examples are found in [11] in Examples 1.6.11, 1.6.3.3, and Theorem 3.1.5).

We proceed with a brief summary of the necessary background and notation for the remainder of our work. For a commutative cancellative monoid M, let M^{\times}denote its subgroup of units; M is called reduced if $M^{\times}=\{1\}$. Let $\mathcal{A}(M)$ denote the set of irreducible elements or atoms of M. If $x \in M$, an atomic factorization is an expression of the form $F: x=\alpha_{1} \cdots \alpha_{n}$ where $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{A}(M)$; in this case we say that $|F|=n$ is the length of this atomic factorization. If $x \in M \backslash M^{\times}$we define

$$
\mathcal{L}(x)=\{n \mid x \text { has an atomic factorization of length } n\}
$$

and $\mathfrak{L}(M)=\left\{\mathcal{L}(x) \mid x \in M \backslash M^{\times}\right\} . M$ is called atomic if every element has an atomic factorization. If M is atomic, $x \in M$, and $\alpha \in \mathcal{A}(M)$ divides x, then there is an atomic factorization of x in which α appears.

For any $x \in M \backslash M^{\times}$the ratio $\sup \mathcal{L}(x) / \min \mathcal{L}(x)$ is called the elasticity of x, denoted $\rho(x)$. If M is not a group, we define the elasticity of the monoid M by

$$
\rho(M)=\sup \left\{\rho(x) \mid x \in M \backslash M^{\times}\right\} .
$$

A review of the main facts concerning the elasticity can be found in [11, Chapter 1.4]. Given $x \in M \backslash M^{\times}$, write its length set in the form $\mathcal{L}(x)=\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ where $n_{i}<n_{i+1}$ for $1 \leq i \leq k-1$. The Delta set of x is then defined by

$$
\Delta(x)=\left\{n_{i+1}-n_{i} \mid 1 \leq i<k\right\}
$$

and the Delta set of M by

$$
\Delta(M)=\bigcup_{x \in M \backslash M^{\times}} \Delta(x)
$$

(see again [11, Chapter 1.4]). If $\Delta(M)$ is nonempty, $\min \Delta(M)=\operatorname{gcd} \Delta(M)$ (see [11, Proposition $1,4,4]$). Computations of Delta sets for various types of monoids can be found in [4] and [5].

Suppose that M is reduced, $x \in M$ is not the identity, and that

$$
F: x=\alpha_{1} \cdots \alpha_{n} \beta_{1} \cdots \beta_{s} \text { and } F^{\prime}: x=\alpha_{1} \cdots \alpha_{n} \gamma_{1} \cdots \gamma_{t}
$$

are distinct atomic factorizations such that $\beta_{i} \neq \gamma_{j}$ for all i, j. With notation as above, we define $\operatorname{gcd}\left(F, F^{\prime}\right)=\alpha_{1} \cdots \alpha_{n}$ and the distance between F and F^{\prime} by $d\left(F, F^{\prime}\right)=\max \{s, t\}$. Extend d to all pairs of factorizations by $d(F, F)=0$. The basic properties of the factorization distance function can be found in [11, Proposition 1.2.5].

An N-chain of factorizations from F to F^{\prime} is a sequence F_{0}, \ldots, F_{k} such that each F_{i} is a factorization of $x, F_{0}=F$ and $F_{k}=F^{\prime}$, and $d\left(F_{i}, F_{i+1}\right) \leq N$ for all $i<k$. The catenary degree of x, denoted $c(x)$, is the least $N \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$ such that for any two factorizations
F, F^{\prime} of x there is an N-chain between F and F^{\prime}. The catenary degree of the monoid M is defined as

$$
c(M)=\sup \left\{c(x) \mid x \in M \backslash M^{\times}\right\}
$$

A review of the known facts concerning the catenary degree can be found in [11, Chapter 3]. An algorithm which computes the catenary degree of a finitely generated monoid can be found in [6] and a more specific version for numerical monoids in [7].

A monoid M is called a Krull monoid if there is an injective monoid homomorphism $\varphi: M \rightarrow D$ where D is a free abelian monoid and φ satisfies the following two conditions:
(1) If $a, b \in M$ and $\varphi(a) \mid \varphi(b)$ in D, then $a \mid b$ in M,
(2) For every $\alpha \in D$ there exists $a_{1}, \ldots, a_{n} \in M$ with $\alpha=\operatorname{gcd}\left\{\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right\}$.

The basis elements of D are called the prime divisors of M. The above properties guarantee that $\mathrm{Cl}(M)=D / \varphi(M)$ is an abelian group, which we call the divisor class group of M (see [11, Section 2.3]). Note that since any Krull monoid is isomorphic to a submonoid of a free abelian monoid, a Krull monoid is commutative, cancellative, and atomic.

Given an abelian group G (written additively), it is easy to explicitly construct a Krull monoid with divisor class group isomorphic to G. Let $\mathcal{F}(G)$ denote the free abelian monoid (written multiplicatively on the set G) and let $\theta: \mathcal{F}(G) \rightarrow G$ be the homomorphism $\prod_{g \in G} g^{a_{g}} \mapsto \sum_{g \in G} a_{g} \cdot g$. Then it is easy to check that the kernel of this homomorphism is a Krull monoid, where $D=\mathcal{F}(G)$ and φ is inclusion. We denote this monoid, called the block monoid on G by

$$
\mathcal{B}(G)=\left\{\prod_{g \in G} g^{a_{g}} \in \mathcal{F}(G) \mid \sum_{g \in G} a_{g} \cdot g=0\right\}
$$

and we refer to elements of $\mathcal{B}(G)$ as blocks or zero sequences from G. Note that every divisor class of $\mathcal{B}(G)$ contains a prime divisor: The divisor class corresponding to $g \in G$ contains the basis element g of $\mathcal{F}(G)$.

If D is a free monoid, f is a basis element of D, and $X \in D$, we write $v_{f}(X)$ for the power of f appearing in X. We say that X is supported on some subset S of the basis of D if and only if $v_{f}(X)=0$ for all $f \notin S$. For any $S \subseteq G$, the set

$$
\mathcal{B}(G, S)=\{B \in \mathcal{B}(G) \mid B \text { is supported on } S\}
$$

forms a submonoid of $\mathcal{B}(G)$ called the restriction of $\mathcal{B}(G)$ to S. $\mathcal{B}(G, S)$ is again a Krull monoid, and it is not difficult to check that the divisor class corresponding to some $g \in G$ contains a prime divisor if and only if $g \in S$.

Restricted block monoids play an important role in the theory of non-unique factorizations, as the following proposition indicates.
Proposition 1.2 ([9], Proposition 1 see also [11], Theorem 3.4.10(5)). Suppose that M is a Krull monoid with divisor class group G and let $S \subseteq G$ denote the set of divisor classes which contain prime divisors. We have the equality

$$
\mathfrak{L}(M)=\mathfrak{L}(\mathcal{B}(G, S))
$$

and the inequality

$$
c(\mathcal{B}(G, S)) \leq c(M) \leq \max \{c(\mathcal{B}(G, S)), 2\} .
$$

In particular, $\Delta(M)=\Delta(\mathcal{B}(G, S))$. Moreover, if $c(\mathcal{B}(G, S)) \geq 2$, then $c(M)=c(\mathcal{B}(G, S))$ and if $c(\mathcal{B}(G, S))=0$, then $c(M)=0$ or 2 .

Due to Proposition 1.2 and [1, Lemma 3.3], to prove Theorem 1.1, it suffices to consider block monoids of the form $\mathcal{B}(\mathbb{Z}, S)$, where $S=S^{+} \cup S^{-}$, and both S^{+}and S^{-}are nonempty. Moreover, if $0 \in S^{+}$, then the irreducible block represented by 0 is prime in $\mathcal{B}(\mathbb{Z}, S)$ and does not effect any factorization properties, since it must appear in every factorization of a block that contains 0 .

2. The unbounded case

Theorem 2.1. If S^{+}and S^{-}are infinite, then $\Delta(\mathcal{B}(\mathbb{Z}, S))$ and $c(\mathcal{B}(\mathbb{Z}, S))$ are infinite.
Proof. Assume hereafter that S^{+}and S^{-}are infinite.

- Fix an integer $j \geq 2$.
- Let $-m \in S^{-}$(so $m>0$).
- Since S^{+}is infinite, there exists an infinite $S^{\prime} \subseteq S^{+}$all of whose elements lie in the same congruence class modulo m. Choose $n \in S^{\prime}$ such that $n \geq m$ and let $e=\operatorname{lcm}\{n, m\}$.
- Fix $-M \in S^{-}$such that $M>e j$.
- Finally, fix $N \in S^{\prime}$ so that $N>2 e M$.
- Let α be the least positive integer such that $\alpha M \equiv b n \bmod m$ for some $b \in \mathbb{Z}$, and let β be the least such b which also satisfies $b n \geq \alpha M$. Define k to be the least nonnegative integer such that $(\beta+1) n \leq e(j+k)$.
We infer a number of immediate consequences from these definitions:
- α is the order of M in the group $(\mathbb{Z} / m \mathbb{Z}) /(n \cdot \mathbb{Z} / m \mathbb{Z})$, so $\alpha \mid m$. In particular, $\alpha \leq e$.
- $\beta>e / n$, since $\beta \geq \alpha M / n>\alpha e j / n \geq e / n$ and $\alpha, j \geq 1$.
- By the choice of $k, 0 \leq e(j+k) / n-\beta-1<e / n$
- We have $\beta n-\alpha M<2 e$. Otherwise we could replace β with the smaller positive integer $\beta^{\prime}=\beta-e / n$ which satisfies the same conditions.
- Because $N \equiv n \bmod m$ and $m \mid e$,

$$
q=\frac{(N-e M)+e(j+k)-n}{m}
$$

is an integer. In fact, q is a positive integer satisfying $q>e M / m$ and $q>j+k$.
By this last remark,

$$
B=[N][-M]^{e}[n]^{e(j+k) / n-1}[-m]^{q}
$$

is an element of $\mathcal{B}(\mathbb{Z}, S)$. We will show that $\mathcal{L}(B)=\{2, j+k\}$. The following observations will be used repeatedly in the remainder of the proof:
(i) $P=[n]^{e / n}[-m]^{e / m}$ is the unique atom of $\mathcal{B}(\mathbb{Z}, S)$ supported on $\{n,-m\}$. Any element of $\mathcal{B}(\mathbb{Z}, S)$ which is supported on $\{n,-m\}$ factors uniquely as a power of P.
(ii) Suppose that $X \in \mathcal{B}(\mathbb{Z}, S)$ is supported on $\{n,-M,-m\}$. We claim the following:

$$
\text { If } v_{[-M]}(X)>0 \text { then } v_{[n]}(X) \geq \beta .
$$

To prove this, write $X=[n]^{x}[-M]^{y}[-m]^{z}$ where x, y, z are nonnegative integers satisfying $x n=y M+z m$. Then $x n \equiv y M \bmod m$, so since y is positive, $y \geq \alpha$ by the choice of α. Since we also have $x n \geq \alpha M$, it follows that $x \geq \beta$, as desired.

Now, let F be an atomic factorization of B as an element of $\mathcal{B}(\mathbb{Z}, S)$. Since $v_{[N]}(B)=1$, there is exactly one atom A of $\mathcal{B}(\mathbb{Z}, S)$ appearing in F which satisfies $v_{[N]}(A)=1$. F now falls into one of two cases, depending on the value of $v_{[-M]}(A)$.

Case 1: Suppose that $v_{[-M]}(A)=e$. Then B / A is supported on $\{n,-m\}$ so by (i), B / A factors uniquely as P^{r}.

Let us compute r. Write $A=[N][-M]^{e}[n]^{f}[-m]^{g}$ where f, g are nonnegative integers and $N+f n=e M+g m$. Since $N \equiv n \bmod m$ and $m \mid e$, we have $(f+1) n \equiv 0 \bmod m$. Hence $e \mid(f+1) n$, so $f \geq e / n-1$. We claim that equality holds: $f \geq e / n$ and $N>2 e M$ together would imply $g m=(N-e M)+f n>e$. But then $g>e / m$, so P would be a proper divisor of A, contradicting the hypothesis that A is irreducible. Thus $v_{[n]}(A)=e / n-1$ and

$$
r=\frac{v_{[n]}(B / A)}{e / n}=\frac{e(j+k) / n-1-(e / n-1)}{e / n}=j+k-1 .
$$

So in this case, $F: B=A P^{j+k-1}$ and $|F|=j+k$.
To show that $j+k \in \mathcal{L}(B)$, it remains to show that such a factorization F actually exists. That is, we must show that there is an atomic factor A_{1} of B which satisfies the conditions of this case. By the preceding arguments, the only candidate is $A_{1}=$ $[N][-M]^{e}[n]^{e / n-1}[-m]^{q-(j+k-1)}$. Since $q>j+k$ by an earlier remark, $A_{1} \in \mathcal{B}(\mathbb{Z}, S)$. Suppose that $X \in \mathcal{B}(\mathbb{Z}, S)$ is a divisor of A_{1} such that $v_{[N]}(X)=0$. Since $v_{[n]}\left(A_{1}\right)<e / n \leq \beta$, observation (ii) guarantees that $v_{[-M]}(X)=0$. Thus by (i), $X=P^{d}$ for some $d \geq 0$, but $v_{[n]}(X)<e / n$, so $d=0, X=1$, and A_{1} is irreducible.

Case 2: Suppose instead that $v_{[-M]}(A)<e$. Then B / A has an irreducible factor Y such that $v_{[-M]}(Y)>0$. Since we also have $v_{[N]}(Y)=0$, (ii) implies that $v_{[n]}(A Y) \geq \beta$, so

$$
v_{[n]}(B / A Y) \leq \frac{e(j+k)}{n}-1-\beta<e / n .
$$

Moreover, $v_{[N]}(B / A Y)=0$, so (ii) guarantees that $v_{[-M]}(B / A Y)=0$, and hence by (i), $B / A Y=P^{d}$ for some nonnegative integer d. However, since $v_{[n]}(B / A Y)<e / n$, we must have $d=0$. So $B / A=Y$ is irreducible, $F: B=A(B / A)$ and any factorization obtained in this case has length 2.

It remains to show that such a factorization exists. Let $r=(\beta n-\alpha M) / m$. By the definitions of α and β, r is a positive integer, so $Y^{\prime}=[-M]^{\alpha}[n]^{\beta}[-m]^{r}$ is an element of $\mathcal{B}(\mathbb{Z}, S)$. By earlier remarks, $\alpha \leq e, \beta \leq e(j+k) / n-1$, and $r<2 e / m \leq e M / m<q$. It follows that Y^{\prime} divides B, so there is an atom A_{2} dividing B / Y^{\prime} such that $v_{[N]}\left(A_{2}\right)=1$. Since $\alpha>0$, we have $v_{[-M]}\left(A_{2}\right)<e$, so $A=A_{2}$ satisfies the conditions of this case and it follows that B has a factorization of length 2 .

By Case 1 and Case 2, we have $\mathcal{L}(B) \subseteq\{2, j+k\}$. Conversely, we have shown that appropriate factorizations exist in both cases, so $\mathcal{L}(B)=\{2, j+k\}$. From the length set, we calculate $\Delta(B)=\{j+k-2\}$ and, since distinct factorizations of length 2 and $j+k \geq 2$ cannot share any common factors, $c(B)=j+k$. Since j may be taken arbitrarily large, the result follows.

3. When either S^{+}or S^{-}is finite

The main theorem of this section is the following:
Theorem 3.1. Suppose that $S^{\prime}=\left\{-m_{r}, \ldots,-m_{1}, n_{1}, \ldots, n_{k}\right\} \subseteq S$ where $m_{i}, n_{i}>0$ for all i and $-m_{r}=\min S^{\prime}$. If B is an element of $\mathcal{B}(\mathbb{Z}, S)$ supported on S^{\prime}, then

$$
\max \Delta(B) \leq m_{r}\left(m_{r}+r^{2}\right)-2
$$

(if $\Delta(B)$ is nonempty) and

$$
c(B) \leq m_{r}\left(m_{r}+r^{2}\right) .
$$

The above is sufficient to complete the proof of Theorem 1.1. If S is bounded from either above or below, we may assume that S^{-}is finite, possibly after replacing S with $-S$. From the above it follows then that if $\Delta(\mathcal{B}(\mathbb{Z}, S))$ is nonempty, then it is bounded above by $M\left(M+\left|S^{-}\right|^{2}\right)-2$ where $-M=\min \left(S^{-}\right)$. Similarly, we obtain $c(\mathcal{B}(\mathbb{Z}, S)) \leq M\left(M+\left|S^{-}\right|^{2}\right)$.

The proof is based on a result of Lambert, which we now present adapted to the language of block monoids. Since the proof makes use of elements of $\mathcal{F}(\mathbb{Z})$ outside $\mathcal{B}(\mathbb{Z})$, we define some convenient notation. As before, we let $\theta: \mathcal{F}(\mathbb{Z}) \rightarrow \mathbb{Z}$ be the obvious homomorphism (so that $\mathcal{B}(\mathbb{Z})=\operatorname{ker} \theta$). We define another homomorphism $\varphi: \mathcal{F}(\mathbb{Z}) \rightarrow \mathbb{Z}_{\geq 0}$ by

$$
\varphi: X \mapsto \sum_{n \in S^{+}} v_{[n]}(X)
$$

If $X, Y \in \mathcal{F}(\mathbb{Z})$, then we write $X \leq Y$ whenever $v_{[z]}(X) \leq v_{[z]}(Y)$ for all $z \in \mathbb{Z}$.
Theorem 3.2 (Lambert [14]). If S^{-}is finite with $\min \left(S^{-}\right)=-M$, then $\varphi(A) \leq M$ for all atoms A of $\mathcal{B}(\mathbb{Z}, S)$.

Proof. Let $A=\left[n_{1}\right]^{a_{1}} \cdots\left[n_{k}\right]^{a_{k}}\left[-m_{1}\right]^{b_{1}} \cdots\left[-m_{r}\right]^{b_{r}}$ be an atom of $\mathcal{B}(\mathbb{Z}, S)$. An element X of $\mathcal{F}(\mathbb{Z})$ is called a positive subsequence of A if $X \leq A$ and $\theta(X) \geq 0$.

We construct a strictly increasing chain $1=X_{0}<\cdots<X_{\varphi(A)}=A$ of positive subsequences of A. Given X_{i} when $0<i<\varphi(A)$, consider all positive subsequences X of A such that $\varphi(X)=\varphi\left(X_{i}\right)+1$. Such an X must exist, since $\varphi\left(X_{i}\right)<\varphi(A)$ implies that there is some j with $X_{i}\left[n_{j}\right] \leq A$, and $\varphi\left(X_{i}\left[n_{j}\right]\right)=\varphi\left(X_{i}\right)+1$. Let X_{i+1} be such an X with $\theta\left(X_{i+1}\right)$ as small as possible.

We claim that $\theta\left(X_{i}\right)<M$ for all i. This is clear when $i=0$ or $i=\varphi(A)$. When $0<i<\varphi(A)$, then since X_{i} is a positive subsequence, there exists j such that $X_{i}\left[-m_{j}\right] \leq A$. If we had $\theta\left(X_{i}\right) \geq M$, then $X_{i}\left[-m_{j}\right]$ would be a positive subsequence of A, but then $0 \leq \theta\left(X_{i}\left[-m_{j}\right]\right)<\theta\left(X_{i}\right)$, which contradicts the choice of X_{i}.

If $0<i<\varphi(A)$, then $\theta\left(X_{i}\right)>0$ as otherwise X_{i} would be a proper nontrivial divisor of A in $\mathcal{B}(\mathbb{Z}, S)$ which contradicts the hypothesis that A is irreducible. Thus the set
$\left\{\theta\left(X_{1}\right), \ldots, \theta\left(X_{\varphi(A)-1}\right)\right\}$ is a set of size $\varphi(A)-1$ contained in $\{1, \ldots, M-1\}$. Hence, if $\varphi(A)>M$ there would exist distinct i, j with $i<j$ such that $\theta\left(X_{i}\right)=\theta\left(X_{j}\right)$. But then $A^{\prime}=X_{j} / X_{i} \in \mathcal{B}(\mathbb{Z}, S)$ and A^{\prime} is a proper nontrivial divisor of A, which is impossible. Thus $\varphi(A) \leq M$ as desired.

Proof of Theorem 3.1. We proceed by induction on $\max \mathcal{L}(B)$. In the base case B is irreducible, so $\Delta(B)$ is empty and $c(B)=0$.

Suppose then that B is not irreducible, let $L=\max \mathcal{L}(B) \geq 2$ and let $\ell \in \mathcal{L}(B)$. Write $B=\left[n_{1}\right]^{d_{1}} \cdots\left[n_{k}\right]^{d_{k}}\left[-m_{1}\right]^{e_{1}} \cdots\left[-m_{r}\right]^{e_{r}}$. Fix an atomic factorization $F^{*}: B=A_{1} \cdots A_{L}$ of maximal length, and let $F_{*}: B=C_{1} \cdots C_{\ell}$ be any atomic factorization of B. For i, j, set $e_{i j}=v_{\left[m_{j}\right]}\left(A_{i}\right)$.

Claim: There is an index f and a subset $I \subseteq\{1, \ldots, \ell\}$ of cardinality at most $m_{r}+r^{2}$ such that A_{f} divides $\prod_{i \in I} C_{i}$.
Proof of the Claim. If $r>\ell$, then by taking any index f and $I=\{1, \ldots, \ell\}$ satisfies the claim. Hence, let us assume $r \leq \ell$. We will find f with $1 \leq f \leq L$ and $e_{f j} / e_{j} \leq r / L$ for all j. Note that

$$
\sum_{i=1}^{L} \max _{j} \frac{e_{i j}}{e_{j}} \leq \sum_{i=1}^{L} \sum_{j=1}^{r} \frac{e_{i j}}{e_{j}}=\sum_{j=1}^{r}\left(\frac{1}{e_{j}} \sum_{i=1}^{L} e_{i j}\right)=r
$$

since $\sum_{i} e_{i j}=e_{j}$. If for all i we had $\max _{j}\left(e_{i j} / e_{j}\right)>r / L$, then

$$
\sum_{i=1}^{L} \max _{j} \frac{e_{i j}}{e_{j}}>\sum_{i=1}^{L} \frac{r}{L}=r
$$

which is a contradiction, so a desired f must exist. After reordering, we may assume $f=L$.
If $J \subseteq\{1, \ldots \ell\}$ we set $C_{J}=\prod_{i \in J} C_{i}$. By the pigeonhole principle and the fact that $r \leq \ell$, for each $j=1, \ldots, r$ there is a subset $I_{j} \subseteq\{1, \ldots, \ell\}$ with $\left|I_{j}\right| \leq r$ such that $v_{\left[-m_{j}\right]}\left(C_{I_{j}}\right) \geq r e_{j} / \ell$. But since $\ell \leq L$, this means that $v_{\left[-m_{j}\right]}\left(C_{I_{j}}\right) \geq e_{f j}$. Furthermore, we know by Theorem 3.2 that $\varphi\left(A_{f}\right) \leq m_{r}$, so we may choose $I_{0} \subseteq\{1, \ldots, \ell\}$ such that $\left|I_{0}\right| \leq m_{r}$ and $v_{[n]}\left(A_{f}\right) \leq v_{[n]}\left(C_{I_{0}}\right)$ for all $n \in S^{+}$. Finally, take $I=I_{0} \cup I_{1} \cup \cdots \cup I_{r}$. Then by construction, C_{I} is divisible by A_{f}. Moreover, $|I| \leq\left|I_{0}\right|+\sum_{j}\left|I_{j}\right| \leq m_{r}+r^{2}$. This completes the proof of the claim and after reordering the C_{i} 's, we may assume $I=\{1, \ldots, q\}$ for some

$$
\begin{equation*}
q \leq m_{r}+r^{2} . \tag{*}
\end{equation*}
$$

We have

$$
B=A_{1} \cdots A_{L}=C_{1} \cdots C_{\ell}=\left(A_{L} D_{1} \cdots D_{t}\right)\left(C_{q+1} \cdots C_{\ell}\right) .
$$

where $A_{L} D_{1} \cdots D_{t}$ is a factorization of $C_{1} \cdots C_{q}$ in which A_{L} appears. We denote the factorization $A_{L} D_{1} \cdots D_{t} C_{q+1} \cdots C_{\ell}$ by F.

Applying Theorem 3.2 to the identity $\varphi\left(A_{L} D_{1} \cdots D_{t}\right)=\varphi\left(C_{1} \cdots C_{q}\right)$, we find

$$
\begin{equation*}
t+1 \leq \sum_{i=1}^{q} \varphi\left(C_{i}\right) \leq q m_{r} \leq m_{r}\left(m_{r}+r^{2}\right) \tag{**}
\end{equation*}
$$

and $q \leq \varphi\left(A_{L}\right)+\sum_{i=1}^{t} \varphi\left(D_{i}\right) \leq(t+1) m_{r}$.

We now demonstrate the desired bounds on the Delta set. Note that if $q=1$ or $t+1=1$ then $F=F_{*}$. Otherwise, $\left||F|-\left|F_{*}\right|\right|=|(t+1)-q| \leq \max \{t-1, q-2\} \leq m_{r}\left(m_{r}+r^{2}\right)-2$ (that $t-1 \leq m_{r}\left(m_{r}+r^{2}\right)-2$ follows from $(* *)$, similarly $q-2 \leq m_{r}\left(m_{r}+r^{2}\right)-2$ by $\left.(*)\right)$. Let \tilde{F} and \tilde{F}^{*} denote the factorizations of B / A_{L} obtained from F and F^{*} (the long factorization of B) by removing the irreducible factor A_{L}. By induction, if $\Delta\left(B / A_{L}\right)$ is nonempty, $\max \Delta\left(B / A_{L}\right) \leq m_{r}\left(m_{r}+r^{2}\right)-2$. Hence, there is an increasing sequence $|\tilde{F}|=\ell_{0}, \ldots, \ell_{s}=$ $\left|\tilde{F}^{*}\right|$ of lengths of atomic factorizations of B / A_{L} such that $\ell_{i+1}-\ell_{i} \leq m_{r}\left(m_{r}+r^{2}\right)-2$ for all $i<s$ (if $\Delta\left(B / A_{L}\right)$ is empty, it follows that F and F^{*} have the same length). By concatenating the corresponding factorizations with A_{L}, we find $\left\{\ell,|F|=\ell_{0}+1, \ldots, \ell_{s}+1\right\} \subseteq$ $\mathcal{L}(B)$. As listed, the consecutive terms differ by no more than $m_{r}\left(m_{r}+r^{2}\right)$, with the first term being $\left|F_{*}\right|=\ell$ and the last being $\left|F^{*}\right|=\ell_{s}+1$. Hence if $\Delta(B)$ is nonempty, the arbitrary choice of F_{*} has shown $\max \Delta(B) \leq m_{r}\left(m_{r}+r^{2}\right)-2$.

To show the bound on the catenary degree, we again pass to factorizations of B / A_{L} and use the induction hypothesis. Thus we have an $m_{r}\left(m_{r}+r^{2}\right)$-chain from \tilde{F} to \tilde{F}^{*}, and this lifts to a $m_{r}\left(m_{r}+r^{2}\right)$-chain from F to F^{*} after multiplying every term in the chain by A_{L}. Finally, $d\left(F_{*}, F\right) \leq t+1 \leq m_{r}\left(m_{r}+r^{2}\right)$, so appending F_{*} to this chain proves $c(B) \leq m_{r}\left(m_{r}+r^{2}\right)$.

References

[1] D. D. Anderson, S. T. Chapman, F. Halter-Koch and M. Zafrullah, Criteria for unique factorization in integral domains, J. Pure Appl. Algebra 127(1998), 205-218.
[2] D. F. Anderson, S. T. Chapman and W. W. Smith, Some factorization properties of Krull domains with infinite cyclic divisor class group, J. Pure Appl. Algebra 96(1994), 97-112.
[3] D. F. Anderson, S. T. Chapman and W. W. Smith, On Krull half-factorial domains with infinite cyclic divisor class group, Houston J. Math. 20(1994), 561-570.
[4] P. Baginski, S. T. Chapman and G. Schaeffer, 'On the Delta set of a singular arithmetical congruence monoid, J. Théor. Nombres Bordeaux 20(2008), 45-59.
[5] C. Bowles, S. T. Chapman, N. Kaplan, and D. Reiser. On Δ-sets of numerical monoids, J. Pure Appl. Algebra 5(2006), 1-24.
[6] S. T. Chapman, P. A. García-Sánchez, D. Lena, V. Ponomarenko and J. C. Rosales, The catenary and tame degree in finitely generated commutative cancellative monoids, Manuscripta Math. $\mathbf{1 2 0}(2006)$, 253-264.
[7] S. T. Chapman, P. A. García-Sánchez and D. Llena, The catenary and tame degree of numerical semigroups, Forum Math 21(2009), 117-129.
[8] G. Freiman and A. Geroldinger, An addition theorem and its arithmetical application, J. Number Theory 85(2000), 59-73.
[9] A. Geroldinger, Über nicht-eindeutige Zerlegungen in irreduzible Elemente, Math Z. 197(1988), 505-529.
[10] A. Geroldinger, On the arithmetic of certain not integrally closed noetherian integral domains, Comm. Algebra 19(1991), 685-698.
[11] A. Geroldinger and F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
[12] W. Hassler, Factorization properties of Krull monoids with infinite class group, Colloq. Math. 92(2002), 229-242.
[13] F. Kainrath, Factorization in Krull monoids with infinite class group, Colloq. Math. 80(1999), 23-30.
[14] J.-L. Lambert, Une borne pour les générateurs des solutions entiéres positives dune équation diophantienne linéaire, C. R. Acad. Sci. Paris Ser.I Math. 305(1987), 3940.

University of California at Berkeley, Department of Mathematics, Berkeley, California 94720

E-mail address: baginski@math.univ-lyon1.fr
Current address: Institut Camille Jordan, Université Lyon 1, 69622 Villeurbanne, France
Sam Houston State University, Department of Mathematics and Statistics, Box 2206, Huntsville, TX 77341-2206

E-mail address: scott.chapman@shsu.edu
Texas A\&M University, Department of Mathematics, College Station, TX
Current address: University of California, San Diego, Department of Mathematics, La Jolla, California 92093

E-mail address: rmrodriguez@math.ucsd.edu
University of California at Berkeley, Department of Mathematics, Berkeley, California 94720

E-mail address: gschaeff@math.berkeley.edu
Northwestern University, Department of Mathematics, Evanston, IL
E-mail address: yiweishe2010@u.northwestern.edu

[^0]: 2000 Mathematics Subject Classification. 20M14, 20D60, 11B75.
 Key words and phrases. block monoid, non-unique factorization, Delta set.
 The first, third, fourth and fifth authors received support from the National Science Foundation, Grant \#DMS-0648390.

 The authors wish to thank Nathan Kaplan for discussions related to this work.

