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Abstract

Let D be the ring of integers in a finite extension of the rationals. The
classic examination of the factorization properties of algebraic integers
usually begins with the study of norms. In this paper, we show using the
ideal class group, C(D), of D that a deeper examination of such properties
is possible. Using the class group, we construct an object known as a
block monoid, which allows us to offer proofs of three major results from
the theory of nonunique factorizations: Geroldinger’s Theorem, Carlitz’s
Theorem and Valenza’s Theorem. The combinatorial properties of block
monoids offer a glimpse into two widely studied constants from additive
number theory, the Davenport Constant and the cross number. Moreover,
block monoids allow us to extend these results to the more general classes
of Dedekind domains and Krull domains.

1 Introduction.

In an introductory abstract algebra class, the notion of a unique factorization
domain (UFD) is carefully developed and plays an important role. A wide array
of UFDs are usually identified in such a course (such as Z, K[X] where K is
a field, and Z[ı] the Gaussian integers) before deeper algebraic structures, such
as Euclidean domains or principal ideal domains, are introduced. To convince
a student of the usefulness of the definition of a UFD (also known as a factorial
domain), it is necessary to provide an example of an integral domain in which
the notion of unique factorization fails. While there is an abundance of such
examples, the one most commonly used in many basic level texts is

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) (1)

in the algebraic number ring Z[
√
−5]. Though students (and perhaps teachers)

may be content with seeing different numbers and verifying that the two prod-
ucts are equal, there is more to be done. A true verification that equation (1) is
a non-unique factorization of 6 into irreducible elements requires two additional
arguments:

(i) 2, 3, (1 +
√
−5), and (1−

√
−5) are indeed irreducible elements, and

(ii) neither 2 nor 3 is an associate of either (1 +
√
−5) or (1−

√
−5).
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Any further issues involving factoring elements in Z[
√
−5] are normally relegated

to exercises at the end of the topic section. This is somewhat unfortunate, as
Z[
√
−5] has a very nice property concerning factorizations of its elements into

products of irreducibles. Specifically, if α1, . . . αn, β1, . . . , βm are irreducible
elements of Z[

√
−5] with

α1 · · ·αn = β1 · · ·βm, (2)

then n = m. In factorization theory parlance, we say the two factorizations
have the same length (number of irreducibles, counting multiplicity). Therefore,
even though Z[

√
−5] may not be a UFD, all irreducible factorizations of a given

nonzero nonunit x in Z[
√
−5] have the same length. In general, an integral

domain with this property is known as a half-factorial domain (HFD).
An arithmetic verification of the property illustrated in equation (2) is likely

beyond a beginning level algebra student. However, using the notion of the
ideal class group (and, more generally, the class number), one can construct a
very simple proof of this fact for Z[

√
−5]; Carlitz first illustrated this argument

in [5]. This line of reasoning leads to a deeper understanding of how elements
factor in an algebraic ring of integers. The purpose of our paper is to develop
this understanding by using a structure, known as a block monoid, that is asso-
ciated with the class group. In fact, block monoids’ utility extends beyond just
analyzing factorizations in algebraic number rings. We shall show that block
monoids can be used in a similar line of analysis in more general classes of inte-
gral domains, such as Dedekind domains and Krull domains. Appealingly, the
definition of a block monoid can be understood by any undergraduate who has
seen the definition of a group, even if they cannot yet grasp the theory under-
lying the class group construction. Our investigations will involve a close study
of the combinatorial properties of block monoids and lead to an examination
of two actively researched concepts from additive number theory known as the
Davenport constant and the cross number.

We divide our work into four sections. In Section 2, we review some ba-
sic definitions from algebraic number theory and commutative algebra and use
them to perform some motivating calculations with the class group. In Sec-
tion 3, we define block monoids and develop a factorization theory for them
that parallels ideas from factorization in domains. In Section 4, these parallels
are made explicit. We construct a monoid homomorphism from an algebraic
number ring (or more generally a Dedekind domain) to an appropriately chosen
block monoid. We prove a theorem of Alfred Geroldinger which shows that
this homomorphism preserves lengths of irreducible factorizations. Hence, to
study lengths of irreducible factorizations of elements in a Dedekind domain,
one merely needs to understand the factorization properties of the associated
block monoid. This allows us to give an elementary proof of a well-known result
of Carlitz: the ring of integers of an algebraic number field OK is half factorial
if and only if the class number of OK is less than or equal to two. In Sec-
tion 5, we demonstrate some additional applications of Geroldinger’s theorem
in the theory of non-unique factorizations. We introduce two invariants of block
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monoids, the Davenport constant and the cross number, which permit a finer
analysis of factorization in a Dedekind domain. In particular, we prove a theo-
rem of Valenza which determines, for rings of algebraic integers, the degree to
which lengths of irreducible factorizations can vary. We assume that the reader
is familiar with a two semester course in abstract algebra. Some knowledge of
algebraic number rings is useful, but we will attempt in Section 2 to make our
work self-contained. Any undefined terminology can be found in [13].

2 Terminology and Basic Background.

Let K = Q(α) be a finite extension of the rationals. The ring of integers of K
is given as

OK = {a ∈ K | f(a) = 0 for a monic polynomial f with integer coefficients }.

In the usual integers Z = OQ, we are able to factor integers n, with |n| > 1, into
(unique) products of prime numbers. In general rings of integers OK , we shall
not always be able to factor nonzero nonunits into products of prime elements,
i.e. nonzero nonunits x ∈ OK such that if x|ab then x|a or x|b. Instead, we
must be content with factoring elements as products of irreducible elements. A
nonzero nonunit a ∈ OK is irreducible if whenever bc = a for some b, c ∈ OK
then either b or c is a unit. Every prime is irreducible, but not conversely. In
fact, OK is a UFD if and only if all irreducibles are prime, for if a prime p divides
an element a, then p (or an associate) must appear in every factorization of a.

To understand the factorizations in a general OK , we must investigate the
structure of its ideals. If x1, . . . , xk are elements of OK , then let (x1, . . . , xk)
represent the ideal generated by x1, . . . , xk in OK . If I is an ideal of OK and
there exist elements x1, . . . , xk of OK such that I = (x1, . . . , xk), then I is
finitely generated. If I = (x) for some x ∈ OK , then I is a principal ideal of
OK . An ideal I of OK is prime if whenever x, y ∈ OK and xy ∈ I then either
x ∈ I or y ∈ I. A principal ideal (x) is prime ideal if and only if x is a prime
element.

If (x) and (y) are two principal ideals, then clearly the set {ab | a ∈ (x), b ∈
(y)} is an ideal, namely (xy). We write (x)(y) = (xy) as the product of principal
ideals. Note that (x)(y) = (z) if and only if xy = uz for some unit u ∈ D. For
general ideals I and J , we must be more careful in defining their product, since
the set {ab | a ∈ I, b ∈ J} may not be closed under addition. Therefore, the
product of two ideals I and J of OK is defined to be all finite sums of products
from I and J , which is easily argued to be another ideal:

IJ =

{
k∑
i=1

aibi

∣∣∣∣∣ k ∈ N, ai ∈ I and bi ∈ J

}
.

If we are now given two factorizations x1 · · ·xm = y1 · · · yn of the same element,
then we obtain an equation in terms of principal ideals as well: (x1) · · · (xm) =
(y1) · · · (yn). These principal ideals, however, may split into products of other
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non-principal ideals, revealing additional levels of interaction within the prod-
uct. Understanding factorizations of elements will thus require uncovering how
general ideals can combine and recombine into principal ideals, particularly
principal ideals generated by an irreducible element.

Let I(OK) represent the set of nonzero ideals of OK and P(OK) its asso-
ciated subset of nonzero principal ideals. Notice that both I(OK) and P(OK)
form multiplicative monoids under ideal multiplication, with the principal ideal
(1) as the identity element. The ideal structure of OK has several celebrated
properties. Proofs of assertions (1) and (2) below can be found in [17] or [19]
and a proof of (3) can be found in [13, Theorem 2.10.14].

Proposition 2.1. Let I be an ideal of OK and I(OK) and P(OK) be as above.

1. I is finitely generated. Moreover, there exist elements α and β in OK such
that I = (α, β).

2. The factor monoid C(OK) = I(OK)/P(OK) forms a finite abelian group.

3. Let [I] represent the image of the ideal I in C(OK). Then, for each g ∈
C(OK) there exists a prime ideal P of OK such that [P ] = g.

The group C(OK) is known as the class group of OK . Its order |C(OK)| is the
class number of OK . The class number gives a classic answer to the question of
when a ring of algebraic integers admits unique factorization (see [13, Theorem
1.7.3] for a proof, or see Theorem 2.4 below).

Theorem 2.2. The ring of integers OK in an algebraic number field K is a
unique factorization domain if and only if the class number of OK is 1.

In fact, the size of the class group of OK was generally assumed to be
a measure of how far a ring of integers was from being a UFD. The key to
our analysis of the factorization properties of OK lies in Dedekind’s celebrated
Fundamental Theorem of Ideal Theory for rings of algebraic integers.

The Fundamental Theorem of Ideal Theory. [19, Theorem 8.20] Let I
be an ideal of OK . There exists a unique (up to order) list of prime ideals
P1, . . . , Pk in OK so that I = P1 · · ·Pk.

In a more general context, an integral domain D which satisfies the Funda-
mental Theorem of Ideal Theory is called a Dedekind domain (see [15, Chap-
ter VIII.6]). In a general Dedekind domain, the factor monoid I(D)/P(D)
is still an abelian group, but it may not be finite. Moreover, property (3)
of Proposition 2.1 may fail for a general Dedekind domain. In order to use
the Fundamental Theorem effectively, we will need to pay particular atten-
tion to the distribution of prime ideals in the class group C(D). We define
S = {g ∈ C(D) | there exists a prime ideal P of D such that [P ] = g} to be the
set of classes containing prime ideals. Proposition 2.1 part (3) implies that
S = C(D) when D = OK , the ring of integers in an algebraic number field,
but for general Dedekind domains, S can be a proper subset (see [13, Theo-
rem 3.7.8]). Whenever possible, we will couch our results in the language of
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Dedekind domains, demonstrating in the process how factorization problems in
general Dedekind domains depend upon the distribution of prime ideals in the
class group C(D).

We now begin revealing the connection between the ideas developed above
and problems involving the factorizations of elements in a Dedekind domain
D. The following result characterizes the irreducible elements of D in an ideal
theoretic sense. We view the class group C(D) of D additively by writing [I] +
[J ] = [IJ ] for ideals I and J ; under this convention, its identity is 0 = [D] =
[(1)].

Proposition 2.3. Let D be a Dedekind domain and for k ≥ 1, let P1, . . . , Pk
be not necessarily distinct prime ideals of D. Then

(1) P1 · · ·Pk is a principal ideal of D if and only if [P1] + · · · + [Pk] = 0 in
C(D).

Suppose now (x) = P1 · · ·Pk, for x ∈ D a nonzero nonunit.

(2) The element x is prime in D if and only if k = 1.

(3) The element x is irreducible in D if and only if for every nonempty proper
subset T ⊂ {1, . . . , k},

∑
i∈T [Pi] 6= 0.

Proof. Claim (1) follows from the definition of the class group and (2) holds
since in any integral domain x is prime if and only if the ideal (x) is a prime
ideal. We prove (3) by contrapositive. (⇒) Suppose for some proper subset T
that

∑
i∈T [Pi] = 0. Then

∏
i∈T Pi = (y) for some nonzero nonunit y ∈ D. Let

T = {1, . . . , k}\T . By (1) we have [P1] + · · · + [Pk] = 0, so
∑
i∈T [Pi] = 0 also.

Thus,
∏
i∈T Pi = (z) for some nonzero nonunit z ∈ D. Hence (x) = (y)(z),

which implies that x = uyz where u is a unit of D and so x is reducible. (⇐)
Suppose that x is reducible in D, i.e. x = yz for nonunits y and z in D. By the
Fundamental Theorem, there is a proper nonempty subset T ⊂ {1, . . . , k} such
that (y) =

∏
i∈T Pi. By (1), in C(D),

∑
i∈T [Pi] = 0.

This proposition allows us to recast Theorem 2.2 for Dedekind domains,
characterizing unique factorization in terms of C(D) and S.

Theorem 2.4. Let D be a Dedekind domain, C(D) its class group, and S ⊆
C(D) be the set of classes containing prime ideals, as defined above. Then the
following are equivalent:

1. D is a UFD

2. S is trivial, i.e. S = {0}

3. C(D) is the trivial group

4. D is a principal ideal domain.
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Proof. To show (1)⇒ (2), we need the fact that in a Dedekind domain all prime
ideals P 6= (0) are maximal ideals (see [15, Chapter VIII.6]). Let P be a prime
ideal of D and choose a nonzero, nonunit a ∈ P . We may factor a = x1 · · ·xn
as a (unique) product of irreducibles and since P is prime, xi ∈ P for some i.
Since xi is irreducible and D is a UFD, xi is prime and thus (xi) is a prime
ideal. But P ⊇ (xi), so by the maximality of prime ideals, P = (xi). In terms
of the class group, [P ] = 0 and since P was arbitrary, S = {0}.

For (2) ⇒ (3), note that if S = {0}, then all prime ideals P are principal,
i.e. P ∈ P(D). If I is any ideal of D, then by the Fundamental Theorem
it equals a product of prime ideals, which lies in the monoid P(D). Therefore
I(D) = P(D) and C(D) is trivial. The implication (3)⇒ (4) is clear, since C(D)
is trivial if and only if I(D) = P(D). Finally, (4) implies (1) is well-known (see
[15, Theorem 3.7]).

We illustrate the ideas of this section with a closer look at our previously
mentioned example. For n > 1 we denote the cyclic group Z/nZ by Zn, enu-
merated as Zn = {0, 1, . . . , n− 1}, where k denotes the congruence class of k
modulo n.

Example 2.5. Let K = Q(
√
−5). It is well known that OK = Z[

√
−5], the

only units of OK are ±1, and that the class number of OK is 2 (see [17]). Hence
C(OK) ∼= Z2. Consider the non-unique factorization

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) (3)

in Z[
√
−5]. Let us consider what is happening here in terms of ideals. Using

[17], we see that the prime ideal decompositions of (2) and (3) in Z[
√
−5] are

(2) = (2, 1 +
√
−5)2 and (3) = (3, 1 +

√
−5)(3, 1−

√
−5).

Hence,
(6) = (2)(3) = (2, 1 +

√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5). (4)

The second factorization in equation (3) is obtained by rearranging the product
in equation (4),

(6) = (2)(3) = (2, 1 +
√
−5)2(3, 1 +

√
−5)(3, 1−

√
−5)

= (2, 1 +
√
−5)(3, 1 +

√
−5)(2, 1 +

√
−5)(3, 1−

√
−5) = (1 +

√
−5)(1−

√
−5).

By Proposition 2.3 (1), for every nonprincipal ideal I of OK , [I] 6= 0. Since
the class group of Z[

√
−5] has exactly one nontrivial element, all nonprincipal

ideals I of Z[
√
−5] have the same ideal class [I] = 1. If P1, P2 are any two

nonprincipal prime ideals, then [P1] + [P2] = 0, so by Proposition 2.3 part (1),
P1P2 is principal. Furthermore, by Proposition 2.3 part (3), P1P2 = (x) for
some irreducible element x, so we conclude 2, 3, 1 +

√
−5, and 1 −

√
−5 are

all irreducible. Since every two nonprincipal prime ideals of Z[
√
−5] produce a

principal ideal, we have exhausted all possible the factorizations of 6 in Z[
√
−5]

up to associates.
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Proposition 2.3 and Example 2.5 motivate a closer examination of the class
group C(D) and how elements within it combine to form the identity. Indeed,
in Example 2.5 such combinations of elements of C(D) were intimately tied
to products of ideals yielding principal ideals generated by irreducibles; these
irreducibles in turn divided our original element. These motivations spur the
central definition of the next section.

3 Block Monoids and Their Basic Divisibility
Properties.

Let G be an abelian group. Let F(G) represent the free abelian monoid on G,
defined in the following sense. We write the elements of F(G) as C =

∏
g∈G g

vg

where vg is a nonnegative integer and all but finitely many of the vg are nonzero.
The exponent vg is the number of times the element g appears in C. If C and
T are elements in F(G), the monoid operation is given by

C · T =
∏
g∈G

gvg ·
∏
g∈G

gv
′
g =

∏
g∈G

gvg+v
′
g .

Definition 3.1. Let G be an abelian group. The set

B(G) =

{
C

∣∣∣∣ C =
∏
g∈G

gvg with
∑
g∈G

vgg = 0

}

forms a submonoid of F(G) known as the block monoid of G. If S is a nonempty
subset of G, then the set

B(G,S) =

{
C

∣∣∣∣ C =
∏
g∈G

gvg with
∑
g∈G

vgg = 0 and vg = 0 if g 6∈ S
}

is a submonoid of B(G) known as the block monoid of G restricted to S.

We will refer to the elements of B(G,S) as blocks. We call the identity of
B(G,S), E =

∏
g∈G g

0, the empty block. A block B divides a block C, denoted
B | C, if there is a block T such that C = BT . From the definitions, it is easy

to see that a block B =
∏
g∈G g

vg divides a block C =
∏
g∈G g

v′g if and only
if vg ≤ v′g for all g ∈ G. If B,C ∈ F(G,S), then whenever any two of B,C,
and BC are in B(G,S), so is the third. For the block B =

∏
g∈G g

vg , we set
|B| =

∑
g∈G vg to be the size of B.

By Proposition 2.3 part (1), if D is a Dedekind domain and P1, . . . , Pk
are prime ideals of D, then P1 · · ·Pk is a principal ideal of D if and only if
[P1] + . . . + [Pk] = 0 in C(D). By definition, this is equivalent to [P1] · · · [Pk]
being a block in B(C(D)). This observation provides only the first taste of the
relationship between factorization in Dedekind domains and block monoids. To
describe it fully, we must develop our knowledge of block monoids further.
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A block B 6= E is irreducible if B = CT for C, T in B(G,S) implies that
either C = E or T = E, i.e. B has no nontrivial blocks dividing it other
than itself. A block B 6= E which is not irreducible will be called reducible.
A block B 6= E is prime if whenever B | CT then either B | C or B | T .
As with integral domains, we can consider factorizations of blocks into irre-
ducible blocks. Many standard assertions easily transfer to this setting; for
instance a prime block B is irreducible, but not conversely. We also define
natural analogues of factorization properties. A block monoid B(G,S) is half
factorial if whenever B1, . . . , Bn, C1, . . . , Cm ∈ B(G,S) are irreducible blocks
and B1 · · ·Bn = C1 · · ·Cm, then m = n. The block monoid is factorial if un-
der these hypotheses we can additionally conclude that there is a permutation
σ ∈ Sym(n) such that Bi = Cσ(i) for all i ≤ n. “Factorial” is simply another
name for “unique factorization.” As with domains, a block monoid in which all
irreducibles are prime must be factorial. We illustrate the factorization proper-
ties of block monoids with an elementary example.

Example 3.2. Let G = Z4. Here

B(Z4) = {0 x01
x12

x23
x3 | each xi ≥ 0 and x1 + 2x2 + 3x3 ≡ 0 (mod 4)}.

Notice that the following blocks are the irreducible blocks of B(Z4) since they
alone have no blocks properly dividing them:

0
1
, 1

4
, 2

2
, 3

4
, 1

2
2
1
, 1

1
3
1
, and 2

1
3
2
.

Other than 0
1
, none of these irreducibles is prime. Moreover, in this monoid it

is easy to produce factorizations of blocks into irreducible blocks which differ in
length. For instance,

B = (1
4
)(3

4
) = (1

1
3
1
)4

is a factorization of B into 2 and 4 irreducible blocks respectfully. Now, let
S = { 1, 2 }. We have

B(Z4, S) = {1 x12
x2 | each xi ≥ 0 and x1 + 2x2 ≡ 0 (mod 4)}

and the irreducible blocks decrease to

B1 = 1
4
, B2 = 2

2
, B3 = 1

2
2
1
.

Now suppose B is a block in B(Z4, S) and B = By11 B
y2
2 B

y3
3 = Bz11 B

z2
2 B

z3
3 are

two factorizations of B into irreducibles. For each element s of S, we may count
the number of times s appears in each factorization. This yields the equations
4y1+2y3 = 4z1+2z3 and 2y2+y3 = 2z2+z3, hence y1−z1 = (z3−y3)/2 = y2−z2
and

(y1 + y2 + y3)− (z1 + z2 + z3) = (z3 − y3) + (y3 − z3) = 0.

Thus, while factorizations may not be unique (as B1B2 = B2
3), the lengths of

these factorizations will always be the same. So in contrast to B(Z4), B(Z4, S)
is half factorial (an alternate proof of this will be developed in Section 5 using
Lemma 5.10).
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Example 3.2 shows that B(Z4) is not half factorial. In fact, only two abelian
groups yield a half-factorial block monoid B(G).

Proposition 3.3. Let G be an abelian group. The following statements are
equivalent.

1. B(G) is factorial.

2. B(G) is half factorial.

3. |G| ≤ 2.

Proof. (1) ⇒ (2) since every factorial monoid is half factorial.
(2) ⇒ (3) Suppose B(G) is half factorial and that |G| > 3. Then G has two

distinct nonzero elements g1 and g2 with g3 = g1 + g2 6= 0 and g3 6= g1, g2. The
blocks A1 = (−g3)1g11g

1
2 , A2 = g13(−g1)1(−g2)1, B1 = g11(−g1)1, B2 = g12(−g2)1,

and B3 = g13(−g3)1 are all irreducibles of B(G). But A1A2 = B1B2B3, so B(G)
is not half factorial, a contradiction. Hence |G| ≤ 3. If |G| = 3, then G ∼= Z3. If

A = 1
3
, B = 2

3
, and C = 1

1
2
1
, then AB = C3 and B(Z3) is not half factorial.

Hence, we conclude that |G| ≤ 2.
(3) ⇒ (1) Our condition forces G ∼= {0} or Z2. In the first case the only

irreducible of B({0}) is 01, and in B(Z2) the irreducibles are 01 and 12. All
three irreducibles are prime, so both these block monoids are factorial.

In contrast, every nontrivial finite abelian group G has a nontrivial subset
S such that the restricted block monoid B(G,S) is half factorial. This can be
done with the added condition that the set S generate the group G. To see this,
if G ∼= Zn1 ⊕ · · · ⊕ Znk

then let ei represent the element of G with 1 in the ith
coordinate and zero elsewhere. Set S = {e1, . . . , ek}. Then clearly S generates
G and the irreducible blocks of B(G,S) are Bi = eni

i for each i. Elementary
arguments show that all these irreducibles are prime, so B(G,S) is half factorial
(in fact, factorial). As Example 3.2 illustrates, half-factorial examples also exist
where not all the irreducibles are prime.

We compile a few basic facts about block monoids. The statement about
irreducible blocks can be seen as an analogy to part (3) of Proposition 2.3: in
both cases we want to exclude the existence of a subset whose terms sum to
zero.

Proposition 3.4. Let G be an abelian group and S a nonempty subset of G.

1. The block B =
∏
g∈S g

vg 6= E is irreducible in B(G,S) if and only if for
each nonempty subset T of S we have

∑
g∈T v

′
gg 6= 0 for any integers v′g

with 0 ≤ v′g ≤ vg where at least one v′g 6= 0 and at least one v′g < vg.

2. If B 6= E in B(G,S), then B can be written as a product of irreducible
blocks in B(G,S).

3. If 0 ∈ S, then the block 01 is prime in B(G,S).

4. If G is finite, then B(G,S) contains finitely many irreducible blocks.
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Proof. (1) (⇒) Suppose there exists a nonempty subset T and integers v′g as
above with

∑
g∈T v

′
gg = 0. Then

B =

(∏
g∈T

gv
′
g

)(∏
g∈T

gvg−v
′
g

∏
g∈S\T

gvg
)

is a proper factorization of B in B(G,S). (⇐) Suppose B = CD is a proper

factorization of B in B(G,S). If C =
∏
g∈G g

v′g , then setting T = {g | v′g 6= 0}
we get our desired subset and integers by the definition of C being a block.

(2) If B =
∏
g∈S g

vg and B′ 6= E with B′|B, then 1 ≤ |B′| ≤ |B|. So B
can be expressed as a product of at most |B| many nontrivial blocks. Let B =
B1 . . . Bn be a product involving a maximal number of blocks; by maximality
all the blocks Bi must be irreducible. The proof of (3) is obvious. (4) Since any
block B =

∏
g∈S g

vg with some vg > ord(g) is reducible, our result follows.

Part (2) of the above proposition assures us that factorization in block
monoids is indeed a sensible pursuit. In general domains and monoids, one
must exercise caution, since factorizations into irreducibles are not guaranteed
to exist (see [9]). Domains and monoids in which every element has a factor-
ization into irreducibles are said to be atomic. Demonstrating that Z is atomic
is half the Fundamental Theorem of Arithmetic. More generally, Dedekind do-
mains are atomic; our proof of this fact shall imitate that of part (2) above.

Proposition 3.5. If D is a Dedekind domain, then D is atomic.

Proof. Let G = C(D) be the class group of D. Given a nonzero nonunit x ∈
D, there are unique prime ideals P1, . . . , Pk such that (x) = P1 · · ·Pk. If a
nonzero nonunit y properly divides x, then by uniqueness of the Pi, we know
(y) =

∏
i∈S Pi for some proper nonempty S ⊆ {1, . . . , k}. So x can be expressed

as a product of at most k nonzero nonunits y. Let x = y1 · · · yn be a product
involving a maximal number of nonunits yi; by maximality the yi are irreducible.

4 Factorizations in Dedekind Domains
and Their Relationship to Block Monoids.

In this section, we shall justify the analogues of the previous section with an
explicit connection between Dedekind domains and block monoids. In order to
streamline our discussion of these structures, we shall need a uniform terminol-
ogy for factorizations and their lengths. Let M be a commutative, cancellative,
atomic monoid, such as a block monoid B(G,S) or the multiplicative monoid of
a Dedekind domain. Let A(M) represent the set of irreducible elements of M
and M× its set of units. For x ∈M\M×, set

L(x) = {n ∈ N | there exist x1, . . . , xn ∈ A(M) with x = x1 · · ·xn}.
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We will refer to L(x) as the set of lengths of x in M . We can extend L(x) to a
global descriptor by setting

L(M) = {L(x) | x ∈M\M×}.

We will refer to L(M) as the set of lengths of M .

Example 4.1. To illustrate the above ideas, we compute the sets of length for
the block monoid B(Z3). We label the irreducible blocks as

A1 = 0
1
, A2 = 1

3
, A3 = 2

3
, A4 = 1

1
2
1
.

If B = 0
x11

x22
x3 is in B(G), then x2 + 2x3 ≡ 0 (mod 3), so x2 ≡ x3 (mod 3).

Write x2 = 3q2 + r and x3 = 3q3 + r, where 0 ≤ r < 3. If B = Ay11 A
y2
2 A

y3
3 A

y4
4 ,

then y1 = x1, 3y2 + y4 = x2 and 3y3 + y4 = x3. So

y1+y2+y3+y4 = x1+(x2−y4)/3+(x3−y4)/3+y4 = x1+q2+q3+r+(y4−r)/3.

For y1 + y2 + y3 + y4 to be an integer, we must have y4 ≡ r (mod 3). Since
the yi are nonnegative and (y4 − r)/3 = q2 − y2 = q3 − y3, it must be that
0 ≤ (y4 − r)/3 ≤ min{q2, q3}. The extremal values (y4 − r)/3 = 0 and (y4 −
r)/3 = min{q2, q3} both yield legitimate factorizations, as B = Ax1

1 A
q2
2 A

q3
3 A

r
4

and B = Ax1
1 A

q2−min{q2,q3}
2 A

q3−min{q2,q3}
3 A

3min{q2,q3}+r
4 , respectively. Thus, for

the length set, we simply let (y4−r)/3 run through all the integers in the interval
[0,min{q2, q3}]. We then obtain

L(B) = {x1 + q2 + q3 + r + k | 0 ≤ k ≤ min{q2, q3}}.

The Fundamental Theorem of Arithmetic states that every integer greater
than 1 can be factored uniquely into a product of prime numbers. Number
theorists celebrate Dedekind’s Fundamental Theorem of Ideal Theory for ex-
tending this result to algebraic number rings: ideals can be factored uniquely
into products of prime ideals. However, as the example of 6 in Z[

√
−5] indicates,

when one descends to the level of factoring elements, the unique factorization
breaks down. To a large extent, this failure results from only being able to
factor elements into irreducibles, instead of primes. In order to extend the Fun-
damental Theorem of Arithmetic to elements—rather than ideals—we need to
part with unique factorization and understand how different products of irre-
ducibles can combine to form elements of D. As we saw in Example 2.5, this
ties in with the class group G = C(D) of D. In fact, elements of D corre-
spond to blocks of B(G); irreducibles of D correspond to irreducible blocks of
B(G); and the factorization of elements of D is transferred to a problem of
factoring the corresponding block of B(G). More accurately, the block monoid
we need to consider is B(G,S), the block monoid on G restricted to the set
S = {g ∈ G | g = [P ] for some prime ideal of D} of divisor classes of C(D) con-
taining prime ideals. These principles are precisely formulated in the following
theorem of Geroldinger, an analogue of the Fundamental Theorem of Arithmetic
for elements of arbitrary Dedekind domains.

11



Geroldinger’s theorem. [12, Proposition 1] Let D be a Dedekind domain
with divisor class group G = C(D), D∗ the multiplicative monoid of D, and S
be the set of divisor classes of C(D) containing prime ideals. Suppose further
that for x ∈ D∗, we have (x) = P1 · · ·Pk for not necessary distinct prime ideals
P1, . . . , Pk of D. The function

ϕ : D∗ → B(G,S)

defined by
ϕ(x) = [P1] · · · [Pk]

is a well-defined monoid homomorphism that is surjective and preserves lengths
of factorizations into irreducibles (i.e., L(x) = L(ϕ(x)) for each x ∈ D∗). Hence

L(D) = L(B(G,S)).

Geroldinger’s theorem can be extended to include the more general class of
integral domains known as Krull domains. Details on both Krull domains and
the extension can be found in [13, Sections 2.3 & 2.10].

Example 4.2. The ring of algebraic integers of K = Q(
√
−23) is:

OK = Z
[

1 +
√
−23

2

]
=

{
a+ b

√
−23

2

∣∣∣∣ a, b ∈ Z
}

This algebraic number ring has class number 3, meaning its class group G =
C(OK) ∼= Z3. In OK ,

18 = 2 · 3 · 3 (5)

= 3 · 1 +
√
−23

2
· 1−

√
−23

2
(6)

=
7 +
√
−23

2
· 7−

√
−23

2
. (7)

Only the first of the factorizations can be immediately deduced (though it is not
immediate that 2 and 3 are irreducible in OK). Using Geroldinger’s theorem,
we shall be able to discover the other factorizations and see that these three are
the only factorizations of 18 into irreducibles. To apply Geroldinger’s theorem,
we must determine the factorization of (18) into prime ideals. This can be done
quickly by using the classic theory of prime ramification in quadratic number
fields (see [17]), but we will work out the details.

Recall that an ideal I of a Dedekind domain D is prime if and only if D/I
is a field. Let ω = (1 +

√
−23)/2 and ω be its complex conjugate. Observe that

every x ∈ OK can be written uniquely as x = m + nω, for some m,n ∈ Z, i.e.
{1, ω} is a basis for OK as a Z-module. The ideal (18) factors as the product of
ideals (2)(3)(3), however none of these are prime ideals since ωω = 6 belongs to
each of the ideals, but neither ω nor ω belongs to any of them. If we adjoin ω (or
its conjugate) to these ideals, then the representation of elements of OK in terms
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of the basis yields, for instance, that OK/(3, ω) ∼= Z/3Z = Z3, a field. Thus
P1 = (2, ω), P2 = (2, ω), P3 = (3, ω), and P4 = (3, ω) are all prime ideals. Yet
P1P2 = (2) and P3P4 = (3), so (18) = P1P2P

2
3P

2
4 is the (unique) factorization

of (18) as a product of prime ideals. We conclude ϕ(18) = [P1][P2][P3]2[P4]2.
Now we must determine which elements of Z3 these [Pi] correspond to. Since

[P1] is a nonzero element of Z3, it generates the group and we may without loss
of generality assign it to be 1. Since (2) = P1P2, we have 0 = [P1] + [P2]
and so [P2] = 2. Similarly, (3) = P3P4, so [P3] = −[P4]. Finally, since the

P1P
2
4 = ( 7−

√
−23
2 ), we have 0 = [P1] + 2[P4], so [P4] = [P1] = 1 and thus

[P3] = 2.

So ϕ(18) = 1
3
2
3
, whose only factorizations are (1 2)3 and (1

3
)(2

3
). By

Geroldinger’s theorem, L(18) = L(ϕ(18)) = {2, 3}. Furthermore, the only
factorizations of 18 correspond to products of the Pi that map onto one of these

two factorizations. The irreducible 1
3

can only be created by taking [P1] and

the two copies of [P4]; complementarily, 2
3

requires [P2] and the two copies of

[P3]. Thus (1
3
)(2

3
) corresponds to the third factorization in equation (7). The

irreducible 1 2 can be expressed as [P1][P2] or [P1][P3] or [P4][P2] or [P4][P3].
But we only have one instance of [P1] and one of [P2] to choose from, so we
get two combinations: ([P1][P4])([P2][P3])([P3][P4]), which corresponds to the
factorization from equation (6), and ([P1][P2])([P3][P4])2, which corresponds to
the factorization in equation (5).

Proof of Geroldinger’s theorem. We first define our mapping ϕ : D∗ → B(G,S).
If d ∈ D is a nonzero nonunit, then by the Fundamental Theorem of Ideal
Theory we can factor the ideal (d) as a product of prime ideals P1 · · ·Pk. By
Proposition 2.3, [P1] + . . .+ [Pk] = 0, and by the definition of S, each [Pi] ∈ S,
so the sequence of [P1] · · · [Pk] is an element of B(G,S). Keep in mind here
that we use multiplicative notation to write elements in F(G,S) and B(G,S),
and additive notation for the group operation in G. We set ϕ(d) = [P1] · · · [Pk].
The uniqueness of the list of prime ideals factoring (d) guarantees that ϕ is well
defined. Since (dd′) = (d)(d′), the uniqueness of the prime ideal decomposition
also gives us that ϕ(dd′) = ϕ(d)ϕ(d′). Clearly ϕ(u) = E for any unit u ∈ D
and so ϕ is a well-defined monoid homomorphism.

Given g1 · · · gk ∈ B(G,S), then all the gi are in S by definition of the block
monoid. Hence there are prime ideals Pi such that [Pi] = gi for all 1 ≤ i ≤ k. By
Proposotion 2.3 part (1), since 0 = g1+ . . .+gk = [P1]+ . . .+[Pk], we know that
P1 . . . Pk is a principal ideal (d) for some d ∈ D. Then clearly ϕ(d) = g1 · · · gk
and so ϕ is surjective.

Let ϕ(d) = B = g1 · · · gk and suppose B = CT in B(G,S). Then C =∏
i∈I gi for some subset I ⊆ {1, . . . , k}. But these gi are [Pi] for prime ideals

Pi that divide (d). Since C ∈ B(G,S), we know
∑
i∈I [Pi] = 0 and so by

Proposition 2.3 (1),
∏
i∈I Pi = (a) for some a ∈ D. But (a) ⊇

∏k
i=1 Pi = (d)

and thus d = ab for some b ∈ D. Note that ϕ(a) = C. Since T =
∏
i/∈I gi, it is

clear that ϕ(b) = T .
From this, several statements immediately follow. First, d ∈ D is irreducible
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if and only if ϕ(d) is irreducible in B(G,S). Second, every factorization of d
into irreducibles corresponds to a factorization of ϕ(d) into irreducibles and,
conversely, every factorization of ϕ(d) into irreducibles can be pulled back by ϕ
to a factorization of d. The equality of length sets is immediate.

In the course of the above proof, it is important to note that the set S is
precisely the subset of the class group we must use: the blocks mapped to by
ϕ can only use elements of the class group that correspond to prime ideals. In
general, S will be a proper subset of G (see [13, Theorem 3.7.8]), so we must
be careful to distinguish S from G. However, when D = OK is the ring of
integers of a finite extension K of the rationals, Proposition 2.1 part (3) states
that S = G, so Geroldinger’s theorem establishes a correspondence between OK
and the full block monoid B(G) over the class group. The following well-known
theorem of Carlitz now follows as a corollary to Geroldinger’s theorem with the
aid of Proposition 3.3.

Carlitz’s theorem. Let OK be the ring of integers in a finite extension of the
rationals. Then OK is half factorial if and only if the class number of OK is less
than or equal to 2. Equivalently, OK is half factorial if and only if |C(OK)| ≤ 2.

5 Further Applications of Geroldinger’s Theo-
rem.

Geroldinger’s theorem transfers factorization questions from a Dedekind domain
D to a specific block monoid B(G,S), a purely combinatorial structure over an
abelian group. We have already seen how the length set of a nonzero nonunit
d ∈ D corresponds to the length set of the block ϕ(d) ∈ B(G,S). Calculating
a full length set may still be difficult at times, however length sets enjoy a rich
structure which we will begin to examine in this section. Using Geroldinger’s
theorem, we shall develop techniques for obtaining a cursory, yet highly infor-
mative, picture of length sets.

As we have already seen in Example 3.2, the structure of the block monoid’s
irreducible blocks becomes vital to understanding the factorizations of its ele-
ments and, more generally, the factorization of elements in general Dedekind
domains. Of key importance is the largest size of an atom, which spurs the
following definition.

Definition 5.1. Let G be an abelian group. The Davenport constant of G is
defined as

D(G) = sup{ |B| | B is an irreducible element of B(G)}.

If S is a nonempty subset of G, then

D(G,S) = sup{ |B| | B is an irreducible element of B(G,S)}

is known as the Davenport constant of G relative to S.
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No closed formula is known that computes the Davenport constant. Accord-
ing to the introduction in [14], the study of the Davenport constant emanated
from a series of questions posed by Davenport at the Midwestern Conference
on Group Theory and Number Theory at Ohio State University in 1966. More-
over, techniques from many different branches of mathematics (including graph
theory [10]) have been used to prove results concerning the Davenport constant.
The Davenport constant arises in several unexpected areas. Alford, Granville
and Pomerance [1] used the bound D(G) ≤ exp(G)(1 + log(|G|/ exp(G))) to
prove there are infinitely many Carmichael numbers. Here exp(G) denotes the
exponent of G, which is the least positive integer e such that eg = 0 for all
elements g of G.

Before proceeding, we offer two elementary observations concerning D(G).
Recall that every finite abelian group G can be written uniquely in the form
G = Zn1

⊕ · · · ⊕ Znk
, where ni | ni+1 for each 1 ≤ i < k. Clearly in this

form exp(G) = nk, while the integer k is known as the rank of G. We write
{e1, . . . , ek} for the standard basis of G, where ei is 1 in the ith coordinate and 0
in every other coordinate. If G is a finite abelian group written in this manner,
then set

M(G) =
[ k∑
i+1

(ni − 1)
]

+ 1.

Proposition 5.2. Let G be an abelian group.

1. If |G| =∞, then D(G) =∞.

2. If |G| <∞, then M(G) ≤ D(G) ≤ |G|.

Proof. (1) If G is infinite, select g1 to be any nonzero element of G. We
proceed recursively. Assume g1, . . . , gn have already been chosen. Let Gn =
{
∑
i∈I(−gi) | I ⊆ {1, . . . , n} }, which is a finite set. Since G is infinite, we may

choose gn+1 ∈ G\Gn. Now for each k ≥ 1, consider the element hk = −
∑k
i=1 gi.

Then by construction Ak = g11g
1
2 · · · g1kh1k is an irreducible block, which com-

pletes the argument.
(2) Suppose |G| = n and g1, . . . , gn+1 is a sequence of n + 1 elements of G.

We shall show that it contains a proper zero-sum subsequence. Set a1 = g1,
a2 = g1 + g2, . . . , an+1 = g1 + . . .+ gn+1. By the Pigeonhole Principle, aj = ak
for some j < k. But then 0 = ak − aj = gk + . . . + gj+1 and so we have found
a proper subsequence, gk, . . . , gj+1, that sums to zero. By Proposition 3.4 part
(1), every element of B(G) of size greater than n has a nontrivial block dividing
it and hence is reducible. We conclude D(G) ≤ n = |G|. For the lower bound,
set g = e1 + · · · + ek and B = en1−1

1 · · · enk−1
k g1. Clearly B is irreducible with

size M(G) and hence M(G) ≤ D(G).

Example 5.3. Proposition 5.2 part (2) immediately implies that D(Zn) = n.
However, it is possible for the upper inequality in part (2) to be strict. Indeed,
one can readily verify that D(Z2⊕Z2) = 3. According to [18], Erdős conjectured
in the mid-sixties that D(G) = M(G). It was not until the publication of [21]
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in 1969 that this conjecture was disproved. In particular, [21] shows that both
the groups G1 = Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z6 and G2 = Z3 ⊕ Z3 ⊕ Z3 ⊕ Z6 are
counterexamples. The group G1 is the smallest counterexample with respect to
order and the group G2 is the smallest known counterexample with respect to
rank. Indeed, by [6, Theorem 1.8] if G is of rank less than or equal to 2, then
D(G) = M(G). It is unknown whether there is a counterexample of rank 3, and
this, in fact, is an active area of research (see [11]).

Suppose D is a Dedekind domain with class group G and let S ⊆ G be the set
of divisor classes containing prime ideals. If G is finite, then so is the Davenport
constant D(G,S) and there is an irreducible B ∈ B(G) with |B| = D(G,S). By
the surjectivity of ϕ in Geroldinger’s theorem, there is a d ∈ D∗ with ϕ(d) = B.
This d must be irreducible and (d) factors as a product of D(G,S) many prime
ideals. On the other hand, Geroldinger’s theorem tells us that any irreducible
d′ must correspond to an irreducible ϕ(d) and hence (d′) factors as at most
D(G,S) many prime ideals. The Davenport constant D(G,S) therefore is the
greatest number of prime ideals to appear in a factorization of a principal ideal
generated by an irreducible element. In contrast, if G is infinite then D(G) is
infinite and there is no bound on the number of prime ideals appearing in a
factorization of a principal ideal generated by an irreducible.

When we consider factorizations of arbitrary elements of D∗, the Davenport
constant D(G,S) manifests even more prominently as a bound. To describe
this restriction, we introduce some additional terminology from the theory of
non-unique factorizations (see [13]). For M a commutative, cancellative, atomic
monoid and x ∈M\M× set

L(x) = sup{n | there are x1, . . . , xn ∈ A(M) such that x = x1 · · ·xn}

and

l(x) = inf{n | there are x1, . . . , xn ∈ A(M) such that x = x1 · · ·xn}.

While 1 ≤ l(x) < ∞ it may be that L(x) = ∞ (examples of x with L(x) = ∞
can be constructed using semigroup rings as in [2, Example 2.1]). The elasticity
of x is defined as

ρ(x) =
L(x)

l(x)
.

We can again extend this definition to all of M by setting

ρ(M) = sup{ρ(x) | x ∈M\M×}

and call ρ(M) the elasticity of M . Intuitively speaking, the elasticity ρ(M)
bounds how much a product of irreducibles can be “stretched” into a longer
product of irreducibles, or “compressed” into a shorter product of irreducibles.
A good general reference on elasticity can be found in [3].

Example 5.4. Reconsider Example 4.1, where we obtained an explicit for-
mula for L(B) for blocks B ∈ B(Z3). From this formula, we see ρ(B) =
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1 + min{q2, q3}/(x1 + q2 + q3 + r). This formula is maximized when q2 = q3
and x1 = r = 0, so that ρ(B(Z3)) = 3/2. We will obtain this value much more
easily in Proposition 5.5.

We shall now show how the Davenport constant can be used to compute
the elasticity of a ring of algebraic integers. Doing this for a general Dedekind
domain D is much more difficult, but an algorithm can be found in [7]; we shall
only provide bounds. To simplify the statements, we shall assume for part of
this proposition that S = −S, i.e. that the set of classes containing prime ideals
is closed under negation.

Proposition 5.5. Let D be a Dedekind domain with class group G and S be
the set of divisor classes of C(D) containing prime ideals.

1. D is a UFD if and only if S = {0}, in which case D(G,S) = ρ(D) = 1.

2. if D(G,S) <∞ and S 6= {0}, then ρ(D) ≤ D(G,S)
2 .

3. if D(G,S) < ∞ and S = −S 6= {0}, then ρ(D) = D(G,S)
2 . Moreover, in

this case there is an x ∈ D∗ with ρ(x) = ρ(D).

4. if D(G,S) =∞ and S = −S 6= {0}, then ρ(D) =∞.

Proof. (1) is simply Theorem 2.4. Hence, assume S 6= {0} (and thus D is not a
UFD). As with the bound on longest factorizations of principal ideals generated
by irreducibles, the problem becomes transparent when we translate it to the
framework of block monoids.

We establish (2). Assume that D(G,S) < ∞. By Geroldinger’s theorem,
for all nonunits x ∈ D∗ L(x) = L(ϕ(x)) and `(x) = `(ϕ(x)). We may write
ϕ(x) as 0kA, where A ∈ B(G,S), k ≥ 0 and 0 does not occur in A. Since
01 is prime by Proposition 3.4, it must appear in every factorization of ϕ(x),
demonstrating that L(ϕ(x)) = k + L(A) and `(ϕ(x)) = k + `(A). If A = E is
trivial, then ρ(ϕ(x)) = 1, so assume A is nontrivial. Each irreducible factor of
A has size at most D(G,S) and at least 2 (since 01 is the sole block of size 1).
Thus L(A) ≤ |A|/2 and `(A) ≤ |A|/D(G,S). So

ρ(x) = ρ(ϕ(x)) =
k + L(A)

k + `(A)
≤ L(A)

`(A)
≤ |A|/2
|A|/D(G,S)

=
D(G,S)

2
.

To establish (3) and (4), we will find lower bounds on ρ(D) by examining
the elasticities of particular elements. Let B = g1 · · · gk be an irreducible of
B(G,S) and, using our added assumption that S = −S, let −B ∈ B(G,S) be
the irreducible block obtained by negating all the terms of B. Then (B)(−B) =∏k
i=1[gi(−gi)] gives factorizations of (B)(−B) into 2 irreducibles and k irre-

ducibles, so ρ(B(−B)) ≥ k/2. If D(G,S) finite, we can find an irreducible B
with k = D(G,S), and use the surjectivity of ϕ (Geroldinger’s theorem) to pull
it back to an element of d ∈ D∗, giving ρ(d) ≥ D(G,S)/2 (and hence equal
by (2)). If D(G,S) infinite, we can find irreducibles with arbitrarily large k
and pull them back to get elements of D of arbitrarily large elasticity k/2, so
ρ(D) =∞.
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As mentioned before the proposition, we assumed S = −S for parts (3) and
(4). This is to assure that −B ∈ B(G,S) for the given block B ∈ B(G,S)
that we used to bound ρ(D) from below. Indeed, unless S has some symmetry
under negation, we will generally have ρ(D) < D(G,S)/2, as in Example 3.2
where S = {1, 2} yielded a half-factorial block monoid but D(G,S) = 4. See
[4, Proposition 3] for a characterization of the subsets S ⊆ G which yield an
equality ρ(D) = D(G,S)/2. While the assumption on S may seem strong, by
Proposition 2.1 part (3) it is automatically satisfied by the ring of integers in a
finite extension of the rationals. Along with Proposition 5.5 part (3), we obtain
an easy proof of a well-known extension of Carlitz’s theorem by Valenza [20].

Valenza’s theorem. Let OK be the ring of integers in a finite extension of the
rationals. Then

ρ(OK) =
D(C(OK))

2
.

The Davenport constant determines the elasticities of Dedekind domains
(and block monoids) for which S = −S, yet it falls short of explaining the
difference in Example 3.2 between the factorization properties of B(Z4) and
B(Z4, {1, 2}). The following combinatorial constants are a first step in a com-
plete explanation of this type of behavior and gaining a more fine-grained anal-
ysis of factorizations.

Definition 5.6. Let G be a finite abelian group. If B =
∏
g∈G g

vg is an element
of B(G), then

k(B) =
∑
g∈G

vg
ord(g)

is known as the cross number of B in B(G). The constant

K(G) = sup{k(B) | B an irreducible of B(G)}

is known as the cross number of G. As with the Davenport constant, we extend
K(G) in an obvious manner to K(G,S).

Example 5.7. We return to Examples 3.2 and 5.3. The cross numbers of the
irreducible blocks in B(Z4) are as follows:

k(0
1
) = k(1

4
) = k(2

2
) = k(3

4
) = k(1

2
2
1
) = k(2

1
3
2
) = 1 and k(1

1
3
1
) =

1

2
.

Hence, K(Z4) = K(Z4, {1, 2}) = 1. Recall the Davenport constants were both
4 for these block monoids. For B(Z2 ⊕ Z2), we saw earlier that the Davenport
constant is 3. To compute the cross number, set g1 = (1, 0), g2 = (0, 1),
g3 = (1, 1) and e = (0, 0). The irreducible blocks of B(Z2 ⊕ Z2) are

e1, g21 , g
2
2 , g

2
3 , g

1
1g

1
2g

1
3 ,

with cross numbers

k(e1) = k(g21) = k(g22) = k(g23) = 1 and k(g11g
1
2g

1
3) = 3/2.
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Hence K(Z2⊕Z2) = 3/2. That K(G) > 1 here is not surprising. In fact, a well
known result of Krause [16] shows that a finite abelian group G has K(G) = 1
if and only if G ∼= Zpk for some prime number p.

As with the Davenport constant, no closed formula for the computation of
K(G) is known. We used an explicit example to define M(G), a lower bound for
D(G); similarly we will obtain a lower bound for K(G). If B = en1−1

1 · · · enk−1
k g1

is the irreducible block used in the proof of Proposition 5.2 (2), then set

K∗(G) = k(B) =

k∑
i=1

ni − 1

ni
+

1

nk
.

Proposition 5.8. Let G = Zn1⊕· · ·⊕Znk
be a finite abelian group with ni | ni+1

for 1 ≤ i < k.

1. If B and C are in B(G), then k(BC) = k(B) + k(C).

2. K(G) ≥ K∗(G) ≥ 1.

Proof. (1) follows directly from the definition of the function k. For (2), since B
is an irreducible block of B(G), the first inequality follows. The second inequality
is easily verified, since each summand is nonnegative, and 1/nk plus the final
summand (i = k) equals 1.

The inequality M(G) ≤ D(G) is known to be strict for certain groups G.
In contrast, it is unknown whether there exists a finite abelian group G with
K(G) > K∗(G). An extended discussion of this can be found in [6, Section 2].

We close this section with some basic properties concerning the cross num-
ber and its use in factorization theory. The cross number can be thought of
intuitively as assigning weights to blocks and it assigns these weights additively
by the above proposition. This gives us a tactic to estimate the factorization
lengths of a block without factoring it. We illustrate with an example:

Example 5.9. We return again to Example 3.2, where G = Z4. In Example 5.7,
we calculated the cross numbers of the irreducibles of B(G) and saw K(G) = 1.
Now, if B = C1 . . . Cm is a factorization of a block B over G, then k(B) =∑m
i=1 k(Ci) ≤ mK(G) = m, so we quickly have that k(B) is a lower bound on

L(B).

For a general finite abelian group, the reasoning in the example shows that
k(B)/K(G) is always a lower bound on L(B). As we previously saw in Propo-
sition 5.8, K(G) ≥ 1, and so k(B) ≤ L(B) for all B ∈ B(G,S). The case where
this lower bound achieves equality corresponds to a familiar property.

Lemma 5.10. Let G be a finite abelian group and S ⊆ G. The following are
equivalent:

1. k(B) = L(B) for all B ∈ B(G,S),
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2. k(A) = 1 for all irreducible A ∈ B(G,S), and

3. B(G,S) is half factorial.

Proof. We begin by showing that (1) and (2) are equivalent. (1)⇒ (2) Follows
since L(B) = 1 for all irreducibles B. (2) ⇒ (1) If B = C1 · · ·Cr is a longest
factorization of B, then k(B) =

∑r
i=1 k(Ci) = r = L(B).

We complete the proof by showing that (2) and (3) are equivalent. (2)⇒ (3)
If B1 · · ·Br = C1 · · ·Cs are two irreducible factorizations of the same element,
then r =

∑r
i=1 k(Bi) =

∑s
i=1 k(Ci) = s. (3) ⇒ (2) Let C =

∏r
i=1 g

vi
i be

an irreducible of B(G,S). Let m = lcm(ord(g1), . . . , ord(gr)). Then Cm =

(g
ord(g1)
1 )v1m/ ord(g1) · · · (gord(gr)r )vrm/ ord(gr). The factorization on the right has

length
r∑
i=1

vim

ord(gi)
= mk(C),

while the one on the left has length m. By half-factoriality, m = mk(C) and
k(C) = 1.

Proposition 5.5 part (3) solves the elasticity problem for Dedekind domains
where each ideal class of C(D) contains a prime ideal. If the set of ideal classes
S is properly contained in C(D), then the upper bound for the elasticity offered
in Proposition 5.5 part (2) is often not sharp. Expanding upon the ideas in
Lemma 5.10, we can use the cross number to obtain a better bound for finite
groups (see [8, Examples 1.9 & 1.10] for comparisons of these bounds). Assume
that G is a finite group, set

M = max{k(B) | B ∈ A(B(G,S)) and B is not prime}

and
m = min{k(B) | B ∈ A(B(G,S)) and B is not prime}.

Proposition 5.11. [8, Corollary 1.7] If G is a finite abelian group and S ⊆ G
which generates G, then

max{M,m−1} ≤ ρ(B(G,S)) ≤ M

m
. (8)

Hence, if either M = 1 or m = 1, then ρ(B(G,S)) = M
m .

Proof. If n
m ≥ 1 then n

m ≥
n+k
m+k for k a positive integer. Hence, in computing the

elasticity of B(G,S), we merely need consider blocks B which are not divisible
by prime blocks. Thus, let B be such a block and assume that B = A1 · · ·An =
C1 · · ·Cm where each Ai and Cj are non-prime irreducible blocks. Now, k(B) ≥
n · m and k(B) ≤ m ·M. From n · m ≤ m ·M we obtain that n

m ≤
M
m and the

upper inequality in equation (8) holds.
For the lower inequality, suppose B is an irreducible block (as above) with

B = g11 · · · g1s for not necessarily distinct group elements g1, . . . , gs. Let ni be
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the order of gi in G. Suppose that e is the exponent of G and that e = niti for
each i. Then k(B) =

∑s
i=1

1
ni

=
∑s
i=1

1
e/ti

= (
∑s
i=1 ti)/e. We also have the

factorization
Be = (g11 · · · g1s)e = (gn1

1 )t1 · · · (gns
s )ts

where each gni
i is an irreducible block of B(G,S). Hence, a product of e ir-

reducibles in B(G,S) factors as a product of
∑s
i=1 ti irreducibles and thus

ρ(Be) ≥ max{k(B),k(B)−1}. The lower bound now follows.
The final statement holds since clearly max{M,m−1} = M

m if and only if
either M = 1 or m = 1.

Note, in general B(G,S), can have other primes besides 01. For instance, in
G = Z2 ⊕ Z2, if S = {(1, 0), (0, 1)} then both (1, 0)2 and (0, 1)2 are prime. We
close with an example which illustrates the utility of Proposition 5.11.

Example 5.12. Let G = Z7 and set S = {1, 3}. An easy calculation yields
that the irreducible blocks of B(Z7, S) are

B1 = 1
7
, B2 = 3

7
, B3 = 1

1
3
2
, and B4 = 1

4
3
1
.

None of these are prime and k(B1) = k(B2) = 1, k(B3) = 3
7 , and k(B4) = 5

7 .
It follows from Proposition 5.11 that ρ(B(Z7, S)) = 7

3 <
7
2 and hence is strictly

less than the upper bound seen in Proposition 5.5 part (2).
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