A GENERALIZATION OF A RAMSEY-TYPE THEOREM ON HYPERMATCHINGS

PAUL BAGINSKI
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, BERKELEY
BERKELEY, CA 94720

Abstract

For an r-uniform hypergraph G define $N(G, l ; 2)\left(N\left(G, l ; \mathbb{Z}_{n}\right)\right)$ as the smallest integer for which there exists an r-uniform hypergraph H on $N(G, l ; 2)\left(N\left(G, l ; \mathbb{Z}_{n}\right)\right)$ vertices with clique $(H)<l$ such that every 2-coloring (\mathbb{Z}_{n}-coloring) of the edges of H implies a monochromatic (zero-sum) copy of G. Our results strengthen a Ramsey-type theorem of Bialostocki and Dierker on zero-sum hypermatchings. As a consequence we show that for any $n \geq 2$, $r \geq 2$, and $l>r+1, N\left(n \mathcal{K}_{r}^{r}, l ; 2\right)=N\left(n \mathcal{K}_{r}^{r}, l ; \mathbb{Z}_{n}\right)=(r+1) n-1$.

1. Introduction

Let G be an r-uniform hypergraph with n edges. The 2-color (zero-sum) Ramsey number, denoted by $R(G, 2)\left(R\left(G, \mathbb{Z}_{n}\right)\right)$, is the smallest integer s such that for every 2-coloring (\mathbb{Z}_{n}-coloring) of the edges of the r-uniform complete hypergraph on s vertices, there exists a subhypergraph isomorphic to G all of whose edges have the same color (all of whose edges sum to zero); such a subhypergraph is called monochromatic (zero-sum). Clearly, $R(G, 2) \leq R\left(G, \mathbb{Z}_{n}\right)$, and if equality holds, we say that $R(G, 2)$ admits an Erdös-Ginzburg-Ziv (EGZ) generalization. Such generalizations have been proven in [2], [3], [8], and [14]. Surveys of zero-sum problems appear in [1] and [5].

Along different lines, a problem posed by P. Erdös and solved in [9] motivated R. Graham and J. Spencer [10] to introduce the following definiton. Denote by $N(k, l ; s)$ the smallest integer for which there exists a graph G on $N(k, l ; s)$ vertices

This research was supported by NSF Grant DMS0097317.
with clique $(G)<l$, i.e. G does not contain a complete graph on l vertices, but such that every s-coloring of the edges of G implies a monochromatic complete subgraph on k vertices. The function $N(k, l ; s)$ was investigated in several papers, among them [10], [11], and [12], which led to the more general Nešetřil-Rödl Theorem [13] concerning hypergraphs. Continuing this trend, we introduce the following definition.

Definition 1.1. Let G be an r-uniform hypergraph. Denote by $N(G, l ; 2)$ (by $\left.N\left(G, l ; \mathbb{Z}_{n}\right)\right)$ the smallest integer for which there exists an r-uniform hypergraph H on $N(G, l ; 2)\left(N\left(G, l ; \mathbb{Z}_{n}\right)\right)$ vertices with clique $(H)<l$ and such that every 2 coloring (\mathbb{Z}_{n}-coloring) of the edges of H implies a monochromatic (zero-sum) copy of G.

It is easy to see that $R(G, 2) \leq N(G, l ; 2) \leq N\left(G, l ; \mathbb{Z}_{n}\right)$ and $R\left(G, \mathbb{Z}_{n}\right) \leq$ $N\left(G, l ; \mathbb{Z}_{n}\right)$. Furthermore, if $l_{1} \geq l_{2}$ then $N\left(G, l_{1} ; 2\right) \leq N\left(G, l_{2} ; 2\right)$ and $N\left(G, l_{1} ; \mathbb{Z}_{n}\right) \leq$ $N\left(G, l_{2} ; \mathbb{Z}_{n}\right)$. Our paper focuses on the case where $G=n \mathcal{K}_{r}^{r}$ is a hypermatching, i.e. n pairwise disjoint r-uniform hyperedges. In [3], Bialostocki and Dierker showed that $R\left(n \mathcal{K}_{r}^{r}, 2\right)=R\left(n \mathcal{K}_{r}^{r}, \mathbb{Z}_{n}\right)=(r+1) n-1$. Moreover, it follows from Lemma 3.5 in [4] that $N\left(n \mathcal{K}_{2}, 2 n+1 ; 2\right)=3 n-1$. In this paper we generalize both of these two results and prove that for any $n \geq 2, r \geq 2$, and $l>r+1$ we have $N\left(n \mathcal{K}_{r}^{r}, l ; 2\right)=N\left(n \mathcal{K}_{r}^{r}, l ; \mathbb{Z}_{n}\right)=(r+1) n-1$. In particular, we will show that this equality is witnessed by the complete $(r+1)$-partite r-uniform hypergraph consisting of r vertex classes of size n and one additional class which has size $n-1$.

2. Main Result

First we will establish some notation. For a given positive integer r and a set S, we will use $\mathcal{K}^{r}(S)$ to denote the collection of r-subsets of S.

Let $r \geq 2$ and disjoint sets $H_{1}=\left\{z_{1}, \ldots, z_{r}\right\}$ and $H_{2}=\left\{y_{1}, \ldots, y_{r+1}\right\}$ be given. Then for each $I \subseteq\{1, \ldots, r\}$ define

$$
\begin{array}{r}
H_{1}^{I}=\left\{z_{i} \mid i \in\{1, \ldots, r\} \backslash I\right\} \cup\left\{y_{i} \mid i \in I\right\} \\
H_{2}^{I}=\left\{y_{i} \mid i \in\{1, \ldots, r+1\} \backslash I\right\} \cup\left\{z_{i} \mid i \in I\right\} .
\end{array}
$$

Note that $\left|H_{1}^{I}\right|=r$ and $\left|H_{2}^{I}\right|=r+1$ and $H_{1}^{I} \cap H_{2}^{I}=\emptyset$.

Lemma 2.1. Let $r \geq 2$ and disjoint sets $H_{1}=\left\{z_{1}, \ldots, z_{r}\right\}$ and $H_{2}=\left\{y_{1}, \ldots, y_{r+1}\right\}$ be given. If we partition $\mathcal{K}^{r}\left(H_{1} \cup H_{2}\right)$, then either
(1) every r-subset of H_{2} belongs to the same class as H_{1}, or
(2) there exists $I \subseteq\{1, \ldots, r\}$ such that two r-subsets Y_{1} and Y_{2} of H_{2}^{I} belong to different classes.

Proof. Define $I_{0}=\emptyset$ and for each $1 \leq i \leq r$, put $I_{i}=\{1, \ldots, i\}$ and $A_{i}=H_{2}^{I_{i}}$. If for some i there are two r-subsets Y_{1} and Y_{2} of A_{i} that belong to different classes, then we are done. Otherwise, for each i all the r-subsets of A_{i} belong to the same class. But since $\left|A_{i} \cap A_{i+1}\right|=r$ we have that every r-subset of A_{i} belongs to the same class as every r-subset of A_{i+1}. By induction, every r-subset of $A_{0}=H_{2}$ belongs to the same class as every r-subset of A_{r}. But by our construction, H_{1} is an r-subset of A_{r}, so we are done.

Lemma 2.2. Let $n \geq 2, r \geq 2$. Let a set S of cardinality $(r+1) n-1$ be given and let $T_{1}, \ldots, T_{r}, T_{r+1}$ be a partition of S such that for $1 \leq i \leq r,\left|T_{i}\right|=n$ and $\left|T_{r+1}\right|=n-1$. Put $W=\mathcal{K}^{r}(S) \backslash\left(\bigcup_{i=1}^{r+1} \mathcal{K}^{r}\left(T_{i}\right)\right)$. Then for any partition of W, we have either:
(1) there are n elements of W, say $A_{1}, A_{2}, \ldots, A_{n}$, which all belong to the same class and such that for all i, j, with $1 \leq i \leq r+1$ and $1 \leq j \leq n$, we have that $\left|T_{i} \cap A_{j}\right| \leq 1$; or
(2) there are $2 n-1$ elements of W, say $A_{1}, \ldots, A_{n-1}, B_{1}, \ldots, B_{n-1}, C$, such that for all i, j, and k, where $1 \leq i \leq j \leq n-1$ and $1 \leq k \leq r+1$, we have
(a) $\left|A_{i} \cap B_{i}\right|=r-1$,
(b) A_{i} and B_{i} belong to different classes,
(c) $\left(A_{i} \cup B_{i}\right) \cap\left(A_{j} \cup B_{j}\right)=\emptyset$ when $i \neq j$,
(d) $\left|\left(A_{i} \cup B_{i}\right) \cap T_{k}\right|=1$,
(e) $\left(A_{i} \cup B_{i}\right) \cap C=\emptyset$, and
(f) $\left|C \cap T_{k}\right| \leq 1$.

Proof. Proof by induction on n.
Consider $\mathrm{n}=2$. For each $1 \leq i \leq r$ enumerate T_{i} as $\left\{a_{i, 1}, a_{i, 2}\right\}$, then define $H_{1}=\left\{a_{i, 1} \mid 1 \leq i \leq r\right\}$ and $H_{2}=\left\{a_{i, 2} \mid 1 \leq i \leq r\right\} \cup T_{r+1}$. Note that $H_{1}, H_{2} \in W$, $\left|H_{1}\right|=r,\left|H_{2}\right|=r+1$ and $H_{1} \cap H_{2}=\emptyset$, so we may apply Lemma 2.1. If we
have that every r-subset of H_{2} belongs to the same class as H_{1}, then H_{1} and any r-subset of H_{2} will satisfy the first assertion of the lemma. Otherwise we have that for some $I \subseteq\{1, \ldots, r\}$ there are r-subsets A and B of H_{2}^{I} which belong to different classes. Taking $C=H_{1}^{I}$ yields sets satisfying the second assertion.

Assume the lemma holds for $n-1$.
Case 1. For every $x_{1} \in T_{1}, x_{2} \in T_{2}, \ldots, x_{r+1} \in T_{r+1}$ and every two r-subsets Y_{1}, Y_{2} of $\left\{x_{1}, x_{2}, \ldots, x_{r+1}\right\}$ we have that Y_{1} and Y_{2} belong to the same class. It follows easily that there is one class containing all r-subsets Y with the property that $\left|Y \cap T_{i}\right| \leq 1$ for all i with $1 \leq i \leq r+1$. For each $1 \leq j \leq r$ enumerate T_{j} as $\left\{a_{j, 1}, a_{j, 2}, \ldots, a_{j, n}\right\}$. Then defining $A_{i}=\left\{a_{j, i} \mid 1 \leq j \leq r\right\}$ for each $1 \leq i \leq n$ yields elements of W which satisfy the first assertion of the lemma.

Case 2. There are $x_{1} \in T_{1}, x_{2} \in T_{2}, \ldots, x_{r+1} \in T_{r+1}$ and there are two r subsets Y_{1}, Y_{2} of $\left\{x_{1}, x_{2}, \ldots, x_{r+1}\right\}$ such that Y_{1} and Y_{2} belong to different classes. Then we apply the induction hypothesis to $S^{\prime}=S \backslash\left\{x_{1}, x_{2}, \ldots, x_{r+1}\right\}$ and $T_{i}^{\prime}=$ $T_{i} \backslash\left\{x_{i}\right\}$ for each $1 \leq i \leq r+1$. If the induction hypothesis yields $A_{1}, A_{2}, \ldots, A_{n-2}$, $B_{1}, B_{2}, \ldots, B_{n-2}, C$ satisfying the second assertion of the lemma for $n-1$, then adding $A_{n-1}=Y_{1}$ and $B_{n-1}=Y_{2}$ yields $2 n-1$ elements of W which satisfy the second assertion of the lemma for n.

Otherwise, we have $n-1$ pairwise disjoint elements of W, say A_{1}, \ldots, A_{n-1}, which belong to the same class and such that for all $1 \leq i \leq r+1$ and $1 \leq j \leq n-1$ $\left|T_{i} \cap A_{j}\right| \leq 1$. This property, in light of the fact that $\left|A_{j}\right|=r$, implies that each A_{j} has empty intersection with precisely one of the T_{i}, which we shall label $T_{\sigma(j)}$. Set

$$
V=\bigcup_{j=1}^{n-1} A_{j}
$$

and for each $1 \leq i \leq r+1$ put $d_{i}=\left|T_{i} \cap V\right|$. Since $\left|T_{i} \cap A_{j}\right| \leq 1$ for all $1 \leq$ $i \leq r+1$ and $1 \leq j \leq n-1, d_{i}$ represents the number of A_{j} that have nonempty intersection with T_{i}. By definition then, $n-1-d_{i}=\left|T_{i} \backslash V\right|$ is the number of A_{j} for which $T_{i}=T_{\sigma(j)}$. Thus, for each $1 \leq j \leq n-1$, we may choose an element $w_{j} \in T_{\sigma(j)} \backslash V$, such that $j \neq j^{\prime}$ implies $w_{j} \neq w_{j^{\prime}}$. The resulting pairwise disjoint sets $F_{j}=A_{j} \cup\left\{w_{j}\right\}$, where $1 \leq j \leq n-1$, have cardinality $r+1$ and the property that $\left|F_{j} \cap T_{i}\right|=1$ for all i, where $1 \leq i \leq r+1$. Enumerate each F_{j} as $\left\{z_{1}^{j}, z_{2}^{j}, \ldots, z_{r+1}^{j}\right\}$, where for each $1 \leq i \leq r+1$, we have $z_{i}^{j} \in T_{i}$. Set
$V_{1}=S \backslash \bigcup_{j=1}^{n-1} F_{j}$ and observe that since $\left|F_{j} \cap T_{i}\right|=1$ for all $1 \leq i \leq r+1$, we have that $\left|V_{1} \cap T_{i}\right|=1$ for all $1 \leq i \leq r$ and $V_{1} \cap T_{r+1}=\emptyset$. Thus, we may enumerate V_{1} as $\left\{y_{1}^{1}, \ldots, y_{r}^{1}\right\}$ such that for each $1 \leq i \leq r$, we have that $y_{i}^{1} \in T_{i}$. Apply Lemma 2.1 to the sets V_{1} and F_{1}. If every r-subset of F_{1} belongs to the same class as V_{1}, then in particular A_{1} belongs to the same class as V_{1}. In this case $A_{1}, \ldots, A_{n-1}, V_{1}$ satisfy the first assertion of the lemma and we are done. Otherwise, there is some $I_{1} \subseteq\{1, \ldots, r\}$ and two r-subsets A_{1}^{\prime} and B_{1}^{\prime} of $F_{1}^{I_{1}}$ that belong to different classes. By the specification of the enumerations of F_{1} and V_{1}, we have that for all $1 \leq i \leq r+1,\left|\left(A_{1}^{\prime} \cup B_{1}^{\prime}\right) \cap T_{i}\right|=\left|F_{1}^{I_{1}} \cap T_{i}\right|=1$.

We proceed recursively for $1 \leq j \leq n-2$ as follows. Set $V_{j+1}=V_{j}^{I_{j}}$. By the specification of the enumerations of F_{j} and V_{j}, for all $1 \leq i \leq r$ we have $\left|V_{j+1} \cap T_{i}\right|=$ 1 and $V_{j+1} \cap T_{r+1}=\emptyset$. Thus we may enumerate V_{j+1} as $\left\{y_{1}^{j+1}, \ldots, y_{r}^{j+1}\right\}$ such that for each $1 \leq i \leq r$, we have that $y_{i}^{j+1} \in T_{i}$. We now apply Lemma 2.1 to the sets V_{j+1} and F_{j+1}. If every r-subset of F_{j+1} belongs to the same class as V_{j+1}, then in particular A_{j+1} belongs to the same class as V_{j+1}. In this case $A_{1}, \ldots, A_{n-1}, V_{j+1}$ satisfy the first assertion of the lemma and we are done with the proof. Otherwise, there is some $I_{j+1} \subseteq\{1, \ldots, r\}$ and two r-subsets A_{j+1}^{\prime} and B_{j+1}^{\prime} of $F_{j+1}^{I_{j+1}}$ that belong to different classes. By the specification of the enumerations of F_{j+1} and V_{j+1}, we have that for all $1 \leq i \leq r+1$,

$$
\left|\left(A_{j+1}^{\prime} \cup B_{j+1}^{\prime}\right) \cap T_{i}\right|=\left|F_{j+1}^{I_{j+1}} \cap T_{i}\right|=1
$$

Thus, at the end of the recursion, we will have produced elements $A_{1}^{\prime}, \ldots, A_{n-1}^{\prime}$, $B_{1}^{\prime}, \ldots, B_{n-1}^{\prime}$ of W which satisfy conditions (a)-(d) of the lemma. Put $C=V_{n-1}^{I_{n-1}}$. By the specification of the enumeration of F_{n-1} and V_{n-1}, for all $1 \leq i \leq r$ we have $\left|C \cap T_{i}\right|=1$ and $C \cap T_{r+1}=\emptyset$. Thus $A_{1}^{\prime}, \ldots, A_{n-1}^{\prime}, B_{1}^{\prime}, \ldots, B_{n-1}^{\prime}, C$ satisfy the second assertion of the lemma.

Theorem 2.3. Let $n \geq 2, r \geq 2$. Let a set S of cardinality $(r+1) n-1$ be given and let $T_{1}, \ldots, T_{r}, T_{r+1}$ be a partition of S such that for $1 \leq i \leq r,\left|T_{i}\right|=n$ and $\left|T_{r+1}\right|=n-1$. Put $W=\mathcal{K}^{r}(S) \backslash\left(\bigcup_{i=1}^{r+1} \mathcal{K}^{r}\left(T_{i}\right)\right)$. Then for any mapping $\alpha: W \rightarrow \mathbb{Z}_{n}$, there are pairwise disjoint elements of W, say Z_{1}, \ldots, Z_{n}, such that

$$
\alpha\left(Z_{1}\right)+\ldots+\alpha\left(Z_{n}\right)=0 .
$$

Moreover, we may choose these Z_{j} such that for all $1 \leq i \leq r+1,\left|Z_{j} \cap T_{i}\right| \leq 1$.

Proof. We prove the theorem first for $n=p$ prime by applying Lemma 2.2. If we have p pairwise disjoint elements of W, say $A_{1}, A_{2}, \ldots, A_{p}$, such that $\alpha\left(A_{1}\right)=$ $\cdots=\alpha\left(A_{p}\right)$ and for all $1 \leq i \leq r+1$ and $1 \leq j \leq p,\left|T_{i} \cap A_{j}\right| \leq 1$, then we are done. Otherwise we have $A_{1}, \ldots, A_{p-1}, B_{1}, \ldots, B_{p-1}, C \in W$ satisfying the second assertion of Lemma 2.2. For each $1 \leq i \leq p-1$ put $D_{i}=\left\{\alpha\left(A_{i}\right), \alpha\left(B_{i}\right)\right\}$ and put $D_{p}=\{\alpha(C)\}$. By repeated use of the Cauchy-Davenport Theorem ([6]) we get all the elements of \mathbb{Z}_{p} in the set $D_{1}+D_{2}+\cdots+D_{p}$. Consequently, 0 is among them and the theorem is proven for p prime.

Assume the theorem holds for $n=m_{1}$ and $n=m_{2}$. Let $r \geq 2$ and a set S of cardinality $(r+1) m_{1} m_{2}-1$ be given. Let $T_{1}, \ldots, T_{r}, T_{r+1}$ be a partition of S such that for $1 \leq i \leq r,\left|T_{i}\right|=m_{1} m_{2}$ and $\left|T_{r+1}\right|=m_{1} m_{2}-1$. Put

$$
W=\mathcal{K}^{r}(S) \backslash\left(\bigcup_{i=1}^{r+1} \mathcal{K}^{r}\left(T_{i}\right)\right)
$$

and consider a mapping $\alpha: W \rightarrow\left\{0,1, \ldots, m_{1} m_{2}-1\right\}$. This induces a map $\alpha^{\prime}: W \rightarrow\left\{0,1, \ldots, m_{1}-1\right\}$ by defining $\alpha^{\prime}(X)$ to be the least residue of $\alpha(X)$ modulo m_{1}. Let V be a subset of S of cardinality $(r+1) m_{1}-1$ such that for some $j^{*} \in\{1, \ldots, r+1\}$ we have $\left|V \cap T_{j^{*}}\right|=m_{1}-1$ and $\left|V \cap T_{j}\right|=m_{1}$ for every $j \neq j^{*}$. Put

$$
W_{V}=\mathcal{K}^{r}(V) \backslash\left(\bigcup_{i=1}^{r+1} \mathcal{K}^{r}\left(V \cap T_{i}\right)\right)
$$

We may apply the theorem for m_{1} to pick disjoint elements $B_{1}^{V}, B_{2}^{V}, \ldots, B_{m_{1}}^{V} \in W_{V}$ such that

$$
\sum_{j=1}^{m_{1}} \alpha^{\prime}\left(B_{j}^{V}\right)=0\left(\bmod m_{1}\right)
$$

and such that $1 \geq\left|B_{j}^{V} \cap\left(V \cap T_{i}\right)\right|=\left|B_{j}^{V} \cap T_{i}\right|$ for all $1 \leq i \leq r+1$. Thus, for some integer $k_{V} \geq 0$ we have $\sum_{j=1}^{m_{1}} \alpha\left(B_{j}^{V}\right)=k_{V} m_{1}$.

We now partition T_{i}, where $1 \leq i \leq r$, into subsets $\Gamma_{(i-1) m_{1}+1}, \Gamma_{(i-1) m_{1}+2}, \ldots$, $\Gamma_{i m_{1}}$ such that for all $1 \leq j \leq m_{1},\left|\Gamma_{(i-1) m_{1}+j}\right|=m_{2}$. Additionally, we partition T_{r+1} as $\Gamma_{r m_{1}+1}, \Gamma_{r m_{1}+2}, \ldots, \Gamma_{(r+1) m_{1}}$, where for all $1 \leq j<m_{1},\left|\Gamma_{r m_{1}+j}\right|=$ m_{2} and $\left|\Gamma_{(r+1) m_{1}}\right|=m_{2}-1$. In this manner, we have formed a subpartition
$\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{(r+1) m_{1}}$ of S. Put

$$
W^{\prime}=\mathcal{K}^{(r+1) m_{1}-1}(S) \backslash\left(\bigcup_{i=1}^{(r+1) m_{1}} \mathcal{K}^{(r+1) m_{1}-1}\left(\Gamma_{i}\right)\right) .
$$

Note that if $V \in W^{\prime}$ has the property that $\left|V \cap \Gamma_{i}\right| \leq 1$ for all $1 \leq i \leq(r+1) m_{1}$, then there is some $j^{*} \in\{1, \ldots, r+1\}$ such that $\left|V \cap T_{j^{*}}\right|=m_{1}-1$ and $\left|V \cap T_{j}\right|=m_{1}$ for every $j \neq j^{*}$. Thus, for such a $V \in W^{\prime}$ the integer k_{V} is well-defined. We may now construct a mapping $\alpha^{\prime \prime}: W^{\prime} \rightarrow\left\{0,1, \ldots, m_{2}-1\right\}$ as follows: for a given $V \in W^{\prime}$

$$
\alpha^{\prime \prime}(V)=\left\{\begin{array}{rr}
k_{V}\left(\bmod m_{2}\right) & \text { if }\left|V \cap \Gamma_{i}\right| \leq 1 \text { for all } 1 \leq i \leq(r+1) m_{1} \\
0 & \text { otherwise }
\end{array}\right.
$$

Applying the theorem for m_{2} yields $V_{1}, V_{2}, \ldots, V_{m_{2}} \in W^{\prime}$ such that $\sum_{j=1}^{m_{2}} \alpha^{\prime \prime}\left(V_{i}\right)=$ $0\left(\bmod m_{2}\right)$. Furthermore, the theorem permits us to choose these V_{j} such that $\left|V_{j} \cap \Gamma_{i}\right| \leq 1$ for all i, j, where $1 \leq i \leq(r+1) m_{1}$ and $1 \leq j \leq m_{2}$. Thus

$$
\sum_{j=1}^{m_{2}} k_{V_{j}}=0\left(\bmod m_{2}\right)
$$

and so the elements $B_{i}^{V_{j}} \in W$, where $1 \leq i \leq m_{1}$ and $1 \leq j \leq m_{2}$, satisfy the assertion of the theorem for $n=m_{1} m_{2}$.

Immediate consequences of Theorem 2.3 are the following two corollaries.

Corollary 2.4. If $\alpha: e(\mathcal{K}_{r \text { times }}^{r} \underbrace{r}_{n, n, \ldots, n}, n-1) \rightarrow \mathbb{Z}_{n}$ is a \mathbb{Z}_{n}-coloring of the edges of the complete $(r+1)$-partite r-uniform hypergraph $\underbrace{\mathcal{K}_{n, n, \ldots, n}^{r}, n-1}_{r \text { times }}$ then there exist n pairwise disjoint hypermatchings, say Z_{1}, \ldots, Z_{n}, such that $\sum_{i=1}^{n} \alpha\left(Z_{i}\right)=0$.

Corollary 2.5. For any $n \geq 2, r \geq 2$, and $l>r+1$,

$$
N\left(n \mathcal{K}_{r}^{r}, l ; 2\right)=N\left(n \mathcal{K}_{r}^{r}, l ; \mathbb{Z}_{n}\right)=(r+1) n-1 .
$$

Proof. Consider the complete $(r+1)$-partite r-uniform hypergraph $\underbrace{\mathcal{K}_{n, n, \ldots, n, n-1}^{r}}_{\mathrm{K} \text { times }}$. This graph has clique number $r+1$ (indeed, any set of $r+2$ vertices contains two
vertices in the same vertex class; hence there is no hyperedge through these two vertices). Thus the previous corollary restated becomes

$$
N\left(n \mathcal{K}_{r}^{r}, r+2 ; 2\right)=N\left(n \mathcal{K}_{r}^{r}, r+2 ; \mathbb{Z}_{n}\right)=(r+1) n-1
$$

Combining our observations in the last paragraph of the introduction, the equality follows for all $l>r+1$.

Our results have shown the existence of an r-uniform hypergraph on $(r+1) n-1$ vertices, namely $\mathcal{K}_{\underbrace{r}}^{n, n, \ldots, n}, n-1$, which witnesses the equality $N\left(n \mathcal{K}_{r}^{r}, l ; 2\right)=$ r times
$N\left(n \mathcal{K}_{r}^{r}, l ; \mathbb{Z}_{n}\right)=(r+1) n-1$. However, we were unable to answer the question of uniqueness. Specifically, we have the following:

Open Question: For a given integers $n, r \geq 2$, how many non-isomorphic r uniform hypergraphs H possess the following three properties:
(1) H has $(r+1) n-1$ vertices,
(2) H has clique number $\leq r+1$, and
(3) for every coloring α of the hyperedges of H by \mathbb{Z}_{n}, there exists n pairwise disjoint hyperedges, say Z_{1}, \ldots, Z_{n}, such that $\sum_{i=1}^{n} \alpha\left(Z_{i}\right)=0$.

Acknowledgement

The author wishes to thank Prof. A. Bialostocki for his kind supervision of this research.

References

[1] A. Bialostocki, Zero sum trees: a survey of results and open problems, Finite and infinite combinatorics in sets and logic (Banff, AB, 1991), 19-29, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 411, Kluwer Acad. Publ., Dordrecht, 1993.
[2] A. Bialostocki, P. Dierker, On zero-sum Ramsey numbers: multiple copies of a graph, J. Graph Theory 18(1994), no. 2 143-151.
[3] A. Bialostocki, P. Dierker, On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math. 110(1992), no.1-3, 1-8.
[4] A. Bialostocki, W. Voxman, Generalizations of some Ramsey-type theorems for matchings, Discrete Math. 239(2001), 101-107.
[5] Y. Caro, Zero-sum problems-a survey, Discrete Math. 152(1996), no. 1-3, 93-113.
[6] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935) 30-32.
[7] P. Erdös, A. Ginzburg, A. Ziv, Theorem in additive number theory, Bull. Research Council Israel 10F, 1961, 41-43.
[8] Z. Füredi, D.J. Kleitman, On zero-trees, J. Graph Theory 16(1992), no. 2, 107-120.
[9] R.L. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combinatorial Theory 4(1968), 300.
[10] R. Graham, J. Spencer, On small graphs with forced monochromatic triangles, Recent trends in graph theory (Proc. Conf., New York, 1970), pp. 137-141. Lecture Notes in Math., Vol. 186. Springer, Berlin, 1971.
[11] R. Irving, On a bound of Graham and Spencer for a graph-coloring constant, J. Combinatorial Theory Ser. B 15(1973), 200-203.
[12] N. Khadziivanov, N. Nenov, An example of a 16-vertex Ramsey (3,3)-graph with clique number 4, Serdica 9(1983), no. 1, 74-78.
[13] J. Nešetřil, V. Rödl, Ramsey theorem for classes of hypergraphs with forbidden complete subhypergraphs, Czechoslovak Math. J., 29(104) (1979), no. 2, 202-218.
[14] P.D. Seymour, A. Schrijver, A simpler proof and generalization of the zero-sum trees theorem, J. Combinatorial Theory Ser. A 58(1991), no. 2, 301-305.

Paul Baginski, University of California, Berkeley, Berkeley, CA 94720
E-mail address: baginski@math.berkeley.edu

