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Abstract. For an r-uniform hypergraph G define N(G, l; 2) (N(G, l;Zn)) as

the smallest integer for which there exists an r-uniform hypergraph H on

N(G, l; 2) (N(G, l;Zn)) vertices with clique(H)< l such that every 2-coloring

(Zn-coloring) of the edges of H implies a monochromatic (zero-sum) copy of

G. Our results strengthen a Ramsey-type theorem of Bialostocki and Dierker

on zero-sum hypermatchings. As a consequence we show that for any n ≥ 2,

r ≥ 2, and l > r + 1, N(nKr
r , l; 2) = N(nKr

r , l;Zn) = (r + 1)n− 1.

1. Introduction

Let G be an r-uniform hypergraph with n edges. The 2-color (zero-sum) Ramsey

number, denoted by R(G, 2) (R(G,Zn)), is the smallest integer s such that for

every 2-coloring (Zn-coloring) of the edges of the r-uniform complete hypergraph

on s vertices, there exists a subhypergraph isomorphic to G all of whose edges

have the same color (all of whose edges sum to zero); such a subhypergraph is

called monochromatic (zero-sum). Clearly, R(G, 2) ≤ R(G,Zn), and if equality

holds, we say that R(G, 2) admits an Erdös-Ginzburg-Ziv (EGZ) generalization.

Such generalizations have been proven in [2], [3], [8], and [14]. Surveys of zero-sum

problems appear in [1] and [5].

Along different lines, a problem posed by P. Erdös and solved in [9] motivated

R. Graham and J. Spencer [10] to introduce the following definiton. Denote by

N(k, l; s) the smallest integer for which there exists a graph G on N(k, l; s) vertices
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with clique(G)< l, i.e. G does not contain a complete graph on l vertices, but such

that every s-coloring of the edges of G implies a monochromatic complete subgraph

on k vertices. The function N(k, l; s) was investigated in several papers, among

them [10], [11], and [12], which led to the more general Nešetřil-Rödl Theorem

[13] concerning hypergraphs. Continuing this trend, we introduce the following

definition.

Definition 1.1. Let G be an r-uniform hypergraph. Denote by N(G, l; 2) (by

N(G, l;Zn)) the smallest integer for which there exists an r-uniform hypergraph

H on N(G, l; 2) (N(G, l;Zn)) vertices with clique(H)< l and such that every 2-

coloring (Zn-coloring) of the edges of H implies a monochromatic (zero-sum) copy

of G.

It is easy to see that R(G, 2) ≤ N(G, l; 2) ≤ N(G, l;Zn) and R(G,Zn) ≤
N(G, l;Zn). Furthermore, if l1 ≥ l2 then N(G, l1; 2) ≤ N(G, l2; 2) and N(G, l1;Zn) ≤
N(G, l2;Zn). Our paper focuses on the case where G = nKr

r is a hypermatching, i.e.

n pairwise disjoint r-uniform hyperedges. In [3], Bialostocki and Dierker showed

that R(nKr
r , 2) = R(nKr

r ,Zn) = (r + 1)n − 1. Moreover, it follows from Lemma

3.5 in [4] that N(nK2, 2n + 1; 2) = 3n − 1. In this paper we generalize both of

these two results and prove that for any n ≥ 2, r ≥ 2, and l > r + 1 we have

N(nKr
r , l; 2) = N(nKr

r , l;Zn) = (r + 1)n − 1. In particular, we will show that

this equality is witnessed by the complete (r + 1)-partite r-uniform hypergraph

consisting of r vertex classes of size n and one additional class which has size n−1.

2. Main Result

First we will establish some notation. For a given positive integer r and a set S,

we will use Kr(S) to denote the collection of r-subsets of S.

Let r ≥ 2 and disjoint sets H1 = {z1, . . . , zr} and H2 = {y1, . . . , yr+1} be given.

Then for each I ⊆ {1, . . . , r} define

HI
1 = {zi | i ∈ {1, . . . , r}\I} ∪ {yi | i ∈ I}

HI
2 = {yi | i ∈ {1, . . . , r + 1}\I} ∪ {zi | i ∈ I}.

Note that |HI
1 | = r and |HI

2 | = r + 1 and HI
1 ∩HI

2 = ∅.



ZERO-SUM HYPERMATCHINGS 3

Lemma 2.1. Let r ≥ 2 and disjoint sets H1 = {z1, . . . , zr} and H2 = {y1, . . . , yr+1}
be given. If we partition Kr(H1 ∪H2), then either

(1) every r-subset of H2 belongs to the same class as H1, or

(2) there exists I ⊆ {1, . . . , r} such that two r-subsets Y1 and Y2 of HI
2 belong

to different classes.

Proof. Define I0 = ∅ and for each 1 ≤ i ≤ r, put Ii = {1, . . . , i} and Ai = HIi
2 . If

for some i there are two r-subsets Y1 and Y2 of Ai that belong to different classes,

then we are done. Otherwise, for each i all the r-subsets of Ai belong to the same

class . But since |Ai ∩ Ai+1| = r we have that every r-subset of Ai belongs to the

same class as every r-subset of Ai+1. By induction, every r-subset of A0 = H2

belongs to the same class as every r-subset of Ar. But by our construction, H1 is

an r-subset of Ar, so we are done. ¤

Lemma 2.2. Let n ≥ 2, r ≥ 2. Let a set S of cardinality (r + 1)n − 1 be given

and let T1, . . . , Tr, Tr+1 be a partition of S such that for 1 ≤ i ≤ r, |Ti| = n and

|Tr+1| = n− 1. Put W = Kr(S)\(⋃r+1
i=1 Kr(Ti)). Then for any partition of W , we

have either:

(1) there are n elements of W , say A1, A2, . . . , An, which all belong to the same

class and such that for all i, j, with 1 ≤ i ≤ r + 1 and 1 ≤ j ≤ n, we have

that |Ti ∩Aj | ≤ 1; or

(2) there are 2n − 1 elements of W , say A1, . . . , An−1, B1, . . . , Bn−1, C, such

that for all i, j, and k, where 1 ≤ i ≤ j ≤ n− 1 and 1 ≤ k ≤ r + 1, we have

(a) |Ai ∩Bi| = r − 1,

(b) Ai and Bi belong to different classes,

(c) (Ai ∪Bi) ∩ (Aj ∪Bj) = ∅ when i 6= j,

(d) |(Ai ∪Bi) ∩ Tk| = 1,

(e) (Ai ∪Bi) ∩ C = ∅, and

(f) |C ∩ Tk| ≤ 1.

Proof. Proof by induction on n.

Consider n=2. For each 1 ≤ i ≤ r enumerate Ti as {ai,1, ai,2}, then define

H1 = {ai,1 | 1 ≤ i ≤ r} and H2 = {ai,2 | 1 ≤ i ≤ r} ∪ Tr+1. Note that H1,H2 ∈ W ,

|H1| = r, |H2| = r + 1 and H1 ∩ H2 = ∅, so we may apply Lemma 2.1. If we
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have that every r-subset of H2 belongs to the same class as H1, then H1 and any

r-subset of H2 will satisfy the first assertion of the lemma. Otherwise we have that

for some I ⊆ {1, . . . , r} there are r-subsets A and B of HI
2 which belong to different

classes. Taking C = HI
1 yields sets satisfying the second assertion.

Assume the lemma holds for n− 1.

Case 1. For every x1 ∈ T1, x2 ∈ T2, . . . , xr+1 ∈ Tr+1 and every two r-subsets

Y1, Y2 of {x1, x2, . . . , xr+1} we have that Y1 and Y2 belong to the same class. It

follows easily that there is one class containing all r-subsets Y with the property

that |Y ∩ Ti| ≤ 1 for all i with 1 ≤ i ≤ r + 1. For each 1 ≤ j ≤ r enumerate Tj as

{aj,1, aj,2, . . . , aj,n}. Then defining Ai = {aj,i | 1 ≤ j ≤ r} for each 1 ≤ i ≤ n yields

elements of W which satisfy the first assertion of the lemma.

Case 2. There are x1 ∈ T1, x2 ∈ T2, . . . , xr+1 ∈ Tr+1 and there are two r-

subsets Y1, Y2 of {x1, x2, . . . , xr+1} such that Y1 and Y2 belong to different classes.

Then we apply the induction hypothesis to S′ = S\{x1, x2, . . . , xr+1} and T ′i =

Ti\{xi} for each 1 ≤ i ≤ r +1. If the induction hypothesis yields A1, A2, . . . , An−2,

B1, B2, . . . , Bn−2, C satisfying the second assertion of the lemma for n − 1, then

adding An−1 = Y1 and Bn−1 = Y2 yields 2n − 1 elements of W which satisfy the

second assertion of the lemma for n.

Otherwise, we have n − 1 pairwise disjoint elements of W , say A1, . . . , An−1,

which belong to the same class and such that for all 1 ≤ i ≤ r+1 and 1 ≤ j ≤ n−1

|Ti ∩Aj | ≤ 1. This property, in light of the fact that |Aj | = r, implies that each Aj

has empty intersection with precisely one of the Ti, which we shall label Tσ(j). Set

V =
n−1⋃

j=1

Aj

and for each 1 ≤ i ≤ r + 1 put di = |Ti ∩ V |. Since |Ti ∩ Aj | ≤ 1 for all 1 ≤
i ≤ r + 1 and 1 ≤ j ≤ n − 1, di represents the number of Aj that have nonempty

intersection with Ti. By definition then, n − 1 − di = |Ti\V | is the number of

Aj for which Ti = Tσ(j). Thus, for each 1 ≤ j ≤ n − 1, we may choose an

element wj ∈ Tσ(j)\V , such that j 6= j′ implies wj 6= wj′ . The resulting pairwise

disjoint sets Fj = Aj ∪ {wj}, where 1 ≤ j ≤ n − 1, have cardinality r + 1 and

the property that |Fj ∩ Ti| = 1 for all i, where 1 ≤ i ≤ r + 1. Enumerate each

Fj as {zj
1, z

j
2, . . . , z

j
r+1}, where for each 1 ≤ i ≤ r + 1, we have zj

i ∈ Ti. Set
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V1 = S\⋃n−1
j=1 Fj and observe that since |Fj ∩ Ti| = 1 for all 1 ≤ i ≤ r + 1, we

have that |V1 ∩ Ti| = 1 for all 1 ≤ i ≤ r and V1 ∩ Tr+1 = ∅. Thus, we may

enumerate V1 as {y1
1 , . . . , y1

r} such that for each 1 ≤ i ≤ r, we have that y1
i ∈ Ti.

Apply Lemma 2.1 to the sets V1 and F1. If every r-subset of F1 belongs to the

same class as V1, then in particular A1 belongs to the same class as V1. In this

case A1, . . . , An−1, V1 satisfy the first assertion of the lemma and we are done.

Otherwise, there is some I1 ⊆ {1, . . . , r} and two r-subsets A′1 and B′
1 of F I1

1 that

belong to different classes. By the specification of the enumerations of F1 and V1,

we have that for all 1 ≤ i ≤ r + 1, |(A′1 ∪B′
1) ∩ Ti| = |F I1

1 ∩ Ti| = 1.

We proceed recursively for 1 ≤ j ≤ n − 2 as follows. Set Vj+1 = V
Ij

j . By the

specification of the enumerations of Fj and Vj , for all 1 ≤ i ≤ r we have |Vj+1∩Ti| =
1 and Vj+1∩Tr+1 = ∅. Thus we may enumerate Vj+1 as {yj+1

1 , . . . , yj+1
r } such that

for each 1 ≤ i ≤ r, we have that yj+1
i ∈ Ti. We now apply Lemma 2.1 to the sets

Vj+1 and Fj+1. If every r-subset of Fj+1 belongs to the same class as Vj+1, then in

particular Aj+1 belongs to the same class as Vj+1. In this case A1, . . . , An−1, Vj+1

satisfy the first assertion of the lemma and we are done with the proof. Otherwise,

there is some Ij+1 ⊆ {1, . . . , r} and two r-subsets A′j+1 and B′
j+1 of F

Ij+1
j+1 that

belong to different classes. By the specification of the enumerations of Fj+1 and

Vj+1, we have that for all 1 ≤ i ≤ r + 1,

|(A′j+1 ∪B′
j+1) ∩ Ti| = |F Ij+1

j+1 ∩ Ti| = 1.

Thus, at the end of the recursion, we will have produced elements A′1, . . . , A
′
n−1,

B′
1, . . . , B

′
n−1 of W which satisfy conditions (a)-(d) of the lemma. Put C = V

In−1
n−1 .

By the specification of the enumeration of Fn−1 and Vn−1, for all 1 ≤ i ≤ r we

have |C ∩ Ti| = 1 and C ∩ Tr+1 = ∅. Thus A′1, . . . , A
′
n−1, B′

1, . . . , B
′
n−1, C satisfy

the second assertion of the lemma.

¤

Theorem 2.3. Let n ≥ 2, r ≥ 2. Let a set S of cardinality (r + 1)n − 1 be

given and let T1, . . . , Tr, Tr+1 be a partition of S such that for 1 ≤ i ≤ r, |Ti| = n

and |Tr+1| = n − 1. Put W = Kr(S)\(⋃r+1
i=1 Kr(Ti)). Then for any mapping

α : W → Zn, there are pairwise disjoint elements of W , say Z1, . . . , Zn, such that

α(Z1) + . . . + α(Zn) = 0.
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Moreover, we may choose these Zj such that for all 1 ≤ i ≤ r + 1, |Zj ∩ Ti| ≤ 1.

Proof. We prove the theorem first for n = p prime by applying Lemma 2.2. If

we have p pairwise disjoint elements of W , say A1, A2, . . . , Ap, such that α(A1) =

· · · = α(Ap) and for all 1 ≤ i ≤ r + 1 and 1 ≤ j ≤ p, |Ti ∩ Aj | ≤ 1, then we are

done. Otherwise we have A1, . . . , Ap−1, B1, . . . , Bp−1, C ∈ W satisfying the second

assertion of Lemma 2.2. For each 1 ≤ i ≤ p − 1 put Di = {α(Ai), α(Bi)} and put

Dp = {α(C)}. By repeated use of the Cauchy-Davenport Theorem ([6]) we get all

the elements of Zp in the set D1 + D2 + · · ·+ Dp. Consequently, 0 is among them

and the theorem is proven for p prime.

Assume the theorem holds for n = m1 and n = m2. Let r ≥ 2 and a set S of

cardinality (r + 1)m1m2− 1 be given. Let T1, . . . , Tr, Tr+1 be a partition of S such

that for 1 ≤ i ≤ r, |Ti| = m1m2 and |Tr+1| = m1m2 − 1. Put

W = Kr(S)\(
r+1⋃

i=1

Kr(Ti))

and consider a mapping α : W → {0, 1, . . . ,m1m2 − 1}. This induces a map

α′ : W → {0, 1, . . . ,m1 − 1} by defining α′(X) to be the least residue of α(X)

modulo m1. Let V be a subset of S of cardinality (r + 1)m1− 1 such that for some

j∗ ∈ {1, . . . , r + 1} we have |V ∩ Tj∗ | = m1 − 1 and |V ∩ Tj | = m1 for every j 6= j∗.

Put

WV = Kr(V )\(
r+1⋃

i=1

Kr(V ∩ Ti)).

We may apply the theorem for m1 to pick disjoint elements BV
1 , BV

2 , . . . , BV
m1

∈ WV

such that
m1∑

j=1

α′(BV
j ) = 0 (mod m1)

and such that 1 ≥ |BV
j ∩ (V ∩Ti)| = |BV

j ∩Ti| for all 1 ≤ i ≤ r + 1. Thus, for some

integer kV ≥ 0 we have
∑m1

j=1 α(BV
j ) = kV m1.

We now partition Ti, where 1 ≤ i ≤ r, into subsets Γ(i−1)m1+1, Γ(i−1)m1+2, . . . ,

Γim1 such that for all 1 ≤ j ≤ m1, |Γ(i−1)m1+j | = m2. Additionally, we parti-

tion Tr+1 as Γrm1+1, Γrm1+2, . . . , Γ(r+1)m1 , where for all 1 ≤ j < m1, |Γrm1+j | =

m2 and |Γ(r+1)m1 | = m2 − 1. In this manner, we have formed a subpartition
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Γ1, Γ2, . . . , Γ(r+1)m1 of S. Put

W ′ = K(r+1)m1−1(S)\



(r+1)m1⋃

i=1

K(r+1)m1−1(Γi)


 .

Note that if V ∈ W ′ has the property that |V ∩ Γi| ≤ 1 for all 1 ≤ i ≤ (r + 1)m1,

then there is some j∗ ∈ {1, . . . , r+1} such that |V ∩Tj∗ | = m1−1 and |V ∩Tj | = m1

for every j 6= j∗. Thus, for such a V ∈ W ′ the integer kV is well-defined. We may

now construct a mapping α′′ : W ′ → {0, 1, . . . , m2 − 1} as follows: for a given

V ∈ W ′

α′′(V ) =





kV (mod m2) if |V ∩ Γi| ≤ 1 for all 1 ≤ i ≤ (r + 1)m1

0 otherwise.

Applying the theorem for m2 yields V1, V2, . . . , Vm2 ∈ W ′ such that
∑m2

j=1 α′′(Vi) =

0 (mod m2). Furthermore, the theorem permits us to choose these Vj such that

|Vj ∩ Γi| ≤ 1 for all i, j, where 1 ≤ i ≤ (r + 1)m1 and 1 ≤ j ≤ m2. Thus

m2∑

j=1

kVj = 0 (mod m2)

and so the elements B
Vj

i ∈ W , where 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2, satisfy the

assertion of the theorem for n = m1m2.

¤
Immediate consequences of Theorem 2.3 are the following two corollaries.

Corollary 2.4. If α : e(Kr
n, n, . . . , n︸ ︷︷ ︸
r times

, n−1) → Zn is a Zn-coloring of the edges of

the complete (r +1)-partite r-uniform hypergraph Kr
n, n, . . . , n︸ ︷︷ ︸
r times

, n−1 then there exist

n pairwise disjoint hypermatchings, say Z1, . . . , Zn, such that
∑n

i=1 α(Zi) = 0.

Corollary 2.5. For any n ≥ 2, r ≥ 2, and l > r + 1,

N(nKr
r , l; 2) = N(nKr

r , l;Zn) = (r + 1)n− 1.

Proof. Consider the complete (r+1)-partite r-uniform hypergraph Kr
n, n, . . . , n︸ ︷︷ ︸

r times

, n−1.

This graph has clique number r + 1 (indeed, any set of r + 2 vertices contains two
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vertices in the same vertex class; hence there is no hyperedge through these two

vertices). Thus the previous corollary restated becomes

N(nKr
r , r + 2; 2) = N(nKr

r , r + 2;Zn) = (r + 1)n− 1.

Combining our observations in the last paragraph of the introduction, the equality

follows for all l > r + 1. ¤
Our results have shown the existence of an r-uniform hypergraph on (r+1)n−1

vertices, namely Kr
n, n, . . . , n︸ ︷︷ ︸

r times

, n−1, which witnesses the equality N(nKr
r , l; 2) =

N(nKr
r , l;Zn) = (r + 1)n− 1. However, we were unable to answer the question of

uniqueness. Specifically, we have the following:

Open Question: For a given integers n, r ≥ 2, how many non-isomorphic r-

uniform hypergraphs H possess the following three properties:

(1) H has (r + 1)n− 1 vertices,

(2) H has clique number ≤ r + 1, and

(3) for every coloring α of the hyperedges of H by Zn, there exists n pairwise

disjoint hyperedges, say Z1, . . . , Zn, such that
∑n

i=1 α(Zi) = 0.
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