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ABSTRACT. For an r-uniform hypergraph G define N(G,1;2) (N(G,l;Zy)) as
the smallest integer for which there exists an r-uniform hypergraph H on
N(G,1;2) (N(G,l;Zyn)) vertices with clique(H)< [ such that every 2-coloring
(Zn-coloring) of the edges of H implies a monochromatic (zero-sum) copy of
G. Our results strengthen a Ramsey-type theorem of Bialostocki and Dierker
on zero-sum hypermatchings. As a consequence we show that for any n > 2,

r>2,andl>r+1, NnK7, ;2) = N(nK7, l;Zn) = (r+ 1)n — 1.

1. INTRODUCTION

Let G be an r-uniform hypergraph with n edges. The 2-color (zero-sum) Ramsey
number, denoted by R(G,2) (R(G,Z,)), is the smallest integer s such that for
every 2-coloring (Z,-coloring) of the edges of the r-uniform complete hypergraph
on s vertices, there exists a subhypergraph isomorphic to G all of whose edges
have the same color (all of whose edges sum to zero); such a subhypergraph is
called monochromatic (zero-sum). Clearly, R(G,2) < R(G,Z,), and if equality
holds, we say that R(G,2) admits an Erdos-Ginzburg-Ziv (EGZ) generalization.
Such generalizations have been proven in [2], [3], [8], and [14]. Surveys of zero-sum
problems appear in [1] and [5].

Along different lines, a problem posed by P. Erdés and solved in [9] motivated
R. Graham and J. Spencer [10] to introduce the following definiton. Denote by
N(k,l; s) the smallest integer for which there exists a graph G on N(k,; s) vertices
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with clique(G)< [, i.e. G does not contain a complete graph on [ vertices, but such
that every s-coloring of the edges of GG implies a monochromatic complete subgraph
on k vertices. The function N(k,1;s) was investigated in several papers, among
them [10], [11], and [12], which led to the more general Nesetfil-R6dl Theorem
[13] concerning hypergraphs. Continuing this trend, we introduce the following

definition.

Definition 1.1. Let G be an r-uniform hypergraph. Denote by N(G,[;2) (by
N(G,l;Z,)) the smallest integer for which there exists an r-uniform hypergraph
H on N(G,1;2) (N(G,l;Z,,)) vertices with clique(H)< ! and such that every 2-
coloring (Z,-coloring) of the edges of H implies a monochromatic (zero-sum) copy

of G.

It is easy to see that R(G,2) < N(G,l;2) < N(G,l;Z,) and R(G,Z,) <
N(G,1; Zy,). Furthermore, ifl; > I then N(G,11;2) < N(G,l2;2) and N(G,11;Z,,) <
N(G,l3;Zy). Our paper focuses on the case where G = nK!. is a hypermatching, i.e.
n pairwise disjoint r-uniform hyperedges. In [3], Bialostocki and Dierker showed
that R(nK7,2) = R(nK7,Z,) = (r + 1)n — 1. Moreover, it follows from Lemma
3.5 in [4] that N(nkq, 2n + 1; 2) = 3n — 1. In this paper we generalize both of
these two results and prove that for any n > 2, r > 2, and [ > r + 1 we have
NnK?, 1;2) = N(nK7, I;Z,) = (r + 1)n — 1. In particular, we will show that
this equality is witnessed by the complete (r + 1)-partite r-uniform hypergraph

consisting of  vertex classes of size n and one additional class which has size n — 1.

2. MAIN RESULT

First we will establish some notation. For a given positive integer r and a set .S,
we will use K"(S) to denote the collection of r-subsets of S.
Let r > 2 and disjoint sets Hy = {z1,...,2-} and Hy = {y1,...,yr+1} be given.
Then for each I C {1,...,r} define
Hi ={z|ie{l,....,r]\[}U{y;|i €I}

HI ={yilie{l,....,r + 1\I}YU{z|iecTI}

Note that |H{| =7 and |[H{| =r+1 and H{ N H = 0.
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Lemma 2.1. Letr > 2 and disjoint sets Hy = {z1,...,2.} and Hy = {y1,...,Yr+1}
be given. If we partition K" (H, U Hy), then either

(1) every r-subset of Ha belongs to the same class as Hy, or
(2) there exists I C {1,...,7} such that two r-subsets Y1 and Yo of Hi belong

to different classes.

Proof. Define Iy = § and for each 1 < i <, put I; = {1,...,i} and A; = H}. If
for some ¢ there are two r-subsets Y7 and Y5 of A; that belong to different classes,
then we are done. Otherwise, for each 4 all the r-subsets of A; belong to the same
class . But since |A; N A;11| = r we have that every r-subset of A; belongs to the
same class as every r-subset of A;1 1. By induction, every r-subset of Ag = Hj
belongs to the same class as every r-subset of A,.. But by our construction, H; is

an r-subset of A,., so we are done. O

Lemma 2.2. Letn > 2, r > 2. Let a set S of cardinality (r + 1)n — 1 be given
and let Th, ..., T,,T 41 be a partition of S such that for 1 <i <r, |T;| = n and
|Trp1l=n—1. Put W = ICT(S)\(U:Ll K™(T;)). Then for any partition of W, we

have either:

(1) there are n elements of W, say A1, Aa, ..., A, which all belong to the same
class and such that for all i,j, with 1 <i<r+1 and 1 < j < n, we have
that |T; N A;| <1; or

(2) there are 2n — 1 elements of W, say A1,...,An_1, B1,...,Bn_1,C, such
that for all i,j, and k, where 1 <i<j<n—1and1 <k <r+41, we have
(a) |[A4;NB|=r—1,

(b) A; and B; belong to different classes,
(c) (A;UB;)N(A; UBj) =0 wheni# j,
(d) [(4; UB;) NTy| =1,

(e) (A;UB)NC =0, and

(f) [CNTe| <1.

Proof. Proof by induction on n.

Consider n=2. For each 1 < ¢ < r enumerate T; as {a;1,a;2}, then define

Hy ={a;1|1<i<r}and Hy ={a;2|1 <i<r}UT,1;. Note that Hy, Hy € W,

|Hi| = r, |[Ha] = r+ 1 and Hy N Hy = (), so we may apply Lemma 2.1. If we
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have that every r-subset of Hy belongs to the same class as Hy, then H; and any
r-subset of Hy will satisfy the first assertion of the lemma. Otherwise we have that
for some I C {1,...,7} there are r-subsets A and B of H} which belong to different
classes. Taking C = H{ yields sets satisfying the second assertion.

Assume the lemma holds for n — 1.

Case 1. For every 1 € Ty, x5 € 15, ..., xy41 € T,41 and every two r-subsets
Y1,Ys of {x1,22,...,2,41} we have that Y7 and Y3 belong to the same class. It
follows easily that there is one class containing all r-subsets Y with the property
that |Y NT;| <1 for all ¢ with 1 <i <r+ 1. For each 1 < j < r enumerate T; as
{aj1,aj2,...,a;n}. Then defining A; = {a,; ;|1 < j <r} for each 1 <i < n yields
elements of W which satisfy the first assertion of the lemma.

Case 2. There are x1 € Ty, 22 € 15, ..., ©p41 € T,41 and there are two -
subsets Y1,Ys of {x1,2za,..., 2,41} such that Y7 and Y3 belong to different classes.
Then we apply the induction hypothesis to S = S\{z1,z2,..., 2,41} and T} =
T:\{z;} for each 1 <i < r+1. If the induction hypothesis yields Ay, Aa, ..., Ap_a,
By,B,,...,B,_o,C satisfying the second assertion of the lemma for n — 1, then
adding A,,_; = Y7 and B,,_1 = Y5 yields 2n — 1 elements of W which satisfy the
second assertion of the lemma for n.

Otherwise, we have n — 1 pairwise disjoint elements of W, say Ai,..., A,_1,
which belong to the same class and such that forall 1 <i<r4+land1<j<n-1
|T; N A;| < 1. This property, in light of the fact that |A;| = r, implies that each A;

has empty intersection with precisely one of the T, which we shall label T5 ;). Set

and for each 1 < ¢ < r+1put d; = |T; NV|]. Since |T; N A;] < 1 for all 1 <
i<r+4+1land 1 <j<n-—1,d; represents the number of A; that have nonempty
intersection with 7;. By definition then, n — 1 — d; = |T;\V] is the number of
Aj for which T; = T,(;). Thus, for each 1 < j < n — 1, we may choose an
element w; € T (;)\V, such that j # j' implies w; # w;,. The resulting pairwise
disjoint sets F; = A; U {w;}, where 1 < j < m — 1, have cardinality r + 1 and
the property that |F; NT;| = 1 for all 4, where 1 < 4 < r + 1. Enumerate each

F; as {z{,zg,...,ziﬂ}, where for each 1 < i < r + 1, we have z/ € T;. Set

7
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i = S\U;:ll F; and observe that since |[F; NT;| =1 for all 1 < ¢ <r 41, we
have that [Vi NT;| = 1 for all 1 < ¢ < 7 and V; NT,y; = . Thus, we may
enumerate V7 as {yi,...,yl} such that for each 1 < i < r, we have that y! € T;.
Apply Lemma 2.1 to the sets Vi and Fy. If every r-subset of F; belongs to the
same class as Vp, then in particular A; belongs to the same class as V;. In this
case Aq,...,A,_1,V; satisfy the first assertion of the lemma and we are done.
Otherwise, there is some I; C {1,...,7} and two r-subsets A} and B} of F* that
belong to different classes. By the specification of the enumerations of F; and V7,
we have that for all 1 <i <r+1, (A, UB)NT;| = |F'nT;| = 1.

We proceed recursively for 1 < j < n — 2 as follows. Set V;;; = VjIj. By the
specification of the enumerations of F; and Vj, for all 1 < ¢ < r we have |V;11NT;| =
1 and Vj41NT,41 = 0. Thus we may enumerate Vj41 as {y{“, ..., y2 1) such that
J+1

for each 1 < ¢ < r, we have that ¥

K3

€ T;. We now apply Lemma 2.1 to the sets
Vi1 and Fj4q. If every r-subset of Fj;; belongs to the same class as V11, then in
particular A;;1 belongs to the same class as Vj41. In this case Aq,..., Ap—1,Vj+1
satisfy the first assertion of the lemma and we are done with the proof. Otherwise,
there is some I;11 C {1,...,7} and two r-subsets A’,, and B}, of Fjlﬂl that
belong to different classes. By the specification of the enumerations of F;; and

Vit1, we have that for all 1 <7 <r 41,

I
(Aj41 U B ) N T = [F AT = 1.

Thus, at the end of the recursion, we will have produced elements A},..., A, _;,
Bi,...,B! _; of W which satisfy conditions (a)-(d) of the lemma. Put C' = anﬁf.
By the specification of the enumeration of F,_; and V,,_1, for all 1 < ¢ < r we
have |CNT;| =1and CNTp4q = 0. Thus A},..., Al _,, Bi,...,B}_,,C satisfy

the second assertion of the lemma.

(]

Theorem 2.3. Letn > 2, r > 2. Let a set S of cardinality (r + 1)n — 1 be
given and let Ty, ..., T, Tr11 be a partition of S such that for 1 <i<r, |T;| =n
and |Trqy1]l = n—1. Put W = ICT(S)\(U:JH1 K™(T3)). Then for any mapping

a: W — Z,, there are pairwise disjoint elements of W, say Z1,. .., Z,, such that

a(Z1)+ ...+ a(Z,) =0.
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Moreover, we may choose these Z; such that for all1 <i<r+1, |Z;NT;| < 1.

Proof. We prove the theorem first for n = p prime by applying Lemma 2.2. If
we have p pairwise disjoint elements of W, say A1, Ao, ..., A, such that a(A4;) =

-=a(dp) andforall1 <i<r+1land1l<j<p, |T;NA;| <1, then we are
done. Otherwise we have A;,...,A,_1, B1,...,Bp_1,C € W satisfying the second
assertion of Lemma 2.2. For each 1 < i < p—1 put D; = {a(4;),a(B;)} and put
D, = {a(C)}. By repeated use of the Cauchy-Davenport Theorem ([6]) we get all
the elements of Z, in the set Dy + Dy 4 --- 4+ D,,. Consequently, 0 is among them
and the theorem is proven for p prime.

Assume the theorem holds for n = my and n = mq. Let r > 2 and a set S of
cardinality (r+ 1)mime — 1 be given. Let T1,...,T,,T,+1 be a partition of S such

that for 1 < i <7, |T;| = mims and |Try1| = mimo — 1. Put

r+1
W =K S\ K ()

and consider a mapping « : W — {0,1,...,myms — 1}. This induces a map
o : W — {0,1,...,mq — 1} by defining o/(X) to be the least residue of a(X)
modulo my. Let V be a subset of S of cardinality (r+ 1)my — 1 such that for some
j*e{l,...,r+1} we have |V N T}~

=my — 1 and |V NTj| = my for every j # j*.

Put
r+1

Wy = K" (V\(|J K"(v nT)).

i=1
We may apply the theorem for m; to pick disjoint elements By , BY ;.. ., BT‘,/11 e Wy
such that

Z o/ (B)) =0 (mod my)
j=1

and such that 1 > |BJV NVNT)| = |BJV NT;| for all 1 <4 <r+ 1. Thus, for some
integer ky > 0 we have >3 a(B}) = kym.

We now partition 7;, where 1 <7 < r, into subsets I';_1)m,+1, [i—1)mi+25 - - -5
Lim, such that for all 1 < j < my, [U_1)m,+;] = me2. Additionally, we parti-
tion Tr11 as Ty 1, Drmy 425+, Dpp1ymy » where for all 1 < j < my, [Ty 45 =

mo and ‘F(r+l)m1| = mg — 1. In this manner, we have formed a subpartition
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Fl, Fg, e ,F(7.+1)m1 of S. Put
(r4+1)mq
W' = K(r+1)rn1—1(S)\ U K(7-+1)m1—1(ri)

i=1

Note that if V€ W’ has the property that |V NT;| <1 for all 1 <i < (r+ 1)my,
then there is some j* € {1,...,r+1} such that |V NTj-

=mp—1and |[VNTj| =m
for every j # j*. Thus, for such a V € W’ the integer ky is well-defined. We may
now construct a mapping o’ : W' — {0,1,...,my — 1} as follows: for a given

Vew

") ky (mod mg) if [V NIy <lforalll <i<(r+41)m
(0% =

0 otherwise.
Applying the theorem for my yields V1, Va, . .., Vi, € W’ such that 377 o”(V;) =
0 (mod my). Furthermore, the theorem permits us to choose these V; such that

|V; NT;| <1 forall 4,5, where 1 <i < (r+1)m; and 1 < j < my. Thus

Z ky, =0 (mod my)

j=1

and so the elements BZ»V’ € W, where 1 < ¢ < mj and 1 < j < meo, satisfy the
assertion of the theorem for n = myms.
O

Immediate consequences of Theorem 2.3 are the following two corollaries.

Corollary 2.4. If a: e(K}, p ... n n-1) = Zn is a Zy-coloring of the edges of
—_———

T times
the complete (r + 1)-partite r-uniform hypergraph Ky, p .. n, n—1 then there exist
—_———

r times
n pairwise disjoint hypermatchings, say Z, ..., Zy,, such that ., a(Z;) = 0.

Corollary 2.5. Foranyn >2,r>2, andl >r+1,

N(nKZ, 1;2) = N(nK7, 1;Z,) = (r + 1)n — 1.

n—1-

Proof. Consider the complete (r+1)-partite r-uniform hypergraph Ky, 5 ... n,
—_———

r times
This graph has clique number r + 1 (indeed, any set of r + 2 vertices contains two



8 PAUL BAGINSKI

vertices in the same vertex class; hence there is no hyperedge through these two

vertices). Thus the previous corollary restated becomes
Nk, r+2;2)=N0nK.,r+2,Z,)=(r+1)n—1.

Combining our observations in the last paragraph of the introduction, the equality
follows for all [ > r + 1. O

Our results have shown the existence of an r-uniform hypergraph on (r+1)n—1
vertices, namely Kj, . pn 1, Which witnesses the equality N(nK7,[;2) =

r times
N(nK7, l;Zy,) = (r + 1)n — 1. However, we were unable to answer the question of

uniqueness. Specifically, we have the following:

Open Question: For a given integers m,r > 2, how many non-isomorphic 7-

uniform hypergraphs H possess the following three properties:

(1) H has (r 4 1)n — 1 vertices,

(2) H has clique number < r + 1, and

(3) for every coloring « of the hyperedges of H by Z,, there exists n pairwise
disjoint hyperedges, say Zi, ..., Z,, such that >, a(Z;) = 0.
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