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Abstract. Let M be a commutative cancellative atomic monoid. We
use unions of sets of lengths in M to construct the V-Delta set of M .
We first derive some basic properties of V-Delta sets and then show how
they offer a method to investigate the asymptotic behavior of the sizes
of unions of sets of lengths.

A central focus of number theory is the study of number theoretic func-
tions and their asymptotic behavior. This has led to similar investigations
concerning non-unique factorizations in integral domains and moniods. Sup-
pose that M is a commutative cancellative monoid in which each nonunit
can be factored into a product of irreducible elements (such a monoid is
known as atomic). For a nonunit x in M , let L(x) represent the maximum
length of a factorization of x into irreducibles and l(x) the minimum such
length. The functions

L(x) = lim
k→∞

L(xn)
n

and l(x) = lim
k→∞

l(xn)
n

have been studied in the literature by Anderson and Pruis in [3] and Halter-
Koch and Geroldinger in [17]. In [14], Chapman and Smith defined the
notion of a generalized set of lengths, and showed in [12] that the size of a
generalized set of lengths (denoted Φ(n)) satisfies

(1) Φ(R) = lim
n→∞

Φ(n)
n

=
D(G)2 − 4

2D(G)

for a ring of algebraic integers R where D(G) represents Davenport’s con-
stant of the ideal class group G of R (the Davenport constant is defined in
[18, Section 3.4]). Since a generalized set of lengths is actually a union of
certain length sets, we will refer to these sets with the more descriptive term
unions of sets of lengths. The value Φ(R) has also been explored for various
semigroup rings over fields [2, Theorem 3.3]. In this note, we examine the
limit Φ(R) in greater detail. By generalizing the well known notion of the
Delta set of a monoid M (see [18, Section 1.4]), we find new bounds for the
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value Φ(M) which allows us to determine exact calculations in several in-
stances recently addressed in the literature (see Examples 8 and 9). We will
begin with a review of the necessary definitions and notations from the the-
ory of non-unique factorizations. The reader is directed to the monograph
[18] for a complete survey of recent results in this area.

Throughout our work, we assume that M is an atomic commutative can-
cellative monoid with sets I(M) of irreducible elements and M• of nonunits.
The set of lengths of x ∈ M• is

L(x) = {n | x = x1 · · ·xn with each xi ∈ I(M)} .

Also, define L(x) = maxL(x) and l(x) = minL(x). The quotient L(x)
l(x) is

called the elasticity of x and the constant

ρ(M) = sup{L(x)
l(x)

| x ∈ M•}

is known as the elasticity of M . A survey of the results in the literature
concerning elasticity can be found in [1]. If

(2) L(x) = {n1, . . . , nt}
with the ni’s listed in increasing order, then the delta set of x is

∆(x) = {ni − ni−1 | 2 ≤ i ≤ t}.
The Delta set of M is then defined as

∆(M) = ∪x∈M•∆(x).

If d = gcd∆(M), Geroldinger [16, Proposition 4] has shown that d ∈ ∆(M).
Hence, it follows that

(3) {d, qd} ⊆ ∆(M) ⊆ {d, 2d, . . . , qd}
for some positive integer q. While the concept of the Delta set of a monoid M
has been widely studied, there are few exact computations of specific Delta
sets in the literature. If B(Zn) represents the block monoid (see [18] or Exam-
ple 2) on the cyclic group of order n, then ∆(B(Zn)) = {1, 2, . . . , n− 2} [18,
Theorem 6.7.1]. The Delta sets of several numerical monoids (see [7]) and
several congruence monoids (see [4]) have been computed under restricted
conditions. In particular, an example is constructed in [7, Proposition 4.9]
where both containments in (3) are strict.

The notion of a set of lengths was generalized in [14] as follows. With M
as above, for each n ∈ N set

W(n) = {m ∈ M | n ∈ L(m)}
and

V(n) =
⋃

m∈W(n)

L(m).

We refer to the set V(n) as a union of sets of lengths. In [14], the ba-
sic properties of these sets are determined. Moreover, for block monoids
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B(G) where G is a finite abelian group, the authors argue that the sequence
{V(n)}∞n=1 does not uniquely characterize G. We will often need to refer to
the maximum and minimum values in V(n), hence for each n ∈ N we set

λn(M) = minV(n) and ρn(M) = supV(n).

When the monoid M is understood, we will merely use the notation λn and
ρn. The sequence {ρn}∞n=1 has been an object of study in its own right (see
[18, Section 1.4] and [19]) and it is shown in [18, Proposition 1.4.2] that

ρ(M) = lim
n→∞

ρn(M)
n

.

Finally, for each n ∈ N, set

Φ(n) = |V(n)|.
Some basic properties of the Φ-function are explored in [11, Section 2] and
several additional computations of the limit

Φ(M) = lim
n→∞

Φ(n)
n

can be found in the literature [13, Theorem 2.7 and Theorem 2.10].
For our purposes, we extend the notion of the Delta set to unions of

sets of lengths as follows. For a fixed monoid M , suppose for each n ∈ N
that V(n) = {v1,n, . . . , vt,n} where vi,n < vi+1,n for 1 ≤ i < t. Define the
V(n)-Delta set of M to be

∆(V(n)) = {vi,n − vi−1,n | 2 ≤ i ≤ t}
and the V-Delta set of M to be

∆V(M) =
⋃
n∈N

∆(V(n)).

In addition, set V∗(M) = sup ∆V(M) and V∗(M) = min∆V(M). Clearly
∆(V(1)) = ∅.

Example 1. Let N0 represent the nonnegative integers. Consider the ad-
ditive submonoid

M = {(x1, x2, x3) | x1 + 3x2 = 4x3 with each xi ∈ N0}
of N3

0. Such a monoid is known as a Diophantine monoid (see [10]). A char-
acterization of Diophantine monoids can be found in [18, Theorem 2.7.14]. It
follows from [8, Proposition 4.8], that ∆(M) = {2}. Using elementary num-
ber theory, it follows that the irreducible elements of M are v1 = (4, 0, 1),
v2 = (0, 4, 3) and v3 = (1, 1, 1). The following two facts will be key in
determining ∆V(M):

• using the relation v1 + v2 = 4v3, it is clear that an irreducible fac-
torization in M which contains both v1 and v2 can be increased in
length by 2,

• by [13, Lemma 2.8], if a and b are in V(n), then a ≡ b (mod 2).



4 PAUL BAGINSKI, S. T. CHAPMAN, NATALIE HINE, AND JOÃO PAIXÃO

By observing that λn is obtained by factoring nv3 and ρn by factoring 2nv3

(if n is even) or (2n− 1)v3 if n is odd, we obtain the following values:

λn ρn

n ≡ 0 (mod 4) 2bn
4 c 2n

n ≡ 1 (mod 4) 2bn−1
4 c+ 1 2n− 1

n ≡ 2 (mod 4) 2bn
4 c+ 2 2n

n ≡ 3 (mod 4) 2bn−1
4 c+ 3 2n− 1

.

We list the first few values of V(n) below:

V(1) = {1} V(5) = {3, 5, 7, 9}
V(2) = {2, 4} V(6) = {4, 6, 8, 10, 12}
V(3) = {3, 5} V(7) = {5, 7, 9, 11, 13}
V(4) = {2, 4, 6, 8} V(8) = {4, 6, 8, 10, 12, 14, 16}

We have that ∆(V(n)) = {2} for all n and hence ∆V(M) = {2}. Notice here
that ∆V(M) = ∆(M). �

Example 2. Let G be an abelian group and F(G) represent the free abelian
monoid on G. Set

B(G) =

 ∏
gi∈G

gni
i |

∑
gi∈G

nigi = 0

 .

B(G) is a submonoid of F(G) known as the block monoid on G. Its irre-
ducible elements are known as minimal zero-sequences. Using the results of
[14], we can write out the unions of sets of lengths, and in turn the V(n)-
Delta sets of block monoids on relatively simple groups. For instance, if
G = Z5, then [14, Example 5.4] yields:

• ρn = b5n
2 c for n ≥ 2,

• λ1 = 1, λk = 2 for k = 2, 3, 4 and 5, and λk = λ(k−5) + 2 for k ≥ 6,
• for all n ≥ 1, V(n) = [λn, ρn] ∩ Z.

Hence, ∆(V(n)) = {1} for each n > 1 in N and thus ∆V(B(Z5)) = {1}.
Notice that our previous remark yields that ∆(B(Z5)) = {1, 2, 3}. �

We consider some basic properties of the V-Delta set of M in the following
lemma.

Lemma 3. Let M be an atomic monoid with min∆(M) = d and max ∆(M) =
qd for q ≥ 1.

1) V∗(M) = d.
2) V∗(M) ≤ qd.
3) {d} ⊆ ∆V(M) ⊆ {d, 2d, . . . , qd}.
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Proof. Choose n ∈ N and let vi+1,n, vi,n be in V(n). We may choose x1

and x2 in M• such that {n, vi+1,n} ⊆ L(x1) and {n, vi,n} ⊆ L(x2). By (3),
L(x1) is a subset of n+dZ which contains n and whose consecutive elements
are at most qd apart. The same statement holds for L(x2), therefore the
union, L(x1) ∪ L(x2), also possesses all these properties. Note that the
union is a subset of V(n), so since vi+1,n and vi,n are consecutive elements
of V(n), they in particular must be consecutive elements of L(x1) ∪ L(x2).
Therefore vi+1,n − vi,n = td for some 1 ≤ t ≤ q. This shows that ∆(V(n)) ⊆
{d, 2d, . . . , qd}, which in turn implies 2) and 3). It also determines that
V∗(M) ≥ d, so we are left with just showing d ∈ ∆V(M).

Since d ∈ ∆(M), there is an x ∈ M and l1, l2 ∈ L(x) with l2 − l1 = d.
Consider V(l1), to which both l1 and l2 belong. They must be consecutive
elements of V(l1) since we have just shown that consecutive elements are at
least d apart. Hence d ∈ ∆(V(l1)) ⊂ ∆V(M). �

Note that Example 2 indicates that the inequality in Lemma 3 regarding
V∗(M) may be strict. The next corollary will later be useful and follows
immediately from Lemma 3.

Corollary 4. If ∆(M) = {d}, then ∆V(M) = {d}.

We apply the V-Delta set to limits of the form (1). Unlike the L(x) and
l(x) functions, there is no known argument that Φ(M) exists for a general
atomic monoid M . Hence, our analysis of (1) will involve the use of lim inf
and lim sup. Moreover, we must assume that Φ(n) is finite for all n, since
this is necessary for lim supn→∞ to be finite. Indeed, if Φ(n) were infinite
for some n, then so would be Φ(kn) for all k: if x has a factorization of
length n and of length m, then xk has factorizations of lengths kn and km.
In [11], an atomic monoid which statisfies Φ(n) < ∞ for all nonnegative n
is called Φ-finite.

Our main theorem will use the stronger hypothesis that M has finite
elasticity. The following proposition shows this is a necessary condition
for lim supn→∞Φ(n)/n to be finite, and the main theorem shows that it is
sufficient as well.

Proposition 5. Let M be an atomic Φ-finite monoid. If ρ(M) = ∞, then

lim sup
n→∞

Φ(n)
n

= ∞

Proof. Since ρ(M) = ∞, there are xt such that at = L(xt) and bt = l(xt)
satisfying limt→∞

at
bt

= ∞. But all the V(n) are finite and at ∈ V(bt),
implying that for every M > 0 there is an N > 0 such that for all t > N ,
bt > M . Therefore we may assume that the sequence is chosen such that
the bt are strictly increasing.
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Since Φ(n) is finite for each n, V∗(bt) exists and V∗(bt) ≥ at. Pruning the
sequence if necessary, we may assume that the bt are chosen such that

lim
t→∞

V∗(bt)
bt

= ∞.

We may estimate

Φ(bt) ≥
V∗(bt)− V∗(bt) + 1

qd
.

Since V∗(bt) ≤ bt, we find that

Φ(bt)
bt

≥ V∗(bt)
btqd

− 1
qd

+
1

btqd
.

Taking lim inf of both sides, we see that lim inft→∞Φ(bt)/bt ≥ ∞, since the
bt are strictly increasing. Therefore lim supn→∞Φ(n)/n = ∞. �

Now our main theorem.

Theorem 6. Let M be an atomic monoid with ρ(M) < ∞. Then M is
Φ-finite and moreover

(4)
ρ(M)2 − 1

ρ(M)V∗(M)
≤ lim inf

n→∞

Φ(n)
n

≤ lim sup
n→∞

Φ(n)
n

≤ ρ(M)2 − 1
ρ(M)V∗(M)

.

Proof. Let n ∈ N and suppose that m ∈ V(n). It follows that

1
ρ(M)

≤ m

n
≤ ρ(M)

and hence
n

ρ(M)
≤ m ≤ nρ(M)

which shows that M is Φ-finite. We further obtain that

(ρ(M)− 1
ρ(M))n + 1

V∗(M)
≤ Φ(n) ≤

(ρ(M)− 1
ρ(M))n + 1

V∗(M)
.

Thus,(
ρ(M)2 − 1

ρ(M)V∗(M)

)
n +

1
V∗(M)

≤ Φ(n) ≤
(

ρ(M)2 − 1
ρ(M)V∗(M)

)
n +

1
V∗(M)

.

After dividing by n and taking the respective lim inf and lim sup, we get
that

ρ(M)2 − 1
ρ(M)V∗(M)

≤ lim inf
n→∞

Φ(n)
n

≤ lim sup
n→∞

Φ(n)
n

≤ ρ(M)2 − 1
ρ(M)V∗(M)

.

�

If ∆(M) = {d}, then Corollary 4 implies that V∗(M) = V∗(M) = d and
Theorem 6 reduces to the following.
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Corollary 7. Let M be an atomic monoid with ρ(M) < ∞. If ∆(M) = {d},
then

(5) Φ(M) =
ρ(M)2 − 1

ρ(M)d
.

Corollary 7 immediately has some nice applications.

Example 8. A numerical monoid is an additive submonoid of the non-
negative integers. Every numerical monoid S has a unique minimal set of
generators, and we will use the notation S = 〈a1, a2, . . . , at〉 to represent the
minimal generating set (which we assume is written in linear order). S is
primitive if 1 = gcd{s | s ∈ S}. Every numerical monoid S is isomorphic
to a unique primitive numerical monoid, so when working with numerical
monoids, we can always assume that S is a primitive numerical monoid. By
[7], there exists a method for calculating max∆(S) in finite time and

min∆(S) = gcd {ai − ai−1 | i ∈ {2, 3, . . . , t}} = d.

By [9, Theorem 2.1], ρ(S) = at
a1

. Hence for a numerical monoid, (4) reduces
to

a2
t − a2

1

V∗a1at
≤ lim

n→∞
inf

Φ(n)
n

≤ lim
n→∞

sup
Φ(n)

n
≤ a2

t − a2
1

V∗a1at

If we know further that the generators of S form an arithmetic sequence
(i.e., S = 〈a, a + d, a + 2d, . . . , a + kd〉 for some positive integers d and k),
then [7, Theorem 3.9] indicates that ∆(S) = {d}. In this case we obtain an
exact calculation of Φ(S) as

Φ(S) =
k(2a + kd)
a(a + kd)

= k

(
1
a

+
1

a + kd

)
. �

Example 9. Let a and b be positive integers with a ≤ b and a2 ≡ a (mod b).
The set of numbers

M(a, b) = {x | x ∈ N and x ≡ a (mod b)} ∪ {1}
forms a multiplicative monoid known as an arithmetical congruence monoid
(or ACM). ACMs have been the focus of three recent papers in the literature
([4], [5] and [6]). An ACM is called local if gcd(a, b) = pα for some prime
number p and positive integer α. It follows from elementary number theory
that a local ACM M(a, b) has a minimal index, which we denote by β, for
which pβ ∈ M(a, b). There are two relevant known results for a local ACM
M(a, b):

• ρ(M(a, b)) = α+β−1
α [6, Theorem 2.4],

• if α = β > 1, then ∆(M(a, b)) = {1} [4, Theorem 3.1].
Hence, for an ACM as above where α = β > 1 (for instance, M(4, 12)), (5)
reduces to

Φ(M(a, b)) =
(2α− 1)2 − α2

α(2α− 1)
.

�
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We close with a few comments.

• The proof in [12] of (1) relies on a different technique than that used
above. The proof relies on knowing the exact structure of the sets
in an infinite subsequence of the sequence V(1), V(2), . . ..

• We note that Theorem 6 cannot be used to verify (1) since it is not
known that V∗(B(G)) = V∗(B(G)) for a finite abelian group G. It has
been conjectured for such G (see [14]) that ∆V(B(G)) = {1}. This
is known to be true for all finite abelian G with | G |≤ 8 (see [14]).
In fact, it is known for finite abelian groups G that ∆(V(n)) = {1}
for infinitely many n (see [12, Lemma 3]).

• Connected to the last remark is an open problem which has appeared
in the literature [14, Section 5]: for B(Zn) does ρ3 = maxV(3) =
n + 1?
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