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Abstract. We determine an algorithm for calculating the modular equation
ΦN (X, J) for N = p1p2, where p1 and p2 are distinct primes. This algorithm
performs in linear time as a function of the number of coefficients of ΦN . We
provide the case N = 10 as an example.

1. Introduction

Let J(z) be the modular invariant of the elliptic curve y2 = 4x3−g2(z)x−g3(z)x
over C. Specifically, J(z) is given by:

J(z) = 123 g3
2(z)

g3
2(z)− 27g2

3(z)
where the denominator is nonzero.

The modular equation ΦN (X,J) = 0 provides an algebraic relation between
J(z) and X = J(Nz) as roots of an irreducible polynomial ΦN in two variables
over C. The polynomial ΦN (X, J) is symmetric in the variables, and is of total
degree ψ(N), where

ψ(N) = N
∏

p|N

(
1 +

1
p

)
.

Here the product is taken over the primes p in the prime factorization of N . It can
be shown that ΦN (X, J) ∈ Z[X, J ] and takes the form

Xψ(N) + Jψ(N) +
∑

0≤j≤i<ψ(N)

Ci,jFi,j ,

where Fi,j = XiJj + XjJ i. Thus Ci,j is always an integer, except perhaps when
i = j in which case Ci,i can be half of an integer.

The modular equation ΦN (X, J) = 0 has many useful applications in the theory
of elliptic curves and number theory, among many other fields. Descriptions of
these applications can be found in [1], [2], [3], and [14]. It is of great interest then
to determine explicit formulas for ΦN , even though the coefficients of ΦN are large
even for small values of N .

For arbitrary N , one can reduce the problem of calculating ΦN to calculating
the coefficients of smaller polynomials using the following theorem:

Theorem 1.1 ([12]). (1) If N = n1n2 with n1, n2 relatively prime, then

ΦN (X,J) =
ψ(n2)∏

i=1

Φn1(X, ξi)
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where {ξi | i = 1, . . . , ψ(n2)} are the distinct roots of the polynomial Φn2(X,J).
(2) If N = pe for some p prime and e > 1, then

ΦN (X, J) =
ψ(pe−1)∏

i=1

Φp(X, ξi)/[Φpe−2(X, J)]p

where {ξi | i = 1, . . . , ψ(pe−1)} are the distinct roots of the polynomial
Φpe−1(X, J).

Part (1) of this theorem states that if N = n1n2 for relatively prime n1, n2, then
ΦN is the resultant of Φn1 and Φn2 . Part (2) of the theorem can be repetitively
applied to yield Φpe as a rational product of resultants (of each of the Φpe−k with
Φp). Thus, it is possible to reduce the calculation of the coefficients of ΦN to
calculating the polynomials Φp for all the prime factors p of N .

Using the technique of cusp expansions, Yui[15] developed an algorithm for cal-
culating the coefficients of Φp for p prime. Dutta Gupta and She ([4] and [5])
expanded upon this technique to create an algorithm for N = p2 for primes p, and
to analyze the case when N = pe for p prime and e > 2.

As far as precise computation, the modular equation was first explicitly calcu-
lated for the primes p = 2, 3, 5, 7, and 11 in [7] and [11]. Many others have per-
formed calculations, including Ito ([8] and [9]), who determined Φn for all n ≤ 56.
MAGMA currently contains Φp for all p ≤ 59. The most extensive library of ex-
plicit computations of the modular equation has been compiled by Rubinstein and
Seroussi ([13]), wherein Φp has been calculated for all primes p < 360.

Other than Dutta Gupta and She, all these methods focus on calculating Φp for
prime p in order to obtain ΦN for composite N . For several reasons, this focus
is not necessary. For example, Noam Elkies ([6]) points out that in many cases
one should compute not Φp, but a different, related polynomial. In addition, the
method of reduction to the Φp can be rather cumbersome, since one still needs
to determine these polynomials and then perform the necessary manipulations to
determine ΦN . For practical application, this can be tedious. Therefore, there has
been an effort to find more direct methods for explicitly calculating the coefficients
of the modular equation. In their paper, Dutta Gupta and She demonstrated a
direct algorithm for calculating Φp2 without resorting to calculating Φp. As we will
show, when considering ΦN , for N the product of two distinct primes, it is more
beneficial to utilize a direct algorithm rather than the reduction methods described
above.

In this paper, we will provide a general algorithm for calculating the coefficients
of ΦN (X, J) for N = p1p2, the product of distinct primes. We guarantee that
this algorithm performs the calculation of the coefficients of ΦN in linear time as a
function of the output, that is, as a linear function of the number of coefficients of
ΦN . The next section develops the necessary machinery for the algorithm, as well
as describing the general method and analyzing it. The third section deals with the
exceptional case of N = 6, while the last section illustrates the case N = 10 as an
example.
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2. General p1 and p2

Let p1 and p2 be distinct primes with p1 > p2. Choose integers u and v such
that p1u + p2v = 1.

Consider Γ = SL(2,Z) and the subgroup

Γ0(N) =
{(

a b
c d

)
∈ Γ | c ≡ 0 mod N

}

It is well-known that J(z) is invariant under the natural group action of Γ on the
upper half-plane. Namely

J(z) = J

(
az + b

cz + d

)

for any matrix
(

a b
c d

)
∈ Γ. A simple consequence of this fact is that J(Nz) is

invariant under the subgroup Γ0(N) of Γ.
By Proposition 9.3 in [10], we have that [Γ : Γ0(N)] = ψ(N). Therefore, when

p1 and p2 are distinct primes, we have that [Γ : Γ0(p1p2)] = (p1 + 1)(p2 + 1).

Lemma 2.1. A complete set of left-coset representatives βi of Γ0(p1p2) in Γ is:
{(

j 1
−1 0

)
| 0 ≤ j < p1p2

} ⋃ {(
1 0

p1k 1

)
| 0 ≤ k < p2

} ⋃

{(
1 0

p1k 1

)
| 0 ≤ k < p2

} ⋃ {(
p1 −v
p2 u

)
,

(
p2 −u
p1 v

)}

Proof. Left to the reader.

Lemma 2.2. The cusps of Γ0(p1p2) are
{

0,∞,
−u

p2
,
−v

p1

}
∪

{−1
p1k

| 0 < k < p2

}
∪

{−1
p2k

| 0 < k < p1

}

Proof. By the discussion on page 262 of [10], the cusps are given by β−1
j (∞), where

the βj run over our left-coset representatives of Γ0(p1p2) in Γ. ¤

Given any modular function f of Γ0(p1p2), we may perform a Fourier expan-
sion of f around the cusp ∞ with respect to q = e2πiz. We also may perform an
expansion of f around any other cusp x in terms of the expansion at ∞. Namely,
if β ∈ SL(2,Z) is such that β−1(∞) = x, then we define the expansion of f at
x to be the expansion of f(β−1(z)) at ∞. It can be shown that this expansion is
independent of the choice of the coset representative β.

When one performs the expansion of f at x 6= ∞, the resulting expansion is
given in powers of qp1p2 = e2πiz/p1p2 , and hence is periodic in p1p2. It can occur,
that for a given cusp x, every modular function f has an expansion at x which is
periodic in some period less than p1p2. Thus, we define the width of the cusp x
to be the least positive integer w which acts as a period for the expansions at x
of all modular functions f of Γ0(p1p2). The following proposition permits explicit
calculation of the width of a cusp.
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Proposition 2.3. Let β−1(∞) be a cusp of Γ0(p1p2), where β ∈ SL(2,Z). Then

there exists a unique primitive matrix α =
(

a b
0 d

)
such that ad = p1p2, 0 ≤ b <

d, and GCD(a, b, d) = 1 with

(
p1p2 0

0 1

)
β−1 = γα

for some γ ∈ SL(2,Z). Moreover, the width of the cusp β−1(∞) is d.

Proof. For a proof, see Proposition 9.4 of [10].

We will now perform expansions of J and X = J(p1p2z) at the cusps ∞ and
−v/p1. The expansions will be in terms of q and qr = e2πiz/p2 , respectively.

The function J(z) has a well known q-expansion at ∞ given by:

(2.1) J(z) =
1
q

∞∑

j=0

ajq
j =

1
q

+ 744 + 196884q + . . .

Consequently, at ∞ we have that the expansion of X = J(p1p2z) is

(2.2) X =
1

qp1p2

∞∑

j=0

ajq
p1p2j .

At the other cusp, J has the same q-expansion, since J is SL(2,Z) invariant.
However, when rewritten in terms of qr, we obtain that the expansion at −v/p1 is
given by:

(2.3) J(z) =
1

qp2
r

∞∑

j=0

ajq
p2j
r .

Proposition 2.4. The qr expansion of X at the cusp −v/p1 is given by:

(2.4) X(z) =
1

qp1
r

∞∑

j=0

aj qp1j
r

Proof. The expansion of X at −v
p1

is given by the expansion of X ◦ β−1 at ∞,

where β =
(

p2 −u
p1 v

)
. Thus, determining the matrices involved in the identity
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cusp ∞ −v/p1

width 1 p2

order of pole of J 1 p1

leading coefficient of J 1 1
order of pole of X p1p2 p2

leading coefficient of X 1 1
order of pole of Xψ(p1p2) + Jψ(p1p2) ψ(p1p2)p1p2 ψ(p1p2)p2

leading coefficient of Xψ(p1p2) + Jψ(p1p2) 1 1
order of pole of Fi,j (i > j) p1p2i + j p1i + p2j
leading coefficient of Fi,j 1 1
order of pole of Fi,i i(p1p2 + 1) i(p1 + p2)
leading coefficient of Fi,i 2 2

Table 1

in Proposition 2.3, we obtain:

X ◦ β−1(z) = J

((
p1p2 0

0 1

)
◦

(
v u

−p1 p2

)
(z)

)

= J

((
p2v p1u
−1 1

)
◦

(
p1 0
0 p2

)
(z)

)

= J

((
p1 0
0 p2

)
(z)

)

= J

(
p1z

p2

)

=
1

e2πip1z/p2

∞∑

j=0

aj(e2πip1z)/p2)j

=
1

qp1
r

∞∑

j=0

aj qp1j
r

¤

We collect the relevant information into Table 1.
We will use the expansions at ∞ and −v/p1 for our analysis. If one considers

the modular equation

Xψ(p1p2) + Jψ(p1p2) =
∑

0≤j≤i<ψ(p1p2)

−Ci,jFi,j

in these expansions, we get a system of linear equations corresponding to the co-
efficients of powers of q (respectively qr). Namely, if we equate the coefficients of
q−k on both sides of the modular equation, we obtain the equation dk = sk, where
dk ∈ Q and sk is a linear combination of the Ci,j . Similarly, if we equate the
coefficients of q−k

r in the −v/p1 expansion of the modular equation, we obtain the
linear equation ek = tk, where ek ∈ Q and tk is a linear combination of the Ci,j .

Idea of the Algorithm: Our algorithm operates as follows. We will show that
there is a well-determined order in which to consider the equations dk = sk and
ek = tk so that if one proceeds in order, one obtains only one new Ci,j per equation.
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Roughly, the order goes as follows: consider the equations dk = sk as k goes down
from the maximal value. Each one of these will have only one new Ci,j , up until a
certain point K, where we will have multiple new Ci,j . At this point, we get stuck
while using the infinity expansion. Thus we switch to considering the equations
ek = tk from the maximal k down. These equations involve multiple Ci,j , but for
a while all of them will have already been solved, save for one new one in each
equation. At some point, we will have multiple unsolved Ci,j and be stuck again,
so we switch back to considering the equations dk = sk. In this manner, we switch
back and forth between the cusp expansions until all the Ci,j have been determined.

In the rest of this section, we will make more precise what we mean by “new
Ci,j” and “getting stuck”, as well as determine precisely where one will get stuck.
We will also assure that no matter the case, one will never get stuck with both
cusp expansions; i.e. by the time we get stuck in one cusp expansion, we will have
calculated enough Ci,j to get “unstuck” in the other expansion.

Let us now describe precisely which Ci,j appear in sk and tk for various k.
Clearly, Ci,j appears in sk (respectively, tk) precisely when Fi,j has a nonzero
coefficient for q−k (q−k

r ) in the expansion at ∞ (−v/p1). Examining the expansions
of Fi,j yields the following proposition:

Proposition 2.5. For k ≥ 0,
(1) sk contains Ci,j precisely if there are m ≥ 0 and m′ ≥ 0 such that k =

p1p2(i−m) + (j −m′) or k = p1p2(j −m′) + (i−m).
(2) tk contains Ci,j precisely if there are m ≥ 0 and m′ ≥ 0 such that k =

p1(i−m) + p2(j −m′) or k = p1(j −m′) + p2(i−m).

Proof. This easily follows from considering the cusp expansions. ¤

An immediate consequence of this proposition is the following observation: if
one has solved all the equations sk = dk for k > K, then to solve sK = dK , one
need only consider the Ci,j which appear in sK but do not appear in sk for any
k > K. We call such Ci,j debutantes. Since j ≤ i, the debutantes appearing
in sK will be precisely those such that K = p1p2i + j and j ≤ i. We may also
consider debuts of Ci,j for each tK and observe that the debutantes appearing in
tK are precisely those Ci,j such that K = p1i + p2j and j ≤ i. Though there can
be several debutantes appearing in each tk, the number of debutantes appearing in
each sk has a favorable description.

Lemma 2.6. For each p1p2(ψ(p1p2) − 1) + ψ(p1p2) − 1 ≥ k ≥ 0, there are at
most two Ci,j such that k = p1p2i + j. In other words, there are at most two
debutantes in sk. Specifically, if k = p1p2i + j with p1p2 + 1 ≤ i ≤ p1p2 + p1 + p2

and 0 ≤ j ≤ i − p1p2 − 1, then there are two debutantes; otherwise, there is only
one.

Proof. We must have 0 ≤ j ≤ i ≤ ψ(p1p2)− 1 = p1p2 + p1 + p2. If k < p1p2 there
is clearly only one valid representation in terms of i and j, so assume k ≥ p1p2.
Each such k can have at most the following two representations: k = p1p2i + j
and k = p1p2(i − 1) + (j + p1p2), where 0 ≤ j < p1p2. These correspond to
Ci,j and Ci−1,j+p1p2 . Since we also require j ≤ i for each Ci,j , both representa-
tions are valid precisely when i − 1 ≥ j + p1p2. But this holds precisely when
p1p2 + p1 + p2 ≥ i ≥ pq + 1 and i− p1p2 − 1 ≥ j ≥ 0, since j ≥ 0. ¤
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Lemma 2.7. Given K = (p1 + p2)L for some p1p2 + p1 > L ≥ p1p2, assume that
all equations tk = ek have been solved for k > K and all equations sk = dk have
been solved for k ≥ p1p2(L + p2 + 2). Let λ be the greatest integer less than L + p2

such that there is p1p2 ≤ γ ≤ λ with p1λ + p2γ ≤ K < p1λ + p2γ + p2. Then each
sk contains at most one uncalculated debutante for every k > p1p2λ + γ.

Proof. Note that L ≤ λ since Lp1 + p1p
2
2 ≤ K. Also note that by our assumption

on the sk, all the Ci,j have been calculated for i ≥ L + p2 + 2.
Consider Cλ+1+i,j for 0 < i and 0 ≤ j ≤ λ + 1 + i. By Lemma 2.6, Cλ+1+i,j

is the sole debutante appearing in sp1p2(λ+1+i)+j when j > λ + i − p1p2. When
0 ≤ j ≤ λ + i− p1p2, there are two debutantes: Cλ+1+i,j and Cλ+i,j+p1p2 .

Assume λ < L + p2− 1. Then, by the maximality of λ, we have that p1(λ + i) +
p1p

2
2 > K for any i > 0. So for any i > 0 we have p1(λ + i) + p2(j + p1p2) > K and

so Cλ+i,j+p1p2 appears in one of the tk which had already been solved. If, on the
other hand, λ = L + p2 − 1, then:

p1(λ + i) + p2(j + p1p2) ≥ p1(L + p2) + p2(j + p1p2)
= p1L + p2(p1p2 + p1) + jp2

> p1L + p2L + yp2

≥ K

so again we have that Cλ+i,j+p1p2 appears in one of the tk which had already been
solved.

Thus, we have handled all the sk for k ≥ p1p2(λ + 2). Now, let us consider the
sk for p1p2(λ+2) > k > p1p2λ+γ. Since γ ≥ p1p2, all these sk have a debutante of
the form Cλ+1,j where λ + 1 ≥ j > γ− p1p2. Using Lemma 2.6, we see that Cλ+1,j

is the sole debutante if j > λ− p1p2. So assume that j ≤ λ− p1p2. Then the two
debutantes which appear in sp1p2(λ+1)+j are Cλ+1,j and Cλ,j+p1p2 . But, we have

p1λ + p2(j + p1p2) ≥ p1λ + p2(γ + 1) > K

so Cλ,j+p1p2 appears in one of the tk which have already been solved. ¤

Lemma 2.8. Given K = (p1 + p2)L for some p1p2 > L ≥ p1p2 − p2, assume that
all equations tk = ek have been solved for k > K. Then each sk contains at most
one uncalculated debutante for every k ≥ 0.

Proof. By Proposition 2.6, there are two debutantes appearing in sk precisely when
k = p1p2i + j with p1p2 + 1 ≤ i ≤ p1p2 + p1 + p2 and 0 ≤ j ≤ i − p1p2 − 1. In
this case, we have that the debutantes are Ci,j and Ci−1,j+p1p2 . We claim that
Ci−1,j+p1p2 appears in one of the tk which had already been solved. Indeed:

p1(i− 1) + p2(j + p1p2) ≥ (p1 + p2)p1p2 > (p1 + p2)L = K

so Ci−1,j+p1p2 had already been calculated. ¤
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Lemma 2.9. Assume p1p2 6= 6. Let K = p1p2x + y with p1p2 + 1 ≤ x ≤ p1p2 +
p1 + p2 and 0 ≤ y ≤ x − p1p2 − 1 be given and assume all the sk = dk have been
solved for k > K. Then for k > (p1 + p2)(x− p2) the equation tk = ek contains at
most one debutante which has not been calculated.

Proof. Since all the equations sk = dk have been solved for k > K, we know that
the following Ci,j have been calculated:

(1) for all i > x + 1 and all j ≥ 0;
(2) for i = x + 1 and all j > y;
(3) for i = x and all j > y + p1p2.

Pick k > (p1 + p2)(x − p2). In order for tk to have any debutantes, we need
k = p1α + p2β for some p1p2 + p1 + p2 ≥ α ≥ β ≥ 0. Pick the least such α for
which there is a β satisfying the conditions. Note that α > x − p2 since α ≥ β
and k > (p1 + p2)(x − p2). Every Ci,j which appears in tk must be of the form
Cα+p2f,β−p1f for f ≥ 0 (f cannot be negative by the minimality of α). Since
α > x− p2, for every f > 0 we have that α + fp2 > x.

Case 1: α > x− p2 + 1. Then α + fp2 > x + 1 for every f > 0 and thus every
Cα+fp2,β−fp1 has been calculated, save perhaps Cα,β . Therefore there is at most
one debutante in tk which has not been calculated.

Case 2: α = x− p2 + 1. For f > 1, α + fp2 > x + 1 and thus Cα+fp2,β−fp1 has
been calculated, whereas for f = 1, α+fp2 = x+1. If β−p1 > y, then Cα+p2,β−p1

has already been calculated, and so Cα+fp2,β−fp1 has been calculated for every f
except maybe f = 0. But since k = p1(x − p2 + 1) + p2β > (p1 + p2)(x − p2),
we have that p2β > p2(x − p2) − p1. Since y < x − p1p2, we have β − p1 > y if
p2(β − p1) ≥ p2(x− p1p2). But p2(β − p1) > p2(x− p2)− p1 − p1p2, so β − p1 > y
if p2(x − p2) − p1 − p1p2 ≥ p2(x − p1p2). This inequality reduces to showing that
p2
2(p1 − 1) ≥ p1(p2 + 1), or equivalently, 1− 1/p1 ≥ 1/p2 + 1/p2

2. Since p1 > p2 and
p1p2 6= 6, this inequality holds and therefore β − p1 > y and so Cα+p2,β−p1 had
already been calculated. ¤

Theorem 2.10. For p1p2 6= 6, the coefficients Ci,j of the modular polynomial
Φp1p2(X, J) can be calculated in linear time.

Proof. Recall our earlier observation that if all the sk = dk have been solved for
k > K, then to solve sK = dK , one needs only consider the debutantes appearing
in this equation. In particular, if one also has some of the tk = ek solved, then one
only needs to solve for the uncalculated debutantes in order to solve sK = dK . The
same statement holds with t swapped for s and e swapped with d. Our algorithm
will arrange the equations sk = dk and tk = ek in such an order so that if all the
previous linear equations have been solved, then there is at most one uncalculated
debutante in the current linear equation. In this manner, we have arranged the
linear equations sk = dk and tk = ek in order to create a lower triangular matrix
to solve for the Ci,j . Our algorithm will only utilize the equations sk = dk for
0 ≤ k ≤ (p1p2 + 1)(ψ(p1p2) − 1) and tk = ek for p1p2 − p2 ≤ k ≤ p1(ψ(p1p2) −
1) + p2(ψ(p1p2)− 1). Thus, the total number of linear equations used in the lower
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triangular matrix is:

ψ(p1p2)(p1p2 + p1 + p2 + 1)− 2p1p2 + p2 + 1 ≤ ψ(p1p2)(p1p2 + p1 + p2 + 1)
= ψ(p1p2)(p1 + 1)(p2 + 1)
= ψ(p1p2)2

Since there are a total of ψ(p1p2)(ψ(p1p2) + 1)/2 many Ci,j to solve for, this algo-
rithm will clearly run in linear time with respect to the number of Ci,J .

The Algorithm:
Step 1. We begin with the ∞ expansion, and consider the linear equation

s(p1p2+1)(ψ(p1p2)−1) = d(p1p2+1)(ψ(p1p2)−1)

which, as Table 1 shows, corresponds to the first nonzero coefficients in the q-
expansion of the modular equation about ∞. By Proposition 2.5, this linear
equation will have only one variable Cψ(p1p2)−1,ψ(p1p2)−1, which we calculate. Set
K = p1p2(ψ(p1p2)− 1) + p1 + p2 − 1. Then by Lemma 2.6, there will be only one
debutante for every k > K, and therefore we are able to solve all these sk = dk.
Note that by this lemma, sK will have two debutantes.

Step 2. We have that K = p1p2x + y with p1p2 + 1 ≤ x ≤ p1p2 + p1 + p2

and 0 ≤ y ≤ x − p1p2 − 1. Therefore, we may apply Lemma 2.9 to conclude that
for every k > (p1 + p2)(x − p2), the equation tk = ek has only one uncalculated
debutante. Solve all these equations. If x−2 < p1p2, then go to Step 4. Otherwise,
go to Step 3.

Step 3. Since x− 2 ≥ p1p2, we may use Lemma 2.7 to select a suitable λ and γ
with x−2 ≤ λ < x−2+p2 and p1p2 ≤ γ ≤ λ and such that for every k > p1p2λ+γ,
sk has at most one uncalculated debutante. Solve all of these sk, set K = p1p2λ+γ
and repeat Step 2. Note that K can be rewritten as p1p2(λ + 1) + (γ − p1p2) in
order to satisfy the conditions for Step 2.

Step 4. Since x − 2 < p1p2 but x ≥ p1p2 + 1 we know that x − 2 ≥ p1p2 − p2.
Therefore we may use Lemma 2.8 to conclude that every sk contains at most one
uncalculated debutante for every k ≥ 0. Thus, we may solve all the remaining
equations and determine the remaining Ci,j . ¤

3. The case p1p2 = 6

The statement of the algorithm proposed in Theorem 2.10 concerns only p1p2 6=
6. One can observe that the case p1p2 = 6 does not adhere to the behavior predicted
by our algorithm. However, the general method of alternating between the two cusp
expansions still allows for a linear time technique for solving the coefficients Ci,j .
We explicitly describe this method below.

We reprint Table 1 for the specific case p1p2 = 6 and label this as Table 2.
Consider the modular equation

X12 + J12 = −
∑

0≤j≤i≤11

Ci,jFi,j

We omit the actual calculation of the coefficients Ci,j , as it is of more interest
to us to rather locate the values k at which two uncalculated debutantes appear in
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cusp ∞ −2/3
width 1 2
order of pole of J 1 3
leading coefficient of J 1 1
order of pole of X 6 2
leading coefficient of X 1 1
order of pole of X12 + J12 72 24
leading coefficient of Xψ(p1p2) + Jψ(p1p2) 1 1
order of pole of Fi,j (i > j) 6i + j 3i + 2j
leading coefficient of Fi,j 1 1
order of pole of Fi,i 7i 5i
leading coefficient of Fi,i 2 2

Table 2

sk or tk. In this manner we are able to determine where to switch from one cusp
expansion to another.

• The expansion at ∞ allows us to go down to k = 71, solving explicitly for
C11,11, C11,10, C11,9, C11,8, C11,7, C11,6, and C11,5.

• We then must switch to the expansion at −2/3 and go down to k = 42,
solving for C10,10, C10,9, C10,8, C10,7, C10,6, C9,9, and C9,8.

• Switching back to the expansion at ∞, we go down to k = 62, and solve
for C11,4, C11,3, C11,2, C11,1, C11,0, C10,5, C10,4, C10,3, and C10,2.

• Switching again to the expansion at −2/3, we go down to k = 36 and solve
for C9,7, C9,6, C9,5, C8,8, C8,7, and C8,6.

• Returning to the expansion at ∞, we descend to k = 50, solving for C10,1,
C10,0, C9,5, C9,4, C9,3, C9,2, C9,1, C9,0, C8,5, C8,4, C8,3, and C8,2 along the
way.

• Switching to the expansion at −2/3, we go down to k = 27 and solve for
C7,7, C7,6, C7,5, C7,4, C7,3, C6,6, and C6,5.

• Finally, we make our last switch to the expansion at ∞ and determine the
rest of the Ci,j , as there is only one debutante per sk for k < 50.

4. An example of the algorithm: p1p2 = 10

Now we use Theorem 2.10 to show how one can explicitly calculate the coefficients
Ci,j of Φ10(X, J). We reprint Table 1 for the specific case p1p2 = 10 and enter the
relevant information as Table 3.

Consider the modular equation

X18 + J18 =
∑

0≤j≤i≤17

−Ci,jFi,j

Expanding both sides of this equation at the cusps ∞ and −3/5, we obtain the
necessary linear equations and proceed as directed in Theorem 2.10. We will not ex-
plicitly calculate the Ci,j , since these values have already been computed by others,
and such computation would needlessly obfuscate the machinery of the algorithm
which relies on the points where one performs switches.

Step 1. The expansion at ∞ allows us to go down to k = 177, since at k = 176 we
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cusp ∞ −3/5
width 1 2
order of pole of J 1 5
leading coefficient of J 1 1
order of pole of X 10 2
leading coefficient of X 1 1
order of pole of X18 + J18 180 36
leading coefficient of Xψ(p1p2) + Jψ(p1p2) 1 1
order of pole of Fi,j (i > j) 10i + j 5i + 2j
leading coefficient of Fi,j 1 1
order of pole of Fi,i 11i 7i
leading coefficient of Fi,i 2 2

Table 3

get two debutantes, C16,16 and C17,6. So we have determined C17,17 to C17,7.
Step 2. We switch to the expansion at −3/5 and are able to go down to k = 99,
since at k = 98 we get two debutantes, C16,9 and C14,14. With this step, we have
determined C16,16 to C16,10 and C15,15 to C15,12.
Step 3. We switch back to the expansion at ∞ and are able to go down to k = 162,
since at k = 161 we get two debutantes, C16,1 and C15,11. With this step, we have
determined all the remaining C17,j as well as C16,9 to C16,2.
Step 2. We switch to the expansion at −3/5 and are able to go down to k = 92,
since at k = 91 we get two debutantes, C15,8 and C13,13. With this step, we have
determined C15,11 to C15,9 and C14,14 to C14,11.
Step 3. We switch to the expansion at ∞ and are able to go down to k = 151,
since at k = 150 we get two debutantes, C15,0 and C14,10. With this step, we have
determined the remaining C16,j and C15,8 to C15,1.
Step 2. We switch to the expansion at −3/5 and are able to go down to k = 85,
since at k = 84 we get two debutantes, C14,7 and C12,12. With this step, we have
determined C14,10 to C14,8 and C13,13 to C13,10.
Step 3. We switch to the expansion at ∞ and are able to go down to k = 151,
since at k = 150 we get two debutantes, C13,2 and C12,12. With this step, we have
determined C15,0, all the remaining C14,j , and C13,9 to C13,3.
Step 2. We switch to the expansion at −3/5 and are able to go down to k = 71,
since at k = 70 we get two debutantes, C12,5 and C10,10. With this step, we have
determined C12,12 to C12,6 and C11,11 to C11,8.
Step 3. We switch to the expansion at ∞ and are able to go down to k = 111,
since at k = 110 we get two debutantes, C11,0 and C10,10. With this step, we have
determined the remaining C13,j , the remaining C12,j , and C11,7 to C11,1.
Step 2. We switch to the expansion at −3/5 and are able to go down to k = 57,
since at k = 56 we get two debutantes, C10,3 and C8,8. With this step, we have
determined C10,10 to C10,4 and C9,9 to C9,6.
Step 4. We now make our last switch to the expansion at ∞. Since there is only
one debutante for all k < 101, we can solve down to k = 0 and determine all the
remaining Ci,j .
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