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Abstract

Stable ℵ0-categorical Algebraic Structures

by

Paul Baginski

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Thomas Scanlon, Chair

We examine the algebraic implications of the model-theoretic properties of stability and ℵ0-

categoricity when they occur in groups, rings, and other algebraic structures. The known

theorems and conjectures in this area fit within a larger class of related results on the

coincidence of strong model-theoretic properties in algebraic structures. This dissertation

is primarily concerned with the well-known conjecture of Baur, Cherlin, and Macintyre

[BCM79] that a stable, ℵ0-categorical group is abelian by finite; a theorem by the same

authors guarantees that such a group is at least nilpotent by finite. For rings, there is an

analogous conjecture and theorem. Baldwin and Rose [BR77] proved that a stable, ℵ0-

categorical ring is nilpotent by finite. It is further conjectured that such a ring will be null

by finite, i.e. up to extension by a finite ring, multiplication is trivial.

In this dissertation, we produce an alternate proof of Baldwin and Rose’s theorem,

using the model-theoretic technique of field interpretation. We also prove that the ring and

group conjectures are equivalent. In the remaining sections, we analyze structural properties

that would be demanded of a counterexample to the Baur-Cherlin-Macintyre Conjecture.

After some reductions, we are able to use the tool of quasiendomorphism rings to place

restrictions on the commutator subgroup in certain cases.

Professor Thomas Scanlon
Dissertation Committee Chair



i

To my husband, Christian,

an endless source of support,

vitality, and love.



ii

Contents

1 Introduction and History 1
1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Quest for Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Notation and Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 9
2.1 Countable categoricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Stable groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 First Group Reduction 19
3.1 Nilpotence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Vector spaces and bilinear maps . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Rings 30
4.1 Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Nilpotent Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Ring reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Equivalence of conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Second Analysis of the Groups 39
5.1 Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Multiple Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 No Peaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 One Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Quasiendomorphism Rings 48
6.1 Endomorphism and Quasiendomorphism Rings . . . . . . . . . . . . . . . . 48
6.2 First application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Second application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 80



iii

Acknowledgments

This dissertation would not have been possible with the counsel and support of a great

number of people.

Without a doubt, my career at Berkeley could not have had its successes nor

followed its path without a skilled and talented advisor such as Thomas Scanlon. His wealth

of familiarity with model theory, and mathematics in general, has preempted many wrong

turns and whirlpools in my research. He educated me both in mathematical knowledge and

in navigating the academic world of making connections with potential collaborators. In my

time at Berkeley, he has been a friend as well and I am thankful for all that I have learned

from him, both mathematical and otherwise. He is a great mathematician, whose effortless

accommodation of his students within his research schedule would have you thinking there

were 36 hours in a day. I am honored to say that I was his student.

I also owe much of my achievements to the tireless efforts of mes pères Lyonnais,

Tuna Altınel and Frank Wagner. It was extremely useful to gain some of their intuition

for the model theory of groups during my three stays in Lyon. I also cannot cease in my

gratitude for their support of my research and endeavors in my graduate career; through

their efforts, opportunities have arisen around the world.

A number of other experts of model theory have imparted their knowledge upon me

in several encounters: Gregory Cherlin and Alexandre Borovik in Lyon, Dugald Macpherson

in Antalya and Manchester, and Ehud Hrushovski in Antalya. The encounters with each

refreshed my perspective on the dissertation problem and opened new avenues to pursue. I

am also indebted to George Bergman for a conversation on noncommutative ring theory.

In the final and most stressful stretch of my graduate career, I became indebted for

the feedback provided by my dissertation committee, Thomas Scanlon, Leo Harrington and

Christos Papadimitriou. In the course of my research, I was partially supported by NSF

grant # DMS-0450010 and by a Department of Homeland Security Graduate Fellowship.

My fellow Scanlonites, Maryanthe Malliaris, Charlie Smart, Meghan Anderson,

Alice Medvedeva, and others, have been an important touchstone while at Berkeley. They

helped me prepare for my qualifying exams and ran a vibrant group for seminars. They

reminded me that others had faced the same difficulties in dissertation research and that

I was not the only one who had trouble wrapping my head around that most troublesome

subject, model theory. My officemates, Betsy Stovall, Emily Peters and David Zywina, were



iv

also an inspiration in graduate school, for their mathematical industry and our longtime

friendship.

I would like to thank my parents and family for supporting me through graduate

school, and I thank my husband, Christian, who has made my life wonderful.



1

Chapter 1

Introduction and History

Throughout the history of modern mathematics, the study of mathematical objects

has often been informed by algebraic structures defined on these objects. Examples abound:

Galois groups illuminated key questions about field extensions; Picard-Vessiot groups relate

to certain differential equations over fields; permutation groups capture symmetries; and

the class groups of number rings (or more generally, Krull monoids) extract factorization

properties. The presence of such algebraic structures indicates, on an essential level, the

underlying symmetry of the objects under study. The study of the associated algebraic

structures augments our understanding of the original objects. Galois theory alone testifies

to the richness of this idea.

Many advances in model theory were motivated by the question of when a given

theory can have associated algebraic structures that in a basic way “come from” the theory.

Precisely stated, given a first-order theory T , when can T interpret a group, a field, etc.?

This question led to many abstract results, including the general theory of binding groups

(cf. [Wag97, Ch 4.8]) and Hrushovski’s Group Configuration Theorem [Hru86]. Perhaps

the most pointed question in this regard was Zilber’s Trichotomy [Zil93] conjecture about

algebraic closures in strongly minimal sets:

Conjecture 1.0.1 (Zilber Trichotomy). Let X be a strongly minimal set. Then exactly

one of the following holds about the algebraic closure operator, acl, on X:

1. X is degenerate (or trivial): for any nonempty set A ⊆ X, acl(A) =
⋃
a∈A acl(a).

2. X is modular: X is bi-interpretable with a group, essentially having the geometry

of a vector space
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3. X is bi-interpretable with an algebraically closed field.

Hrushovski disproved this conjecture in general ([Hru93]), however the trichotomy

does hold for strongly minimal sets in differentially closed fields of characteristic 0 and,

more generally, Zariski geometries. The Zilber trichotomy conjecture attempted to classify

the simplest infinite definable sets in the theory in terms of what algebraic structures they

may interpret. While this conjecture may not be true, its spirit continues in model theory,

with the proofs of trichotomy theorems and conjectures in a variety of contexts, such as

o-minimal theories [PS98].

Accompanying the question of whether one can interpret algebraic structures, is

what algebraic properties these algebraic structures will have. The Zilber trichotomy, for

instance, does more than say the structure interprets a group or a field, it says that the

group will essentially be a vector space and the field will necessarily be algebraically closed.

These are algebraic consequences of the model theoretic hypotheses.

Since algebraic structures are interpretable in a far wider range of structures than

the strongly minimal ones, one of the objectives of model theory has been to classify the

pure algebraic properties of algebraic structures appearing in such contexts. The context

plays a definitive role: when we speak about groups and other algebraic structures, we do

not necessarily do so as pure algebraic structures. Rather, they will be groups or other

algebraic structures that are interpretable in some ambient theory and this ambient theory

induces model theoretic properties on the algebraic structures. Specifically, the algebraic

structures (say, groups) would then inherit a theory T in a language L extending the

language of groups, LG, where we have included predicates for all the subsets of our group

that are definable in the original theory. With several model-theoretic properties, we get

an automatic transfer of properties of the ambient theory to the enriched theory of the

algebraic structure. For example, if the original theory were stable or ℵ0-categorical, then

any interpretable groups would also have that property. In particular, since ℵ0-categoricity

and stability are both preserved by taking reducts, such groups would also be stable and

ℵ0-categorical as pure groups.

Before proceeding with the known results in the area, we must define a common

group-theoretic concept.

Definition 1.0.2. Given group theoretic properties P,Q,R, we say that a group G is “P

by Q” if there is a normal subgroup N of G, such that N has property P and G/N has
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property Q. This definition schema is right associative, that is to say that G is “P by Q by

R” if and only if there is a normal subgroup N of G with property P such that G/N is Q

by R. When property Q is “finite”, many authors (including the present one on occasion)

will use the phrase “virtually P” in place of “P by finite.”

The most common usages in this dissertation are “abelian by finite” (or “virtually

abelian”) and “nilpotent by finite” (or “virtually nilpotent”).

We can extend this definition schema to (noncommutative) rings by replacing

“normal subgroup” with (two-sided) ideal.

1.1 History

In this dissertation, we will be concerned with groups and rings interpretable in

theories with fairly strong model-theoretic assumptions. A number of results have been

obtained in this area and we present the following (incomplete) list of known results and

conjectures. This list has been compiled by Frank Wagner and communicated [Wag06] to

the present author, who has supplemented the list with several of the references. We leave

several concepts undefined; interested readers may consult the appropriate references.

1. Theorem ([BCM79] with [CHL85]) ℵ0-categorical superstable groups are virtually

abelian of finite Morley rank.

Theorem ([EW00]) ℵ0-categorical supersimple groups are finite-by-virtually abelian

of finite Lascar rank.

Theorem ([Wag03]) Small profinite m-stable groups are virtually abelian of finite

m-rank.

2. Theorem ([Fel78]; [BCM79]) ℵ0-categorical stable groups are virtually nilpotent.

Conjecture ([BCM79]) ℵ0-categorical stable groups are virtually abelian.

Theorem ([Mac88]) ℵ0-categorical groups with a simple theory are finite-by-virtually

nilpotent.

Conjecture ([Mac88]) ℵ0-categorical groups with a simple theory are finite-by-virtually

abelian.

Conjecture ([KW06]) Small profinite groups are virtually nilpotent (Newelski [New96,

New02] conjectured they are virtually abelian).



4

3. Theorem ([BCM79] with [CHL85]) ℵ0-categorical superstable rings are virtually null.

Theorem ([KW06]) ℵ0-categorical supersimple rings are finite-by-virtually null.

Theorem ([KW06]) Small profinite M-stable rings are virtually null.

4. Theorem ([BR77]) ℵ0-categorical stable rings are virtually nilpotent.

Conjecture ([BR77]) ℵ0-categorical stable rings are virtually null.

Theorem ([KW06]) ℵ0-categorical rings with a simple theory are (finite-by-?)virtually

nilpotent.

Conjecture ([KW06]) ℵ0-categorical rings with a simple theory are (finite-by-?)virtually

null.

Theorem ([KW06]) Small profinite rings are virtually nil (every element has power

which is zero) of finite nil exponent.

Conjecture ([KW06]) Small profinite rings are virtually nilpotent

5. Theorem ([CHL85]) ℵ0-categorical superstable theories have finite Morley rank and

are one-based

Theorem ([Hru89]) ℵ0-categorical supersimple theories need not be one-based

Conjecture ([New96, New02]) small profiniteM-stable structures arem-normal (equiv-

alent notion of one-based).

Since this dissertation primarily concerns itself with stable, ℵ0-categorical struc-

tures, we isolate those results from the list that are relevant to our discussion.

Theorem (Felgner [Fel78]; Baur, Cherlin, Macintyre [BCM79]). A stable, ℵ0-categorical

group is nilpotent by finite.

The first step in both Felgner’s and BCM’s proofs of this theorem is to show that

an infinite stable, ℵ0-categorical group cannot be simple (in the sense of group theory).

BCM proceed by arguing (using a result of Šunkov [KW73, p. 176]) that a minimal sim-

ple counterexample would have to take on the form of PSL2(F ) for some infinite locally

finite field F . This violates ℵ0-categoricity since F is interpretable in PSL2(F ) and all ℵ0-

categorical fields are finite. Felgner eliminates simple groups by a heavily group-theoretic

analysis of nilpotent by finite subgroups and centralizers of involutions. Alternately, one

can proceed as in Theorem 1.13 of Poizat [Poi01], by exploiting the classification of finite
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simple groups to know each such group is 2-generated (this was not available to the earlier

authors, though Felgner remarked on its utility should it be true).

From there, all authors (Felgner, BCM and Poizat), reduce from the solvable case

to the nilpotent case by analyzing the socle, p-Sylow subgroups, and nilpotent subgroups.

Theorem (Baur, Cherlin, Macintyre [BCM79]). An ℵ0-categorical ω-stable group is abelian

by finite.

This result can be extended to the class of ℵ0-categorical, superstable groups on

account of a theorem of Cherlin, Harrington and Lachlan [CHL85] which proves that a

superstable, ℵ0-categorical theory is necessarily a theory of finite Morley rank. A major

ingredient to the proof in the ω-stable case is the property that an ω-stable group has the

descending chain condition on all definable subgroups, i.e. there is no infinite descending

chain of definable subgroups. In contrast, in a general stable group we only have the

descending chain condition on uniformly definable subgroups. We outline their proof, which

is by contradiction. Given a counterexample, BCM reduce to a counterexample of nilpotence

class 2 (this reduction, as noted by BCM, works for ℵ0-categorical, stable groups and we

have reproduced the details of such an argument in Chapter 3). From there, one sees that

the commutator [·, ·] can be considered to be a bilinear map from G/Z(G) ×G/Z(G) into

the commutator subgroup. Finally, using the descending chain condition on all definable

subgroups, the authors are able to minimize the counterexample to have no proper infinite

definable subgroups modulo the center and where essentially G′ =
∑n

i=1[ai, G] for some

finite number ai ∈ G.1 BCM then argue directly that such a group must be trivial by

finite, by producing quasiendomorphism rings and implicitly using the descending chain

condition on all definable groups once again to argue the quasiendomorphism ring is a field,

in contradiction to ℵ0-categoricity.

In light of these two theorems, Baur, Cherlin and Macintyre conjectured that the

conclusion for stable ℵ0-categorical groups can be strengthened. We shall refer to this

theorem throughout the dissertation as the BCM Conjecture.

BCM Conjecture (Baur, Cherlin, Macintyre [BCM79]). A stable, ℵ0-categorical group is

abelian by finite.

1We are being a little loose here in that one needs the correspondences established in Lemma 3.2.2 to
know that the vector spaces and bilinear maps in BCM’s argument correspond to counterexample groups.
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If this conjecture is true, then we know exactly how the countable model of a

stable ℵ0-categorical group G will look. There will be a definable normal abelian subgroup

A of finite index in G (cf. Section 2.3 on connected components). Since any ℵ0-categorical

group has finite exponent, A will necessarily be of the form

A ∼=
⊕
p∈P

⊕
n<np

⊕
i<κn,p

Z/pnZ

for some finite set P of primes p, with np a finite positive integer, and κn,p is either a finite

nonnegative integer or ω. As a pure group, A would be totally transcendental since it is an

abelian group of finite exponent; and hence A would be ω-stable of finite Morley rank. In

fact, using modules, BCM were able to conclude that the original pure group G is ω-stable

of finite Morley rank [BCM79, Theorem 63].

As a final historical remark, we draw briefly attention to the corresponding the-

orems and conjectures for rings possessing stability and ℵ0-categoricity. We shall save the

discussion of the results relating to those algebraic structures until Chapter 4.

1.2 Quest for Counterexamples

In the context of stability and ℵ0-categoricity, there was a more central conjecture

than Conjecture 1.1 which drove investigations. This was the conjecture of Lachlan:

Conjecture (Lachlan’s Conjecture [Lac74]). A stable, ℵ0-categorical theory is ω-stable.

The discussion in the previous section determined that if the BCM Conjecture were

true, then at least as pure groups, any stable, ℵ0-categorical group would be ω-stable. Thus,

the truth of the BCM conjecture would lend credence to the truth of Lachlan’s Conjecture.

Unfortunately, Lachlan’s Conjecture was disproved by Hrushovski [Hru89] (discussed in

[Wag94]). Hrushovski’s disproof of Lachlan’s Conjecture cast doubt on the truth of the

BCM Conjecture, however all methods based on Hrushovski’s ideas have to date failed to

produce a counterexample.

Hrushovski’s disproof of Lachlan’s conjecture hinged upon a generalization of

Fräıssé constructions. Rather than including all possible finite structures into the limit-

ing process, one is more selective about which sets and which embeddings between these

sets you will allow into the amalgamation process. With a particular selection criterion, one

is able to guarantee that the Hrushovski-Fräıssé limit will be stable. Even though Fräıssé
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limits are a natural way to obtain ℵ0-categorical structures, the amalgamation described by

Hrushovski does not easily result in ℵ0-categoricity. By striking a careful balance between

the freedom needed for ℵ0-categoricity and the strictness needed for stability, Hrushovski

was able to construct his counterexample to Lachlan’s conjecture.

Hrushovski’s disproof produced a stable, ℵ0-categorical graph; it took further

groundwork by Baudisch to generalize Hrushovski’s limit construction to produce groups.

With these generalized methods, Baudisch has constructed multiple ℵ1-categorical groups

that have some pathological properties [Bau96b] and [Bau96a]. However, as Baudisch him-

self noted, there are obstacles to applying these methods to construct ℵ0-categorical groups.

In [Bau00], he explains the difficulty in controlling the size of the algebraic closure when per-

forming the counterexample construction. Without good control, the construction results

in infinitely many 1-types, clearly ruling out ℵ0-categoricity.

1.3 Summary

In light of the difficulties faced in obtaining a counterexample, it is unclear whether

the Baur-Cherlin-Macintyre Conjecture will be disproved as Lachlan’s Conjecture was. The

current evidence is mixed in its indications. In this dissertation, we provide computations,

reductions and theorems which could aide in an eventual positive proof of the BCM Con-

jecture. Even if the BCM Conjecture proves to be false, these results will be informative

about the kinds of counterexamples that are possible.

The chapters are structured as follows.

Chapter 2: Preliminaries. We begin with a short discussion of the basic model

theoretic notions of ℵ0-categoricity and stability, especially as applied to groups. The final

section provides an extensive discussion of the important notion of connectedness of groups,

with several lemmas.

Chapter 3: First Group Reduction. In this chapter we reduce a counterex-

ample to the BCM Conjecture to one which has a number of useful properties, including

nilpotence class 2. We reframe the BCM Conjecture in the language of vector spaces over

finite fields and bilinear maps between them. We perform two important constructions of

nilpotent class 2 groups from vector spaces and bilinear maps.

Chapter 4: Rings. A discussion of stable, ℵ0-categorical rings, including an

alternate proof of Baldwin and Rose’s theorem that such rings are nilpotent by finite. We
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also prove the equivalence of the BCM conjecture with the corresponding conjecture for

rings.

Chapter 5: Second Group Reduction. Using the vector space constructions

from Chapter 3, we break our possible counterexamples into three cases, based on the

number of maximal connected abelian subgroups. In each case, we strive to prove results on

the structure of the commutator group, primarily how the images [a,G] and [b,G] intersect

for distinct elements of G.

Chapter 6: Quasiendomorphism Rings. We provide a detailed introduction

to the tool of quasiendomorphism rings. The first application is a fairly simple example

of how quasiendomorphism rings may arise in the study of stable, ℵ0-categorical groups.

The second application proposes an abstract framework in which one can build a quasien-

domorphism ring from a family of definable homomorphisms. We then conclude that such

a quasiendomorphism ring is necessarily finite. We argue how this result could be used as

the final step in a proof of the BCM Conjecture, and have corollaries that apply to several

of the situations described in Chapter 5.

1.4 Notation and Convention

In this dissertation we shall use the phrase ℵ0-categoricity to conform with the

usage of cardinals to describe uncountable categoricity. However, we inform the reader

that the ordinal phrase ω-categorical is often used in the literature to refer to countable

categoricity.

Similarly, when talking about sets definable over a set A, there are two popular

notations for dealing with the case when A = ∅. We shall say the B is 0-definable when

it is definable over ∅ (other authors use ∅-definable). However, we will say “type over the

empty set” or “∅-type” instead of 0-type.

When we say that a group or ring has “nilpotence class k”, we mean nilpotence

class exactly k. If we simply have k as an upper bound on the nilpotence class, we will say

the group has “nilpotence class at most k”.
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Chapter 2

Preliminaries

This chapter concerns basic notions relating to ℵ0-categoricity and stability in

the context of groups and other algebraic structures. The first two sections concern basic

notions tied to the model theoretic properties. The third section goes into detail about

the concept of connectedness in groups, proving many propositions which will be frequently

used in the sequel.

2.1 Countable categoricity

The following theorem, attributed to Ryll-Nardziewski, Engeler and Svenonius, is

the springboard for any study of ℵ0-categorical theories. It can be found in any introductory

model theory book, such as [Hod97] or [CK90].

Theorem 2.1.1 (Engeler, Ryll-Nardziewski, Svenonius). Let L be a countable first-order

language and let T be a complete theory in L with infinite models. The following are equiv-

alent:

1. Any two countable models of T are isomorphic.

2. If A is any countable model of T , then Aut(A) is oligomorphic (for every n, the action

of Aut(A) on An has only finitely many orbits).

3. T has a countable model A such that Aut(A) is oligomorphic.

4. Some countable model of T realizes only finitely many complete n-types for each n < ω.
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5. For each n < ω, |Sn(T )| < ℵ0.

6. For each arity n, there are only finitely many pairwise non-equivalent formulas φ(x)

of L modulo T , where `(x) = n.

7. For each n < ω, every type in Sn(T ) is principal.

Any model of an ℵ0-categorical theory is ℵ0-saturated. Indeed, if A ⊆M is finite,

then we may add constants to the language for the elements of A; this does not alter

the ℵ0-categoricity. In this extended language, there are only finitely many 1-types in the

theory–they must all be principal and hence are realized in all models–in particular in M .

In addition to being ℵ0-saturated, the unique countable model of an ℵ0-categorical theory

is also strongly ℵ0-homogeneous, meaning that any partial isomorphism between finite sets

in the model extends to an automorphism of the model.

Corollary 2.1.2. Suppose M is the countable model of an ℵ0-categorical theory and A ⊆M
is finite. If S ⊆ Mn is fixed setwise by all automorphisms which fix A pointwise, then S

is definable over A. In particular, A has finite algebraic closure. Furthermore, for any k,

there is a uniform f(k) such that if |A| ≤ k, then |acl(A)| ≤ f(k).

Proof. Consider all the types tp(b/A) for b ∈ S. Since A is finite, by the Engeler, Ryll-

Nardziewski, Svenonius theorem there are only finitely many types over A and each one is

principal. Hence for each n-type over A we may choose an isolating formula; pick φi(x; ai)

for 1 ≤ i ≤ k which isolate the types of elements of S over A. We claim S =
⋃k
i=1 φi(G

n; ai).

Since automorphisms send elements of the same type to one another, S is certainly contained

in the union, since any automorphism which fixes the ai pointwise fixes the union. On the

other hand, any g ∈ Gn which satisfies φi(x; ai) for some 1 ≤ i ≤ n has the same type

over A as some b ∈ S. By ℵ0-homogeneity, there is an automorphism of M which fixes A

pointwise and sends b to g. Since S is fixed setwise by such automorphisms, g ∈ S.

For the second statement of the corollary, it suffices to recall that there are finitely

many 1-types over A, and thus finitely many algebraic types, which each have only finitely

many realizations. For the uniform bound, note that for a given k, there are only finitely

many k-types. If φ(x; y) is a formula of (k+1)-arity, then consider the formula ∃=nxφ(x; b),

stating there are exactly n elements which satisfy φ(x; b). This formula (or its negation) is

in the type of b, so all b
′

with the same type as b must have the same algebraic formulas

and same number of realizations to those formulas. In short, they must have isomorphic
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algebraic closures, in particular, the algebraic closures must have the same size. Since there

are only finitely many k-types, there are only finitely many possible sizes of the algebraic

closures of k-sets.

A common use of this corollary is to observe that characteristic subgroups of a

countable ℵ0-categorical group are always 0-definable.

We now turn our attention to one important instance of an ℵ0-categorical alge-

braic structure. The following theorem, attributable to folklore, is often used in arguments

by contradiction for ℵ0-categorical theories: one cannot interpret infinite fields in an ℵ0-

categorical theory.

Theorem. An ℵ0-categorical skew field is finite.

Proof. Let F be an ℵ0-categorical skew field. Since we have only finitely many 1-types,

the elements a, a2, a3, . . . cannot all be distinct, so every nonzero element of F has finite

multiplicative order. Again, elements that have different multiplicative orders must have

different types, so since there are finitely many 1-types, there is an n such that an = 1 for

all nonzero a ∈ F . For any two nonzero elements a, b ∈ F , the subring generated by a, b

must be finite by Corollary 2.1.2 since it is contained in the algebraic closure of {a, b}. By

Wedderburn’s theorem, finite division rings are finite fields, so a and b commute. Hence

F was a field to start with. Any n + 2 distinct elements of F generate a finite subfield F0

of size at least n + 2. The multiplicative group of F0 is cyclic of order at least n + 1, a

contradiction to the fact that n is a bound on the multiplicative order of any element of F .

Hence F has at most n+ 1 elements and thus is finite.

2.2 Stable groups

The theory of stable groups is very rich and there exist at least two well-written

treatises of the subject: [Poi01] and [Wag97]. We excerpt a few important results here;

others will appear in later sections as needed.

Lemma 2.2.1 (Poizat [Poi01] Lemma 1.1). A nonempty stable associative monoid with left

and right cancellation, or with left cancellation and right identity, is a group.

In any stable theory, we have the Descending Chain Condition (DCC) on

any uniformly definable family of definable sets. However, with definable groups, we get

stronger behavior.
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Theorem 2.2.2 (Baldwin Saxl [BS76]). In a stable group G, every formula f(x, y) is asso-

ciated with a natural number n such that the intersection of an arbitrary family of subgroups

Hi defined by formulas f(x, ai) is the intersection of some n among them. Consequently,

the groups which are intersections of any number, finite or infinite, of subgroups defined by

formulas f(x, ai) form a uniformly definable family.

Theorem 2.2.2 is so ubiquitous in the literature on stable groups that we shall sim-

ply refer to it as the Baldwin-Saxl condition. Similarly, the descending chain condition

henceforth will be referred to as DCC.

2.3 Connectedness

When working with infinite groups, it is helpful to determine conditions which

guarantee that proper subgroups have infinite index. For this task, we import the idea

of connectedness from topology, where it has been used extensively to study topological

groups, algebraic groups and groups occurring in several other fields. In model theory, this

idea has played an important role in the study of stable groups, particularly groups of finite

Morley rank. Connectedness, as it turns out, shall be a robust concept in our context as

well.

Definition 2.3.1. A group G is connected if G has no proper definable subgroups of finite

index.

A few words about definability: definability will always be in the context of some

ambient theory T in which the group is interpretable. This theory will be mentioned

explicitly in situations where confusion may arise. Since “definable” refers to “definable

with parameters”, we must be precise in the previous definition about where we allow such

parameters to come from. Generally speaking, we will allow parameters to come from a

monster model,M, of our theory, which will be sufficiently saturated for our considerations.

We shall comment below on the degree of saturation needed to compute whether a group

is connected, but first we need a definition related to connectedness.

Definition 2.3.2. Given a group G, the connected component of G, denoted G0, is the

intersection of all definable subgroups of G of finite index.

Clearly if G0 has finite index in G, then G0 is connected. In particular, G is

connected if and only if G = G0.
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Remark 2.3.3. Notation: when we take the connected component of a group with a paren-

thetical, we shall put the 0 to the left of the parenthetical. For example C0
G(g) instead of

(CG(g))0 and Z0(G) instead of (Z(G))0.

As before, in the definition of connected component, “definable” means definable

with parameters coming from some sufficiently saturated extension of G. The degree of

saturation needed for a computation can be determined after a closer examination of the

definition of the connected component. In a fixed theory T , the connected component is

actually given by a type, which we now describe. Given a formula φ(x; y) of our language

and parameters a, it is a definable property whether the realizations of φ(x; a) form a

subgroup. We shall write Group(φ, a) for the formula that states this property. We define

the formulas θφ,n(x), where the indices run through all natural numbers n and all formulas

φ(x; y) for all arities `(y), as

∀a

Group(φ, a) ∧ ∀b1, . . . bn
∨

1≤i<j≤n
φ(bib

−1
j , a)

→ φ(x, a)


Then the partial type consisting of all θφ,n(x) is clearly the partial type of the connected

component, since its realizations are precisely those elements which are in all definable

groups of finite index. Call the partial type of the connected component p0(x); note it is a

type over ∅. However, it is not always a complete type, so that in small models this ∅-type

may coincide with (0-)definable sets, even if G0 is not definable.

Example 2.3.4. We illustrate why we have brought attention the issues of definability and

saturatedness. Consider the additive group G = (Z,+, 0) as a pure group. The subgroups

nG for n ∈ N are all definable and have finite index, thus G0 = {0}. In this model, the

connected component is a 0-definable group, but that is a deceptive happenstance. As we

shall see, the type of the connected component is not the ∅-type isolated by x = 0. Let G′

be an a ℵ0-saturated nonstandard elementary extension of G. Since nG had finite index in

G and this is a definable property of the definable set nG, we must have that nG′ has finite

index (the same index, in fact) in G′. If H ≤ G′ is some other definable group of finite

index, it must be normal since G′ is abelian, so for every g ∈ G′ there is an n such that

ng ∈ H. Pick a minimal one for each g and call it ng. If there were a sequence g1, g2, . . . ∈ G′

such that ng1 < ng2 < . . ., then by compactness, the type that says nx /∈ H for all n ∈ N

is consistent. This is a type over the same parameters used to define H, so since G′ is
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ℵ0-saturated, this type would be realized in G′, a contradiction. Hence there is a universal

N such that NG′ ⊆ H. But this means that once again (G′)0 = ∩n∈NnG′. Yet the set

on the right is not {0}. Indeed, the ∅-type consisting of the formulas ∃x∀y
∧
m<M x 6= my

indexed by M ∈ N is consistent in Z, so it is realized in G′, and all realizations of this type

are in ∩n∈NnG′ and hence (G′)0. In fact, our analysis has shown that the type p0(x) of the

connected component is simply the partial ∅-type consisting of the formulas ∃y ny = x for

all n ∈ N. It is only a partial ∅-type, since for example, it contains neither of the formulas

x = 0 and x 6= 0.

Generally, the number of definable subgroups of finite index in G is bounded above

by κ = |T |+ 2|G| + ℵ0, so to compute the connected component in a group in an arbitrary

theory, we may takeM to be a κ+-saturated elementary extension of the model in which we

have interpreted G. In stable theories, however, we require far less saturation. Moreover,

G0 is connected to the extent observable in the theory.

Lemma 2.3.5. If G is a stable group, then G0 is an intersection of at most |T | definable

subgroups of finite index. Hence G0 can be computed in any |T |+-saturated elementary ex-

tension of G. Furthermore if G is |T |+-saturated, then G0 has no proper relatively definable

subgroups of finite index. Thus, from the perspective of our ambient theory, G0 is connected.

Proof. Reexamine the type p0(x) of G0. For every formula φ(x; y), consider the subgroups

of the form φ(G; a) which are finite index in G. They are a uniformly definable family, so

by Baldwin-Saxl, their intersection equals an intersection of only finitely many of them. So

G0 is an intersection of |T | many definable groups of finite index: each formula φ(x; y) only

needs to be considered for finitely many choices of parameters y. Since we can elementarily

embed the |T | many parameters into an |T |+-saturated extension of G, this model can

accurately compute the intersection of the subgroups φ(x; a) which have finite index, for

each formula φ(x; y) of the language. Thus such a model has the correct computation of

G0.

Now suppose G is |T |+-saturated and suppose G0 has a relatively definable sub-

group H of finite index, i.e. there is a definable subset S of G such that S ∩G0 = H and H

has finite index in G0. Say S = φ(G; a) for some parameters a in our monster model. But

then H is the set of realizations to the a-type p0(x) ∪ {φ(x; a)}. By [Poi81] (or alternately

Theorem 5.17 of [Poi01]), any type definable subgroup is equal to an intersection of |T |
many definable groups. So H = ∩i<κFi, where each Fi = fi(G; ai) is a definable subgroup



15

of G. We shall show that each Fi ⊇ G0; for contradiction, choose such an F with G0 ∩ F a

proper (finite index) subgroup of G0.

Enumerate the formulas of the language as (φi | i < κ). For each formula φi(x; y)

of the language, we can consider the intersection of G with all finite index subgroups of G of

the form φi(x; b). As mentioned in the first paragraph, this is equal to a finite intersection

and hence is a definable, normal subgroup Ki of finite index. We claim that F ∩ Ki has

finite index in Ki for some i < κ. If we can do this, then F ∩Ki has finite index in G and

hence so does F . But then F ∩G0 = G0 by definition of G0.

Assume, therefore that F ∩ Ki has infinite index in each Ki. Since each Ki is

definable (with parameters), we may let ψi(x; ai) define Ki and let θ(x; b) define F . For

any finite I ⊆ κ, we have infinitely many elements {cn}n<ω of
⋂
i∈I Ki which are pairwise

inequivalent modulo F ∩
⋂
i∈I Ki. In other words, for every N < ω, the cn satisfy the

formula ΦI,N (x1, . . . , xN ) ∧
n<N

∧
i∈I

φi(x; ai) ∧
∧

i<j<N

¬θ(xix−1
j ; b)

Therefore Φ = {ΦI,N | I ⊆fin κ, N < ω} is consistent; by compactness, in some elementary

extension G′ � G, we can find distinct {cn}n<ω such that for all n < m < ω and all i < κ,

G′ |= φi(cn; ai) andG′ |= ¬θ(cnc−1
m ; b). Since the {cn}n<ω are countable in number, the |T |+-

saturatedness of G lets us take G′ = G. Hence we get G0 =
⋂
i<κ φi(G; ai) ⊇ {cn |n < ω}.

Thus F = θ(G; b) has infinite index in G0, a contradiction to the assumption on F . So G0

is connected (in terms of relatively definable subgroups of finite index).

In the case of ℵ0-categoricity, we have a weaker conclusion about the connected

component.

Proposition 2.3.6. If G is an ℵ0-categorical group, G0 is a 0-definable subgroup.

Proof. The automorphic image of a definable group of finite index is another definable group

of finite index. Hence G0 is characteristic. By Corollary 2.1.2, G0 is 0-definable.

The combination of stability and ℵ0-categoricity will force the connected compo-

nent to be easily computable (see Proposition 2.3.14 below). Before proceeding to that

restricted model theoretic setting, we provide a number of general properties of connected

groups.
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Proposition 2.3.7. If H is a (definable) subgroup of G, then H0 ≤ G0.

Proof. For any definable subgroup I of finite index in G, we have that I∩H has finite index

in H, and it is (relatively) definable in H with the same parameters used to define I. Hence

H ∩G0 = H ∩
⋂
I∈D I ⊇ H0, where D is the collection of definable subgroups of G of finite

index.

Proposition 2.3.8. If G is a connected group and f : G→ H is a definable homomorphism,

then f(G) is connected. In particular, if G is connected and N is a definable normal subgroup

of G, then G/N is connected.

Proof. If I is a definable finite index subgroup of f(G), then f−1(I) is a definable finite

index subgroup of G. Hence f−1(I) = G and I = f(G).

We have a partial converse:

Proposition 2.3.9. If G is a group with a connected definable normal subgroup N such

that G/N is also connected, then G is connected.

Proof. If K ≤ G is a definable subgroup of finite index, then KN is also definable and of

finite index. Since N is a normal subgroup, we may pass to the quotient KN/N . This

is a finite index, definable subgroup of G/N , so by connectedness it equals G/N . Hence

KN = G. But K is a finite index, definable subgroup of G, so by the Second Isomorphism

Theorem, K ∩ N is a finite index, definable subgroup of N . By connectedness of N ,

K ∩N = N . Hence G = KN = K and G is connected.

Proposition 2.3.10. If A and B are connected groups, then A×B is also connected.

If A,B ≤ G, A is normal and A and B are connected, then the group product AB

is connected.

Proof. Cross product: Since A and B are connected and (A×B)/A ∼= B, Proposition 2.3.9

tells us that A×B is connected.

Group product: AB/A ∼= B/(A∩B) by the Second Isomorphism Theorem. Since

B/(A∩B) is connected by Proposition 2.3.8 and A is connected, we know AB is connected

by Proposition 2.3.9.

Under model theoretic assumptions, we obtain greater information about con-

nected components. For example, under stability we discover that connected groups gener-

ate connected groups:
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Proposition 2.3.11. Assume our ambient theory is stable. If (Ai | i ∈ I) are connected

groups and A = 〈
⋃
i∈I Ai〉 is definable, then A is connected.

Proof. Suppose B is a proper, definable, finite index subgroup of the definable group A.

Then all the conjugates Ba form uniformly definable family of finite index subgroups of A;

by Baldwin-Saxl, their intersection equals a finite intersection. So without loss of generality,

we may assume B is normal.

B cannot contain every Ai, so choose one it does not contain. Then Ai∩B is a finite

index subgroup of Ai by the Second Isomorphism Theorem, so Ai ⊆ B, a contradiction.

Proposition 2.3.12 (Proposition 1.10 [Poi01]). If G is a connected stable group and Z(G)

is finite, then Z(G) = Z2(G) = 0; an infinite nilpotent connected stable group has infinite

center.

Proposition 2.3.13 (Cherlin [Che79]). In a group G of finite Morley rank, G0 is 0-definable

and has finite index.

In the context of ℵ0-categoricity and stability, we have an analogous result.

Proposition 2.3.14. Every ℵ0-categorical stable group has a connected component G0

which is 0-definable and has finite index.

Proof. Proposition 2.3.6 gives us that G0 is 0-definable. We revisit the proof of Lemma

2.3.5 to get that G0 has finite index.

For each formula φ(x; y), we may consider those subgroups Gφ,a which are defined

by φ(G; a) and have finite index in G. By the Baldwin-Saxl condition, the intersection of

this collection, Gφ, is equal to a finite subintersection; thus Gφ has finite index as well. Note

that Gφ is fixed under all automorphisms of G, and hence is 0-definable by ℵ0-categoricity

(Lemma 2.1.2). By ℵ0-categoricity, there are only finitely many 0-definable subgroups; in

particular there are only finitely many Gφ. Thus G0, which is the intersection of all these

Gφ, has finite index.

Proposition 2.3.15. Let G be a stable group which is nilpotent by finite. Then G0 is

nilpotent. Furthermore, any nilpotent subgroup of G of finite index has nilpotency class at

least as great as the nilpotency class of G0.
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Proof. By Theorem 3.17 of Poizat [Poi01], if H is a nilpotent subgroup of class n, then it

is contained in a definable nilpotent subgroup H̃ of class n. If H has finite index, then so

does H̃ and hence G0 ≤ H̃ and G0 is nilpotent. Clearly the nilpotency class of G0 is at

most the nilpotency class of H̃.
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Chapter 3

First Group Reduction

In this section, we shall suppose that the BCM Conjecture (Conjecture 1.1) is not

true. Given this, we shall infer that counterexamples with certain strong group-theoretic

properties must exist.

3.1 Nilpotence

By Proposition 2.3.14, any stable, ℵ0-categorical group G has a connected compo-

nent G0 which is of finite index and 0-definable in G. Therefore, we may already assume

our example is connected. By the Theorem 1.1, G must be nilpotent by finite and since G

is connected, by Proposition 2.3.15 it is nilpotent.

An ℵ0-categorical group must have finite exponent, so let exp(G) = e. Since G is

a nilpotent group, its torsion subgroup is equal to the direct sum of its Sylow subgroups

Gp, all of which are normal (and thus unique by the infinite Sylow theorem). Since G has

finite exponent e, G =
∏
p|e primeGp. All the Gp are 0-definable, so since G is connected,

they are all infinite. In fact, they must also be connected, since if G0
p 6= Gp, then H =

G0
p ×

∏
q|e prime, q 6=pGq is a finite index definable subgroup of G. Consequently, we obtain

the following observation.

Proposition 3.1.1. If there is a stable, ℵ0-categorical group G of exponent e which is

not abelian, then for some prime p|e, there is a connected, stable, ℵ0-categorical group of

exponent vp(e) which is not abelian (where vp(e) is the p-adic valuation of e).

Proof. If all the Gp are abelian, then so is G since it is a direct product of them. Hence at
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least one of them is not abelian.

So now we have reduced our example to being a connected, p-group for some p.

We may continue by restricting the nilpotence class.

Proposition 3.1.2. If G is a connected, ℵ0-categorical, stable group of nilpotence class k ≥
2, then there is a 0-definable, connected, ℵ0-categorical, stable quotient of G of nilpotence

class 2.

Proof. If k = 2 we are done. Otherwise, let Zk−2(G) be the (k − 2)th center of G (here

Zi+1(G) is the preimage of the center of G/Zi(G) in G). Then G/Zk−2 has nilpotence class

2 by the definition of nilpotence class. Furthermore, since Zk−2 is 0-definable, this quotient

group is 0-definable and must be connected by Proposition 2.3.8.

To prove several other properties, we first need to recall some properties of nilpo-

tent groups of class 2.

Proposition 3.1.3. Suppose H is nilpotent of class 2. Then all of the following hold:

1. The map [·, ·] : H ×H → Z(H) given by [g1, g2] = g−1
1 g−1

2 g1g2 induces a bilinear map

[·, ·] : H/Z(H)×H/Z(H)→ Z(H).

2. For all g1, g2 ∈ H, ord([g1, g2])| gcd(ord(g1), ord(g2)).

3. For all g ∈ H, CH(g) is normal.

4. For all g, h ∈ H, for all n ≥ 1, we have (gh)n = gnhn[g, h]n(n−1)/2.

5. For every odd n, the set Ωn(H) = {x ∈ H | ord(x)|n} forms a subgroup.

6. For every odd prime p, the set Sp(G) of all p-power-elements forms a subgroup, known

as the p-Sylow subgroup.

Proof. These are all standard results which can be found in most references on group the-

ory (see [Hal59], for example). The bilinearity immediately implies (2). For all g ∈ H,

ker([g, ·]) = CH(g) and so for all g ∈ H, CH(g) E H. (4) is the well-known Collection

Formula, which can be found in [Hal59]. Finally, (5) and (6) follow immediately from (2)

and (4).
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Under the assumption of connectedness, we get an additional, important property

of nilpotent class 2 groups.

Lemma 3.1.4. If G is a connected group of nilpotence class 2, then G′, the commutator

subgroup, is also connected.

Proof. Suppose G′ has a proper definable subgroup H of finite index. Since G′ is generated

by
⋃
g∈G[g,G], it must be that H does not contain one of these groups, say [g,G]. By class

two nilpotence, [g,G] is a subgroup and x 7→ [g, x] is a definable homomorphism from G

onto [g,G]. By Proposition 2.3.8, [g,G] is connected. Since H ∩ [g,G] is a definable finite

index subgroup, it must be equal to [g,G] and hence [g,G] ⊆ H, a contradiction.

Lastly, under the assumptions of stability and ℵ0-categoricity, we may perform

manipulations on centralizers to achieve particular properties.

Proposition 3.1.5. Suppose G is a stable ℵ0-categorical group which is not abelian. Then

there is a definable connected subgroup H ≤ G which is not abelian such that for all x ∈
H\Z(H), C0

H(x) is abelian. Also, H ∩ Z(G) ⊇ Z0(G).

Proof. Assume that C(g) is not already abelian by finite for every g /∈ Z(G). Consider

the collection of
⋂
g∈S C(g) as S varies over all the finite subsets of G. This is a uniformly

definable family by Baldwin-Saxl, so by the DCC we may choose an H in the family that

is minimal and not abelian by finite. Let S be a corresponding finite subset of G yielding

H. For every h ∈ H, CH(h) is just CG(h) ∩
⋂
g∈S CG(g). By minimality, CH(h) is abelian

by finite, or else H ⊆ CG(h), in which case h ∈ Z(H). Thus H has the desired property,

save perhaps connectedness. But by Proposition 2.3.7, we will have C0
H0(h) ≤ C0

H(h) ≤ H0

for every h ∈ H, so the connected group H0 will have the desired property as well. The

statement about Z0(G) follows from the fact that Z(G) ⊆ CG(g) for all g ∈ G, so Z(G) ⊆ H
and by Proposition 2.3.7 Z0(G) ⊆ H0.

We now group all the results into one full statement.

Proposition 3.1.6. If there is an ℵ0-categorical stable group which is not abelian by finite,

then there is a group G which is:

1. stable,

2. ℵ0-categorical,
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3. connected,

4. nilpotent of class 2,

5. a p-group of finite exponent, where

6. G/Z0(G) is an elementary p-group,

7. G′ is an elementary p-group,

8. G′ is connected,

9. for odd primes p, x 7→ xp is a homomorphism from G into Z(G),

10. for p = 2, x 7→ x4 is a homomorphism from G into Z(G), and

11. for all g ∈ G\Z(G), C(g) is abelian by finite.

Proof. A combination of Propositions 3.1.1 and 3.1.2 gives us a connected, stable, ℵ0-

categorical p-group G of nilpotence class 2.

Next we reduce to the case where xp = 1 for every x ∈ G′ = [G,G]. For each

k ≥ 0, let Ωpk(Z(G)) = {x ∈ Z(G) | ord(x) ≤ pk}, which is a subgroup of the center

since Z(G) abelian. Pick the largest k ≥ 0 for which [G,G] 6⊆ Ωpk(Z(G)). If we then

quotient G by Ωpk(Z(G)), we preserve all the properties of G obtained so far, but gain that

[G,G] ⊆ Ωp(Z(G)). Also, by bilinearity, for every x, y ∈ G we have [xp, y] = [x, y]p = 1, so

xp ∈ Z(G) for all x ∈ G. Hence G/Z(G) has exponent p, and since it is abelian, it is an Fp
vector space. The connectedness of G′ comes from Lemma 3.1.4.

Lastly, for odd primes p, x 7→ xp is a homomorphism from G into Z(G) by (4)

in Proposition 3.1.3. This same result proves the statement for p = 2 that x 7→ x4 is a

homomorphism under the already proven hypothesis that exp(G′) = 2 when p = 2. Since G

is connected, the image I of G under the appropriate homomorphisms for p, is a connected

group by Proposition 2.3.8. Hence it must be a subgroup of Z0(G) by Proposition 2.3.7.

So G/Z0(G) has exponent p; but since G′ a connected subgroup of Z(G), by Proposition

2.3.7, G′ must be a subgroup of Z0(G). Hence G/Z0(G) is abelian and thus must be an

Fp-vector space.

Finally, an application of Proposition 3.1.5 gives us a group where all centralizers

of noncentral elements are abelian by finite. This Proposition may reduce the commutator

subgroup, which is not a problem, but it also may vary the center. However we know that
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this new group H contains Z0(G) and so H/Z0(H) must still be an Fp-vector space and all

our properties are preserved.

These properties will be present throughout the rest of the text, since they are con-

veniently preserved under (definable) subgroups and all but the final property are preserved

under (definable) quotients.

3.2 Vector spaces and bilinear maps

By Proposition 3.1.6, we have reduced to a counterexample G where G/Z(G) and

G′ are both Fp vector spaces (if G/Z0(G) is an Fp-vector space, then clearly so is G/Z(G)).

Also [·, ·] can be interpreted as a skew symmetric bilinear map from G/Z(G)×G/Z(G) to

G′. Furthermore G/Z(G) is a connected vector space and [g,G/Z(G)] = 0 if and only if

g = 0, i.e. g ∈ Z(G). Following this line, we observe that the BCM Conjecture (Conjecture

1.1) can be framed entirely in the language of vector spaces and bilinear maps over a finite

field. Indeed, Baur, Cherlin, and Macintyre ([BCM79]) performed exactly such a translation

of Theorem 1.1 on ω-stable, ℵ0-categorical groups to the language of vector spaces.

Theorem 3.2.1. There is a counterexample to the BCM Conjecture if and only if there are

Fp-vector spaces A,B,C and a bilinear map f : A×B → C such that

• (A,B,C, f) is stable and ℵ0-categorical

• A and B are connected in this theory

• f(a,B) = 0 if and only if a = 0

• f(A, b) = 0 if and only if b = 0, and

• the image of f generates C.

Proof. We have already argued that the BCM Conjecture implies this statement about

vector spaces. For the converse, we use the construction of a nilpotent class two groups from

vector spaces which will be described in Lemma 3.2.2. Since the constructions are definable,

they will produce a stable, ℵ0-categorical connected group which is not abelian.

We note that for p 6= 2, we could have alternately proved this theorem with the

construction in Lemma 3.2.3, provided we revise the statement of the theorem to require

the bilinear form to be skew-symmetric in the statement of the theorem.
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Lemma 3.2.2. Let A,B,C be Fp vector spaces for some prime p, and suppose that f :

A× B → C is a bilinear form whose image generates C. Suppose further that f(a,B) = 0

iff a = 0 and f(A, b) = 0 iff b = 0. Then we can construct a group H with underlying set

A×B × C and multiplication defined as:

(a, b, c)⊗ (a′, b′, c′) := (a+ a′, b+ b′, c+ c′ − f(a′, b))

H has the properties:

1. exp(H) = p if p odd, exp(H) = 4 if p = 2,

2. nilpotent of class 2,

3. [(a, b, c), (d, e, g)] = (0, 0, f(a, e)− f(d, b))

4. Z(H) = H ′ = 0× 0× C

5. A× ker(f(a, ·))× C is the centralizer of any (a, 0, c)

6. ker(f(·, b))×B × C is the centralizer of any (0, b, c)

7. H = (A× {0} × C)({0} ×B × C)

8. if A and B are connected and either C is connected or the ambient theory is stable,

then

• H is connected

• H ′ is connected

Proof. We first verify that H is indeed a group with this operation. Clearly (0, 0, 0) is the

identity and the inverse of (a, b, c) is (−a,−b,−c− f(a, b)). Lastly, associativity is verified:

((a, b, c)⊗ (d, e, g))⊗ (h, i, j) = (a+ d, b+ e, c+ g − f(d, b))⊗ (h, i, j)

= (a+ d+ h, b+ e+ i, c+ g + j − f(d, b)− f(h, b+ e))

= (a+ d+ h, b+ e+ i, c+ g + j − f(d+ h, b)− f(h, e))

= (a, b, c)⊗ (d+ h, e+ i, g + j − f(h, e))

= (a, b, c)⊗ ((d, e, g)⊗ (h, i, j))
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Since we are already performing calculations, let us compute the commutator of (a, b, c)

and (d, e, g).

[(a, b, c), (d, e, g)] = (a, b, c)−1(d, e, g)−1(a, b, c)(d, e, g)

= (−a,−b,−c− f(a, b))(−d,−e,−g − f(d, e))(a, b, c)(d, e, g)

= (−a− d,−b− e,−c− f(a, b)− g − f(d, e)− f(d, b))(a, b, c)(d, e, g)

= (−d,−e,−f(a, b)− g − f(d, e)− f(d, b)− f(a,−b− e))(d, e, g)

= (0, 0,−f(a, b)− f(d, e)− f(d, b)− f(a,−b− e)− f(d,−e))

= (0, 0, f(a, e)− f(d, b))

We are now ready to calculate the center of H, which is the set of all (a, b, c) such that

f(a, e)−f(d, b) = 0 for all (d, e, f) ∈ H. Taking d = 0, we find that f(a, e) = 0 for all e ∈ B,

so a = 0. Similarly, we conclude b = 0. Hence Z(H) = 0× 0× C. This is the commutator

subgroup of H since the image of f generates C and [(a, 0, 0), (0, b, 0)] = (0, 0, f(a, b)) for

all a ∈ A and b ∈ B.

Knowing the center lets us see that H/Z(H) ∼= A×B, which is abelian, so H has

nilpotence class 2. This also allows us to immediately conclude the connectedness results.

If A and B are connected, then so is A × B (Proposition 2.3.10). If the ambient theory is

stable, then by Proposition 2.3.11, we find that C is also connected, being generated by the

union of the uniformly definable connected groups f(a,B) for a ∈ A (these are connected

by Proposition 2.3.8). Hence H is the extension of a connected group A × B by another

connected group 0 × 0 × C, so H is connected by Proposition 2.3.9. H ′ = 0 × 0 × C is

obviously connected since C is.

The centralizer of (a, 0, c) is the set of (d, e, f) such that f(a, e) − f(d, 0) = 0,

which is A× ker(f(a, ·))× C. Similarly the centralizer of (0, b, c) is ker(f(·, b))×B × C.

For any (a, b, c) ∈ H, consider that (a, 0, c)(0, b, 0) = (a, b, c − f(0, 0)) = (a, b, c),

so indeed H = (A× {0} × C)({0} ×B × C).

Lastly we determine the exponent of H:

(a, b, c)p = (pa, pb, pc− f(a, b)− f(a, 2b)− . . .− f(a, (p− 1)b))

= (0, 0,−f(a,

p−1∑
i=1

ib))

If p is odd, then this last term becomes −f(a, 0) = 0. If p = 2, then this term is f(a, b),
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which is generally nonzero. However (a, b, c)4 = (0, 0, f(a, b))2 = 0, so H has exponent

4.

Note that one of the properties of Proposition 3.1.6 is missing from the list: we are

not a priori guaranteed that centralizers of noncentral elements are abelian by finite. Using

the formula for the commutator, we see that for a general element (a, b, c), its centralizer is

the set of elements (d, e, g) such that f(a, e) = f(d, b). In general, if f(a, e′) = f(d′, b) as well,

there is no reason for f(d, e′) = f(d′, e), i.e. no reason why (d, e, g), (d′, e′, g′) ∈ C(a, b, c)

should commute. Even when we assume that we are working with a counterexample G

from Proposition 3.1.6 where centralizers are abelian by finite, and use Lemma 3.2.2 on

A = B = G/Z(G), C = G′ and f = [·, ·], we still have no guarantee that even specialized

elements like (a, 0, c) have abelian centralizer connected components in H. Nonetheless,

this lemma will be useful for constructing new counterexamples from “pieces” of existing

counterexamples.

For the second vector space construction that can be used in the proof of Theorem

3.2.1, we need slightly more restrictive conditions. We assume that p 6= 2 and that our

bilinear map goes from the cross product of a vector space with itself. These are natural

conditions, however, when we consider a counterexample of odd exponent obtained by

Proposition 3.1.6: our bilinear map goes from G/Z(G) × G/Z(G) to G′. A natural choice

for vector spaces is A = B = G/Z(G). In such a case we have a slight variation on the

construction, assuming p 6= 2. This is the second construction that can be used in the proof

of Theorem 3.2.1.

Lemma 3.2.3. Let p 6= 2 be prime. Assume A,B are Fp-vector spaces and f : A×A→ B

is a skew-symmetric bilinear map. Assume f(a,A) = 0 if an only if a = 0 and that the

image of f generates B. Then we can define a group H on A×B with multiplication given

by:

(a, b)× (a′, b′) := (a+ a′, b+ b′ + f(a, a′))

H has the properties:

1. exp(H) = p,

2. nilpotent of class exactly 2,

3. [(a, b), (c, d)] = (0, 2f(a, c))
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4. Z(H) = H ′ = 0×B

5. ker(f(a, ·))×B is the centralizer of any (a, b)

6. if A is connected and either B is connected or the ambient theory is stable, then

• H is connected

• H ′ is connected

Proof. The identity of H is found to be (0, 0) and the inverse of (a, b) is (−a,−b). Lastly,

associativity follows from the bilinearity of f :

((a, b)× (a′, b′))× (a′′, b′′) = (a+ a′, b+ b′ + f(a, a′))× (a′′, b′′)

= (a+ a′ + a′′, b+ b′ + f(a, a′) + b′′ + f(a+ a′, a′′))

= (a+ a′ + a′′, b+ b′ + b′′ + f(a, a′ + a′′) + f(a′, a′′))

= (a, b)× (a′ + a′′, b′ + b′′ + f(a′, a′′))

= (a, b)× ((a′, b′)× (a′′, b′′))

Therefore H as defined in the statement of the theorem is indeed a group. Furthermore, H

clearly has exponent p, since both A and B do and f(a, a) = 0 by skew-symmetry.

By definition of multiplication, (a, b) and (a′, b′) commute if and only if f(a, a′) =

f(a′, a). Since p 6= 2, skew symmetry of f implies f(a, a′) = 0. Hence CH(a, b) =

ker(f(a, ·)) × B. If (a, b) ∈ Z(H), then ker(f(a, ·)) = A, so a = 0. Hence Z(H) = 0 × B.

Now if A is connected and the ambient theory is stable, then since B is generated by the

connected groups f(a,A), it must be that B is connected by Proposition 2.3.11. If A and B

are connected, then H is connected by Proposition 2.3.9, since H/Z(H) ∼= A is connected

and Z(H) ∼= B is connected. Also H/Z(H) ∼= A is abelian, so H has nilpotence class

exactly 2.

The desired form of the commutator [(a, b), (c, d)] is easily verified from the skew-

symmetry and bilinearity of f . Clearly Z(H) = H ′ since the image of f generates B and

p 6= 2.

The advantage over this vector space construction over the one in Lemma 3.2.2

is that we do preserve the property that centralizers of noncentral elements are abelian by

finite. In fact, most of the original group structure is preserved, except that we remove all



28

the elements of the center that are not in the commutator subgroup (and correspondingly

trim the noncentral elements of the group). For example, if G were a counterexample

produced by Proposition 3.1.6 of exponent p prime and X were a connected infinite Fp-

vector space, then G ×X has all the same properties listed in Proposition 3.1.6. But in a

very clear way, X is extraneous and only increases the center. We will use the following

lemma liberally in Chapter 5 in order to trim the excess central elements and be left with

only the commutator.

Lemma 3.2.4 (Trimming Lemma). Assume p 6= 2 prime. Suppose G is a stable, ℵ0-

categorical, connected group of nilpotence class 2, so that G/Z(G) is an Fp-vector space.

Then we can define a group H and an injection ι : G/Z(G)→ H with the properties:

1. H stable, ℵ0-categorical,

2. exp(H) = p,

3. H has nilpotence class 2,

4. H is connected,

5. H ′ is connected,

6. ι(G/Z(G)) ∩H ′ = 0,

7. H = ι(G/Z(G))H ′,

8. 〈[ι(G/Z(G)), ι(G/Z(G)))]〉 = Z(H) = H ′,

9. CH(ι(g)) = ι(CG(g)/Z(G))H ′ for any representative g ∈ G of g.

10. For any g ∈ G, CG(g) is abelian by finite if and only if CH(ι(g)) is.

Proof. In Lemma 3.2.3, take A = G/Z(G), B = G′, and f = [·, ·] : G/Z(G)×G/Z(G)→ G′

and construct our H. The items not involving ι follow immediately from the conclusions of

that lemma.

Set ι(g) = (g, 0) for all g ∈ G/Z(G). Clearly ι(G/Z(G)) ∩ H ′ = 0, H =

ι(G/Z(G))H ′, and 〈[ι(G/Z(G)), ι(G/Z(G)))]〉 = H ′ = Z(H). Lastly,

CH(g, 0) = {(x, y) | f(g, x) = 0, y ∈ H ′}

= {(x, 0) | [g, x] = 0}{(0, y) | y ∈ H ′}

= ι(CG(g)/Z(G))H ′
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for any representative g ∈ G of g. If CG(g) were abelian by finite, then since ι(G/Z(G)) ∩
H ′ = 0, we know ι(C0

G(g)/Z(G))H ′ = (ι(CG(g))H ′)0 = C0
H(ι(g)) by Proposition 2.3.10.

The converse follows from the same line of equalities.

For any x ∈ H\H ′, there is a unique y ∈ H ′ such that xy ∈ ι(G/Z(G)), and we

have CH(x) = CH(xy). Considering the unique g ∈ G/Z(G) corresponding to xy by ι,

we may extend the final item in the above lemma to all of H\H ′, and thus we know the

centralizers of H entirely in terms of the centralizers in G.
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Chapter 4

Rings

4.1 Preliminaries and Notation

We adopt the convention that a ring need not have a multiplicative identity, nor will

it necessarily be commutative. Rings with identity will be called unital rings. Throughout

this chapter, ideal shall mean two-sided ideal; left and right ideals will be denoted as such.

An advantage of our convention on multiplicative identity is that ideals themselves are rings.

Definition 4.1.1. A ring R is:

1. nil if for each x ∈ R, there is an integer n ≥ 1 such that xn = 0.

2. nilpotent if there is an integer n ≥ 1 such that x1 · · ·xn = 0 for all x1, . . . , xn ∈ R.

3. null if xy = 0 for all x, y ∈ R.

As with groups, it will be important to have an appropriate notion of connected-

ness.

Definition 4.1.2. A ring R is connected if it contains no proper definable ideals I such

that R/I is finite. The connected component of R is the intersection of all its definable

ideals of finite index.

One easily obtains proofs of propositions analogous to those in Section 2.3, simply

by replacing “group” with “ring” and “normal subgroup” with “ideal”. In particular, if R

is connected and I is a definable ideal, R/I is connected.
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Our ring-theoretic definition of connectedness invokes ideals, since they are the

natural analogue to normal subgroups for making quotients in the category of rings. How-

ever, a ring is also an additive group, so we hope that there is a close connection between

the concepts of ring-connectedness and group-connectedness. This is indeed the case under

the assumptions of stability and ℵ0-categoricity.

Proposition 4.1.3. Let R be a stable, ℵ0-categorical ring. Then the connected component

R0 is 0-definable and has finite index in R. Furthermore R is connected as a ring if and

only if it is connected as an additive group.

Proof. We may show that each ℵ0-categorical, stable ring R contains a unique definable

connected ideal R0 of finite index. Analogous to the group theory argument (see Proposition

2.3.14), this is done by using Baldwin-Saxl to intersect families of uniformly definable ideals

of finite index, and then using ℵ0-categoricity to show these intersections are 0-definable

and finite in number. So the connected component is indeed 0-definable and finite index.

Now suppose R is connected as a ring. Let R0
g be the connected component

of R considered as an additive group, which is 0-definable and finite index (as a group)

by Proposition 2.3.14. Let a ∈ R be given. Multiplication on the left by a is a group

homomorphism, so by Proposition 2.3.8, aR0
g is a connected group. Since R0

g has finite

index in R, R0
g ∩ aR0

g has finite index in aR0
g. By connectedness, aR0

g = R0
g ∩ aR0

g, so

aR0
g ≤ R0

g. Similarly, R0
ga ⊆ R0

g, so R0
g is an ideal of R, and it must have finite index. Thus

R0
g ⊇ R0. Yet R0 is a subgroup of R of finite index, so clearly R0

g = R0 = R and R is

connected as a group. The converse follows immediately by noting that every ideal of finite

index is an additive group of finite index.

Remark 4.1.4. The previous proposition implies that for each r ∈ R, if R is connected as a

ring then the rings rR and Rr are as well.

As with groups, the connected component in stable, ℵ0-categorical rings strips

away the finitary portion of “P by finite” properties:

Proposition 4.1.5. If R is a stable, ℵ0-categorical ring that is null by finite, and I is a

finite index null ideal, then R0 is null as well.

Proof. Suppose I is a finite index null ideal; by intersecting with R0 we may without loss

assume it is contained in R0. Pick any element x ∈ I. Then xR ⊇ xR0 ⊇ xI = 0.
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Since multiplication by x is an additive group homomorphism with kernel containing I, we

conclude xR0 is finite. But xR0 is connected by Proposition 4.1.3, so xR0 = 0. Similarly

R0x = 0 and thus I ⊆ Ann(R0). Now take y ∈ R0. Again, multiplication by y is a group

homomorphism with I contained in the kernel. Thus yR0 is finite and therefore equals 0

by connectedness. Since y ∈ R0 arbitrary, (R0)2 = 0 and thus R0 is null.

4.2 Nilpotent Rings

The main result of this section is a proof of:

Theorem. A stable, ℵ0-categorical ring is nilpotent by finite.

This theorem first appeared in a paper by Baldwin and Rose [BR77]. However,

in the years surrounding that publication, Felgner [Fel75] had already proved the result

with the hypothesis of ω-stability in place of stability, and Cherlin and Reineke [CR76]

and Sabbagh [Sab75a] [Sab75b] had observed that Felgner’s argument could be extended to

stability without too much additional computation. Both Felgner’s proof and Baldwin and

Rose’s proof have at their heart the proof that if R is semisimple (i.e. its Jacobson radical

is 0), then R satisfies the descending chain condition (DCC) on all left ideals. They then

proceed with ring theoretic structural results to get the final conclusion.

We summarize Baldwin and Rose’s argument to indicate where ring theoretic ideas

come into play. First Baldwin and Rose show that in any stable ring R, the Jacobson radical

J(R) must be nilpotent. In a noncommutative ring without identity, the Jacobson radical

is defined as {x ∈ R | ∀y∃z(yx + z + zyx = 0)}, which is 0-definable in the language of

rings (Lam [Lam01] performs an alternate definition involving intersections of quasi-regular

ideals; this turns out to be equivalent). The authors argue that if J(R) is not nilpotent,

then by the Compactness Theorem, there are infinitely many {ci}i<ω in (an elementary

extension of) the ring, the product of any number of them being nonzero. Stability assures

that increasing products do not form a definable linear order, and then quasi-invertibility

of elements of the Jacobson radical finishes the contradiction.

In the second component of Baldwin and Rose’s argument, they show that any

semisimple stable ring has the full descending chain condition on all left ideals. They follow

the proof of Wedderburn’s structure theorem for semisimple rings with the full DCC on

left ideals [Her68], but using DCC on uniformly definable ideals instead (Wedderburn’s
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proof does not use the full power of the full DCC at any point in the proof). With these

arguments, Baldwin and Rose are able to prove that every left ideal is in fact a principal

left ideal; from this, stability gives that any semisimple stable ring has the full DCC on left

ideals, which (by compactness) is equivalent to having full ACC on left ideals. Using the

easy conclusion from ℵ0-categoricity that there are n > m such that xn = xm for all x ∈ R,

the authors then use a number of ring theoretic characterizations of rings with ACC from

[Her68] and [Her69] to conclude that the an ℵ0-categorical stable semisimple ring is finite.

Since J(R) is definable and R/J(R) is semisimple, the two components complete the proof.

In contrast, the proof presented below uses far less ring theoretic machinery. We

still utilize basic notions such as the Jacobson radical and basic lemmas about rings equal to

their Jacobson radical (a real possibility when we do not proscribe a multiplicative identity

to our rings). However, our proof generally takes a more model-theoretic approach, by first

using the notion of connectedness, and then working to interpreting an infinite field. Such

a line of proof was suggested in a private communication by Frank Wagner [Wag06] and we

have pursued these ideas to a full argument below.

Theorem 4.2.1. Let R be a stable, ℵ0-categorical ring. Then R is nilpotent by finite. In

particular, R0 is nilpotent.

Proof. By ℵ0-categoricity, R contains only finitely many 0-definable sets; in particular it

contains only finitely many infinite, connected, 0-definable ideals.

We claim that if R is connected, then R is nilpotent. This shall be proven by

induction on the number of 0-definable infinite subsets of R. However, for the base case

we shall argue a more general statement: any ring R with no proper infinite 0-definable

connected ideals is nilpotent.

Assuming this stronger form of the base case, let us first argue the induction

step. If R has no proper, infinite, 0-definable, connected ideals, then R is nilpotent by the

base case. Otherwise, let I be a proper, infinite, 0-definable, connected ideal of R. Any

0-definable subset of I must also be an 0-definable subset of R, thus I has strictly fewer

0-definable subsets. By induction, I is nilpotent, say In = 0. Similarly, R/I is nilpotent as

well, say (R/I)m = 0. Thus Rnm = 0 and R is nilpotent.

Base Case: If R is a connected ℵ0-categorical, stable ring with no proper infinite

0-definable connected ideals, then R is nilpotent.

Proof of Base Case: Assume R is not nilpotent; by connectedness, it must be
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infinite. Note that if R has a proper infinite 0-definable ideal I, then it has a connected

one, I0; hence R has no proper infinite 0-definable ideals.

The annihilator of R, Ann(R) = {x | ∀y ∈ Rxy = 0 = yx} is an 0-definable ideal;

since R is not nilpotent, it must be proper and hence finite. We may, in fact, assume

that Ann(R) = 0. Indeed, Ann(R), the preimage in R of Ann(R/Ann(R)), etc. are all

0-definable ideals of R, so after finitely many steps they must stabilize by ℵ0-categoricity.

They are also all nilpotent, so quotienting out R by the largest one will not affect our

conclusion.

Suppose I is a finite left ideal of R. For each a ∈ I, Ra ⊆ I, yet by Remark

4.1.4, Ra is a connected ring. Therefore Ra = 0 and a ∈ Annr(R), the right annihilator of

R. Analogously, if I is a finite right ideal of R, then I ⊆ Annl(R), the left annihilator of

R. Consequently, any finite two-sided ideal I must be contained in Annr(R) ∩ Annl(R) =

Ann(R) = 0, so R has no nontrivial finite ideals. In particular, Annl(R) and Annr(R) are

both proper 0-definable ideals and thus must be 0.

Exercise 4.4 of Lam [Lam01] gives one way to construct of the Jacobson radical J

for noncommutative rings without identity. By this construction, J is an ideal that is fixed

by all automorphisms and so by ℵ0-categoricity, J is 0-definable. Hence J = 0 or J = R.

By stability, we have the chain condition on sets of the form rR for r ∈ R. Let

r ∈ R be such that rR is minimal nonzero (such an r exists since annl(R) = 0). By Exercise

4.7 of Lam [Lam01], J = R iff R has no simple left (resp. right) modules. In particular, if

J = R then rR is not a simple right R-module, so either rR ·R = 0 or rR contains a proper

nontrivial right R-submodule M . The former is not possible for then rR ⊆ annl(R) = 0,

and so M exists. In particular, M 6⊆ annl(R) = 0, so M · R 6= 0. Thus we may choose

s ∈ M such that sR 6= 0; then sR ⊆ M ( rR, a contradiction to the minimality of rR.

Hence J = 0.

Set V = {x ∈ R | ∀y ∈ R, xyx = 0}. This an 0-definable set which is closed under

multiplication by R on either side. However, it need not be additively closed; thus, let (V )

be the ideal generated by V . Note that 0 ∈ V and x ∈ V iff −x ∈ V , thus (V ) is the union

of the sets V + . . .+V as the number of summands goes to infinity. Yet, by ℵ0-categoricity,

these 0-definable sets must stabilize in finitely many steps, so (V ) = V + . . .+V , the sum of

n copies of V . This is a 0-definable ideal, so either (V ) = 0 or (V ) = R. Let x1, . . . , xn ∈ V
be given and consider (x1 + . . . + xn)2n+1. By Pigeonhole Principle, for each term in the

multinomial expansion, there exists a j ∈ {1, . . . , n} such that xj appears at least thrice in
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this term. Thus xjyxj appears in this term for some y ∈ R and so the term is 0. Thus, we

have shown that (V ) is a nil ideal, which must be contained in J by Exercise 4.4 of Lam

[Lam01]. Thus V = 0.

Recall that we have chosen an r ∈ R such that rR is minimal nonzero. Set

A = annl(r)∩rR, which is an ideal in rR. Since r /∈ V , there exists z ∈ R such that rzr 6= 0.

Since annl(R) = 0, this implies rzrR 6= 0. By minimality, rzrR = rR = rR · rR and thus

A 6= rR. But rR is connected (by Lemma 4.1.3) and nonzero, so the ring F := rR/A is

infinite.

Let nonzero b ∈ F be given and choose a representative rb̃ of b in rR. Since b 6= 0,

rb̃ /∈ annl(r), so rb̃r 6= 0. Since annl(R) = 0 and by minimality, rb̃rR = rR. Thus, for every

a, b ∈ F , the equation bX = a has a solution in F . For each b ∈ F , let eb denote a solution

to bX = b.

Let b, c ∈ F nonzero such that bc = 0. Then b = rb̃+ A and c = rc̃+ A for some

b̃, c̃ ∈ R. Since bc = 0, we see that rb̃rc̃ ∈ A, i.e. rb̃rc̃r = 0. But since b and c both nonzero,

we have rb̃rR = rR and rc̃rR = rR. Thus 0 = rb̃rc̃rR = rb̃rR = rR, a contradiction. Thus

F has no zero divisors. In particular, for each nonzero b ∈ F and each a ∈ F , the solution

to the equation bX = a is unique.

Let a, b, x ∈ F nonzero be given. Then bebx = bx and aeax = ax, so by cancel-

lation, ebx = x = eax, and so ea = eb. Since aea = a for all a ∈ F , we have a two-sided

multiplicative identity.

In summary, F is an infinite, stable, ℵ0-categorical domain; stability demands that

F is a skew field by Lemma 2.2.1. Yet there are no infinite ℵ0-categorical skew fields by

Theorem 2.1, so we have our contradiction.

4.3 Ring reduction

As with groups, we have a stronger conjecture for ℵ0-categorical stable rings.

Conjecture 4.3.1. If R is an ℵ0-categorical stable ring, then R is null by finite.

This counterexample is also borne from a stronger theorem in ring theory.

Theorem 4.3.2 (Baur, Cherlin, Macintyre [BCM79] with Cherlin, Harrington, Lachlan

[CHL85]). A superstable, ℵ0-categorical ring is null by finite.
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This theorem was first proven for ω-stable, ℵ0-categorical rings by BCM. It can

be extended to superstable ℵ0-categorical rings on account of Cherlin, Harrington and

Lachlan’s theorem that an ℵ0-categorical, superstable theory has finite Morley rank.

As with groups, if there is a counterexample to the conjecture, then we also have

a specialized counterexample.

Proposition 4.3.3. If there is an ℵ0-categorical stable ring which is not null by finite, then

there is a ring R which is:

1. ℵ0-categorical,

2. stable,

3. connected,

4. for all r1, r2, r3 ∈ R we have r1r2r3 = 0, and

5. there exist r1, r2 ∈ R such that r1r2 6= 0.

Proof. By Theorem 4.2.1, any connected stable ℵ0-categorical ring R is nilpotent; we may

choose a connected R of the least nilpotency class n > 2.

We define an increasing collection of ideals Ai inductively as follows: A0 = 0 and

Ai+1 is the preimage in R of Annl(R/Ai). Note that A1 ( R since R2 6= 0. Each Ai is

0-definable, so by ℵ0-categoricity, the Ai stabilize. Let N > 0 be the least positive integer

such that AN is maximal but proper. Then R/AN is a connected, ℵ0-categorical, stable

ring. By minimality, the nilpotency class of R/AN is either n or 2.

We claim that S = R/AN cannot have nilpotency class n. By the choice of N ,

either Annl(S) = S or Annl(S) = 0. The first option is easily eliminated since S2 6= 0

because n > 2. Because S is nilpotent, it is contained in its Jacobson radical J by Exercise

4.4 of [Lam01]. But by Exercise 4.7 of [Lam01], S = J iff S has no simple right S-modules.

In particular, S is not simple, and thus S · S = 0 (not possible) or there is a proper,

nontrivial right S-module M1 ( S. Yet M1 · S 6= 0 because Annl(S) = 0, so there exists

a1 ∈M1 such that 0 ( a1S ⊆M1 ( S. Proceeding recursively, if we are given akS, a proper,

nontrivial right S-submodule of S, then akS cannot be simple, and since akS ·S 6= 0 because

Annl(S) = 0, we may choose a proper nontrivial right S-submodule Mk+1 of akS. Again,

Mk+1 · S 6= 0, so we may choose ak+1 ∈ Mk+1 such that ak+1S 6= 0. This induction yields
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a strictly descending chain S ) a1S ) a2S ) . . ., contradiction the chain condition on

uniformly definable sets.

Thus, we have shown that S = R/AN has nilpotency class 2 and thus R2 ⊆ AN .

Since N > 0, we may consider the ring R/AN−1. This is a connected, ℵ0-categorical,

stable ring. By construction of the Ai, we see that Annl(R/AN−1) = AN/AN−1 and thus

(R/AN−1)/Annl(R/AN−1) ∼= S and has nilpotency class 2. Yet R2 ⊆ AN , so (R/AN−1)3 =

0. By the choice of N , (R/AN−1)2 6= 0. So the ring R/AN−1 shows that n = 3.

4.4 Equivalence of conjectures

Conjecture 4.3.1, if true, essentially says that stable, ℵ0-categorical rings are rings

in name only. That is to say, potentially excepting a finite extension, the ring has no

nontrivial multiplication operation and constitutes no more than an additive abelian group.

It is no surprise then, that in the stable, ℵ0-categorical context, groups and rings amount

to the same question.

Theorem 4.4.1. Conjectures 1.1 and 4.3.1 are equivalent.

Proof. Suppose Conjecture 4.3.1 is false and Conjecture 1.1 is true. We obtain a minimal

counterexample ring R by Proposition 4.3.3. Consider the group G whose set is R×R with

the operation (a, b) · (x, y) = (a+x+ay, b+y). We verify that this is a group. The identity

is (0, 0) and the inverse of (a, b) is (ab − a,−b). Lastly, associativity follows from the fact

that threefold products are zero in R:

[(a, b)(c, d)](e, f) = (a+ c+ ad, b+ d)(e, f)

= (a+ c+ ad+ e+ (a+ c+ ad)f, b+ d+ f)

= (a+ c+ e+ ad+ af + cf, b+ d+ f)

= (a, b)(c+ e+ cf, d+ f)

= (a, b)[(c, d)(e, f)]

Note that π2, the projection of G onto the second coordinate, is a group homomorphism

onto (R,+). By Lemma 4.1.3, R is connected as a ring if and only if it is connected as an

additive group, so (R,+) is connected. The kernel of π2 is the subgroup consisting of (a, 0),

with a ∈ R, which is again isomorphic to (R,+). Hence G is an extension of a connected
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group by a connected group. Since G is interpretable in R, we may consider it in light of

the theory it inherits from R. In this theory the kernel of π2 becomes a definable subgroup

of G, so by Proposition 2.3.9 G is connected. Furthermore, interpretability gives that G is

stable and ℵ0-categorical, so it is abelian. This in turn implies (a, b)(x, y) = (x, y)(a, b), so

a + x + ay = a + x + xb and ay = xb. Since y, a arbitrary, we can choose them such that

ay = 0. Then xb = 0 for all b, x ∈ R and so R is null.

For the converse, suppose Conjecture 1.1 is false and Conjecture 4.3.1 is true.

We obtain a minimal counterexample group by Proposition 3.1.6, which is a connected,

nilpotent class two group G. Write the operations on Z(G) and G/Z(G) additively. Let R

be the abelian group G/Z(G)×Z(G), equipped with the multiplication operation: (a, x)⊗
(b, y) = (0, [a, b]). This multiplication is associative (because applying it twice yields 0) and

distributes over addition. So by Conjecture 4.3.1, this ring is null by finite. By Proposition

4.1.5, R0 is null. Set H = {g ∈ G/Z(G) | ∃x ∈ Z(G) (g, x) ∈ R0}, which is a definable

subgroup since R0 is a definable subring. Since R/R0 is a finite group, H has finite index

in G/Z(G). By the connectedness of G/Z(G) (see Proposition 2.3.8), G/Z(G) = H. Thus

for every a, b ∈ G/Z(G), there are x, y ∈ Z(G) such that (a, x), (b, y) ∈ R0 and hence

[a, b] = 0.
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Chapter 5

Second Analysis of the Groups

5.1 Peaks

In Chapter 3, we reduced to a counterexample of the BCM Conjecture that satisfies

Proposition 3.1.6. We also were able to describe two group constructions out of vector spaces

in Section 3.2. We now use these in conjunction to gain control over the exponent of our

counterexample.

Proposition 5.1.1. If there is a counterexample to the BCM Conjecture, then for some

prime p there is a counterexample G which is:

1. stable,

2. ℵ0-categorical,

3. connected,

4. nilpotent of class 2,

5. exp(G) = p if p odd, exp(G) = 4 if p = 2,

6. Z(G) = G′ if p odd,

7. G′ is a connected Fp-vector space,

8. G/Z0(G) is a connected Fp-vector space,

9. for all g ∈ G\Z(G), C(g) is abelian by finite.
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Proof. Let G be a counterexample given by Proposition 3.1.6. If p is odd, apply the Trim-

ming Lemma (Lemma 3.2.4) to produce a group H that satisfies all the criteria. If p = 2,

we apply Lemma 3.2.2 with A = B = G/Z(G), C = G′ and f = [·, ·] to obtain a counterex-

ample that meets all the conditions, save perhaps the final one. Now use Proposition 3.1.5

on this counterexample to attain the final condition; all the others are preserved by Lemma

3.1.4 and the fact that every group of exponent 2 is abelian.

In this chapter, it is the last of these properties that our investigations will hinge

upon. Throughout this chapter, we will assume the group G has the above properties,

unless we utilize Lemma 3.2.2, where the outcome may lack this final property. However,

with the condition on centralizers in hand, we may proceed with the following definition.

Definition 5.1.2. A peak of G is a maximal connected abelian subgroup of G which

properly extends Z0(G).

It may very well be that G has no peaks, i.e. Z0(G) is the sole maximal connected

abelian subgroup of G. This will be one of the more fruitful possibilities that we will

consider.

If P is a peak and g ∈ P\Z(G), then C(g) ⊇ P . Since centralizers of noncen-

tral elements are abelian, C0(g) is a connected abelian group extending P by Proposition

2.3.7. By maximality, C0(g) = P . So in fact, peaks are the maximal connected centralizer

connected components of elements g ∈ G\Z(G) such that C0(g) 6= Z(G). Since connected

components of a uniformly definable family of groups are once again a uniformly definable

family of groups, we know that P, the collection of all peaks, is a uniformly definable family

(which may be empty!).

If a ∈ P ∈ P and g ∈ G, then g−1ag = aa−1g−1ag ∈ aG′ ⊆ P and so P is normal.

If P1, P2 are two distinct peaks and x ∈ P1 ∩ P2, then C(x) ⊇ P1 ∪ P2. By maximality, this

means C(x) = G so that x ∈ Z(G). Hence the intersection of two distinct peaks is central.

This allows us to define an equivalence relation ∼ on G:

Definition 5.1.3. The peak equivalence relation ∼ is given as follows: x ∼ y iff

1. x, y ∈ Z(G),

2. x, y ∈ TG := {x ∈ G |C0(x) = Z0(G)},

3. x, y /∈ Z(G) ∪ TG and there is a peak P ∈ P such that C0(x) ∪ C0(y) ⊆ P .
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There are three possibilities for the equivalence classes of ∼: G has no peaks (i.e.

G = Z(G) ∪ TG ), G has one peak, or G has two or more (possibly infinitely many) peaks.

Each one poses alternate situations with a different flavor, so we have devoted separate

sections to the analysis of each possibility.

5.2 Multiple Peaks

Suppose G has multiple peaks (possibly infinitely many) and choose two distinct

ones, say A,B. Since A and B are both connected, we conclude that AB is a connected

group by Proposition 2.3.10. Furthermore, AB is not abelian since no noncentral element

of A commutes with all of B. Thus AB must be nilpotent of class 2 by Proposition 2.3.15

and Z(AB) = Z(G) ∩ AB ⊇ Z0(G). So we have a connected group, AB, which contains

two peaks A and B (of G, but also of AB) whose group product equals the whole group

AB. Fixing A, we wish to extend this property to all other peaks of AB.

If C is any peak of G, we may define πB(C) = {b ∈ B | ∃a ∈ A, ab ∈ C}, which is

a “projection” of C ∩ AB into B (it need not be surjective, but the image of an element

in C ∩AB is well-defined up to Z(AB)-equivalence). Each πB(C) ⊇ Z0(G) and so we may

consider the uniform family of these sets, ranging over C ∈ P. By Baldwin-Saxl, the groups⋂
C∈S πB(C), running over all nonempty subsets S ⊆ P, form a uniformly definable family

of groups. By the DCC, we may choose a minimal
⋂
C∈S πB(C) that is infinite modulo

Z0(G). This intersection equals the intersection of finitely may πB(Ci) for some 1 ≤ i ≤ n.

Since πB(A) = B ∩ Z(G), we know A is not among the Ci; since πB(B) = B, we may

without loss assume B = Cn. Call the connected component of this intersection B̃ and

consider the connected group AB̃. It is connected for the same reasons AB was and the

connected component of its center is still Z0(G).

For any peak C ∈ P with C 6= A, we have C ∩ AB̃ is an abelian subgroup, C̃. In

fact, if C̃ is not a finite extension of Z0(G), then (C̃)0 must be a peak of AB̃. Indeed, if D̃

were a definable connected abelian subgroup of AB̃ properly extending (C̃)0, then we could

choose some peak D of G such that D ⊇ D̃. Since D∩AB ⊇ D̃ but C∩AB̃ = C̃ ≤ D̃, C and

D are distinct peaks, so C∩D ⊆ Z(G). Yet C̃ is in this intersection, a contradiction. Hence,

the peaks of AB̃ are precisely (P∩AB̃)0 for P ∈ P, provided (P∩AB̃)0 ) Z0(AB̃) = Z0(G).

Return to considering C ∈ P with C̃ = C ∩ AB̃. Any c ∈ C̃ is expressible as

c = ab for some a ∈ A and b ∈ B̃. But then b ∈ πB(C) by definition, so C̃ ⊆ A(πB(C)∩ B̃).
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We know by minimality that πB(C) ∩
⋂n
i=1 πB(Ci) is either finite modulo Z0(G) or else

πB(C) ⊇
⋂n
i=1 πB(Ci) ⊇ B̃. In the first case, πB(C) ∩ B̃ is finite modulo Z0(G), so C̃ is a

subgroup of a finite extension of A; hence (C̃)0 ⊆ A by Proposition 2.3.7. Since C 6= A by

assumption, C ∩A = Z(G) and thus (C̃)0 ⊆ Z(G), i.e. (C ∩AB̃)0 is not a peak of AB̃.

In the latter case, πB(C) ⊇ B̃, so for every b ∈ B̃, there is an a ∈ A such that

ab ∈ C. But then ab ∈ C ∩ AB = C̃, so AC̃ ⊇ A ∪ B̃ and thus AC̃ = AB̃. Since A(C̃)0 is

connected by Proposition 2.3.10 and it has finite index in the connected group AC̃ = AB̃, by

the normality of A and the Second Isomorphism Theorem we conclude that A(C̃)0 = AB̃.

So for any arbitrary peak P of AB̃, if P 6= A, then AP = AB̃.

Lastly, if x ∈ AB̃ and C0
AB̃

(x) ) Z0(AB̃), we claim x ∈ CZ(AB̃) for some

peak C of AB̃. Indeed, C0
AB̃

(x) ⊆ C for some peak C of AB̃. If C 6= A, then since

AC = AB̃, we can write x as ac for some a ∈ A, c ∈ C. Assume a /∈ Z(AB̃). For any

c′ ∈ C0
AB̃

(x) ⊆ C, we necessarily have ac′ = c′a, i.e. c′ ∈ CAB̃(a). So by Proposition 2.3.7

we have C0
AB̃

(x) ⊆ C0
AB̃

(a) = A, contradicting that C ∩ A ⊆ Z(AB̃). So a ∈ Z(G) and

x ∈ CZ(G) for a peak of AB̃. If, on the other hand, C = A, i.e. C0
AB̃

(x) ⊆ A, then since

x ∈ AB̃ we may write x = ab for some b ∈ B̃. If b /∈ Z(AB̃), then a similar argument shows

C0
AB̃

(x) ⊆ B̃, leading to the same contradiction.

We have shown the following:

Theorem 5.2.1. If there is a counterexample H satisfying Proposition 5.1.1 which has 2

or more peaks, then there is a definable subgroup G of H which has all the properties of

Proposition 5.1.1 and moreover:

• Z(G) = G ∩ Z(H)

• G has at least two peaks

• there is a peak A of G (called a pivot peak) such that for any other peak B of G,

AB = G.

• for any x ∈ G, if Z0(G) ( C0(x) ⊆ P for some peak P , then x ∈ PZ(G).

Proof. The arguments preceding the lemma has shown such a definable connected subgroup

G can be obtained satisfying these four conditions. Since G is a subgroup of a group where

all centralizers are abelian by finite and Z(G) = G ∩ Z(H), the abelian-by-finiteness of

centralizers carries over to G as well. All the remaining conditions follow from the fact that

G is a subgroup or is connected.
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We now assume G possesses the above properties. Fix our special pivot peak A

and let B be any other peak. Since AB = G, every element of G can be written uniquely

(up to elements of Z(G)) as ab for some a ∈ A and b ∈ B. If C is a third peak of G, then in

particular, every noncentral element of C can be written uniquely (up to elements of Z(G))

as ab for some noncentral a ∈ A and noncentral b ∈ B. This gives us homomorphisms

between the peaks other than A, which we now describe precisely.

Suppose B and C are peaks of G distinct from A. Then there is a homomorphism

σB,C : B/Z(G) → C/Z(G) given by: for any b ∈ B/Z(G), pick a representative b ∈ B.

If b /∈ Z(G), choose a noncentral a ∈ A and a noncentral c ∈ C such that b = ac; if

b ∈ Z(G), then take a = c = 1. Set σB,C(b) = c. Since c is unique up to equivalence

modulo A ∩ C ⊆ Z(G), any other representative of b would just differ by an element

of Z(G) and so the image c is well-defined. That it is a homomorphism follows from

the fact that A is normal: if b = ac and b′ = a′c′, then bb′ = aca′c′ = (aca′c−1)cc′, so

σB,C(bb′) = cc′ = σB,C(b)σB,C(c). If c ∈ C\Z(G), then there is some a ∈ A and b ∈ B, both

noncentral, so that ab = c. But then b = a−1c, so that c = σB,C(b) and σB,C is surjective.

Lemma 5.2.2. Let G be a counterexample given by Theorem 5.2.1 and let A be a pivot peak,

i.e. a peak such that AB = G for any peak B 6= A. Then we have a uniformly definable

family of isomorphisms σB,C : B/Z(G)→ C/Z(G) for all pairs of peaks B,C distinct from

A. Moreover, σB,B is the identity automorphism on B/Z(G) and σC,D ◦ σB,C = σB,D for

all B,C,D distinct from A, so σC,B is the inverse of σB,C .

Proof. The σB,C are defined preceding the paragraph and verified to be surjective homomor-

phisms. From the definition it is clear that σB,B is the identity automorphism on B/Z(G).

Given B,C,D peaks distinct from A and b ∈ B/Z(G), pick a representative b of b in B. Pick

a ∈ A, c ∈ C such that b = ac. Pick a′ ∈ A, d ∈ D such that c = a′d. Then b = aa′d, so by

definition we have σB,C(b) = c, σC,D(c) = d, and σB,D(b) = d. Hence σC,D ◦ σB,C = σB,D.

Taking B = D and using the fact that σB,B is an automorphism, we conclude that σB,C is

injective for any peaks B,C distinct from A. Hence these maps are isomorphisms.

Lemma 5.2.3. Let G be a counterexample given by Theorem 5.2.1 and let A be a pivot

peak. Let B and C be two (not necessarily distinct) peaks which are distinct from A. Then

for all a ∈ A, b ∈ B and c ∈ C such that b = ac, we have [a,G] ⊆ [b,G] = [c,G]. More

generally, this is the case when σB,C(b) = (c).
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Proof. If a ∈ A and P 6= A is a peak, then G = AP so [a,G] = [a, P ]. For any b ∈ P

[ab,G] = {[ab, a′b′] | a′ ∈ A, b′ ∈ P}

= {[a, b′] + [b, a′] | a′ ∈ A, b′ ∈ P}

= [a, P ] + [b, A] = [a,G] + [b,G]

So if a ∈ A, b ∈ B, c ∈ C and b = ac, then using the fact that AB = G = AC we have

[b, A] = [b,G] = [ac,G] = [a,G] + [c,G] = [a,C] + [c, A]

so [c, A] ⊆ [b, A] and [c,G] ⊆ [b,G]. Symmetrically, since c = a−1b, we get [b, A] ⊆ [c, A]

and [b,G] ⊆ [c,G]. So [b, A] = [b,G] = [c,G] = [c, A] and since [b, A] = [a,C] + [c, A], we get

[a,G] ⊆ [b,G] = [c,G]. By definition, we have σB,C(b) = c and for any such b and c, there

are representatives b and c of b and c, respectively, and an a ∈ A, such that b = ac.

We now calculate how these peaks arise. Fix our pivot peak A and choose another

peak B 6= A. Let x = ab for a ∈ A\Z(G) and b ∈ B\Z(G), i.e. x /∈ A∪B. Given any other

element cd ∈ AB with c ∈ A and d ∈ B, we have [x, cd] = [a, d] + [b, c]. So cd ∈ C(x) if and

only if [a, d] = [b, c−1]. Therefore C(x) is infinite modulo Z(G) if and only if [a,G]∩ [b,G] is

infinite. In particular, if C(x) is infinite modulo Z(G), then C0(x) is contained in some peak

C which is distinct from A and B. Indeed, if x commuted with infinitely many elements

of B distinct modulo Z(G), then a would commute with those same elements, so C(a) ∩B
is infinite modulo Z(G). This contradicts that C0(a) = A, whose intersection with B is

central. So C 6= B and similarly C 6= A.

By Theorem 5.2.1, x = zc for some c ∈ C and z ∈ Z(G). Since c = (z−1a)b, we

may apply Lemma 5.2.3, and see [a,G] = [za,G] ⊆ [b,G]. So in summary, x ∈ AB\(A∪B)

has infinite centralizer modulo Z(G) if and only if x = ab for a ∈ A, b ∈ B and [a,G] ⊆ [b,G].

5.3 No Peaks

Suppose G = TG, i.e. no noncentral element has an infinite centralizer modulo

the center. There is a way to attain a situation similar to the multiple peaks case: apply

Lemma 3.2.2 with A = B = G/Z(G), C = G′ and f the natural reduction of [·, ·] to

G/Z(G)×G/Z(G)→ G′. The resulting group would have two abelian subgroups A×{0}×C
and {0} × B × C whose product is the whole group. However, as noted in Section 5.1, in
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so doing, we may have lost the guarantee that all other centralizers of noncentral elements

are abelian by finite.

Staying with the original no peaks group, let us consider its structure. Note that

for any subgroup H of G properly containing Z(G), we have CH(h) ⊆ CG(h) for all h ∈ H,

so H must have no peaks as well.

Theorem 5.3.1. There is a definable connected subgroup Z(G) ≤ U ≤ G which is not

abelian and which satisfies the property:

For all x1, x2 ∈ U, [x1, U ] = [x2, U ] or [x1, U ] ∩ [x2, U ] is finite.

in addition to all the properties of Proposition 5.1.1. U will also have no peaks.

Proof. Let H be the outcome of using Lemma 3.2.2 with A = B = G/Z(G) and C = G′

and f = [·, ·]. Since H is symmetric in the first two coordinates, we can define a conjugation

map (x1, x2, x3) = (x2, x1, x3). This map unfortunately is not a homomorphism, however

we still have CH(x) = CH(x). The analogous statement holds for centralizer connected

components.

An element x = (x1, x2, x3) of H has infinite centralizer modulo Z(H) if and only

if there are y = (y1, y2, y3) ∈ H for infinitely many y1 and y2 such that:

[x1, y2] = [y1, x2]

Thus if x1 and x2 are nontrivial, (x1, x2, x3) has infinite centralizer modulo Z(H) if and

only if [x1, G] ∩ [x2, G] is infinite.

Let A = G/Z(G) × 1 × G′. Then A is connected and abelian and for any a ∈ A,

C0
H(a) = A. For any x /∈ A, CH(x) ∩A is finite modulo Z(H).

Consider the collection of all products AC0
H(x) for x /∈ A with C0

H(x) infinite

modulo Z(H). There is at least one such product, namely AA. By Baldwin-Saxl and DCC,

we may choose a minimal intersection of the AC0
H(x) which is not abelian by finite; label

its connected component as I.

Since A connected, we know by Proposition 2.3.7 that A ⊆ I. So given any

(x1, x2, x3) ∈ I and any y ∈ G′, we have

(1, x2, y) = (x−1
1 , 1, x−1

3 y)(x1, x2, x3) ∈ I

so that I has underlying set G/Z(G) × U/Z(G) × G′ for some subgroup U ≤ G. Because

I is an infinite extension of A, it must be that U/Z(G) is infinite. Since projection onto
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the second coordinate is a homomorphism, π2(I) = U/Z(G) is connected by Proposition

2.3.8. U cannot be abelian by finite since G has no peaks and U infinitely extends Z(G).

In fact, since U is infinite modulo Z(G) and centralizers are abelian by finite in G, we know

Z(U) = Z(H). One consequence of this is that Z(I) = 1× 1×G′ = Z(H).

Let U ′ = 〈[U,U ]〉 and consider J = U/Z(G) × U/Z(G) × U ′. By Lemma 3.2.2, J

is a connected subgroup of I which is not abelian (by finite) and has Z(J) = 1 × 1 × U ′.
Let nontrivial x1, x2 ∈ U/Z(G) be given and set x = (x1, x2, 1). Since Z(U) = Z(G), the

same argument as before gives us that C0
J(x) is infinite modulo Z(J) iff [x1, U ] ∩ [x2, U ]

is infinite. Let us assume C0
J(x) is indeed infinite modulo Z(J). Then C0

I (x) is infinite

modulo Z(I) = Z(H) as well, so by the minimality of I, we must have AC0
H(x) ⊇ I. But

since A ⊆ I, we must have I = A(C0
H(x)∩ I) ⊆ ACI(x). By connectedness (via Proposition

2.3.10), AC0
I (x) = I. Thus π2(C0

I (x)) = U/Z(G).

On the other hand, if C0
J(x) is infinite modulo Z(J), then by symmetry so is C0

J(x).

By the argument above, AC0
I (x) = I and thus U/Z(G) = π2(C0

I (x)) = π1(C0
I (x)). Thus

C0
I (x) ⊆ U/Z(G)×U/Z(G)×G′ and C0

I (x) = Z(I)C0
J(x). This gives us that I = AC0

I (x) =

AZ(I)C0
J(x) = AC0

J(x). Letting AJ = A ∩ J = U/Z(G) × 1 × U ′, we see by intersection

that J = AJC
0
J(x). Analogously J = AJC

0
J(x).

These conditions combine to give us π1(C0
J(x)) = π2(C0

J(x)) = U/Z(G). Thus,

for every u ∈ U/Z(G), there exists a v ∈ U/Z(G) such that (u, v, 1) ∈ C0
J(x), i.e. so that

[x1, u][x2, v] = 1. So [x1, U ] ⊆ [x2, U ]. Conversely, we have for every u ∈ U the existence

of v ∈ U such that (v, u, 1) ∈ C0
J(x), which gives [x2, U ] ⊆ [x1, U ] and thus the images are

equal.

Thus we have shown that U is a definable subgroup of G which is not abelian by

finite such that for every x1, x2 ∈ U , [x1, U ] ∩ [x2, U ] is either finite or equal. If p 6= 2

then Z(G) = G′ is connected and U/Z(G) is connected, so by Proposition 2.3.9, U is

connected. If p = 2, then if [x1, U
0] ∩ [x2, U

0] is infinite, then [x1, U ] = [x2, U ]. Since

[x1, U
0] and [x2, U ] are connected subgroups of finite index by Proposition 2.3.8, it must

be that [x1, U
0] = [x2, U

0]. So U0 is our connected definable subgroup with the desired

property. In either case, once we have this connected definable subgroup (call it U), we

clearly see it has no peaks, since any peak of U would be contained in a peak of G. All the

remaining properties are inherited immediately, except that Z(U) = Z(G) = G′, which is

not necessarily U ′. A simple application of the Trimming Lemma when p 6= 2 takes care of

this final concern and does not disrupt any of the other properties.
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5.4 One Peak

Suppose there is exactly one peak P . There is a way to attain a situation similar

to the multiple peaks case: apply Lemma 3.2.2 with A = G/P , B = P , C = G′ and f the

natural reduction of [·, ·] to G/P × P → G′. The resulting group would have two abelian

subgroups A × {0} × C and {0} × B × C whose product is the whole group. However, as

noted in Section 5.1, in so doing, we may have lost that all other centralizers of noncentral

elements are abelian by finite.
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Chapter 6

Quasiendomorphism Rings

6.1 Endomorphism and Quasiendomorphism Rings

For ease of definition, we shall identify functions with their graphs and have our

groups be additive. Unless otherwise mentioned (such as in the examples), we shall assume

our groups to be abelian in this chapter.

Definition 6.1.1. Let G be an additive abelian group.

An additive relation of G is a subset σ ⊆ G×G such that

1. σ is a subgroup

2. the projection, π1(σ), of σ onto the first coordinate equals G

A quasiendomorphism of G is an additive relation which furthermore satisfies:

3. for all x ∈ G, σ(x) := {y ∈ G | (x, y) ∈ σ} is finite.

An endomorphism of G is a quasiendomorphism which is a function.

The definition of quasiendomorphism varies in the literature, depending on con-

venience. The present exposition builds upon the exposition in Baur-Cherlin-Macintyre

[BCM79], but our definitions differ. For example, BCM’s definition of “additive relation”

is more general than our definition, which coincides with their definition of “quasiendo-

morphism”. The shift in definitions causes our definition of “quasiendomorphism” to be

more restrictive as well. In order to avoid any confusion, we proceed in full detail with

self-contained proofs of some of the basic lemmas in that paper.
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Quasiendomorphisms have been used as a tool in several other papers, which

have varied treatments as well. Wagner [Wag97, Ch. 4.4] uses a generalized version of

quasiendomorphisms in order to study stable groups. Quasiendomorphisms also appear in

the proof of Theorem 1.14 in Poizat [Poi01], for example. The general idea behind using

quasiendomorphism rings is to create a rich algebraic object out of definable relations on

our structure that approximate invertible maps. Then, using model theoretic methods, one

hopes to derive an infinite field from this object or conclude, contrary to expectations, that

the quasiendomorphism ring is finite. Section 6.3 illustrates this philosophy in application.

From the definitions, it follows that if σ is an additive relation, then σ(0) is a

group. In the case that σ is a quasiendomorphism, then σ(0) is finite. As the next two

propositions show, the converse is true as well and σ(0) captures how additive relations lie

within each other.

Lemma 6.1.2. If σ is an additive relation on G and (x, y) ∈ σ, then σ(x) = y + σ(0).

Hence σ is a quasiendomorphism if and only if σ(0) is finite.

Proof. If y, y′ ∈ σ(x), then since σ a group, (0, y − y′) ∈ σ, so y ≡ y′ mod σ(0). By

definition, σ is a quasiendomorphism if and only if σ(x) is finite for all x ∈ G. The

equivalence follows immediately.

Lemma 6.1.3. Suppose σ ⊆ τ are additive relations on G. Then τ = σ + ({0} × τ(0))

(where + denotes group addition). Furthermore, [τ : σ] = [τ(0) : σ(0)], so if σ(0) has finite

index in τ(0), then σ has finite index in τ . In particular, if τ is a quasiendomorphism, then

σ has finite index in τ .

Proof. For any (g, h) ∈ τ , there is some x such that (g, x) ∈ σ ⊆ τ . Then (g, h) − (g, x) =

(0, h − x) ∈ τ so h − x ∈ τ(0). Hence τ = σ + ({0} × τ(0)). By the Second Isomorphism

Theorem, τ/σ ∼= ({0} × τ(0))/({0} × σ(0)) ∼= τ(0)/σ(0). If σ(0) has finite index in τ(0),

then the right hand side is a finite group; such is the case if τ is a quasiendomorphism since

τ(0) is finite by definition.

Given an additive relation σ on G and a subgroup A of G, we may define the

restriction of σ to A, denoted σ |A, as:

σ |A:= {(a, a′) ∈ A×A | (a, a′) ∈ σ}.
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This differs from the usual relation restriction in that we are restricting the codomain as

well. With that consideration, we note that the group σ |A is an additive relation if and only

if for every a ∈ A there is an a′ ∈ A such that (a, a′) ∈ σ. If σ was a (quasi)-endomorphism

and σ |A is an additive relation, then it must in particular be an (quasi)-endomorphism.

If A is a (necessarily) normal subgroup of G of finite index n, then σ |A is a

finite index subgroup of σ of index dividing n2. Indeed, A× A has index n2 in G×G and

σ |A= σ ∩A×A, so we have our bound by the Second Isomorphism Theorem.

Given two additive relations σ1 and σ2 on G, we can define three algebraic oper-

ations, negation, addition and multiplication, on σ1 and σ2 to produce additive relations.

When applied to (quasi)-endomorphisms, these operations yield (quasi)-endomorphisms.

To avoid confusion with Cartesian products of additive relations, we will use ∗ to denote

multiplication.

Definition 6.1.4. Given two additive relations σ1 and σ2 on G, set

−σ1 := {(x,−y) ∈ G×G | (x, y) ∈ σ1}

σ1 + σ2 := {(x, y) ∈ G×G | ∃u,w ∈ G, y = u+ w, (x, u) ∈ σ1, (x,w) ∈ σ2}

σ1 ∗ σ2 := {(x, y) ∈ G×G | ∃z ∈ G, (x, z) ∈ σ2, (z, y) ∈ σ1}

In other words, − corresponds to inverting the second coordinate, + corresponds to

function addition, and ∗ corresponds to composition. It is easy to verify that the sets defined

above are additive relations (resp. (quasi)-endomorphisms) if σ1 and σ2 are. As shorthand,

we write σ−τ in place of σ+(−τ). As one would expect, many natural ring properties hold.

However, there are a few ring properties which will require more assumptions to guarantee.

Proposition 6.1.5. The operations −, +, and ∗ have the following algebraic properties on

additive relations on G:

• + and ∗ are associative.

• 0 = G× {0} is an additive identity.

• 1 := {(g, g) | g ∈ G}, the identity automorphism of G, is a multiplicative identity.

• − is an involutory operator.

• − distributes over +.
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• for all σ, τ , −(σ ∗ τ) = (−σ) ∗ τ = σ ∗ (−τ)

• for all σ, σ − σ = G× σ(0)

• + is commutative

• for all σ, 0 ∗ σ = 0 but σ ∗ 0 = G× σ(0).

• for all σ1, σ2, σ3 additive relations on G,

σ1 ∗ (σ2 + σ3) = σ1 ∗ σ2 + σ1 ∗ σ3

but

(σ1 + σ2) ∗ σ3 ⊆ σ1 ∗ σ3 + σ2 ∗ σ3

The index is bounded above by |σ3(0)|, so if σ3 is a quasiendomorphism, then (σ1 +

σ2)∗σ3 has finite index in σ1 ∗σ3 +σ2 ∗σ3. If σ3 is an endomorphism, they are equal.

Proof. Most of these properties follow immediately from the definitions, or the correspond-

ing properties of G, or general facts such as associativity of the composition of relations.

However, we have provided arguments for claims that require more care.

We shall show distributivity on the left:

σ1 ∗ (σ2 + σ3) = {(g, g′) | ∃h (g, h) ∈ (σ2 + σ3), (h, g′) ∈ σ1}

= {(g, g′) | ∃h1, h2, (g, h1) ∈ σ2, (g, h2) ∈ σ3, (h1 + h2, g
′) ∈ σ1}

= {(g, g′) | ∃h1, h2, h3 (g, h1) ∈ σ2, (g, h2) ∈ σ3,

(h1, h3) ∈ σ1, (h2, g
′ − h3) ∈ σ1}

= {(g, g′) | ∃h2, h3 (g, h3) ∈ σ1 ∗ σ2, (g, h2) ∈ σ3, (h2, g
′ − h3) ∈ σ1}

= {(g, g′) | ∃h3 (g, h3) ∈ σ1 ∗ σ2, (g, g′ − h3) ∈ σ1 ∗ σ3}

= σ1 ∗ σ2 + σ1 ∗ σ3

Near distributivity on the right:

(σ1 + σ2) ∗ σ3 = {(g, g′) | ∃h1 (g, h1) ∈ σ3, (h1, g
′) ∈ (σ1 + σ2)}

= {(g, g′) | ∃h1, h2 (g, h1) ∈ σ3, (h1, h2) ∈ σ1, (h1, g
′ − h2) ∈ σ2}

⊆ {(g, g′) | ∃h2 (g, h2) ∈ σ1 ∗ σ3, (g, g′ − h2) ∈ σ2 ∗ σ3}

= σ1 ∗ σ3 + σ2 ∗ σ3
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By Lemma 6.1.3, the index of (σ1 + σ2) ∗ σ3 in σ1 ∗ σ3 + σ2 ∗ σ3 equals the index of

((σ1 + σ2) ∗ σ3)(0) in (σ1 ∗ σ3 + σ2 ∗ σ3)(0) = (σ1 ∗ σ3)(0) + (σ2 ∗ σ3)(0). We wish to bound

this index.

Suppose we are given g1 ∈ (σ1∗σ3)(0) and g2 ∈ (σ2∗σ3)(0) and we find h, h′ ∈ σ3(0)

such that

(h, g1) ∈ σ1 (h′, g2) ∈ σ2

If z ∈ σ3(0) and g′1 ∈ (σ1 ∗ σ3)(0) and g′2 ∈ (σ2 ∗ σ3)(0) such that

(h− z, g′1) ∈ σ1 (h′ − z, g′2) ∈ σ2

Then (z, g1 − g′1) ∈ σ1 and (z, g2 − g′2) ∈ σ2, so (z, g1 − g′1 + g2 − g′2) ∈ σ1 + σ2. Since

z ∈ σ3(0), g1 − g′1 + g2 − g′2 ∈ ((σ1 + σ2) ∗ σ3)(0) and the elements g1 + g2 and g′1 + g′2 of

(σ1 ∗ σ3 + σ2 ∗ σ3)(0) are equivalent modulo ((σ1 + σ2) ∗ σ3)(0). Therefore the number of

distinct classes of (σ1 ∗ σ3 + σ2 ∗ σ3)(0) modulo ((σ1 + σ2) ∗ σ3)(0) is bounded above by the

number of pairs of elements σ3(0) distinct up to translation by the same element of σ3(0).

This value is clearly equal to |σ3(0)|.
We now show that − commutes with ∗. By definition:

−(σ ∗ τ) = {(g,−g′) | (g, g′) ∈ σ ∗ τ}

= {(g,−g′) | ∃h (g, h) ∈ τ, (h, g′) ∈ σ}

= {(g,−g′) | ∃h (g, h) ∈ τ, (h,−g′) ∈ −σ}

= (−σ) ∗ τ

On the other hand, if (h, g′) ∈ σ, then by Lemma 6.1.2 and the fact that σ is a group, we

know (−h,−g′) ∈ σ as well. So we alternately derive:

−(σ ∗ τ) = {(g,−g′) | (g, g′) ∈ σ ∗ τ}

= {(g,−g′) | ∃h (g, h) ∈ τ, (h, g′) ∈ σ}

= {(g,−g′) | ∃h (g,−h) ∈ −τ, (h, g′) ∈ σ}

= {(g,−g′) | ∃h (g,−h) ∈ −τ, (−h,−g′) ∈ σ}

= σ ∗ (−τ)
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Lastly, we show that σ − σ = G × σ(0). For this we use Lemma 6.1.2: if σ(x) =

y + σ(0), then (−σ)(x) = −y − σ(0) = −y + σ(0). Hence (σ − σ)(x) = σ(0) and thus

σ − σ = G× σ(0), which is an additive relation extending 0.

Even though we are missing a few ring properties (such as: the distributivity of

multiplication on the right over addition; additive inverses; multiplication by 0 on the right

producing 0), we shall work to a situation where these properties will hold and we have

a genuine ring. Since our eventual goal is to produce rings, we would like to pay special

attention to algebraic structures closed under −, + and ∗. In light of the properties listed

in Proposition 6.1.5, any such algebraic structure must be a near semiring. For the reader

not abreast of the nomenclature of algebraic structures with few axioms, we remind them

of the definition now.

Definition 6.1.6. A near semiring is a set S equipped with two binary operations + and

∗ satisfying:

• (S,+) is a semigroup with identity 0.

• (S, ∗) is a semigroup

• a ∗ (b+ c) = a ∗ b+ a ∗ c for all a, b, c ∈ S

• 0 ∗ a = 0 for all a ∈ S

This definition can be equivalently stated with ∗ being right distributive and 0 being right

absorptive.

In the context of additive relations on G, we have a third operation −, which

approximates the notion of additive inverse. Since near semirings do not need to be closed

under − (or even have an operator like −), we give such near semirings of additive relations

special status.

Definition 6.1.7. A near semiring R of additive relations on G is called symmetric if

−r ∈ R whenever r ∈ R.

A simple example of a symmetric near semiring of additive relations on G is

Mor(G), the near semiring of all additive relations on G. Mor(G) is simply the near semiring

structure present on the family of all subgroups of G × G which project surjectively onto

the first coordinate; this near semiring is clearly closed under −.
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Now that we have at our disposal−, + and ∗, three algebraic operations on additive

relations, we would like to consider closures of sets under such operations.

Definition 6.1.8. Given a set H of additive relations on G, we define the symmetric

near semiring of additive relations on H, denoted E[H], to be the intersection of all

symmetric sub-near-semirings R of Mor(G) which contain H. We define the symmet-

ric near semiring of quasiendomorphisms and the symmetric near semiring of

endomorphisms analogously, replacing “additive relation” with “(quasi)-endomorphism”

throughout the definition.

Remark 6.1.9. Recall that we do not require near semirings to have multiplicative identity,

so the definition of E[H] does not necessitate that 1 be a member. However, should we

want to ensure that our symmetric near semiring of additive relations has a multiplicative

identity, we may always include 1 in our seed set H.

As we shall see, E[H] can be built recursively from below. Given a set H of

additive relations on G, we define a near semiring of morphisms recursively as follows:

1. Set H0 = H ∪ {0}.

2. Given Hi, set

Hi+1 = {σ1 − σ2 |σ1, σ2 ∈ Hi} ∪ {σ1 ∗ σ2 |σ1, σ2 ∈ Hi}

Proposition 6.1.10. Given a set H of additive relations on G, we define the Hi as above.

Then E[H] =
⋃
i<ωHi.

Proof. Since any r, s ∈
⋃
i<ωHi belongs to some Hi, then (0 − r) = −r ∈ Hi+1 and

s− (−r) = s+ r ∈ Hi+2, so we see that
⋃
i<ωHi is symmetric and closed under +. Hence⋃

i<ωHi is clearly a symmetric near semiring since it is also closed under ∗ and it contains

the additive identity 0, which is left absorptive by Proposition 6.1.5. By definition, E[H]

must be a sub-near-semiring, but the reverse inclusion is clear.

If G is ℵ0-categorical and stable and an additive relation σ is definable, then

we may take its connected component σ0, which will have finite index in σ. Note that

both π1(σ0) and π2(σ0) are definable, connected (by Proposition 2.3.8) subgroups of G,

so they are contained in G0 (by Proposition 2.3.7). Furthermore, π1(σ0) has finite index
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in π1(σ) = G, so π1(σ0) = G0. Thus σ0 is an additive relation on G0, and if σ was a

(quasi)-endomorphism, then σ0 will be too. From earlier discussions it follows that since

G0 has finite index in G, then σ |G0 has finite index in σ, and thus σ0 = (σ |G0)0. Also, if

σ was an endomorphism, then necessarily σ0 = σ |G0 .

By Lemma 6.1.3, we know [σ |G0 : σ0] = [σ |G0 (0) : σ0(0)]. However, we can push

this result up to σ.

Lemma 6.1.11. Let σ be an additive relation on G. Suppose G0 and σ0 are finite index in

their respective groups. Then [σ : σ0] = [G : G0][σ(0) : σ0(0)].

Proof. We know [σ : σ0] = [σ : σ |G0 ][σ |G0 : σ0], and that [σ |G0 : σ0] = [σ |G0 (0) : σ0(0)].

The Second Isomorphism Theorem gives us that [σ |G0 +({0} × σ(0)) : σ |G0 ] = [σ(0) :

σ |G0 (0)]. Combined, they yield:

[σ : σ0] = [σ : σ |G0 +({0} × σ(0))][σ(0) : σ0(0)]

It remains to show that [σ : σ |G0 +({0} × σ(0))] = [G : G0]. Since π1(σ) = G, we know

(G0 ×G) + σ = G ×G. On the other hand, σ ∩ (G0 ×G) = σ |G0 +({0} × σ(0)). Indeed,

if (g, h) ∈ σ ∩ (G0 × G), then there is a (g, h′) ∈ σ |G0 for some h′ ∈ G0. But then

(0, h − h′) ∈ σ(0), so we obtain the desired equality of groups. Now a final application of

the Second Isomorphism theorem gives us that [σ : σG0 + ({0} × σ(0))] = [G : G0].

When our additive relations are definable and we are in a context where connected

components have finite index (e.g. in a stable, ℵ0-categorical context), then we have an

alternate choice for creating a symmetric near semiring out of a set of additive relations.

Given H, a set of additive relations, we perform the same recursive construction as for

E[H], except we take connected components at each stage. Specifically:

1. Set H∗0 = {00} ∪ {σ0 |σ ∈ H}.

2. Given H∗i , set

H∗i+1 = {(σ1 − σ2)0 |σ1, σ2 ∈ H∗i } ∪ {(σ1 ∗ σ2)0 |σ1, σ2 ∈ H∗i }

3. E0[H] =
⋃
i<ωH

∗
i .

With the following set of lemmas, we will verify that E0[H] is indeed a symmetric

near semiring, albeit with slightly different algebraic operations. We will establish several

properties of E0[H], and relate it to E[H].
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Lemma 6.1.12. Suppose connected components have finite index. If σ is an additive rela-

tion on G, then −(σ0) = (−σ)0. Furthermore, if σ is a quasiendomorphism, (σ− σ)0 = 00.

Proof. Clearly since σ0 ⊆ σ, we have −(σ0) ⊆ −σ. If (x, y), (x′, y′) ∈ σ are equivalent

modulo σ0, then (x − x′, y − y′) ∈ σ0. But then (x,−y), (x′,−y′) ∈ −σ and (x − x′,−y −
(−y′)) ∈ −(σ0) so [−σ : −(σ0)] is bounded above by [σ : σ0] and (−σ)0 = (−(σ0))0.

Conversely, if (x, y), (x′, y′) ∈ −σ are equivalent modulo −(σ0) then (x−x′, y−y′) ∈ −(σ0).

But then (x,−y), (x′,−y′) ∈ −(−σ) = σ and (x − x′,−y − (−y′)) ∈ −(−(σ0)) = σ0. So

[σ : σ0] is bounded above by [−σ : −(σ0)], and thus [σ : σ0] = [−σ : −(σ0)]. Substitute −σ
for σ in this formula, and we obtain

[−σ : (−σ)0] = [σ : −((−σ)0)]

Hence −((−σ)0) is a definable subgroup of finite index in σ; this implies −((−σ)0) ⊇ σ0

and thus (−σ)0 ⊇ −(σ0). Yet we knew that (−σ)0 = (−(σ0))0, so (−σ)0 = −(σ0).

The statement about quasiendomorphisms follows by Proposition 6.1.5: since σ−
σ = G × σ(0) and σ(0) is finite for quasiendomorphisms, the connected component of

G× σ(0) is G0 × {0} = 00 (using Proposition 2.3.10).

Lemma 6.1.13. Suppose connected components have finite index. If σ and τ are two

additive relations on G, then

(σ + τ)0 = (σ0 + τ0)0

Proof. Since σ ⊇ σ0 and τ ⊇ τ0, we easily see from the definition of + that σ+ τ ⊇ σ0 + τ0

as groups in G×G. By Proposition 2.3.7, this means (σ + τ)0 ⊇ (σ0 + τ0)0. Both of these

are additive relations on G0, so by Lemma 6.1.3 we know that

[(σ + τ)0 : (σ0 + τ0)0] = [(σ + τ)0(0) : (σ0 + τ0)0(0)]

If we show this index is finite, then by connectedness (σ + τ)0 equals (σ0 + τ0)0.

We know by Lemma 6.1.11 that (σ + τ)0(0) has finite index in (σ + τ)(0). Yet

from the definition of + on morphisms, it is clear that (σ+ τ)(0) is the sum of groups σ(0)

and τ(0). Since σ0(0) and τ0(0) have finite index in σ(0) and τ(0), respectively, by Lemma

6.1.11 it must be that (σ0 + τ0)(0) = σ0(0) + τ0(0) has finite index in (σ + τ)(0). Again

by Lemma 6.1.11, (σ0 + τ0)0(0) has finite index in (σ0 + τ0)(0). Since (σ + τ)0(0) contains

(σ0 + τ0)0(0), the latter has finite index in the former, which is precisely the result sought

to finish the proof.
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Lemma 6.1.14. Suppose connected components have finite index. If σ and τ are two

additive relations on G, then

(σ ∗ τ)0 = (σ0 ∗ τ0)0

Proof. Since σ ⊇ σ0 and τ ⊇ τ0, we easily see from the definition of ∗ that σ ∗ τ ⊇ σ0 ∗ τ0

as groups in G ×G. By Proposition 2.3.7, this means (σ ∗ τ)0 ⊇ (σ0 ∗ τ0)0. Both of these

are additive relations on G0, so by Lemma 6.1.3 we know that

[(σ ∗ τ)0 : (σ0 ∗ τ0)0] = [(σ ∗ τ)0(0) : (σ0 ∗ τ0)0(0)]

If we can show the index on the right is finite, then by connectedness, (σ ∗τ)0 and (σ0 ∗τ0)0

must be equal.

Consider (σ ∗ τ)(0) = {g ∈ G | ∃h ∈ τ(0), (h, g) ∈ σ} and set

T := {x ∈ G | ∃y ∈ τ0(0), (y, x) ∈ σ}

Since σ and τ0(0) are groups, it is clear that T is a group as well. Moreover, (σ ∗ τ)(0) ⊇
T ⊇ (σ0 ∗ τ0)(0). On the one hand, if two elements g, g′ ∈ (σ ∗ τ)(0) have corresponding

h, h′ ∈ τ(0) with h ≡ h′ mod τ0(0) and (h, g), (h′, g′) ∈ σ, then h − h′ ∈ τ0(0) and

(h − h′, g − g′) ∈ σ. So g − g′ ∈ T and thus [(σ ∗ τ)(0) : T ] ≤ [τ(0) : τ0(0)], which is

finite. On the other hand, we claim T = σ(0) + (σ0 ∗ τ0)(0), where the + denotes a group

sum. Indeed, since 0 ∈ τ0(0), we know T contains both groups on the right, thus their

sum. Conversely, given some x ∈ T , we choose some y ∈ τ0(0) such that (y, x) ∈ σ. Since

y ∈ τ0(0) ⊆ G0, there is some z ∈ G0 such that (y, z) ∈ σ0. But then z ∈ (σ0 ∗ τ0)(0) by

definition and x− z ∈ σ(0). Hence T equals the sum of the two groups. A quick inspection

shows that σ(0) ∩ (σ0 ∗ τ0)(0) ⊇ σ0(0) since 0 ∈ τ0(0). The Second Isomorphism Theorem

thus implies that T is a finite extension of (σ0 ∗τ0)(0), and so we have shown that (σ ∗τ)(0)

finitely extends (σ0 ∗ τ0)(0). Yet by Lemma 6.1.11, (σ ∗ τ)0(0) has finite index in (σ ∗ τ)(0)

and (σ0 ∗ τ0)0(0) has finite index in (σ0 ∗ τ0)(0). Since (σ ∗ τ)0(0) extends (σ0 ∗ τ0)0(0), the

latter must have finite index in the former. By the conclusion of the previous paragraph,

(σ ∗ τ)0 = (σ0 ∗ τ0)0.

Corollary 6.1.15. Suppose connected components have finite index. Let H be a set of

morphisms and define:

R = {σ0 |σ ∈ E[H]}
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Then R = E0[H] and R is a symmetric near semiring, with the operations

−0(σ0) := (−σ)0

σ0 +0 τ0 := (σ + τ)0

σ0 ∗0 τ0 := (σ ∗ τ)0

Proof. We shall prove the equality R = E0[H] by showing inductively that H∗n = {σ0 |σ ∈
Hn} for all n < ω. Clearly H∗0 = {σ0 |σ ∈ H0}. Assuming H∗n has the desired form, consider

H∗n+1. Using Lemmas 6.1.12, 6.1.13 and 6.1.14, we obtain:

H∗n+1 = {(σ1 − σ2)0 |σ1, σ2 ∈ H∗n} ∪ {(σ1 ∗ σ2)0 |σ1, σ2 ∈ H∗n}

= {(τ0
1 − τ0

2 )0 | τ1, τ2 ∈ Hn} ∪ {(τ0
1 ∗ τ0

2 )0 | τ1, τ2 ∈ Hn}

= {(τ0
1 + (−τ2)0)0 | τ1, τ2 ∈ Hn} ∪ {(τ0

1 ∗ τ0
2 )0 | τ1, τ2 ∈ Hn}

= {(τ1 + (−τ2))0 | τ1, τ2 ∈ Hn} ∪ {(τ1 ∗ τ2)0 | τ1, τ2 ∈ Hn}

= {σ0 |σ ∈ Hn+1}

Since E[H] =
⋃
n<ωHn by Proposition 6.1.10 and E0[H] =

⋃
n<ωH

∗
n, the induction proves

R = E0[H].

Defining −0, +0 and ∗0 on R as in the statement of the theorem, we immediately

conclude that R is a symmetric near semiring using Lemmas 6.1.12, 6.1.13, 6.1.14 to under-

stand the operations of R in terms of those on E[H], which is a symmetric near semiring

by Lemma 6.1.5. For example, left distributivity:

σ0 ∗0 (τ0 +0 λ0) = σ0 ∗0 (τ + λ)0

= (σ ∗ (τ + λ))0

= (σ ∗ τ + σ ∗ λ)0

= (σ ∗ τ)0 +0 (σ ∗ λ)0

= (σ0 ∗0 τ0) +0 (σ0 ∗0 λ0)

In the special cases of quasiendomorphisms and endomorphisms, E0[H] produces

actual rings.
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Corollary 6.1.16. If H consists of only quasiendomorphisms, then E0[H] is a ring and

−0 takes elements to their additive inverses.

If H consists of only endomorphisms, then E[H] is a ring and −0 takes elements to their

additive inverses. If the group G is connected, then E[H] = E0[H].

Proof. Since being a quasiendomorphism is preserved under −, +, ∗, and connected com-

ponents, the previous corollary gives us that all of E0[H] consists of solely quasiendomor-

phisms. By Lemmas 6.1.12 and 6.1.13, (σ +0 (−0σ)) = (σ − σ)0 = (G× σ(0))0 = 00. Thus

−0σ is the additive inverse under +0 of σ ∈ E0[H]. Similarly, since σ3 has finite kernel,

Lemma 6.1.5 gives us

(σ1 +0 σ2) ∗0 σ3 = ((σ1 + σ2) ∗ σ3)0

= (σ1 ∗ σ3 + σ2 ∗ σ3)0

= σ1 ∗0 σ3 +0 σ2 ∗0 σ3

and σ3 ∗0 0 = 00.

Similarly, the negation, sum, and product of endomorphisms is an endomorphism,

so if H consists solely of endomorphisms, so does E[H]. Lemma 6.1.5 implies that if

ker(σ3) = {0}, then σ3 ∗ 0 = 0, multiplication by σ3 on the right distributes over addition,

and σ3 − σ3 = 0. Hence E[H] is a ring. If G is connected, then any endomorphism on G

equals its connected component; by Corollary 6.1.15, E[H] = E0[H].

Corollary 6.1.17. If H consists solely of quasiendomorphisms, then E0[H] is the quotient

of E[H] by the ideal I = {σ ∈ E[H] |σ0 = 00}.

Proof. Let R = E0[H] and consider the map f : E[H] → R where σ 7→ σ0. By the way

addition and multiplication are defined on R in Corollary 6.1.15, we have ensured that f is

a ring homomorphism. Its kernel clearly must be I.

When H consists solely of (quasi)-endomorphisms, we shall refer to E0[H] as the

ring of (quasi)-endomorphisms on G generated by H. There are several advantages

to the ring of quasiendomorphisms E0[H] over the symmetric near semiring of morphisms

E[H], not least of which is that we are dealing with a ring rather than a symmetric near

semiring. In general, E0[H] removes the finite noise caused by addition and multiplication.

Another example occurs when we multiply two additive relations σ and τ which may be near
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inverses of each other, i.e. σ ∗ τ is a finite extension of 1. By taking connected components,

we force σ0 to be the a left inverse of τ0 in E0[H].

We analyze several symmetric near semirings of additive relations which may arise

in the context of stable, ℵ0-categorical groups. In all cases, we will push to obtain quasien-

domorphisms, or even endomorphisms, so that our near semirings will be actual rings.

However we have conducted the preparations in this section in greater generality to permit

certain manipulations later on that do not always produce rings.

The near semirings constructed in the following sections will usually arise under

additional hypotheses than the two model theoretic ones. Our goal will be to utilize the

ℵ0-categoricity and stability to force the associated rings to be finite.

6.2 First application

In this application, we use automorphic actions on a subgroup to define an endo-

morphism ring. This situation arises in the reduced counterexample to the BCM Conjec-

ture that we have obtained in Proposition 5.1.1. Although that group arises in a stable,

ℵ0-categorical context, the endomorphism ring construction below follows solely from a

few group-theoretic hypotheses. Nonetheless, the example in this section illustrates how

quasiendomorphism rings arise naturally in counterexamples to the BCM Conjecture. For

this example, we shall write the original group, G, multiplicatively to avoid confusion.

Theorem 6.2.1. Let G be a group of nilpotency class at most 2. Suppose N is a proper

normal abelian subgroup of G of finite exponent, n. Then consider the action of G on N

by conjugation, which yields a group H ∼= G/CG(N) of definable automorphisms of N . The

resulting ring of endomorphisms, E[H], is nilpotent by finite. If, furthermore, N is a vector

space, then E[H] is null by finite.

Proof. Since N is finite exponent and abelian, for each prime p, it has only one Sylow

p-subgroup Sp and N is clearly the direct product all of them. For each p, the p-Sylow

subgroup Sp of N is characteristic and thus normal in G as well (and definable if N is

definable).

Since N is normal, conjugation defines an automorphic action of G on N . The

kernel of the resulting map from G to Aut(N) is precisely CG(N). Hence, for every g ∈
G/CG(N), we get an automorphism σg of N given by σg(n) = g−1ng. Set H = {0, 1} ∪
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{σg | g ∈ G/CG(N)}. Note that

(σg ∗ σh)(n) = σg(h
−1nh)

= g−1h−1nhg = σgh

Since Z(G) ≤ CG(N) and G has nilpotency class 2, the group G/CG(N) is abelian,

and thus σg ∗σh = σh ∗σg for all g, h ∈ G/CG(N). Therefore multiplication in R = E[H] is

commutative, and R is a ring since H consists solely of endomorphisms (Corollary 6.1.16).

Let σ1, σ2 ∈ H be given and choose representatives g1, g2 ∈ G of the corresponding

classes in G/CG(N). Let a ∈ N be given. Since g1ag
−1
1 a−1 ∈ Z(G), we have that:

(σg1 + σg2)(a) = g1ag
−1
1 g2ag

−1
2

= (g1ag
−1
1 a−1)ag2ag

−1
2

= ag2g1ag
−1
1 a−1ag−1

2

= ag2g1ag
−1
1 g−1

2

= (1 + σg2g1)(a)

This equation holds independent of the choice of representatives g1 and g2, hence we obtain

that σ1 + σ2 = 1 + σ2 ∗ σ1. By induction, this means that every element of R is of the

form 1 + . . . + 1 + σ, for some σ ∈ H and finite sum of 1s. But since N has exponent n,

n · 1 = 0 in R and n is the least positive integer with this property. In other words, R has

characteristic n. To obtain R, we only need to construct elements of the form k + σ for

σ ∈ H and 0 ≤ k < n and therefore R is naturally seen as a subset of {0, . . . , n− 1} ×H.

Let I be the nilradical of R, that is, the ideal consisting of all nilpotent elements of

R. Equivalently, I is the radical of the zero ideal. Immediately, we see thatmZ ⊆ I, wherem

is the product of all distinct primes dividing n. Furthermore, the equation σ1+σ2 = 1+σ1∗σ2

for σ1, σ2 ∈ H yields that (H − 1)2 = 0 and thus H − 1 ⊆ I. Consider the projection

π : R → R/I. Since every element of R can be written as k + σ for some σ ∈ H and

0 ≤ k < n, we find that π(k + σ) = π(k + 1). This shows that the restricted map

π : Z/nZ → R/I is a surjection, so R is nilpotent by finite and I ⊇ H − 1 + mZ. But the

reverse inclusion is obvious since k /∈ I for integer k /∈ mZ. In the special case when n = p

a prime, then R has characteristic p and m = p, so I = H − 1. Since (H − 1)2 = 0, I is null

and R is null by finite.



62

6.3 Second application

Our setting for this example involves three additive abelian groups A,G,H in-

terpretable in our theory. We assume that G and H are connected and that we have a

definable subset Σ ⊆ A×G×H satisfying:

1. π1(Σ) = A

2. For all a ∈ A, σa := {(g, h) ∈ G×H | (a, g, h) ∈ Σ} is a homomorphism from all of G

to H. We shall write σa functionally as σa(g) = h.

3. σ0 is the zero map 0 : x 7→ 0,

4. For all a, b ∈ A and g ∈ G, σa+b(g) = σa(g) + σb(g) (i.e. σ : A × G → B given by

(a, g) 7→ σa(g) is a bilinear function.)

There will be two properties that will frequently fall under our concern for a nonzero a ∈ A:

(i) whether σa is surjective, and (ii) whether ker(σa) is finite. Both these properties will

have significant advantages; the former in producing invertible elements and the latter in

producing quasiendomorphisms. Hence, we will pay special attention to these properties in

the sequel. Also, since we are dealing with connected groups, the endomorphisms 00 and

10 equal 0 and 1, respectively, so we will drop the exponent 0.

Under our assumptions, the σa are a uniformly definable family of homomorphisms

from G to H. In the initial setting, we have to worry about σa ≡ 0, but with the following

proposition, we can eliminate that concern.

Proposition 6.3.1. Given A,G,H,Σ as above, the set of all indices corresponding to trivial

homomorphisms, B = {a ∈ A |σa ≡ 0} is a definable subgroup. We may then consider Σ′ :=

{(a + B, g, h) | (a, g, h) ∈ Σ}. This is a well-defined set which has the same properties (1)-

(4) as Σ. Furthermore ker(σa) is finite if and only if ker(σa+B) is finite and the analogous

statement holds for surjectivity of σa versus σa+b. Lastly, σa+B ≡ 0 if and only if a ∈ B if

and only if a+B = 0 in A/B.

Proof. If a, b ∈ B, then for any g ∈ G we have σa+b(g) = σa(g)+σb(g) = 0+0, so a+b ∈ B.

If a ∈ B then σ−a ≡ σ−a + σa ≡ σa−a = σ0 ≡ 0. So −a ∈ B and B is a group. B is clearly

definable.
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Given a, a′ ∈ A, if a = a′ + b for some b ∈ B then for all g ∈ G,

σa(g) = σa′+b(g) = σa′(g) + σb(g) = σa′(g)

so σa ≡ σa′ . Therefore, it makes sense to define Σ′ and the σa+B as in the statement of the

proposition. Other than the indexing set, nothing else has changed about our homomor-

phisms, and it is clear that σa+B ≡ 0 if and only if a+B = B.

From now on, we shall assume that our A,G,H,Σ also satisfy:

5. For all a ∈ A, σa ≡ 0 if and only if a = 0.

Given this setting, we can construct a large uniformly-defined family of additive

relations on G. For each a, b ∈ A, where b 6= 0, define Γa,b to be:

Γa,b = {(g, g′) ∈ G×G |σa(g) = σb(g
′)}

We see that Γa,b is an additive relation if and only if im(σb), the image of σb, contains

im(σa), the image of σa. Set 0 = G× 0 and 1 = ∆ = {(g, g) | g ∈ G}.

Proposition 6.3.2. Γa,b is a quasiendomorphism if and only if im(σb) ⊇ im(σa) and ker(σb)

is finite.

Proof. By Lemma 6.1.2, Γa,b is a quasiendomorphism if and only if Γa,b(0) is finite. But

Γa,b(0) = ker(σb), so we have our result.

Set

A = {0, 1} ∪ {Γa,b | a, b ∈ A, b 6= 0, im(σb) ⊇ im(σa)}

z = {0, 1} ∪ {Γa,b | a, b ∈ A, b 6= 0, im(σb) ⊇ im(σa), ker(σb) finite}.

Then A consists of 0, 1, and the Γa,b which are additive relations; this is a uniformly

definable family. Similarly, the uniformly definable family z consists of 0, 1 and the Γa,b

which are quasiendomorphisms. Since, in our application to stable, ℵ0-categorical structures

connected components have finite index, we will proceed with an analysis of the semiring

E0[A], and more importantly, the sub(semi)ring R = E0[z]. Note that every element of

E0[A] is a definable group since each element of A is definable. By Corollary 6.1.16, R

is a ring whose additive and multiplicative identities are clearly 0 and 1, respectively. We

immediately obtain identities in R and E0[A], which are just restatements of the general

properties developed in Section 6.1.
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Proposition 6.3.3. Let a, b ∈ A with a 6= 0 and im(σa) ⊇ im(σb).

1. If ker(σa) finite, Γ0
0,a = 0,

2. If ker(σa) finite, Γ0
a,a = 1,

3. If ker(σa) finite, Γ0
b,a −0 Γ0

b,a = 0,

4. −Γb,a = Γ−b,a = Γb,−a and so −0Γ0
b,a = Γ0

−b,a = Γ0
b,−a.

Proof. By the initial hypotheses, all the Γ which appear in the statements are additive

relations. Since σ0(g) = 0 for all g ∈ G and σa(g) = 0 if and only if g ∈ ker(σa), we know

Γ0,a = G× ker(σa). Since ker(σa) is finite by assumption, Γ0
0,a is clearly 0.

The second claim is another immediate consequence of the definitions, the finite-

ness of ker(σa), and Lemma 6.1.11.

The third claim just says that −0 takes elements to their additive inverses; this is

true in R by Corollary 6.1.16.

For the last claim, we know by definition

−Γb,a = {(g,−g′) ∈ G×G | (g, g′) ∈ Γb,a}

= {(g,−g′) ∈ G×G |σb(g) = σa(g
′)}

= {(g, g′) ∈ G×G |σb(g) = σa(−g′)}

= {(g, g′) ∈ G×G |σb(g) = −σa(g′)}

Yet since σx(h) + σ−x(h) = σx−x(h) = 0 for all h ∈ G and x ∈ A, we know that the set

above is equal to both Γ−b,a and Γb,−a. By Lemma 6.1.12, taking connected components

gives us the second part of the result.

Due to properties (1)-(5) proscribed upon A,G,H, and Σ, we obtain several other

identities involving the elements of z. We remark that analogue of the previous and the

following propositions both hold for Γa,b without the restriction on finite kernels, but ap-

propriate care must be taken when finite kernels are necessary.

Proposition 6.3.4. Let a, b, c ∈ A with a 6= 0. The following properties hold:

1. If b 6= 0 and im(σb) ⊇ im(σa) ⊇ im(σc), then Γa,b,Γc,a,Γc,b ∈ A and they satisfy the

identity Γc,b = Γa,b ∗ Γc,a. So Γ0
c,b = Γ0

a,b ∗0 Γ0
c,a.
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2. If b 6= 0, im(σa) = im(σb), and ker(σb) is finite, then Γ0
b,a has Γ0

a,b as a left inverse.

Symmetrically, if b 6= 0, im(σa) = im(σb), and ker(σa) is finite, then Γ0
b,a has Γ0

a,b as

a right inverse.

3. If im(σa) ⊇ im(σb) or im(σa) ⊇ im(σc), then Γb,a + Γc,a = Γb+c,a. If Γb,a,Γc,a ∈ z

then Γb+c,a ∈ z. The converse holds if σa surjective. If they are all elements of z,

then Γ0
b,a +0 Γ0

c,a = Γ0
b+c,a.

4. If im(σa) ⊇ im(σb), then for any k ∈ N, we have kΓb,a = Γkb,a. Thus kΓ0
b,a = Γ0

kb,a,

5. If Γb,a ∈ z, then for any k ∈ Z, Γ0
b,a +0 k = 0 if and only if b+ ak = 0. If b+ ak 6= 0

and Γa,b+ka ∈ z, then Γ0
a,b+ka is a left inverse of Γ0

b,a +0 k.

Proof. 1. The assumption on the inclusion of the images guarantees that all the Γx,y

that were named are additive relations, i.e. elements of A. Unraveling the definitions:

(g, g′) ∈ Γa,b ∗ Γc,a iff there is an h ∈ G with (g, h) ∈ Γc,a and (h, g′) ∈ Γa,b. The

first membership can be rewritten as σc(g) = σa(h) and the second membership can

be rewritten as σa(h) = σb(g
′). This implies σc(g) = σb(g

′), so (g, g′) ∈ Γc,b. This

shows that Γa,b ∗ Γc,a ⊆ Γc,b. On the other hand, if σc(g) = σb(g
′) then any h ∈ G

such that σa(h) = σc(g) witnesses that Γc,b ⊆ Γa,b ∗ Γc,a. We are guaranteed such an

h since Γc,a ∈ A, so im(σa) ⊇ im(σc). Hence Γc,b = Γa,b ∗ Γc,a and the corresponding

statement for connected components follows from the definition of ∗0 and Proposition

6.1.14.

2. Part (1) with c = b gives us Γ0
a,b ∗0 Γ0

b,a = Γ0
b,b. Since ker(σb) is finite, Γ0

b,b = 1. The

second part follows by symmetry.

3. For a given g ∈ G, suppose (g, g1) ∈ Γb,a and (g, g2) ∈ Γc,a then σb(g) = σa(g1) and

σc(g) = σa(g2). Since σb(g) + σc(g) = σb+c(g) and σa is a homomorphism, we have

σb+c(g) = σa(g1 + g2), so (g, g1 + g2) ∈ Γb+c,a. Conversely, suppose (g, g′) ∈ Γb+c,a.

Without loss of generality, assume im(σa) ⊇ im(σb). Then there is a g1 ∈ G such that

σb(g) = σa(g1). But then σc(g) = σb+c(g)− σb(g) = σa(g
′)− σa(g1), so (g, g′ − g1) ∈

Γc,a. Therefore Γb,a+Γc,a = Γb+c,a. If Γb,a,Γc,a ∈ z, then im(σa) ⊇ im(σb)+im(σc) ⊇
im(σb+c). Since ker(σa) is finite, we conclude Γb+c,a ∈ z. Conversely, if σa is surjective

and ker(σa) is finite, then Γx,a ∈ z for any nonzero x ∈ A. The statement for

connected components follows from the definition of ∗0 and Proposition 6.1.13.
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4. immediate by induction from previous step.

5. Since ker(σa) is finite, we may use (2) from Proposition 6.3.3 and since im(σa) ⊇
im(σb), we may use parts (3) and (4), to obtain altogether:

Γ0
b,a +0 k = Γ0

b,a +0 kΓ0
a,a = Γ0

b,a +0 Γ0
ka,a = Γ0

b+ka,a

Since Γa,a ∈ z by default since a 6= 0 and Γb,a ∈ z, these steps also give us Γb+ka,a ∈ z.

By (3), Γ0
b+ka,a has a left inverse unless b + ka = 0 or Γa,b+ka /∈ z. If we have our

assumption on Γa,b+ka, then (3) tells us it is a left inverse. If, on the other hand,

b+ ka = 0, then Γ0
b+ka,a = 0 by (1) of Proposition 6.3.3.

Naturally, when the various σa are surjective and have finite kernels, many of these

hypotheses disappear and we obtain a cleaner version of the previous proposition.

Proposition 6.3.5. Let a, b, c ∈ A with σa, σb, and σc surjective and ker(σa), ker(σb), and

ker(σc) all finite when a, b, c are nonzero, respectively. Assume a 6= 0. Then the following

properties hold:

1. If b 6= 0, then Γc,b = Γa,b ∗ Γc,a. So Γ0
c,b = Γ0

a,b ∗0 Γ0
c,a

2. If b 6= 0, then Γ0
b,a and Γ0

a,b are inverses of each other.

3. Γb,a + Γc,a = Γb+c,a, so Γ0
b,a +0 Γ0

c,a = Γ0
b+c,a.

4. For any k ∈ N, we have kΓb,a = Γkb,a. Thus kΓ0
b,a = Γ0

kb,a,

5. For any k ∈ Z, Γ0
b,a +0 k = 0 if and only if b+ ak = 0. If b+ ak 6= 0 and Γ0

a,b+ka ∈ z

then Γ0
a,b+ka is a left inverse of Γ0

b,a +0 k.

These propositions reveal some very particular interactions, which force A,G, and

H to take specific forms.

Lemma 6.3.6. Suppose A,G,H,Σ are as prescribed by Proposition 6.3.1 and let R =

E0[z]. Set Y = {a ∈ A | a 6= 0, ker(σa) finite, σa surjective }. If Y 6= ∅, then one of two

possibilities occurs:

1. char(R) = 0, G has infinite exponent, and Y has no torsion elements, or
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2. char(R) = n for some n > 0, exp(G) = n, ordA(a) = n for all a ∈ Y , and exp(H)|n.

Proof. Assume Y 6= ∅ and consider the condition k = 0 in R for an integer k > 0. On the

one hand, by definition of 1 and +, k = {(g, kg) | g ∈ G} and this is clearly a connected

endomorphism since G is connected. The endomorphism k equals 0 = G× {0} if and only

if kg = 0 for all g ∈ G. This occurs exactly when k is a multiple of exp(G). So k = 0 if and

only if exp(G)|k.

On the other hand, if a nonzero a ∈ A has ker(σa) finite and σa surjective, then

Proposition 6.3.5 gives the following identity:

k · 1 = kΓ0
a,a = Γ0

ka,a

By (5) in Proposition 6.3.5, the right hand side equals 0 if and only if ka = 0, i.e. ordA(a)|k.

Thus we have the following equivalence:

1. k = 0 in R

2. exp(G)|k

3. ordA(a)|k for some (all) a ∈ Y

Consequently, the following are equivalent:

• char(R) = 0

• exp(G) is infinite

• Y has no torsion elements

Now assume that char(R) 6= 0. Condition (2) forces char(R) = exp(G). For a given a ∈ Y ,

condition (3) demands that char(R) = ordA(a). Hence we get the following equivalence for

n > 0:

• char(R) = n

• exp(G) = n

• ordA(a) = n for any (all) a ∈ Y

Clearly, since σa maps G onto H for any a ∈ Y , exp(H)| exp(G).
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Corollary 6.3.7. Suppose A,G,H,Σ are as prescribed by Proposition 6.3.1 and let R =

E0[z]. If ker(σa) is finite and σa is surjective for all nonzero a ∈ A and A 6= {0}, then one

of two possibilities occurs:

1. char(R) = 0, G has infinite exponent, and A is torsion-free, or

2. char(R) = p for some prime p and A,G, and H are Fp-vector spaces.

Proof. We use Lemma 6.3.6 with Y = A\{0}. If char(R) = 0, this lemma spells out the

desired possibility outright. If char(R) = n > 0, then ordA(a) = n for all nonzero a ∈ A.

Since A 6= {0}, this is only possible if n is prime. The rest follows immediately.

When we are in the characteristic p prime case, we can naturally extend our

additive relation construction to tensors. To maintain clarity in the category of rings of

characteristic p, for any finite field F of characteristic p, we have the natural inclusion

functor ιF , which embeds X into X ⊗Fp F as the set of all x ⊗ 1. Even though much

of the arguments that follow are ultimately consequences of the general properties of the

tensor functor, the abstract proofs take as much argument as the direct proofs, so we have

presented the direct ones for more elucidation in our particular setting. Moreover, tensoring

does not preserve all our objects: a tensored ring of quasiendomorphisms does not produce

a ring of quasiendomorphisms, but only a semiring of additive relations.

Lemma 6.3.8. Suppose that A,G and H are Fp vector spaces with G and H both connected

and there is a definable Σ ⊆ A × G × H which satisfies properties (1)-(5) listed in the

beginning of this section. Assume A 6= 0 and let F be any given finite field F of characteristic

p. Set B = A⊗Fp F, V = G⊗Fp F, and W = H ⊗Fp F .

Then there is a definable subset Σ′ ⊆ B × V ×W , such that

• Σ′ ⊇ ιF (Σ), where ιF (Σ) is the image of Σ as a subset of of ιF (A×G×H) ⊆ B×V ×W .

• the system B, V,W,Σ′ satisfies the conditions (1)-(5) listed in the beginning of this

section.

Proof. Let B = A ⊗Fp F, V = G ⊗Fp F, and W = H ⊗Fp F . Fix a basis {ei | i < κ} for F

over Fp with e0 = 1.

Given a nonzero a ∈ A and α ∈ F , we present a homomorphism σa⊗α : V → W ,

given by:

σa⊗α

(∑
i<κ

gi ⊗ ei

)
=
∑
i<κ

σa(gi)⊗ αei
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We must check that this is well defined. If a = 0 or α = 0, then clearly σa⊗α ≡ 0. If k ∈ Fp
nonzero, then

σa⊗kα

(∑
i<κ

gi ⊗ ei

)
=

∑
i<κ

σa(gi)⊗ kαei

=
∑
i<κ

kσa(gi)⊗ αei

=
∑
i<κ

σka(gi)⊗ αei

= σka⊗α

(∑
i<κ

gi ⊗ ei

)

We extend the definition to σb for an arbitrary b ∈ B by linearity, defining σb+b′ =

σb + σb′ . We must verify that such an extension is compatible with the bilinearity of B. It

suffices to show that σa⊗f+a⊗g = σa⊗(f+g) and σa⊗f+a′⊗f = σ(a+a′)⊗f . We shall verify the

latter, since the former has an analogous proof.

σa⊗f+a′⊗f

(∑
i<κ

gi ⊗ ei

)
= σa⊗f

(∑
i<κ

gi ⊗ ei

)
+ σa′⊗f

(∑
i<κ

gi ⊗ ei

)

=

(∑
i<κ

σa(gi)⊗ fei

)
+

(∑
i<κ

σa′(gi)⊗ fei

)
=

∑
i<κ

(σa(gi) + σa′(gi))⊗ fei

=
∑
i<κ

σa+a′(gi)⊗ fei

= σ(a+a′)⊗f

(∑
i<κ

gi ⊗ ei

)

So the homomorphisms σb : V →W are well-defined for all b ∈ B.

The bilinearity of the tensor and the definition of the σ’s will give us that the

definition of the σa’s is independent of the choice of basis. Indeed, if f0, . . . , fκ−1 is another

basis of F , then write fi =
∑

j<κ µi,jej . Let σa⊗v denote the mapping if we had defined
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σa⊗v in terms of the fi instead. Then we get

σa⊗v

(∑
i<κ

gi ⊗ fi

)
=

∑
i<κ

σa(gi)⊗ vfi

=
∑
i<κ

σa(gi)⊗ v(
∑
j<κ

µi,jej)

=
∑
j<κ

∑
i<κ

σa(gi)⊗ vµi,jej

=
∑
j<κ

σa

(∑
i<κ

µi,jgi

)
⊗ vej

= σa⊗v

∑
j<κ

(∑
i<κ

µi,jgi

)
⊗ ej


= σa⊗v

(∑
i<κ

gi ⊗

(∑
i<κ

µi,jej

))
= σa⊗v(

∑
i<κ

gi ⊗ fi)

So our definitions were indeed independent of the choice of basis of F .

We set Σ′ := {(b, v, w) ∈ B × V ×W |σb(v) = w}. Note that if (a, g, h) ∈ Σ then

clearly σa⊗1(g⊗1) = h⊗1, so (a⊗1, g⊗1, h⊗1) ∈ Σ′ and thus Σ′ extends Σ in the desired

way.

Taking stock of our situation, we have Fp-vector spaces V and W . Both of

these are connected by Proposition 2.3.10 since G and H are connected and V ∼= Gκ

and W ∼= Hκ as additive groups. Furthermore, we have another Fp-vector space B and

Σ′ := {(b, v, σb(v)) | b ∈ B, v ∈ V } ⊆ B × V ×W , which yields a uniformly definable family

of homomorphisms σb : V → W indexed by B. Clearly σ0 is the zero map, and by the

definition of the σb, we know that σb(v)+σb′(v) = σb+b′(v) for all b, b′ ∈ B and v ∈ V . Thus

we have verified properties (1)-(4).

Lastly, we must show for b ∈ B that σb ≡ 0 if and only if b = 0. Indeed, assume

σb ≡ 0. If b =
∑

i<κ ai ⊗ ei for some ai ∈ A, then for each g ∈ G we have

0 = σb(g ⊗ 1) =
∑
i<κ

σai(g)⊗ ei

Since the ei are a basis and H is an Fp-vector spaces, W = ⊕i<κH ⊗ ei, i.e. W as an

additive group is just κ copies of H. Hence 0 =
∑

i<κ σai(g) ⊗ ei if and only if σai(g) = 0

for all i. Since g ∈ G was arbitrary, we conclude that ai = 0 for all i < κ and so b = 0.
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Since we have the same setting as in the beginning of the section, Σ′ produces a

family of subgroups Γb,b′ of V ×V , which are indexed by B×B\{0}. Many of these are addi-

tive relations on V , so as before, we collect the additive relations and quasiendomorphisms

by setting:

AF = {0, 1} ∪ {Γb,b′ | b, b′ ∈ B, b′ 6= 0, σb′ surjective}

zF = {0, 1} ∪ {Γb,b′ | b, b′ ∈ B, b′ 6= 0, σb′ surjective, ker(σb′) finite}

which again form two uniformly defined families of additive relations and quasiendomorphsisms,

respectively, on V . In some sense, AF and zF are the “tensors” of the corresponding fam-

ilies on G indexed by elements of A × A\{0}. To gain control of which Γb,b′ are additive

relations, and moreover, quasiendomorphisms, we impose stronger hypotheses on A.

Lemma 6.3.9. Assume the hypotheses of Lemma 6.3.8 and that for all nonzero a ∈ A,

σa is both surjective and has finite kernel. Then for any nonzero a ∈ A and any nonzero

f ∈ F , σa⊗f is surjective and has finite kernel, so for any nonzero b ∈ B, Γb,a⊗f ∈ zF , i.e.

Γ0
b,a⊗f is a quasiendomorphism. If σb is surjective, then Γ0

a⊗f,b ∈ AF is a right inverse of

Γ0
b,a⊗f in the symmetric near semiring E0[AF ] ⊇ E0[zF ].

Furthermore, for all nonzero a, a′ ∈ A, Γ0
a,a′ is a unit in E0[z], Γ0

a⊗1,a′⊗1 is a unit

in E0[zF ], and their multiplicative orders are equal.

Proof. By Proposition 6.3.2, the assumption that for all nonzero a ∈ A, ker(σa) is finite

and σa is surjective, implies that Γa,b ∈ z for any a, b ∈ A with b 6= 0.

Fix nonzero a ∈ A, f ∈ F and consider ker(σa⊗f ). If
∑

i<κ gi⊗ ei is in this kernel,

then 0 =
∑

i<κ σa(gi) ⊗ fei. Since f is nonzero, fe0, . . . , feκ−1 form a basis of F over Fp
as well. Since H is a Fp vector space, as an Fp-vector space W = ⊕i<κH ⊗ fei. Therefore

σa(gi) = 0 for all i < κ, so gi ∈ ker(σa) for all i. Since ker(σa) is finite, there are only

finitely many choices for tuples (gi)i<κ and hence ker(σa⊗f ) is finite as well.

Now we show σa⊗f is surjective. Multiplication by f is a change of basis, so we

simply need to show that for any desired hi ∈ H for i < κ, we can attain
∑

i<κ hi ⊗ fei in

the image of σa⊗f . But since σa is surjective, we may choose gi ∈ G such that σa(gi) = hi

for all i < κ, and so σa⊗f (
∑

i<κ gi ⊗ ei) =
∑

i<κ hi ⊗ fei, as desired.

In combination, we have shown that Γb,a⊗f is a quasiendomorphism by Proposition

6.3.2, and Γb,a⊗f ∈ zF . By Proposition 6.3.4, since σa⊗f has finite kernel, we know Γ0
b,a⊗f

has Γ0
a⊗f,b as a right inverse if σb is surjective.
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By Proposition 6.3.5, since σa is surjective and has finite kernel for all nonzero

a ∈ A, each Γ0
a,b is a unit in E0[z] for all nonzero a, b ∈ A. Similarly, the argument in the

above paragraphs gives us that Γ0
a⊗1,b⊗1 is an element of E0[zF ] and moreover, a unit. We

claim that for all nonzero a, b ∈ A, (Γna,b)
0 = 1 if and only if (Γna⊗1,b⊗1)0 = 1. Note that

(
∑
gi ⊗ ei,

∑
g′i ⊗ ei) ∈ Γa⊗1,b⊗1 if and only if

∑
σa(gi) ⊗ ei =

∑
σb(g

′
i) ⊗ ei. Since W is

the direct sum of all the H ⊗ ei for i < κ, this last condition is equivalent to σa(gi) = σb(g
′
i)

for all i < κ. In other words, for all i < κ, (gi, g
′
i) ∈ Γa,b. Iterating, we see (using Lemma

6.1.14) that for any n ≥ 1:

(Γ0
a⊗1,b⊗1)n = (Γna⊗1,b⊗1)0

=

{(
k∑
i=1

gi ⊗ ei,
k∑
i=1

g′i ⊗ ei

)
∈ V × V

∣∣∣∣∣ ∀i(gi, g′i) ∈ Γna,b

}0

One the one hand, by Lemma 6.1.3, if (Γna,b)
0 = 1, then Γna,b = ∆G + ({0} × D), for the

finite group D = Γna,b(0). Under this assumption on n, we get

(Γ0
a⊗1,b⊗1)n =

{(
k∑
i=1

gi ⊗ ei,
k∑
i=1

g′i ⊗ ei

)
∈ V × V

∣∣∣∣∣ ∀i(gi, g′i) ∈ Γna,b

}0

= (∆V + ({0} ×DV ))0

= 1,

where DV = {
∑
gi⊗ ei ∈ V | ∀i, gi ∈ D}. Conversely, if (Γ0

a⊗1,b⊗1)n = 1, then in particular,

for every
∑
gi ⊗ ei, we must have (gi, gi) ∈ Γna,b for all 1 ≤ i ≤ k. Hence Γna,b ≥ 1. Since

Γna,b is a quasiendomorphism because Γa,b is, we apply Lemma 6.1.3 to see that (Γna,b)
0 = 1.

Proposition 6.3.4 automatically gives us many properties of E0[zF ] on account of

Lemma 6.3.9. This lemma indicates that behavior in E0[z] at least partially embeds into

E0[zF ]. As the next lemma shows, properties of F also embed nicely into E0[zF ].

Lemma 6.3.10. Same hypotheses as Lemma 6.3.9. Then the field F embeds into E0[zF ] ⊆
E0[AF ]. Specifically, we associate f ∈ F with Γa⊗f,a⊗1 for any nonzero a ∈ A (they are all

equal). Furthermore, under this embedding, F lands in the center of E0[zF ].

Proof. For any nonzero a ∈ A and f ∈ F , consider Γ0
a⊗f,a⊗1, which is a quasiendomorphism

that is a unit by Lemma 6.3.9. Hence, Γa⊗f,a⊗1, being a finite extension of Γ0
a⊗f,a⊗1, is also
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a quasiendomorphism. Moreover,

Γa⊗f,a⊗1 =

{(∑
i<κ

gi ⊗ ei,
∑
i<κ

hi ⊗ ei

)∣∣∣∣∣ ∑
i<κ

σa(gi)⊗ fei =
∑
i<κ

σa(h)⊗ ei

}

⊇

{(∑
i<κ

gi ⊗ ei,
∑
i<κ

gi ⊗ fei

)∣∣∣∣∣ ∑
i<κ

gi ⊗ ei ∈ V

}
,

where the set inclusion follows by taking hi = gi and using the bilinearity of the tensor

and that σa is a homomorphism. This final set itself is clearly an endomorphism (again by

the bilinearity of tensors), so by Lemma 6.1.3, this endomorphism has finite index in the

quasiendomorphism Γa⊗f,a⊗1. Therefore they both have the same connected component.

Since G0 is connected, any endomorphism on G is already connected. Thus:

Γ0
a⊗f,a⊗1 =

{(∑
i<κ

gi ⊗ ei,
∑
i<κ

gi ⊗ fei

)∣∣∣∣∣ ∑
i<κ

gi ⊗ ei ∈ V

}
,

The nonzero a serves as a dummy variable (all we needed was that σa is surjective and has

finite kernel, which we assume is true for all nonzero a ∈ A ). So without ambiguity we can

define a mapping χ : F → E0[zF ] by f 7→ Γ0
a⊗f,a⊗1 for any nonzero a ∈ A. Note that if

a 6= 0, then χ is injective: if Γ0
a⊗f,a⊗1 = Γ0

a⊗f ′,a⊗1, then
∑

i<κ gi ⊗ fei =
∑

i<κ gi ⊗ f ′ei for

all tuples gi ∈ G. Taking a tuple which is nonzero only in the first coordinate, we get that

g ⊗ fe0 = g ⊗ f ′e0 so f = f ′.

From the explicit expression we have of χ(f), we conclude that for f, f ′ ∈ F

Γ0
a⊗f,a⊗1 ∗0 Γ0

a⊗f ′,a⊗1 =

{(∑
i<κ

gi ⊗ ei,
∑
i<κ

gi ⊗ ff ′ei

)∣∣∣∣∣ ∑
i<κ

gi ⊗ ei ∈ V

}0

= Γ0
a⊗ff ′,a⊗1

so that χ(ff ′) = χ(f) ∗ χ(f ′). In particular, since χ(1) = 1 and ker(σa⊗1) is finite (by

Lemma 6.3.9), we see (Γ0
a⊗f,a⊗1)k = Γ0

a⊗fk,a⊗1
. Thus if ordF (f)|k, then (Γ0

a⊗f,a⊗1)k = 1,

and injectivity of χ gives us the converse.

Additivity is easy:

χ(f + f ′) = Γ0
a⊗(f+f ′),a⊗1 = Γ0

a⊗f+a⊗f ′,a⊗1 = Γ0
a⊗f,a⊗1 + Γ0

a⊗f ′.a⊗1 = χ(f) + χ(f ′)

where the third equality comes from Proposition 6.3.4 and the surjectivity of σa⊗1 (Lemma

6.3.9). Therefore χ is an embedding of F into E0[zF ].

Now we prove that any f ∈ F commutes with any Γ ∈ E0[zF ]. If f = 0 this

is true since E0[zF ] is a ring. Assume f 6= 0. By the distributivity of multiplication in
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the ring E0[zF ] and the linearity in the first index (Proposition 6.3.4), it suffices to show

that f ∗0 Γ0
a⊗α,

∑
i<κ bi⊗ei

= Γ0
a⊗α,

∑
i<κ bi⊗ei

∗0 f , and by Lemma 2.3.10, it suffices to show

this equality without taking connected components. By definition of composition and our

knowledge of f :(∑
i<κ

gi ⊗ ei,
∑
i<κ

g′i ⊗ ei

)
∈ Γa⊗α,

∑
i<κ bi⊗ei ∗ f

⇔

(∑
i<κ

gi ⊗ ei,
∑
i<κ

gi ⊗ fei

)
∈ f,

(∑
i<κ

gi ⊗ fei,
∑
i<κ

g′i ⊗ ei

)
∈ Γa⊗α,

∑
i<κ bi⊗ei

⇔
∑
i<κ

σa(gi)⊗ fαei =
∑
j<κ

∑
i<κ

σbj (g
′
i)⊗ eiej

⇔
∑
i<κ

σa(gi)⊗ αei =
∑
j<κ

∑
i<κ

σbj (g
′
i)⊗ f−1eiej

⇔

(∑
i<κ

gi ⊗ ei,
∑
i<κ

g′i ⊗ f−1ei

)
∈ Γa⊗α,

∑
i<κ bi⊗ei

⇔

(∑
i<κ

gi ⊗ ei,
∑
i<κ

g′i ⊗ ei

)
∈ f ∗ Γa⊗α,

∑
i<κ bi⊗ei

So we have shown that f commutes with all elements of E0[zF ].

We repeat that for f ∈ F , the nonzero a ∈ A essentially acts as a dummy variable,

so through an abuse of notation, we shall identify Γ0
a⊗f,a⊗1 with f in E0[zF ].

Consider Lemma 6.3.7 in the context of ℵ0-categoricity and stability. Any ℵ0-

categorical group has finite exponent, so if A 6= 0, we are forced into the case where

A,G, and H are Fp-vector spaces and our ring of endomorphisms has characteristic p.

We know every element of the form Γb,a⊗f , for a ∈ A and f ∈ F both nonzero, is a

quasiendormophism (i.e. an element of zF . By Proposition 6.3.4, it has Γa⊗f,b as a right

inverse if im(σb) = im(σa⊗f ), i.e. σb is surjective (Lemma 6.3.9). We would like to guarantee

certain elements of this form are right invertible, so we will pay attention to the property

for a fixed finite field F of characteristic p:

†F There is a nonzero a ∈ A such that for all but finitely many b ∈ A, for all f ∈ F ,

σa⊗1−b⊗f is surjective.

Since σa⊗1 is surjective (Lemma 6.3.9), f = 0 never poses a problem for †F . Nonzero

elements of F are in bijection with a subgroup of GLκ(Fp), where κ = dimFp F (because
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multiplication by a nonzero f ∈ F is a change of basis). Since V ∼= Gκ and W ∼= Hκ, we can

think of σa⊗1−b⊗f as the linear map σa−Mσb : Gκ → Hκ (for M ∈ GLκ(Fp) corresponding

to f) given by

(σa −Mσb)


g1

...

gκ

 :=


σa(g1)

...

σa(gκ)

−M

σb(g1)

...

σb(gκ)


In this light, we can restate †F in terms of linear maps:

†F There is a nonzero a ∈ A such that for all but finitely many b ∈ A, for all M ∈ GLn(Fp)

corresponding to multiplication by a nonzero element of F , σa −Mσb : Gn → Hn is

surjective.

Conjecture 6.3.11. Assume we are in a stable, ℵ0-categorical context and A,G,H,Σ have

properties (1)-(5) of the beginning of this section and for all nonzero a ∈ A, σa is surjective

and has finite kernel. Then †F holds in this system.

We believe this conjecture to be true, but have been unable to verify it. All

counterexamples we are aware of to †F are in contexts (e.g. Ore rings) that are not stable

and ℵ0-categorical.

Under the assumption of †F , we may use the above tensor lemmas to conclude

triviality of the entire structure in this context.

Theorem 6.3.12. Let A,G and H be three Fp-vector spaces interpretable in a stable, ℵ0-

categorical theory. Assume G and H are connected and nontrivial and that we have a

definable subset Σ ⊆ A×G×H satisfying:

1. π1(Σ) = A

2. For all a ∈ A, σa := {(g, h) ∈ G ×H | (a, g, h) ∈ Σ} is a homomorphism from all of

G to H. We shall write σa functionally as σa(g) = h.

3. σ0 is the zero map 0 : x 7→ 0,

4. For all a, b ∈ A and g ∈ G, σa+b(g) = σa(g) + σb(g).

5. if a 6= 0 then σa is surjective.

6. For all a ∈ A, if a 6= 0, then kerσa is finite.



76

7. †F holds for all finite fields F of characteristic p.

Then A is a finite-dimensional Fp-vector space.

Proof. Assume A is nontrivial. Since we are working in a stable, ℵ0-categorical context, we

may take connected components of definable groups at will. For a, b ∈ A with b 6= 0, define

the additive relations Γ0
a,b of G as in the beginning of this section; since σa is surjective

and has finite kernel for all nonzero a ∈ A, by Proposition 6.3.2 all the Γ0
a,b for b 6= 0 are

quasiendomorphisms. They form a uniformly definable family z and the resulting ring of

connected quasiendomorphisms R = E0[z] has the properties listed in Proposition 6.3.5.

In particular, each Γ0
a,b for nonzero a, b ∈ A will be a unit.

Since we have an ℵ0-categorical theory and each (Γ0
a,b)

n is definable over a, b, we

must have (Γ0
a,b)

n = (Γ0
a,b)

m for some n 6= m. Since Γ0
a,b is a unit when a 6= 0, we have

(Γ0
a,b)

n = 1 for some n > 0. Again, by ℵ0-categoricity, there must be a uniform n > 0 such

that (Γ0
a,b)

n = 1 for all a, b ∈ A with a 6= 0. Pick the least such n.

Since f = Γ0
fa,a is a unit in E0[z] whenever f is not a multiple of p, we must have

fn = (Γ0
fa,a)

n = 1. Yet f ∈ 〈1〉E0[z]
∼= Fp, so we conclude that p − 1|n. Hence n is not

power of p. Let n = kpe, where p does not divide k. Note 0 = (Γ0
a,b)

n − 1 = ((Γ0
a,b)

k − 1)p
e

since Γ0
a,b commutes with itself and elements of Fp.

Let F be the splitting field of xk − 1 over Fp. Since p does not divide k, xk − 1

is separable. Enumerate the distinct roots of xk − 1 in F as ω1, . . . , ωk = 1. Using Lemma

6.3.4, we can tensor with F over Fp to produce V := G⊗FpF , W := H⊗FpF , B := A⊗FpF ,

and a definable subset Σ′ ⊆ B×V ×W which extends Σ (under ιF ). These B, V,W,Σ′ will

satisfy conditions (1)-(5) from the introduction of this section, so they produce a uniformly

definable family of subgroups of V × V , indexed by B × B\{0}. Let AF be the additive

relations and zF be the quasiendomorphisms, which extends A and z, by the identification

of Γ0
a,b with Γ0

a⊗1,b⊗1 as justified in Lemma 6.3.9. Also by Lemma 6.3.9, for each nonzero

a, b ∈ A, Γ0
a⊗1,b⊗1 must be a unit of order equal to the order of Γ0

a,b, and hence this order

divides n. So, for each nonzero a, b ∈ A,

0 = (Γ0
a⊗1,b⊗1)n − 1

= (Γ0
a⊗1,b⊗1)kp

e − 1

=
(

(Γ0
a⊗1,b⊗1)k − 1

)pe
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where, again, there is no issue about noncommutativity of multiplication since Γ0
a⊗1,b⊗1

commutes with itself and elements of Fp.

Since F embeds into the center of E0[zF ] by Lemma 6.3.10, the polynomial xk−1

factors over E0[zF ] as
∏k
i=1(x − ωi). There is no ambiguity caused by noncommutativity

since F is in the center of E0[zF ]. When we evaluate this polynomial at x = Γ0
a⊗1,b⊗1 (an

element of zF when a 6= 0 by Lemma 6.3.9), we obtain:

(Γ0
a⊗1,b⊗1)k −0 1 =

k∏
i=1

(Γ0
a⊗1,b⊗1 −0 ωi)

=

k∏
i=1

(Γ0
a⊗1,b⊗1 −0 Γ0

b⊗ωi,b⊗1)

=
k∏
i=1

Γ0
a⊗1−b⊗ωi, b⊗1

The second equality above used Lemma 6.3.10, while the third used Lemma 6.3.3 for dealing

with −0 and Lemma 6.3.4 for adding left indices. Recall that in order to use Lemma 6.3.4,

we need to know that V,W,B,Σ meet the qualifications of the lemma (which is the case by

Lemma 6.3.8) and that im(σb⊗1) ⊇ im(σa⊗1) (which is true by Lemma 6.3.9 since σb⊗1 is

surjective and has finite kernel by Lemma 6.3.9).

By Lemma 6.3.4, if a ⊗ 1 − b ⊗ ωi 6= 0, then Γ0
a⊗1−b⊗ωi,b⊗1 has a right inverse if

σa⊗1−b⊗ωi is surjective.

We now employ our assumption of †F . Choose a ∈ A a witness to this property;

let A0 ⊆ A be the finite set of elements b ∈ A for which there is an f ∈ F with σa⊗1−b⊗f

not surjective. For any b ∈ A\A0, we have σa⊗1−b⊗ωi is surjective for every 1 ≤ i ≤ k. So

each Γ0
a⊗1−b⊗ωi,b⊗1 is right invertible and thus so long as b /∈ A0, the element (Γ0

a⊗1,b⊗1)k−1

must be a product of right-invertible elements.

Combining these calculations, we see that for our special a ∈ A, forall b /∈ A0∪{0},
we have

0 =
(

(Γ0
a⊗1,b⊗1)k − 1

)pe
=

(
k−1∏
i=0

Γ0
a⊗1−b⊗ωi,b⊗1

)pe

The right hand side is a product of right-invertible elements in E0[AF ], while the left hand

side is zero. This is impossible since 0 6= 1 in E0[AF ]. Consequently A = A0 is finite.
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Remark 6.3.13. Note that the proof above does not use stability in any way other than to

obtain connected components, although we anticipate that stability will come into play to

show †F holds.

Theorem 6.3.12 states that A (and hence R = E0[z]) must be finite. Before

initiating the analysis of that theorem’s proof, we can see no reason a priori why such

a quasiendomorphism ring should be definable. If we were able to conclude definability

right from the start, then stability and ℵ0-categoricity would aid us in obtaining finiteness

(by using Proposition 2.2.1 to obtain a field and Proposition 2.1 to conclude it is finite).

Nor do we see a priori a reason for R to be an integral domain. If it were, then by ℵ0-

categoricity we would obtain for each nonzero z ∈ R that zn = zm for some n > m, and

hence zn−m = 1. Since finite subsets generate finite subrings by ℵ0-categoricity, we may

use Wedderburn’s Little Theorem to conclude that R is a field. Then ℵ0-categoricity would

again force it to be finite by Proposition 2.1. Therefore, even though there are several more

typical avenues of proof for concluding that such a ring be finite, in this case it seems that

the above argument involving tensors is necessary to untangle the underlying structure of

the quasiendomorphism ring.

We remark that such a theorem about quasiendomorphism rings is potentially

very useful as the clinching step in a proof of the BCM Conjecture. Indeed, when Baur,

Cherlin, and Macintyre proved that ℵ0-categorical groups of finite Morley rank were abelian

by finite (Thm 1.1), they concluded the argument with a minimal counterexample G where

G′ = [a1, G] + . . .+ [an, G] for some a1, . . . , an ∈ G. One could then quotient G by [a2, G] +

. . . + [an, G] to obtain a new group G whose commutator is [a,G] for some a ∈ A. If we

could circumvent the use of finite Morley rank and further guarantee (as Baur, Cherlin and

Macintyre do) that [b,G] = [a,G] for all a, b /∈ Z(G), then the corollary below explicitly

shows how the above theorem about quasiendomorphism rings would finish a proof by

contradiction of the BCM Conjecture. Even beyond these considerations, the corollary

below can be applied to some situations which we have already described in Chapter 5.

Corollary 6.3.14. Suppose G is a ℵ0-categorical, stable group of nilpotence class at most

2. Suppose A and B are two definable subgroups, where

1. B is connected,

2. for all a, b ∈ A\C(B), [a,B] = [b, B],
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3. for all a ∈ A\C(B), (CG(a) ∩B)/(C(A) ∩B) is finite, and

4. †F holds on the commutator maps [a, ·] for a ∈ A and for all finite fields F of charac-

teristic p.

Then B ⊆ C(A) or A/(A ∩ C(B)) is finite.

Proof. Assume B 6⊆ C(A) and A\C(B) is nonempty. Set H = [x,B] for some x ∈ A\C(B).

H is connected by Proposition 2.3.8 since it is the definable image of a connected group. By

the same proposition, B/(C(A)∩B) is a connected group. For each a ∈ A/(A∩C(B)), we

have a homomorphism σa : B/(C(A)∩B)→ H given by b 7→ [a, b] for any representatives a

of a and b of b. This is well-defined since the restricted commutator map [·, ·] : A×B → H

does not distinguish elements of A equivalent modulo C(B), nor elements of B equivalent

modulo C(A). Note that σa ≡ 0 if and only if a ∈ CG(B) for any representative a of a, i.e. if

and only if a = 0. In all other cases, σa maps surjectively onto H by the second hypothesis.

Set Σ = {(a, g, σa(g) | a ∈ A/(A ∩ C(B)), g ∈ B/(B ∩ C(A))}. By the bilinearity of [·, ·]
in a group of nilpotence class 2, the system A/(A ∩ C(B)), B/(B ∩ C(A)), H,Σ satisfies

the hypotheses of Theorem 6.3.12, where †F is interpreted in terms of these maps. So

A/(A ∩ C(B)) is finite.

Corollary 6.3.15. Let G be a counterexample with no peaks given by Theorem 5.3.1. As-

sume †F holds for the commutator maps [g, ·] for g ∈ G and for all finite fields F of

characteristic p. Then for any a ∈ G, there are only finitely many b ∈ G distinct modulo

Z(G) such that [a,G] ∩ [b,G] is infinite.

Proof. Given a ∈ G, the set Aa = {b ∈ G | [b,G] ∩ [a,G] is infinite} is an a-definable set by

ℵ0-categoricity. In fact, by Theorem 5.3.1 Aa = Z(G) ∪ {b ∈ G | [b,G] = [a,G]} and thus

is a group. If Aa = Z(G), we are done, so assume Aa ) Z(G). Since we are in the no

peaks case, C(x)/Z(G) is finite for all x /∈ Z(G). So we may apply the Corollary 6.3.14

with A = Aa and B = G and conclude that Aa/(A ∩ C(G)) = Aa/Z(G) is finite.
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