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Résumé. Si a et b sont des entiers positifs, avec a ≤ b et a2 ≡
a mod b, nous appelons l’ensemble

Ma,b = {x ∈ N : x ≡ a mod b ou x = 1}
un monöıde d’une congruence arithmetique (ACM). Pour chaque
monöıde avec ses unités M× et pour chaque x ∈ M\M×, nous
ditons que t ∈ N est une longueur de décomposition en facteurs de
x si et seulement s’il y a des éléments irréductibles y1, . . . , yt ∈ M
et x = y1 · · · yt. Soit L(x) = {t1, . . . , tj} l’ensemble des longeuers
(avec ti < ti+1 pour i < j). Le Delta-ensemble d’un élément x est
∆(x) = {ti+1 − ti : 1 ≤ i < j } et le Delta-ensemble du monöıde
M est ∆(M) =

⋃
x∈M\M× ∆(x). Nous examinons ∆(M) quand

M = Ma,b est un ACM avec gcd(a, b) > 1. Cet ensemble est
caractérisé complètement quand gcd(a, b) = pα, p est un nombre
premier, et α > 0. Quand gcd(a, b) a plus d’un facteur premier,
nous trouvons des limites pour ∆(M).

Abstract. If a and b are positive integers with a ≤ b and a2 ≡
a mod b, then the set

Ma,b = {x ∈ N : x ≡ a mod b or x = 1}
is a multiplicative monoid known as an arithmetical congruence
monoid (or ACM). For any monoid M with units M× and any x ∈
M \M× we say that t ∈ N is a factorization length of x if and only
if there exist irreducible elements y1, . . . , yt of M and x = y1 · · · yt.
Let L(x) = {t1, . . . , tj} be the set of all such lengths (where ti <
ti+1 whenever i < j). The Delta-set of the element x is defined
as the set of gaps in L(x): ∆(x) = {ti+1 − ti : 1 ≤ i < k} and
the Delta-set of the monoid M is given by

⋃
x∈M\M× ∆(x). We

consider the ∆(M) when M = Ma,b is an ACM with gcd(a, b) > 1.
This set is fully characterized when gcd(a, b) = pα for p prime and
α > 0. Bounds on ∆(Ma,b) are given when gcd(a, b) has two or
more distinct prime factors.
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1. Introduction

Throughout our work, N denotes the positive integers and N0 the non-
negative integers. Let P denote the set of (positive) rational primes, and
for any x ∈ N, P(x) denotes the set of rational primes which divide x.
If S ⊆ N, then 〈S〉× denotes the multiplicative closure of S in N (that
is, 〈S〉× is the free commutative monoid on S). Intervals will always be
treated as subsets of Z. Monoids are always assumed to be commutative,
atomic (every element can be written as a finite product of irreducibles),
and cancellative (for all x, y, z ∈ M , xy = xz implies y = z).

For any m > 0 the set

Hm = {x ∈ N : x ≡ 1 mod m} = 1 + mN0

is a monoid under the usual multiplication operation. Monoids of this form
are called Hilbert monoids and generalize to a broader class of submonoids
of (N,×). Let b ∈ N and choose a ∈ N satisfying 0 < a ≤ b and a2 ≡
a mod b. The arithmetical congruence monoid (ACM) determined by this
choice of a, b is defined as

Ma,b = {x ∈ N : x = 1 or x ≡ a mod b} = (a + bN0) ∪ {1}.
Because Ma,b is a submonoid of (N,×) one easily verifies that it is com-
mutative, atomic, and cancellative. In general, arithmetical congruence
monoids do not possess unique factorization. Indeed, fixed elements of an
ACM may have factorizations of different lengths. For example, in M4,6

the elements 4, 10, 250 are all irreducible, but (10)3 = (4)(250).
The value d = gcdMa,b = gcd(a, b) is very important to the factorization

theory of Ma,b. If d = 1 then we call Ma,b regular and if d > 1, we
call it singular. An elementary argument (see [3, Lemma 2.1]) shows that
regular ACMs are precisely the Hilbert monoids described above. Singular
ACMs are further characterized as being either local or global depending
on whether d has one or more distinct prime factors. An application of
the Chinese Remainder Theorem shows that a global ACM can always be
written uniquely as an intersection of local ACMs. Moreover, the local and
global cases are also naturally distinguished by the structure of a certain
characteristic submonoid (see Section 4).

Arithmetical congruence monoids have been addressed recently in the
literature in [2] and [3] where the factorization properties of these monoids
are explored. In particular, in [3, Theorem 2.4] and [6, Example 3.7.14] it
is shown that the elasticity of factorization (see [1] or [6, Definition 1.4.1]
for a definition) of Ma,b is finite if and only if Ma,b is regular or local.
A more in-depth general analysis of congruence monoids can be found in
[7]. Our purpose is to extend the work of [3] and provide a more precise
examination of the factorization properties of the elements of Ma,b into
products of irreducible elements.
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Before describing the contents of our paper, some definitions and no-
tation are necessary. For any monoid M the set of units will be denoted
by M× and the set of irreducible elements will be denoted by A(M). If
x ∈ M \M× set

L(x) = {l ∈ N0 : there exist x1, . . . , xl ∈ A(M) such that x = x1 · · ·xl}.
Order L(x) = {l1, . . . , lj} with li < li+1 for 1 ≤ i < j and define

∆(x) = {li+1 − li : i ∈ [1, j)}.
Finally, we define the ∆-set of M by

∆(M) =
⋃

x∈M\M×
∆(x).

Note that M is half-factorial (i.e., |L(x)| = 1 for each x ∈ M\M×) if and
only if ∆(M) = ∅.

Determining the ∆-set of a given monoid is no simple task, and in fact,
very few specific calculations are known. For instance, the ∆-set of the
Hilbert monoid Hm (which is a Krull monoid) is equivalent to that of the
block monoid on (Z/mZ)× (see [6, Proposition 2.11.6]), and in general, little
can be said about the ∆-set of a block monoid on a finite abelian group
unless it is cyclic. The ∆-set of a numerical monoid (an additive submonoid
of N0) has been analyzed rigorously in [4] where the authors characterize
∆(S) when S is a numerical monoid with equally spaced generators. In
particular, if S = 〈a, a + k, a + 2k, . . . , a + wk〉 then ∆(S) = {k}.

In our paper, we will examine the ∆-set of a singular ACM. By [6,
Theorem 2.11.8], ACMs are examples of a larger class of arithmetically
motivated monoids known as C-monoids (H is a C-monoid if and only if
it is a submonoid of a factorial monoid F such that H ∩ F× = H× and
the reduced class semigroup of H in F is finite, see [8]). The ∆-set of a
C-monoid is finite [6, Theorem 1.6.3]; hence we can always assume by a
Theorem of Geroldinger [6, Proposition 1.4.4] that

∆(Ma,b) ⊆ {s, 2s, . . . , qs}
where s = min∆(Ma,b) and q is a positive integer.

We will completely determine the ∆-set of a local ACM (Theorem 3.1).
We will also characterize a property of global ACMs which gives an upper
bound on the ∆-set in this case (Theorem 4.2).

An overview of basic ACM structure in Section 2 culminates with a useful
membership criterion. This allows us to note that if Ma,b is local with
d = gcd(a, b) = pα, then there exists β ≥ α such that pβ ∈ Ma,b. Section 3
contains the proof of Theorem 3.1, which fully characterizes the ∆-set of a
local ACM according to the values of α and β. Section 4 closes with some
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provocative remarks on the structure of ACMs, including Theorem 4.2 and
some of its corollaries.

Many important factorization properties of ACMs have already been
investigated; in particular, questions of factoriality, half-factoriality, and
elasticity are covered extensively in [3] and [6]. Most relevant to our dis-
cussion will be the following results from [3] (Theorem 2.4 and Theorem
2.7).

Theorem 1.1. Let Ma,b be an arithmetical congruence monoid.
(1) ∆(Ma,b) = ∅ (that is, Ma,b is half-factorial) if and only if either

a. Ma,b = Hm where ϕ(m) ≤ 2, or
b. a ≡ p mod b, where p is a rational prime dividing b.

(2) If ∆(Ma,b) 6= ∅, then 1 ∈ ∆(Ma,b).

2. Basic structure theory of ACMs

Since an arithmetical congruence monoid is determined by the choice of
a, b, it is logical to begin our discussion with the possible choices. In the
process, we also determine a membership criterion for Ma,b.

Theorem 2.1. Let a, b ∈ N, 0 < a ≤ b, a2 ≡ a mod b, d = gcd(a, b) and
m = b/d. Then gcd(a,m) = gcd(d,m) = 1 and

Ma,b = (dN ∩Hm) ∪ {1}.
Conversely, let d,m ∈ N with gcd(d,m) = 1 and set b = dm. Then there is
a unique a ∈ N such that 0 < a ≤ b, a2 ≡ a mod b, and d = gcd(a, b). In
this case, Ma,b has the form above.

Proof. Let 0 < a ≤ b and a2 ≡ a mod b. Then b | a(a − 1). Since a and
a − 1 are relatively prime, we have vp(a) ≥ vp(b) for any prime p dividing
d. But d = gcd(a, b), so for such p we have vp(b) = vp(d) and vp(m) = 1.
This yields that gcd(a,m) = gcd(d,m) = 1.

Since m | b we have a2 ≡ a mod m; but gcd(a,m) = 1, so a is a unit
modulo m. Therefore a ≡ 1 mod m. Every x 6= 1 in Ma,b is of the
form a + kb, so d|x and we have x ≡ 1 mod m. Thus x ∈ dN ∩ Hm and
Ma,b ⊆ (dN ∩Hm) ∪ {1}. For the reverse inclusion, suppose x ≡ 1 mod m
and d|x. Since a ≡ 1 mod m, we have x = a + km for some k. But since
d|x, d|a and gcd(d,m) = 1, we must have d|k. So x = a + b(k/d) > 0 and
therefore x ∈ Ma,b by definition.

Now we show the converse. Let d, m ∈ N with gcd(d, m) = 1 and
set b = dm. Since gcd(d,m) = 1, we may choose integers u, v such that
ud− vm = 1. Therefore:

(ud)2 = ud(1 + vm) = ud + buv ≡ ud mod b
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If a is the least positive residue of ud modulo b, then 0 < a ≤ b and a2 ≡ a
mod b. Also, a = ud + kb for some k, so d|a. But ud ≡ 1 mod m, so a ≡ 1
mod m and gcd(a,m) = 1. Therefore gcd(a, b) = d.

For uniqueness, suppose a, a′ both satisfy the conditions, with a ≤ a′.
Then we may write a = kd and a′ = k′d for some 0 < k ≤ k′ ≤ m.
Since gcd(a, b) = gcd(a′, b) = d, we must have a ≡ a′ ≡ 1 mod m. So
m|(a′ − a) = (k′ − k)d. Since gcd(d,m) = 1, we conclude m|k′ − k and so
k′ = k. Therefore a = a′.¤

We will later find the following corollary to be very useful.

Corollary 2.2. Let x, y ∈ Ma,b be such that x, y 6= 1 and y |N x.

• If d |N (x/y), then x/y ∈ Ma,b.
• If x ∈ A(Ma,b), then y ∈ A(Ma,b).

Proof. For the first claim it is enough to note that x ≡ y ≡ 1 mod m so
that x/y ≡ 1 mod m.

For the second claim, suppose that y is reducible and z is an irreducible
factor of y. Then y/z ∈ Ma,b, so d |N (y/z). Since y |N x, we see d |N (x/z).
By the first claim, x/z ∈ Ma,b and so x = z(x/z) is reducible in Ma,b as
well. ¤

We close this section with an interesting observation concerning the ir-
reducible elements of a singular ACM.

Theorem 2.3. If M is a singular ACM and x ∈ M is reducible, then
x + b ∈ A(M).

Proof. If x is reducible, then x = x1x2 for some nontrivial x1, x2 ∈ Ma,b.
Therefore d |N x1 and d |N x2 so d2 |N x. But d2 6 |Nb since gcd(d,m) = 1.
Therefore d2 6 |Nx + b and so x + b is necessarily irreducible in Ma,b. ¤

This suggests that if M is a singular ACM, then

ς(M) = lim sup
k→∞

|A(M) ∩ [1, k]|
|M ∩ [1, k]| ≥ 1

2
.

For example, since a positive integer x in M2,2 is irreducible if and only
if 2 | x but 4 - x, it follows that ς(M2,2) = 1/2. On the other hand, it
is possible to force ς to be arbitrarily close to 1. To see this, let p be an
odd prime and consider ς(Mp,2p). We claim that ς(Mp,2p) = (p − 1)/p. In
ς(Mp,2p), x ∈ M is irreducible if and only if p | x but p2 - x. Thus, dividing
through by p we see that ς(M) is equal to the density of odd numbers which
are not divisible by p, which is as claimed.
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3. The ∆-set of a local ACM

Throughout this section, M will denote a local ACM with d = pα for
p ∈ P and α > 0. By Theorem 2.1 gcd(p,m) = 1 so we may choose the
least integer greater β ≥ α such that pβ ≡ 1 mod m. By the membership
criterion, pβ is the smallest power of p which is an element of M and, of
course, pβ ∈ A(M). The main theorem of this section is the following:

Theorem 3.1. Let M be a local ACM.

• If α = β = 1, ∆(M) = ∅.
• If α = β > 1, then ∆(M) = {1}.
• If α < β, then ∆(M) = [1, β/α).

The first of these results is an immediate consequence of Theorem 1.1.
Observe that when α = β = 1, p ∈ Ma,b. Since a is minimal among the
nonunits of M and p | a, it follows that a = p, so a is a prime divisor of b.

It is natural in the local case to classify elements of the ACM by their p-
adic values. Note that if x ∈ M and vp(x) < 2α, x is irreducible. Similarly,
if vp(x) ≥ α + β, x is reducible:

x = pα+βy = (pβ)(pαy),
where pβ ∈ M by hypothesis and pαy ∈ M by Corollary 2.2. Hence, if
x ∈ A(M), vp(x) ∈ [α, α + β). Moreover, by Dirichlet’s Theorem there
are infinitely many irreducibles of M which have p-adic value γ for each
γ ∈ [α, α + β).

3.1. Bounding ∆(M) in the local case. Let F be the set of all non-
negative integral vectors indexed by the interval [α, α + β). We consider F
as a monoid under coordinate-wise addition and write f ′ ≤ f if and only if
f ′γ ≤ fγ for all γ ∈ [α, α + β). We also set |f | = fα + · · ·+ fα+β−1.

Given x ∈ M \ M×, we write that f ∈ F(x) if and only if x has a
factorization into |f |-many irreducibles of M such that fγ of these factors
have p-adic value γ, for each γ. We say in this case that f is a factorization
scheme for x. Clearly if f is a factorization scheme for x, then |f | ∈ L(x).

The monoid F gives us a way to track factorizations of elements in M .
If f ∈ F(y) and g ∈ F(z) then f + g ∈ F(yz) (i.e., F(y) + F(z) ⊆ F(yz)).
Conversely, suppose f ∈ F(x) and f ′ < f . Fix a factorization of x corre-
sponding to f . For each γ choose f ′γ-many irreducible factors of x with
p-adic valuation γ and multiply all the chosen irreducibles together to yield
an element y ∈ M . Then f ′ ∈ F(y), x/y ∈ M , and f − f ′ ∈ F(x/y).

Lastly, we define a homomorphism r : F → Z by:

r(f) =
α+β−1∑

i=α

(β − i)fi =
β−α∑

i=1−α

ifβ−i.
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Note that if f ∈ F(x) then r(f) = β|f | − vp(x). We now establish two
lemmas about values of r in relation to the partial ordering on F .

Lemma 3.2. Let f ∈ F.

• If r(f) ≤ R < 0 there is f ′ ≤ f such that r(f ′) ∈ [R + 1, R + α− 1].
• If r(f) ≥ R > 0 there is f ′ ≤ f such that r(f ′) ∈ [R + α− β, R− 1].

Proof. If r(f) < 0 then there is some γ > β such that fγ > 0. Let eγ be the
vector which has 1 in the γ-th coordinate and 0 in all other coordinates.
Then f − eγ ≤ f and r(f − eγ) = r(f)− (β − γ). Thus we have found an f ′
such that r(f) < r(f ′) ≤ r(f) + α − 1. Proceeding inductively, we are able
to find an f ′ ≤ f with r(f ′) in any subinterval of [r(f), α− 2] of size α− 1.

The proof for the second claim is analogous, with γ < β and intervals of
size β − α instead. ¤

The above lemma is crucial in that it illustrates a level of uniformity to
the distribution of values taken by r.

Lemma 3.3. Fix x ∈ M , f ∈ F(x), and suppose that r(f) ≤ −α. Then
there exists g ∈ F(x) such that |g| = |f |+ 1 ∈ L(x).

Proof. Using Lemma 3.2 for the case when r(f) ≤ 1 − 2α, we are always
able to choose f ′ ≤ f such that r(f ′) ∈ [2− 2α,−α]. Pick y ∈ M such that
f ′ ∈ F(y) and x/y ∈ M .

Since vp(y) − β|f ′| = −r(f ′) ≥ α, by Corollary 2.2 we know that z =
y/pβ|f ′| ∈ M . Furthermore, since vp(z) = −r(f ′) < 2α we find that z is
irreducible. Thus (pβ)|f ′|z is a factorization of y into |f ′| + 1 irreducibles.
Since |f − f ′| ∈ L(x/y), we have shown that |f |+ 1 ∈ L(x). ¤

Corollary 3.4. If α = β > 1, then ∆(M) = {1}.
Proof. Let x ∈ M be a nonunit. Since M is not half-factorial, we may take
x such that ∆(x) 6= ∅. Let f ∈ F(x) be given. If |f | 6= maxL(x) then

|f |+ 1 ≤ maxL(x) ≤ vp(x)
α

Since α = β this implies r(f) ≤ −α. By Lemma 3.3, |f |+ 1 ∈ L(x). ¤

Lemma 3.5. Let M be a local ACM with α < β. Fix x ∈ M , f ∈ F(x),
and suppose that

r(f) ≥ K = (β − α)
⌈

β

α

⌉
+ 1

Then |f | − k ∈ L(x) for some 0 < k < β/α.
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Proof. By Lemma 3.2 there exists f ′ ≤ f with r(f ′) ∈ [K,K + (β − α)− 1].
Set r = r(f ′) and write r = tβ − α + s for some 0 ≤ s < β. Note that

(dβ/αe − 2)β − α + (β − 1) < K

since αdβ/αe < β + α + 2, and thus t ≥ dβ/αe − 1. Also,

β

⌈
β

α

⌉
− α ≥ K + (β − α)− 1,

with equality holding if and only if α divides β. Thus, we always have
t = dβ/αe − 1, with one possible exceptional case: α divides β, t = β/α
and s = 0.

Set q = d(α + r)/βe, so that q = t if s = 0 and q = t + 1 if s > 0. We
claim that r > q(β − α). If s = 0, the desired inequality reduces to t > 1.
Since β − α < K, we cannot have r = β − α and so t > 1.

On the other hand, if s > 0 then the desired inequality reduces to showing
that s > β − tα. Recall that in this case t = dβ/αe − 1, so we must show
that s > β + α− αdβ/αe. But

(β − α)
⌈

β

α

⌉
< K ≤ r =

(⌈
β

α

⌉
− 1

)
β − α + s

from which we obtain our desired inequality. Thus q < r/(β − α) ≤ |f ′|.
Pick a factor y of x such that f ′ ∈ F(y). Then vp(y) = β|f ′| − r =

β(|f ′| − q) + qβ − r and
y = (pβ)|f

′|−qz,

where vp(z) = qβ−r ≥ α. Hence we can factor y into |f ′|−q+k irreducibles,
for some 1 ≤ k ≤ b(qβ − r)/αc. But x/y can be factored into |f − f ′| many
irreducibles so we have a factorization of x of length |f | − (q − k).

We are left with verifying that 0 < q−k < β/α. First, observe that when
s = 0, q−k ≤ q−1 = t−1 < dβ/αe. When s > 0, q−k ≤ q−1 = t < dβ/αe
since the exceptional case when t = β/α occurs precisely when s = 0. Thus
q − k < β/α. For the other inequality, recall that q < r/(β − α), and so
(qβ − r)/α < q. Applying the floor function to both sides, we still have a
strict inequality (since q ∈ Z), so

q − k ≥ q −
⌊

qβ − r

α

⌋
> 0.

Therefore 0 < q − k < β/α, as desired. ¤

Theorem 3.6. If M is a local ACM and α < β, then ∆(M) is nonempty
and max∆(M) < β/α.

Proof. ∆(M) is nonempty since β > 1. Let K be defined as in Lemma 3.5
and fix x ∈ M . Since the values of r on F(x) depend only on vp(x) and the
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length of a given factorization, we will treat r as a function on L(x). Set

L+(x) = {l ∈ L(x) : r(l) ≥ K} =
{

l ∈ L(x) : l ≥ vp(x) + K

β

}
, and

L−(x) = {l ∈ L(x) : r(l) ≤ −α} =
{

l ∈ L(x) : l ≤ vp(x)− α

β

}
,

and let L0(x) be the complement of L+(x) ∪ L−(x) in L(x).
If L+(x) is nonempty, then Lemma 3.5 implies that consecutive values

in L+(x) are spaced less that β/α apart. This lemma also shows in this
case that L0(x) 6= ∅ and the distance between minL+(x) and maxL0(x)
is less than β/α. If L−(x) is nonempty, then Lemma 3.3 actually implies
[minL−(x), maxL−(x) + 1] ⊆ L(x). In particular, L0(x) 6= ∅ since in this
case maxL−(x) + 1 ∈ L0(x). Lastly, note that

L0(x) ⊆
(

vp(x)− α

β
,
vp(x) + K

β

)
,

which is an open interval in R of length strictly less than dβ/αe. Therefore
any values in L0(x) are less than β/α apart. All these cases combine to
show that max ∆(x) < β/α. ¤

3.2. The Determination of ∆(M) in the local case. In the previous
section it was proven that if M is a local ACM with α = β then either
∆(M) = ∅ or ∆(M) = {1} (depending on whether α = β = 1 or α = β > 1,
respectively). Moreover, we found a general upper bound for ∆(M) when
M is a local ACM. It remains then to prove only the last claim of Theorem
3.1. Throughout this section we will assume that α < β and we will also
denote the multiplicative order of p modulo m by ω.

Lemma 3.7. If β = ω then [1, δ] ⊆ ∆(M) where δ = dβ/αe − 1.

Proof. Let γ ∈ [α, β) and choose distinct rational primes q, r which are not
equal to p and such that q ≡ p−α modm and r ≡ p−γ mod m. Set

t =
⌈

β − γ

α

⌉
+ 1,

so that αt− β + γ ∈ [α, 2α). Consider x = pαt+γqtr and note that x ∈ M .
Furthermore, we have irreducible factorizations

x = (pαq)t(pγr) = (pβ)(pαt−β+γqtr)

which are of lengths t + 1 and 2, respectively.
Suppose that y is an irreducible factor of x in M and write y = pvqirj

where i ∈ [0, t] and j ∈ [0, 1]. Since y ≡ 1 modm and β is the order of p
modulo m by hypothesis we must also have v ≡ iα + jγ mod β. From this
we infer the following:
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• If i = j = 0, then v = β and y = pβ.
• If i = 0 and j = 1, then v = γ and y = pγr.
• If i > 0 then v < 2α. Otherwise pαq properly divides y in M .

Assume that i > 0 so that v ∈ [α, 2α). Let S be the set of residue classes
[α, 2α) + βZ and note that we must have αi + γj + βZ ∈ S. We have two
cases:

• If j = 0, then αi + βZ ∈ S, so either i = 1 or αi ≥ α + β. In the
latter case, we see that since i ≤ t, αt ≥ α + β, but this contradicts
the choice of t, as then αt− β + γ ≥ 2α.

• If on the other hand j = 1, then αi + γ + βZ ∈ S. Since γ ≥ α, we
have αi + γ ≥ α + β, and it follows that i ≥ 1

α(β − γ) + 1, whence
i = t by the choice of t.

Combining all of these arguments we find that the irreducible divisors of x
in M are precisely pγr, pαq, pβ, and pαt−β+γqtr. It is clear from counting r’s
and q’s that the only two factorizations of x are the two already described.
Therefore ∆(x) = {t− 1}.

We conclude that {⌈
β − γ

α

⌉
: γ ∈ [α, β)

}
⊆ ∆(M),

but the set on the left-hand side is exactly [1, δ], as desired. ¤
Lemma 3.8. If β ≥ 2α− 1 then β = ω.

Proof. Set β = kω. By the minimality of β ≥ α, (k − 1)ω ≤ α − 1.
Combining this with the assumed bound on β,

ω = kω − (k − 1)ω ≥ (2α− 1)− (α− 1) = α

so that β = ω. ¤
Theorem 3.9. If α < β then ∆(M) = [1, β/α).

Proof. Let δ = dβ/αe−1 so that [1, δ] = [1, β/α). By Theorem 3.6, ∆(M) ⊆
[1, δ]. If β = ω, then [1, δ] ⊆ ∆(M) by Lemma 3.7.

If on the other hand β 6= ω, we see that β ≤ 2(α− 1) by Lemma 3.8, so
δ = 1. Because ∆(M) is nonempty (as 1 ≤ α < β), equality must hold in
the inclusion ∆(M) ⊆ [1, δ] = {1}. ¤

4. The ∆-set of a global ACM

Any singular ACM can be decomposed as an intersection of local ACMs.
In particular, if we factor gcd(a, b) = d = pα1

1 · · · pαn
n then

Ma,b =
n⋂

i=1

Mai,b/qi
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where qi =
∏

j 6=i p
αj

j , and ai is the least positive residue of a modulo b/qi.
Each of the terms in this intersection is easily seen to be local by results in
Section 2. Furthermore, this local decomposition is unique by the Chinese
Remainder Theorem. Though this decomposition always exists, a mathe-
matical relationship between ∆(M ∩ N) and ∆(M),∆(N) may not exist.
If N is a general submonoid of M , the factorization properties of M and N
might be substantially different, since it is not always the case, for example,
that A(N) = A(M)∩N . However, A(N) = A(M)∩N if N is divisor-closed
in M .

In Section 3 we often made use of the fact that pβ is irreducible in the
local ACM M . In the global case we will employ a similar strategy. For
any monoid M let sM be the set of all x ∈ M such that for all y ∈ M \M×
there exists t ∈ N with x |M yt; this is the singularity of M . One can check
that sM is a divisor-closed submonoid of M . In fact, if N is a divisor-closed
submonoid of M and M× ≤ N ≤ sM , then either N = M× or N = sM .
Hence, if sM 6= M×, sM is the minimal nontrivial divisor-closed submonoid
of M .

Now, if M is an ACM and N is a divisor-closed submonoid of M , then
N = 〈P 〉× ∩M where P(d) ⊆ P ⊆ P \P(m). In particular, sM = 〈P(d)〉× ∩
M . Thus, sM = M× = {1} when M is a regular ACM. In a local ACM,
sM is nontrivial and finitely generated since

A(sM ) = A(M) ∩ sM = {pβ+kω : 0 ≤ k < α/ω}.

In the global case, A(sM ) is actually infinite, as we will see below. This
provides an algebraically significant distinction between the regular, local,
and global cases as they correspond precisely to when sM is trivial, finitely
generated, or not finitely generated.

For the remainder of this section we will assume that M = Ma,b is a
global ACM where d = gcd(a, b) = pα1

1 · · · pαn
n where n > 1, p1, . . . , pn ∈ P

are distinct and αi > 0 for each i. As before, we note that pi does not
divide m, so for each i we will fix ωi to be the multiplicative order of pi

modulo m; βi ≥ αi will again be minimal such that ωi | βi.
Call y ∈ A(sM ) a pi-amenable irreducible if and only if pkωi

i y ∈ A(sM )
for each k ∈ N0. It is actually relatively easy to demonstrate the existence
of such irreducibles: given j ∈ [1, n], choose y ∈ A(sM ) of minimal pj-adic
value. If i 6= j, then y is pi-amenable. Thus pi-amenable irreducibles exist
and, as a corollary, A(sM ) is infinite. This is precisely the feature of the
global case which we will use to our advantage.

We are able to give a general condition on a monoid under which we can
bound the ∆-set. Let

Λ = {minL(x) : x ∈ M \M×}.
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If M is not a group then this set is nonempty. If it is bounded, then we
say that λ = max Λ + 1 is the critical length of M .

Lemma 4.1. Let M be a monoid which is not a group. If the critical length
λ exists then ∆(M) is nonempty and finite with max∆(M) ≤ λ− 2.

Proof. Note that any x ∈ M \ M× with maxL(x) ≤ λ has ∆(x) = ∅
or max∆(x) ≤ λ − 2, so assume maxL(x) > λ. Let x1 · · ·xµ be any
factorization of x where µ ≥ λ. By the definition of λ, there is some
2 ≤ k < λ and y1, . . . , yk ∈ A(M) such that x1 · · ·xλ = y1 · · · yk. Thus,
x = y1 · · · ykxλ+1 · · ·xµ is an irreducible factorization of x and µ, µ − (λ −
k) ∈ L(x). Since λ− k ≤ λ− 2, the result now follows. ¤

If the critical length exists, then the above proof also shows that the
catenary degree of M , denoted c(M) (see [6, Definition 1.6.1]), satisfies
c(M) ≤ λ. Indeed, the proof shows that any factorization of some x ∈ M
can be connected by a λ-chain to a factorization of length less than λ.

Theorem 4.2. Let M be a non-local ACM, j ∈ [1, n], and y a pj-amenable
irreducible. Choose λ satisfying

λ ≥ max
i

(
vpi(y)

αi

)
+ 1, and λ ≥ 2αj + ωj

αj
.

Then λ > minL(x) for all x ∈ M \ M× and so M has a critical length.
Furthermore, this critical length does not exceed λ.

Proof. Let x ∈ M \M× such that l ∈ L(x) for l ≥ λ. Of course vpi(x) ≥
λαi for each i. By the first bound on λ, vpi(x) ≥ αi + vpi(y) for each i
and therefore vpi(x/y) ≥ αi. We infer that x/y ∈ M by the membership
criterion.

Now find k such that αj ≤ vpj (x/y) − kωj ≤ αj + ωj − 1. By the usual

arguments, x/p
kωj

j y ∈ M and since

vpj

(
x

p
kωj

j y

)
≤ αj + ωj − 1,

any factorization of x/p
kωj

j y has at most k irreducible factors where

k ≤ αj + ωj − 1
αj

.

Moreover, k + 1 ∈ L(x) since p
kωj

j y is irreducible in M (as y was chosen to
be pj-amenable). By the second bound on λ, λ > k + 1, so minL(x) < λ.
¤

The above theorem does not apply to the local case because in the local
case A(sM ) is finite. We will now demonstrate the usefulness of Theorem
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4.2 in formulating bounds for ∆(M) where M is non-local and singular.
For instance, we can derive the following corollaries:

Corollary 4.3. Let M be an ACM with a = d = p1p2. Then max∆(M) =
ω where ω is the order of p1 (and p2) modulo m.

Proof. Note that in this case, a = p1p2 is p1-amenable (and p2-amenable)
and since a ≡ 1 (mod m), p1 and p2 necessarily have the same multiplica-
tive order, ω, modulo m. Applying Theorem 4.2 with y = a shows us that
the critical length of M is less than or equal to λ = ω + 2. Therefore,
by Lemma 4.1, max∆(M) ≤ ω. However, the element x = pω+2

1 pω+2
2 has

exactly two irreducible factorizations:

x = (p1p2)ω+2 = (pω+1
1 p2)(p1p

ω+1
2 ).

Hence ∆(x) = {ω} and max∆(M) = ω. ¤

Corollary 4.4. Let M be a non-local ACM. Furthermore, assume that
pγ1
1 · · · pγn

n ∈ M where γi ∈ [αi, 2αi) for each i and that for some j we have
ωj ≤ αj. Then ∆(M) = {1}
Proof. Set y = pγ1

1 · · · pγn
n and note that since γi < 2αi, y is irreducible and

pi-amenable for all i ∈ [1, n]. Applying Theorem 4.2 we see that λ = 3 is
the critical length for M . Since the ∆-set of a non-local ACM is nonempty,
∆(M) = {1} by Lemma 4.1. ¤

Corollary 4.5. Let M be a singular ACM with a = b. Then

∆(M) =
{
∅ if b is prime,
{1} if b is composite.

Proof. This is simply a combination of results; specifically Theorem 3.1 and
Corollary 4.4. ¤

Example 4.6. Consider M6,30. In particular, we note that m = 5 and
d = 6 = (2)(3) ≡ 1 mod 5. This exactly the situation in which Corol-
lary 4.3 applies. Since 2 has multiplicative order 4 modulo 5, we see that
max∆(M6,30) = 4. It is pretty easy to find witnesses to 1, 2, 3 ∈ ∆(M6,30),
and so ∆(M6,30) = [1, 4]. The local decomposition of M6,30 is M6,10∩M6,15,
both of which have ∆-set equal to [1, 3] by Theorem 3.1.¤

Example 4.7. Let M96,480. We have d = 96, m = 5, P(d) = {2, 3},
α = (5, 1), and ω = (4, 4) (where α and ω are vectors defined in the
obvious manner). Since d = 96 ∈ M96,480 and 4 = ω1 ≤ α1 = 5, we can
conclude by Corollary 4.4 that ∆(M96,480) = {1}. Again, we decompose
M into local ACMs: M96,480 = M96,160 ∩ M6,15. Applying Theorem 3.1,
∆(M96,160) = {1} and ∆(M6,15) = [1, 3].¤
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In the local case, the values α and ω are sufficient to retrieve ∆(M).
Thus, one might hope that ∆(M) is determined by α, ω in the global case.
This is not the case as the next example illustrates.

Example 4.8. Let M = M56,70 and N = M6,30. Making the usual prelim-
inary calculations, we see that (αM , ωM ,mM ) = (αN , ωN ,mN ). Despite
these similarities, we claim that

max∆(M) < 4 = max ∆(N).

Proof. Using Theorem 4.2 with y = 56 = 237 (which is 2-amenable), we
see that the critical length for M is at most 6. Suppose we have an x ∈ M
and an l ≥ 2 such that l, l + 4 ∈ L(x). We wish to show that l + 1, l + 2, or
l + 3 is also in L(x). Let x1 · · ·xl+4 be a factorization of length l + 4 and
let y be the product of the first 6 irreducibles in this factorization.

By the definition of λ, minL(y) < 6. If y has a factorization of length
5, 4 or 3, then we are done because that yields a factorization of x of a
desired length. So let us assume that y has a factorization of length 2, say
y = y1y2.

For x ∈ M \M×, let µ(x) = min{v2(x), v7(x)}. Then since 2272 is an
element of M (and in fact is irreducible) and α = (1, 1), we conclude that
µ(x) ≤ 2 for all x ∈ A(M). Moreover, since 237 and 2 · 73 are also both
(irreducible) elements of M , if x ∈ A(M) and µ(x) = 2, then

(
v2(x), v7(x)

) ∈ {(2, 2), (2, 3), (3, 2)}.
Observe that v2(y) = v2(y1)+v2(y2) ≥ 6 and v7(y) = v7(y1)+v7(y2) ≥ 6.

Suppose for contradiction that µ(y1) = 2 and without loss of generality,
assume v2(y1) = 2. Then v2(y2) ≥ 4, so it must be that µ(y2) = 1.
This implies that v7(y2) = 1 and so v7(y1) ≥ 5, which contradicts the
irreducibility of y1. Therefore µ(y1) = µ(y2) = 1. Without loss, assume
v2(y1) = 1 so that v7(y1), v2(y2) ≥ 5. We may therefore write y1 = 24z1 and
y2 = 74z2. Note that 14 |N z1, z2 and 24 ≡ 74 ≡ 1 mod 5, so we infer that
z1, z2 ∈ A(M) by Corollary 2.2. Therefore y = (142)2z1z2 is a factorization
of y of length 4, completing the argument. ¤

From the preceding example we may conclude that the values of α,ω,m
are insufficient to determine ∆(M). This suggests that the case breakdown
involved in determining the ∆-set of an arithmetical congruence monoid
becomes rather intricate as n grows.
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