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Abstract. Let p and q be distinct primes with p > q and n a positive integer.

In this paper, we consider the set of possible cross numbers for the cyclic groups
Z2pn and Zpq . We completely determine this set for Z2pn and also Zpq for
q = 3, q = 5 and the case where p is sufficiently larger than q. We view the
latter result in terms of an upper bound for this set developed in a paper of

Geroldinger and Schneider [8] and show precisely when this upper bound is an
equality.

1. Introduction

A nonempty sequence S = {g1, . . . , gn} of not necessarily distinct elements of an
additive group G is called a zero sequence if

∑n
i=1 gi = 0. A zero sequence with no

proper nonempty zero subsequence is called a minimal zero sequence. If a sequence
contains no zero subsequence, it is known as zero free. We define

U(G) = {T | T is a minimal zero sequence in G}.

Several constants can be extracted from the study of such sequences. The Daven-
port constant, D(G) is the maximum length of a minimal zero sequence in G. The
Davenport constant is at most the order of G, and in the case of cyclic groups it
indeed attains that value. We additionally define the cross number of a sequence
as

k(S) =
n∑
i=1

1
|gi|

and the cross number of a group as

K(G) = max{k(S) | S ∈ U(G)}.

A formula for the cross number of a finite abelian group is not known in general.
Formulas are known for particular classes of groups, including p-groups. We will
use the following well-known results in our work.

(i) K(G) = 1 if and only if G ∼= Zpn for p prime and n ∈ N [9].

(ii) If p and q are distinct primes then K(Zpq) = 2pq−p−q+1
pq [10, Theorem 3].

(iii) If p is an odd prime and n ∈ N, then K(Z2pn) = 3pn−1
2pn [10, Theorem 3].

We mention some additional facts about such sequences that will be used fre-
quently throughout this paper:
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1. If S = {g1, g2, . . . , gn} is a zero, minimal zero, or zero free sequence, then
T = {g1 + g2, . . . , gn} also is a zero, minimal zero, or zero free sequence. We
call the process of attaining T from S amalgamation of elements of S.

2. If S = {g1, g2, . . . , gn} is a zero free sequence, then T = S ∪ {−
∑n
i=1 gi} is a

minimal zero sequence.

A particularly important inference from the last fact is that any sequence of length
greater than or equal to D(G) must contain a zero subsequence.

In this paper, we extend the work presented in [3] and consider the set

W (G) = {k(T ) | T ∈ U(G)}
of cross numbers of all the minimal zero sequences in a finite abelian group G. We
consider in particular the case G ∼= Zpq where p > q are primes. Several general
results appear in the literature concerning the set W (G). If G ∼=

∑t
i=1 Zp

ni is a
p-group where p is an odd prime and ni ≤ nj for all 1 ≤ i ≤ j ≤ t, then the main
theorem of [5] implies that

K(G) =

[
t∑
i=1

pni − 1
pni

]
+

1
pnt

.

Setting K(G) = x
pnt , [3, Theorem 4] shows that W (G) = { λ

pnt | 2 ≤ λ ≤ x}.
Moreover, [3, Theorem 2] also shows if W ∗(G) = {k(S) | S ∈ U(G), k(S) ≤ 1},
then W ∗(G) = { λ

exp(G) | 2 ≤ λ ≤ exp(G)}, for every abelian group G of odd order.

Using the main theorem of [8], which describes the structure of zero free se-
quences with large cross number in the group G = Z

r
p ⊕ Zsq, the authors obtain an

upper bound for the set W (G) [8, Corollary 2]. In particular, if p and q are distinct
odd primes and p > q, then their result reduces to

W (Zpq) ⊆ {
λ

pq
| 2 ≤ λ ≤ 2pq − p− 2q + 2 or λ = 2pq − p− q + 1}.(∗)

Our interest in the set W (Zpq) originated in our attempt to determine when the
containment in (∗) is actually an equality. A combination of Example 5.2 and
Corollaries 5.1, 5.4, 5.9 and 5.11 yields a proof of the following proposition.

Proposition 1.1. If p > q are odd primes, then

W (Zpq) = { λ
pq
| 2 ≤ λ ≤ 2pq − p− 2q + 2 or λ = 2pq − p− q + 1}

if and only if

1. q = 3, or
2. q = 5 and p = 7.

Our work shows in the case where G = Zpq that the main result in [8] is essentially
the best possible. While there is no “global” result for the structure of zero free
sequences in Zpq of cross number less than (2pq− p− 2q+ 1)/pq, Theorems 5.3 5.8
and 5.10 show that the structure of such sequences is dependent on the size of p
relative to q. In the case where p is large relative to q (in fact, when p > q2−3q+2)
we prove a stronger version of the main theorem of [8] which allows us to determine
the set W (Zpq). We show for q fixed that the size of W (Zpq) stabilizes as p increases
(see Corollary 5.6). In the other cases (2p− 4 ≥ 2q ≥ p + 3), we prove a modified
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form of the main result in [8] with which we are able to show the existence of a
second “gap” in W (Zpq).

2. The Case q = 2

We begin by considering W (Z2p) and, using (iii) from the Introduction, actually
determine this set for a slightly larger class of cyclic groups. If S is a finite sequence
which contains exactly n copies of the element g, then we will represent this with
the notation gn.

Theorem 2.1. Let p be an odd prime and n ∈ N. Then

W (Z2pn) = { k

2pn
| k even, 2 ≤ k ≤ 3pn − 1}

Proof. By [3] and [10], we have the following inclusions:

{ k

2pn
| k even, 2 ≤ k ≤ 2pn} ⊆W (Z2pn) ⊆

⊆ { k

2pn
| k even, 2 ≤ k ≤ 2pn} ∪ { k

2pn
| 2pn ≤ k ≤ 3pn − 1}

Let 1 ≤ m ≤ pn−1
2 be given. We wish to show that 3pn−2m+1

2pn ∈W (Z2pn). View
Z2pn as Z2 ⊕ Zpn .

Case 1: If p does not divide m, then, B = {(1, 0), (0,m), (0, 1)p
n−m−1, (1, 1)} ∈

U(Z2pn) and k(B) = 3pn−2m+1
2pn .

Case 2: If p | m, then, B = {(1, 0), (0, 2), (0,m − 1), (0, 1)p
n−m−2, (1, 1)} ∈

U(Z2pn) and k(B) = 3pn−2m+1
2pn .

Thus, { k
2pn | k even, 2 ≤ k ≤ 3pn − 1} ⊆ W (Z2pn). To complete the argument,

let x odd, with 2 < x < 3pn − 1, be given. Assume x
2pn ∈ W (Z2pn). Thus, there

exists S = {g1, . . . , gt} ∈ U(Z2pn) such that
∑t
i=1

1
|gi| = x

2pn . The only possible

values for 1
|gi| are pk

2pn and 2pk

2pn , for 0 ≤ k ≤ n. Note that if 1
|gi| = 2pk

2pn , then gi (when

viewed as its least positive residue in Z) is necessarily even, while if 1
|gi| = pk

2pn , then
gi is necessarily odd. Thus,

x

2pn
=

t∑
i=1

1
| gi |

=
∑

gi even

1
| gi |

+
∑
gi odd

1
| gi |

=
2m
2pn

+
∑
gi odd

1
| gi |

for some positive integer m. Since x is odd, it must be that the number of odd gi
is odd. But, since S ∈ U(Z2pn), we must have for some positive integer k,

2pnk =
t∑
i=1

gi =
∑

gi even

gi +
∑
gi odd

gi = 2l1 + (2l2 + 1)

which is a contradiction. Thus, x
2pn /∈W (Z2pn) when x is odd and 2 < x < 3pn−1,

completing the proof.
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3. Zero free Sequences in Zpq

We prove two lemmas which will later be useful. When considering zero free
sequences in Zpq, we will use the following notation. If S is such a sequence, write
S = A ∪ B ∪ C where A consists of elements of order p, B consists of elements of
order q and C consists of elements of order pq. For ease of notation, viewing Zpq
as Zp ⊕ Zq we will say that A ⊆ Zp, B ⊆ Zq and C ⊆ Zpq\Zp ∪ Zq. Moreover, if A
is a finite sequence from an abelian group G, then let

∑
A represent the set of all

nonempty subsums of elements in A.

Lemma 3.1. Let S = A ∪ B ∪ C be a zero free sequence in Zpq such that there
exist integers 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ q − 1 with |A| = p− i, |B| = q − j.

(a) |B ∪ C| < iq and |A ∪ C| < jp.
(b) |C| < min {(i− 1)q + j, (j − 1)p+ i}.
(c) If min {i, j} = 1 then |C| < max {i, j}.

Proof. For (a), we show that |B∪C| < iq as the argument for the second inequality
is similar. If |B∪C| ≥ iq, then there are i nonempty, non-overlapping subsequences
in B ∪ C which sum to zero in Zq. Let the sums of these i subsequences be given
by (yt, 0) for 1 ≤ t ≤ i. Then |A ∪ {(yt, 0)}it=1| = p and so A ∪ {(yt, 0)}it=1 is not a
zero free sequence, contradicting the zero freeness of S. For (b), (a) implies that

iq > |B ∪ C| = |B|+ |C| = q − j + |C|

and

jp > |A ∪ C| = |A|+ |C| = p− i+ |C|

and from this the result follows. Part (c) now follows directly from part (b).

Lemma 3.2. Let S = A ∪ B ∪ C be a zero free sequence in Zpq. If | A |= p − 2
and | B |= q − 2, then | C |≤ 2.

Proof. By [4, Lemma 13],∣∣∣∑A
∣∣∣ =

{
p− 2 if A = {gp−2}
p− 1 if A = {gp−3, 2g}

and ∣∣∣∑B
∣∣∣ =

{
q − 2 if B = {hp−2}
q − 1 if B = {hp−3, 2h}

where g 6= 0 in Zp and h 6= 0 in Zq. Suppose that |C| > 2 and that (a1, b1), (a2, b2),
(a3, b3) are in C with each ai and bj nonzero. Suppose |

∑
A| = p− 1. Let T be a

sequence in B ∪ C with sum (x, 0). Now, −x ∈
∑
A and if V is a sequence in A

with sum (−x, 0), then V ∪ T is a zero sequence in Zpq. A similar argument holds
if |
∑
B| = q − 1. Hence, if S is zero free then |

∑
A| = p − 2 and |

∑
B| = q − 2.

Thus A = {(g, 0)p−2}, B = {(0, h)q−2} and hence
∑
A = {(x, 0) |x 6= −g, x 6= 0},∑

B = {(0, y) | y 6= −h, y 6= 0}. If T is a sequence in B ∪ C which sums to zero in
Zq, then its sum is (g, 0) (otherwise, using A we can construct a zero sequence in
S). We consider two cases.
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Case 1: Suppose that b1 + b2 + b3 6= h. Then a1 +a2 +a3 = g. If for 1 ≤ s < t ≤ 3
we have bs+bt 6= h, then as+at = g which yields ar = 0 for some r, a contradiction.
Thus b1 + b2 = b2 + b3 = b1 + b3 = h. Hence, b1 = b2 = b3 and each bs 6= h. Now,
g = a1 = a2 = a3 and our previous observation implies that a1 = a1 + a1 + a1.
Thus a1 = 0, a contradiction.

Case 2: Suppose that b1 + b2 + b3 = h. Then b1 + b2 6= h, b1 + b3 6= h and
b2 + b3 6= h and hence a1 + a2 = a1 + a3 = a2 + a3 = g. Thus a1 = a2 = a3 6= g
and hence b1 = b2 = b3 = h. In a manner similar to Case 1, we obtain that b1 = 0,
a contradiction.

4. Some Minimal Zero Sequences in Zpq

We begin by generating a family of minimal zero sequences in Zpq ∼= Zp ⊕ Zq.
For 1 ≤ k < q, define

T kp = {(1, 1)k, (k, 0)p−1, (0, 1)q−k},(1)

T kq = {(1, 1)k, (1, 0)p−k, (0, k)q−1}(2)

and for q ≤ k < p, define

T kp = {(1, 1)q−1, (1 + k − q, 2), (0, 1)q−1, (1, 0)p−k}.(3)

Elementary arguments show that each T kp and T kq ∈ U(Zpq) and clearly

k(T kp) = 2pq−kp−q+k
pq or 2pq+q−kq−p

pq ,

k(T kq) = 2pq−p−kq+k
pq .

By amalgamating elements of the same order within (1), (2) and (3), we obtain
new minimal zero sequences, each of which has a cross number easily calculated
from the list above. We compile these numbers in the following lemma.

Lemma 4.1. Let p and q be odd primes with p > q. The following sets are subsets
of W (Zpq):

1. {2pq−m3p−m2q+m1
pq | 1 ≤ k < q, 1 ≤ m1 ≤ k, 1 ≤ m2 < p, k ≤ m3 < q},

2. {2pq−m2p−m3q+m1
pq | 1 ≤ k < q, 1 ≤ m1 ≤ k, 1 ≤ m2 < q, k ≤ m3 < p} and

3. {2pq+q−m3q−m2p−m1
pq | q ≤ k < p, 0 ≤ m1 ≤ q− 2, 1 ≤ m2 < q, k ≤ m3 < p}.

The lemma implies a general result.

Proposition 4.2. For any p > q odd primes, we have the following inclusion:

(4) W (Zpq) ⊇ {
x

pq
| 2 ≤ x ≤ 2pq − (q − 1)q − p+ (q − 1)} ∪

∪
q−2⋃
t=1

{ x
pq
| 2pq − tq − p+ 1 ≤ x ≤ 2pq − tq − p+ t}

Proof. [3, Theorem 2] shows that if 2 ≤ x ≤ pq, then x
pq ∈ W (Zpq). Consider x

with 2pq − tq − p + 1 ≤ x ≤ 2pq − tq − p + t for some 1 ≤ t ≤ q − 2. Then x =
2pq− tq−p+γ for some 1 ≤ γ ≤ t. We may generate a sequence with cross number
x
pq by considering sequence 2 with k = m3 = t,m1 = γ, and m2 = 1, namely the
minimal zero sequence S = {(t+ 1− γ, t+ 1− γ), (1, 1)γ−1, (1, 0)p−t, (0, t)q−1}.
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Now consider x with 2pq − p − q2 + q < x ≤ 2pq − p − q2 + 2q − 1. Thus, x =
2pq−p−(q−1)q+γ for some 1 ≤ γ ≤ q−1. We may generate a sequence with cross
number x

pq by considering sequence 2 with k = m1 = γ, m2 = 1, and m3 = q − 1,
namely the minimal zero sequence S = {(1, 1)γ , (q − γ, 0), (1, 0)p−q, (0, γ)q−1}.

Finally, we must consider x with pq < x ≤ 2pq − p − q2 + q. Evidently, x =
2pq−αp−βq−γ for some 1 ≤ α ≤ q−1, 1 ≤ β ≤ p−1, 0 ≤ γ ≤ q−1. However, in
order for pq < x ≤ 2pq−p−q2+q to hold, we must have q−1 ≤ β ≤ p−2. If γ 6= q−1,
then we may rewrite x as x = 2pq+q−αp−(β+1)q−γ and generate a sequence with
cross number x

pq by taking sequence 3 with k = m3 = β+ 1, m1 = γ, and m2 = α,
namely

S = {(1, 1)q−γ−2, (γ + 1, γ + 1), (β + 2− q, 2), (0, α+ 1), (0, 1)q−α−2, (1, 0)p−β−1}.

Otherwise, if γ = q − 1, then x = 2pq − αp − (β + 1)q + 1 and we may use
sequence 1 with k = m1 = 1, m2 = β + 1, and m3 = α, namely S = {(1, 1), (β +
1, 0), (1, 0)p−β−2, (0, α), (1, 0)q−α−1}.

5. Particular cases

5.1. When q = 3. Setting q = 3, Proposition 4.2 and (∗) imply the following.

Corollary 5.1. If p > 3 is an odd prime, then

W (Z3p) = { λ
3p
| 2 ≤ λ ≤ 6p− p− 4 or λ = 6p− p− 2}.

The containment in (4) is not always an equality. Here is an example which will
later be useful in our work.

Example 5.2. Let p = 7 and q = 5. The containment in (4) yields

W (Z35) ⊇ { 2
35
, . . . ,

47
35
} ∪ {49

35
,

50
35
,

51
35
} ∪ {54

35
,

55
35
} ∪ {59

35
}.

Now, the minimal zero sequence T 2p yields that 53
35 is in W (Z35). Also, the minimal

zero sequences T 2q and T p can be amalgamated to {(1, 1)2, (0, 2)2, (0, 4), (1, 0)5},
and {(1, 1), (0, 2), (1, 0)6, (0, 1)2} which implies that 48

35 and 52
35 are in W (Z35).

Hence, (∗) implies that

W (Z35) = { 2
35
, . . . ,

55
35
,

59
35
}.

5.2. When p is large relative to q. As p becomes large relative to q, we are able
to show that the gaps which appear in the right hand side of the containment (4)
are actual gaps in W (Zpq).

Theorem 5.3. Let p > q > 3 be odd primes with p+k > kq for some 1 ≤ k < q−1.
If S is a zero free sequence in Zpq and

2pq − (k + 1)q − p+ (k + 1)
pq

≤ k(S) ≤ 2pq − kq − p
pq

(5)

then S = A ∪B, where A ⊆ Zp, B ⊆ Zq, |A| = p− k and |B| = q − 1.
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Proof. Let S be as in the hypothesis. Clearly, since S is zero free and k(S) > 1, we
have 1 ≤ |A| < p, 1 ≤ |B| < q, and 0 ≤ |C| < pq. Let 0 < i < p and 0 < j < q be
integers such that |A| = p− i and |B| = q − j and write |C| = c. Then,

k(S) =
2pq − iq − jp+ c

pq

First, we show the theorem holds if c = 0. In this case, (5) indicates that

k + 1 ≤ (k + 1− i)q + (1− j)p ≤ q.

Assume j > 1. Then

k + 1 ≤ (k + 1− i)q + (1− j)p ≤ kq − p+ (1− i)q < k + (1− i)q ≤ k,

which is clearly a contradiction. Thus, j = 1 and the previous inequality reduces
to (k + 1) ≤ (k + 1 − i)q ≤ q. However, since 0 < k + 1 ≤ q, it must be the case
that i = k. We now assume that c > 0 and consider two cases:

Case 1: j = 1. Notice that if i ≤ k, then (5) implies

2pq − kq − p
pq

≥ k(S) =
2pq − iq − p+ c

pq
≥ 2pq − kq − p+ c

pq

which yields c ≤ 0, a contradiction. Thus i ≥ k + 1. From (5) one also has

2pq − (k + 1)q − p+ k + 1
pq

≤ k(S) =
2pq − iq − p+ c

pq

which implies c ≥ k + 1 + (i− k − 1)q. Consequently,

|A ∪ C| = (p− i) + c ≥ p+ (q − 1)i+ (1− q)(k + 1)

which is at least p since i ≥ k + 1. The result now follows from Lemma 3.1 (a).

Case 2: j > 1. Using (5), we have

k(S) =
2pq − iq − jp+ c

pq
≥ 2pq − (k + 1)q − p+ (k + 1)

pq
,

which yields

c ≥ (i− k − 1)q + (j − 1)p+ k + 1 = (i− 1)q + (j − 2)p+ (p+ k + 1− kq)

Since p+ k > kq, c is nonnegative. It follows that

|B ∪ C| ≥ (q − j) + (i− k − 1)q + (j − 1)p+ k + 1 ≥ iq − 1 + (p+ k − kq) ≥ iq.

Thus, the result follows from Lemma 3.1 (a).

Theorem 5.3 leads to several corollaries.

Corollary 5.4. Let p > q > 3 be odd primes.

a) If p+ k > kq for some 0 < k < q − 1, then

W (Zpq) ⊆ {
x

pq
| 2 ≤ x ≤ 2pq − (k + 1)q − p+ (k + 1)} ∪

∪
k⋃
t=1

{ x
pq
| 2pq − tq − p+ 1 ≤ x ≤ 2pq − tq − p+ t}.
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b) If p > q2 − 3q + 2. Then

W (Zpq) = { x
pq
| 2 ≤ x ≤ 2pq − (q − 1)q − p+ (q − 1)} ∪

∪
q−2⋃
t=1

{ x
pq
| 2pq − tq − p+ 1 ≤ x ≤ 2pq − tq − p+ t}.

Proof. Part a) follows directly from the Theorem 5.3 and the observation that any
minimal zero sequence with cross number greater than 1 contains an element of
order pq. Part b) follows from part a) and Proposition 4.2 with k = q − 2.

Example 5.5. Part a) of Corollary 5.4 can sometimes easily be applied to deter-
mine the set W (Zpq) when p ≤ q2 − 3q + 2. Let q = 5 and p = 11. Part a) above
(with k = 2) and (4) yield

{ 2
55
, . . . ,

83
55
,

85
55
,

86
55
,

87
55
,

90
55
,

91
55
,

95
55
} ⊆W (Z55) ⊆ { 2

55
, . . . ,

87
55
,

90
55
,

91
55
,

95
55
}.

Since these sets differ by one integer, one of these containments is an equality. The
minimal zero sequence T q can be amalgamated to {(1, 1), (0, 1)2, (0, 2), (1, 0)10} and
hence 84

55 ∈W (Z55). Thus

W (Z55) = { 2
55
, . . . ,

87
55
,

90
55
,

91
55
,

95
55
}.

Define H(G) = { x
exp(G) | 2 ≤ x ≤ exp(G)K(G)}, which represents the set of

potential cross numbers for a minimal zero sequence in G.

Corollary 5.6. Let p > q > 3 be odd primes with p > q2 − 3q + 2. The number of
values in H(Zpq) which do not appear in W (Zpq) is (q−1)(q−2)

2 . Thus, for fixed q,

lim sup
p→∞

|W (Zpq)|
|H(Zpq)|

= 1.

Proof. This is a direct consequence of previous corollary, since the lengths of the
contiguous gaps vary over all the integers from 1 to q−2 inclusive. Hence, the total
number of missing values is

∑q−2
i=1 i = (q−1)(q−2)

2 , whence the second result of the
corollary follows immediately.

5.3. When q = 5. Examples 5.2, 5.5 and part b) of Corollary 5.4 yield a determi-
nation of W (Z5p).

Corollary 5.7. If p > 5, then

W (Z5p) = { λ
5p
| 2 ≤ λ ≤ 9p− 16, 9p− 14 ≤ λ ≤ 9p− 12,

9p− 9 ≤ λ ≤ 9p− 8, λ = 9p− 4}

unless p = 7 or p = 11, in which case

W (Z35) = { 2
35
, . . . ,

55
35
,

59
35
} or W (Z55) = { 2

55
, . . . ,

87
55
,

90
55
,

91
55
,

95
55
}



CROSS NUMBERS IN CERTAIN CYCLIC GROUPS 9

5.4. When 2p− 4 > 2q ≥ p + 3. Theorem 5.3 determines the location of a sec-
ond gap in W (Zpq) when p + 2 > 2q. We now determine the location of a second
gap (provided one exists) for all other odd primes p and q other than twin primes.

Theorem 5.8. Suppose p > q > 5 are odd primes with 2p − 4 > 2q ≥ p + 3. If S
is a zero free sequence in Zpq and

p− 1
p

+
q − 2
q

+
1
pq

< k(S) ≤ p− 2
p

+
q − 1
q

(6)

then S = A ∪B, where A ⊆ Zp, B ⊆ Zq, |A| = p− 2, and |B| = q − 1

Proof. Let S = A ∪ B ∪ C with the same assumptions on A, B and C as in the
proof of Theorem 5.3. Suppose c = 0. After some simplification (6) becomes:

1 < (1− i)q + (2− j)p < q − 3.

Since i and j are positive, in order for the left inequality to hold, we must have
j = 1. Thus 1 < (1− i)q+p < q−3. Clearly, for i = 1, we obtain a contradiction of
the hypothesis that p > q, while for i > 2, we have 1 < (1− i)q+p ≤ −2q+p ≤ −3,
the last inequality following from the hypothesis on p and q. This contradiction
rules out all remaining possibilities except when i = 2 and j = 1, which are the
conditions we seek. So suppose c > 0.

Case 1: j = 1. If i = 1 or 2, we get k(S) > p−2
p + q−1

q contradicting the
conditions of the theorem. Hence i ≥ 3. Using the left inequality of (6), namely

p− i
p

+
q − 1
q

+
c

pq
>
p− 1
p

+
q − 2
q

+
1
pq
,

we obtain that c > (i− 1)q − p+ 1. Consequently,

|A ∪ C| = (p− i) + c > (p− i) + (i− 1)q − p+ 1 =
= (q − 1)i− q + 1 ≥ (q − 1)3− q + 1 = 2q − 2 ≥ p+ 1

The result now follows by Lemma 3.1 (a).

Case 2: j > 1. Then the right inequality of (6) yields c > (i−1)q+(j−2)p+1,
and since i ≥ 1 and j ≥ 2, we conclude that c > 0. From this we see that

|B ∪ C| = (q − j) + c > (q − j) + (i− 1)q + (j − 2)p+ 1 =
= iq − 2p+ 1 + j(p− 1) ≥ iq − 2p+ 1 + 2(p− 1) = iq − 1.

Thus |B ∪ C| ≥ iq and the result follows from Lemma 3.1 (a).

Corollary 5.9 now follows from Theorem 5.8 and (∗).

Corollary 5.9. Suppose p > q > 5 are odd primes with 2p− 4 > 2q ≥ p+ 3. Then

W (Zpq) ⊆ {
λ

pq
| 2 ≤ λ ≤ 2pq − q − 2p+ 2,

2pq − 2q − p+ 1 ≤ λ ≤ 2pq − 2q − p+ 2, or λ = 2pq − p− q + 1}.

Computer calculations (see [1]) based on Lemma 4.1 indicate if 2p − 4 > 2q ≥
p + 3, then the structure of W (Zpq) beyond the two gaps exhibited in Corollary
5.9 may not be as nice as that exhibited in Corollary 5.4. We demonstrate this by
illustrating in the following table the values generated by Lemma 4.1 in W (Zpq) for
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q = 7 and p = 11, 13, 17, 19, 23, 29. We use the notation [n,m] to represent the set
of integers x such that n ≤ x ≤ m.

p values of x such that x
7p is known to be in W (Z7p)

11 [2, 120] ∪ [123, 127] ∪ [130, 131] ∪ {137}
13 [2, 133] ∪ [135, 139] ∪ [142, 145] ∪ [149, 151] ∪ [156, 157] ∪ {163}
17 [2, 192] ∪ [194, 199] ∪ [201, 203] ∪ [208, 209] ∪ {215}
19 [2, 211] ∪ [213, 217] ∪ [200, 223] ∪ [227, 229] ∪ [234, 235] ∪ {241}
23 [2, 275] ∪ [279, 281] ∪ [286, 287] ∪ {293}
29 [2, 347] ∪ [350, 353] ∪ [357, 359] ∪ [364, 365] ∪ {371}

5.5. When p and q are Twin Primes.

Theorem 5.10. Let p and q be twin primes with q = p − 2 > 5. Let S be a zero
free sequence in Zpq with

2pq − p− 3q + 3
pq

≤ k(S) ≤ 2pq − 2p− q
pq

.(#)

Then S = A ∪B where A ⊆ Zp, B ⊆ Zq, | A |= p− 1 and | B |= q − 2.

Proof. Let S = A ∪ B ∪ C and write |C| = c. We proceed as in the proofs of
Theorems 5.3 and 5.8. Now

k(S) =
2p2 − (i+ j + 4)p+ 2i+ c

p(p− 2)
.(†)

For 1 ≤ i < p and 1 ≤ j < q, let Si,j be a zero free sequence of Zpq with k(Si,j) =
p−i
p + (p−2)−j

p−2 . Thus, k(Si,j) decreases as i or j increases. Set Bu = 2p(p−2)−2p−(p−2)
p(p−2)

and Bl = 2p(p−2)−p−3(p−2)+3
p(p−2) . Suppose that c = 0. Calculations with (†) indicate

that k(S1,1) > Bu, k(S1,2) = Bu, and k(S1,3) < Bl. For i = 2, k(S2,1) > Bu and
k(S2,2) < Bl. Further k(S3,1) < Bl. Hence, if S satisfies (#), then i = 1 and j = 2,
which is the desired result. If c 6= 0, then we again consider two cases.

Case 1: j = 1. From the previous calculations with (†), we obtain that i ≥ 3.
Hence

k(S) =
2p2 − (i+ 5)p+ 2i+ c

p(p− 2)
≥ 2p2 − 4p− p− 3p+ 9

p(p− 2)

and thus

c ≥ (p− 2)i− 3p+ 9.

So,

| A ∪ C |= (p− i) + c > (i− 2)p+ 9− 3i ≥ p
for i ≥ 3. The argument now follows from Lemma 3.1 (c).

Case 2: j > 1. Now

(p− i)(p− 2) + p(p− 2− j) + c ≥ 2p(p− 2)− p− 3(p− 2) + 3.

Thus

c ≥ (i+ j − 4)p+ 9− 2i
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and hence

(p− 2)− j + c ≥ ((p− 2)− j) + (i+ j − 4)p+ 9− 2i

= (p− 2)i+ (p− 2)(j − 3) + j + 1.

Hence, if j ≥ 3, then | B ∪C |≥ (p− 2)i and the argument follows from Lemma 3.1
(a). Thus, we merely need to deal with the case j = 2.

We have shown earlier that k(S1,2) = 2p(p−2)−2p−(p−2)
p(p−2) . Hence, we can assume

that i ≥ 2. Now, | B |= q − 2 and by [4, Lemma 13] we have that |
∑
B |≥ q − 2.

Thus c < p+ i for otherwise | A∪C |≥ (p− i) + (p+ i) = 2p and we can appeal to
Lemma 3.1 (a). If i > 2,

(p− i)(p− 2) + p(p− 4) + c < 2p2 − (i+ 5)p+ 3i.

If i = 3 the result follows. If i > 3 then 2p2 − (i + 5)p + 3i < 2p2 − 8p + 9 and
the result follows. To complete the proof, we need to show that the result holds for
i = j = 2. In this case, Lemma 3.2 implies that

2p2 − (i+ j + 4)p+ 2i+ c = 2p2 − 8p+ 4 + c ≤ 2p2 − 8p+ 6 < 2p2 − 8p+ 9,

completing the proof.

Corollary 5.11. Let p and q be twin primes with q = p− 2 > 5. Then,

W (Zpq) ⊆ {
λ

pq
| 2 ≤ λ ≤ 2pq − 3q − p+ 3,

2pq − 2p− q + 1 ≤ λ ≤ 2pq − 2q − p+ 2, or λ = 2pq − p− q + 1}.
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