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Abstract. In a commutative, cancellative, atomic monoid M , the elasticity of
a non-unit x is defined to be ρ(x) = L(x)/l(x), where L(x) is the supremum of
the lengths of factorizations of x into irreducibles and l(x) is the corresponding
infimum. The elasticity ρ(M) of M is given as the supremum of the elasticities
of the nonzero non-units in the domain. We call ρ(M) accepted if there exists
a non-unit x ∈ M with ρ(M) = ρ(x). In this paper, we show for a monoid M
with accepted elasticity that

{ ρ(x) | x a non-unit of M} = Q ∩ [1, ρ(M)]

if M has a prime element. We develop the ideas of taut and flexible elements
to study the set { ρ(x) | x a non-unit of M} when M does not possess a
prime element.

Mathematics Subject Classification (2000). 20M14, 13F20, 13F15.

Keywords. elasticity of factorization, prime element, numerical monoid.

1. Introduction and Preliminaries

Let M be a commutative, cancellative monoid, M• its set of non-units and M×

its set of units. Recall that x ∈ M• is irreducible if x = yz in M implies that
either y or z is in M×. Let A(M) represent the set of irreducible elements (or
atoms) of M . If every x ∈ M• can be written as a product of elements from
A(M), then call M atomic, and we assume throughout the remainder of our work
that M has this property. An element x ∈ A(M) is prime if whenever x | yz in
M then either x | y or x | z. Since factorization in M• into irreducible elements is
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not necessarily unique, the question of the possible lengths of factorizations into
irreducibles arises. Hence, for x ∈ M•, define

L(x) = {n | x = α1 · · ·αn with each αi ∈ A(M)}

to be the set of lengths of factorizations of x into atoms and

L(M) = {L(x) | x ∈ M• }

to be the set of lengths of M . In addition, define

L(x) = supL(x), l(x) = inf L(x), and ρ(x) =
L(x)
l(x)

.

If L(x) < ∞ for each x ∈ M•, then M is called a bounded factorization monoid
(or BFM ). The invariant ρ(x) is called the elasticity of x and hence if M is a BFM
then each x ∈ M• has rational elasticity. We further define

R(M) = { ρ(x) | x ∈ M•}

as the set of elasticities of the elements in M•. The elasticity is defined globally
for M as ρ(M) = supR(M). We call ρ(M) accepted if there exists an x ∈ M•

with ρ(M) = ρ(x) (by [1], any finitely generated M has accepted elasticity). We
define M to be fully elastic if R(M) ⊇ Q ∩ [1, ρ(M)). Chapman, Holden, and
Moore showed in [9] that numerical monoids are fully elastic if and only if they
are cyclic. Their paper also showed that a ring of algebraic integers is fully elastic
if its class number is a prime power. Full elasticity has also been explored for
rings of integer-valued polynomials in [11]. In light of the results of [6], we have
modified the definition of fully elastic given in [9] so that monoids without accepted
elasticity can satisfy this condition (see Example 2.12).

In this note, we show in Section 2 that an atomic monoid with accepted
elasticity is fully elastic if M possesses a prime element. Even if M does not have
accepted elasticity, we exhibit an additional property (see Definition 1.1 below)
that guarantees that M is fully elastic when possessing a prime element. We illus-
trate these results with numerous examples and show that they can fail if M does
not have a prime element. In Section 3, we consider the case where M does not
contain a prime element. With the development of flexible elements, we are able
to give in Theorems 3.4 and 3.6 criteria for such an M to be fully elastic. We close
in Section 4 by extending an example given in [9] and show that all power series
rings of the form K[[xn1 , xn2 , . . . , xnt ]] where K is any field, S = 〈n1, . . . , nt〉 is a
primitive numerical monoid and t ≥ 2, are not fully elastic. For readers unfamiliar
with the theory of non-unique factorizations, a good general reference is [13].

A notion related to full elasticity was recently introduced and explored in [6].
Define the asymptotic elasticity of x ∈ M• to be

ρ(x) = lim
n→∞

ρ(xn).

Let R(M) = {ρ(x) | x ∈ M•} and ρ(M) = supR(M). M is called asymptotically
fully elastic if R(M) ⊇ Q ∩ [1, ρ(M)).
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In studying problems involving full or asymptotic elasticity, the notion of a
taut element plays in important role.

Definition 1.1. Let M be an atomic monoid. An element f ∈ M• is taut if there
exists m ∈ N ∪ {0} such that ρ(fm) = ρ(f). We call M taut if every f ∈ M• is
taut.

By [1, Theorem 12] (or [13, 3.8.1]) an atomic monoid M is taut provided that
the set

U(y) = {x ∈ A(M) | ∃n ∈ N x|yn}

contains finitely many non-associated irreducibles for every y ∈ M•. It is not
known if this is a necessary condition. It follows that if M is locally finitely gen-
erated, then it is taut. Hence, numerical monoids and block monoids over abelian
torsion groups are taut. By [6, Corollary 6], an asymptotically fully elastic M which
is taut must also be fully elastic. In [6], a taut monoid M is called a U-monoid.
We prefer the present, more descriptive name.

2. General Results on Full and Asymptotic Elasticity

If M is a BFM, then the taut hypothesis implies that ρ(x) < ∞ for every x ∈ M•.
If M is not taut, then this may not be the case. For example, in M = Z[

√
−7],

l(2) = 0 so ρ(2) = ∞ [12, Example 11]. We open with a crucial lemma.

Lemma 2.1. Let M be an atomic monoid containing a prime element p and an
element f such that ρ(f) = ρ(f). Then for each element α ∈ Q ∩ [1, ρ(f)], there
exists g ∈ M such that ρ(g) = ρ(g) = α.

Proof. First we notice that for any positive integer i, ρ(f i) ≥ ρ(f). This follows
since L(f i) must contain the elements iL(f) and il(f). Hence L(f i) ≥ iL(f) and
l(f i) ≤ il(f), and so ρ(f i) ≥ ρ(f). In addition, by the definition of ρ(f), it must
be the case that ρ(f i) ≤ ρ(f). Since ρ(f i) ≥ ρ(f) and ρ(f i) ≤ ρ(f) = ρ(f), then
we see that ρ(f i) = ρ(f). Since this holds for any integer i > 0, ρ(f i) = ρ(f) and
it follows that L(f i) = iL(f) and l(f i) = il(f).

Now let a/b ∈ [1, ρ(f)]∩Q be given. Let i = a−b and j = L(f)b− l(f)a. Note
that these are both nonnegative if 1 ≤ a/b ≤ ρ(f). Consider the element h = f ipj .
Since p is a prime element in M , it must be contained in every factorization of h into
irreducibles of M . Therefore we have (from the results above) that L(h) = iL(f)+j
and l(h) = il(f) + j, so
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ρ(h) =
iL(f) + j

il(f) + j

=
(a− b)L(f) + L(f)b− l(f)a
(a− b)l(f) + L(f)b− l(f)a

=
a (L(f)− l(f))
b (L(f)− l(f))

= a/b,

and a/b is the elasticity (and the asymptotic elasticity) of an element of M . �

Corollary 2.2. Let M be an atomic monoid with accepted elasticity. If M contains
a prime element, then M is fully elastic and asymptotically fully elastic.

Proof. If M has accepted elasticity, there is an element f ∈ M such that ρ(f) =
ρ(M). Since f has maximal elasticity, it follows from [6, Lemma 1] that ρ(f) =
ρ(f). Now we may apply Lemma 2.1 to f , completing the proof. �

We are able to apply Corollary 2.2 to a wide variety of examples. Before doing
so we will require two results concerning classical extensions of commutative rings.

Lemma 2.3. Let R be a domain and R an order in R (that is, R ⊆ R is a subring
with the same quotient field, and R is a finitely generated R-module). Let F = (R :
R) be the conductor of R in R and p ∈ R such that p + F ∈ (R/F )×. Then p is a
prime element of R if and only if it is a prime element of R.

Proof. Let f ∈ F and q ∈ R be such that pq + f = 1. Let first p be a prime
element of R and a, b ∈ R such that p divides ab in R. Then p divides ab in
R, and we may assume that p divides a, say a = pc for some c ∈ R. Then
c + F = (a + F )(p + F )−1 ∈ R/F and thus c ∈ R + F = R. Hence p divides a in
R.

Now, let p be a prime element of R and a, b ∈ R such that p divides ab, say
ab = pc for some c ∈ R. Then (af)(bf) = p(cf2) shows that p divides (af)(bf) in
R, and we may assume that p divides af . Then p divides a = af + apq. �

Theorem 2.4. Let R be a Dedekind domain, R an order in R, F = (R : R), and
assume that Pic(R) and (R/F )× are finite. Then Pic(R) is finite, and if for every
prime ideal P of R containing F there is exactly one prime ideal of R lying above
P , then R is taut and has accepted elasticity. Further, if R is the ring of integers
of an algebraic number field or a holomorphy ring in an algebraic function field
for a finite set of places, then R contains a prime element.

Proof. The finiteness of Pic(R) follows from the exact sequence

(R/F )× → Pic(R) → Pic(R) → 0

(see [19, §12]). Assume now that for every prime ideal P of R containing F there
is exactly one prime ideal of R lying above P . Then R has accepted elasticity by
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[15, Theorem 5], and by [13, Theorem 3.7.1.4], the multiplicative monoid of R is
locally finitely generated and thus taut.

If R is the ring of integers of an algebraic number field or a holomorphy ring
in an algebraic function field for a finite set of places, then Pic(R) is finite, and
every class (in particular the principal class) contains infinitely many primes (see
[13, Theorem 2.10.14 and Corollary 2.11.16] for the number field case and [13,
Theorem 8.9.5 and Proposition 8.9.7] for the function field case). �

Example 2.5. Let K be a number field and OK be its ring of integers. By [9,
Corollary 3.10], OK is fully elastic if its class number is pk for some prime p and
positive integer k. We extend this result to all algebraic rings of integers. If Cl(OK)
denotes the ideal class group of OK , then [7, Lemma 3.2] implies that

L(OK) = L(B(Cl(OK))).

Since Cl(OK) is a finite abelian group, B(Cl(OK)) is finitely generated as a monoid,
and hence by [1] has rational and accepted elasticity. Thus, so too does OK . By
[16], each ideal class of Cl(OK) contains infinitely many prime ideals. Thus, OK

has infinitely many prime elements. Therefore Corollary 2.2 indicates that OK is
both fully elastic and asymptotically fully elastic.

Example 2.6. We extend slightly the result in Example 2.5. Let O be an order
in the number field K with integral closure Ō and suppose further that for every
prime ideal P of O there is exactly one prime ideal of Ō lying above P . By Theorem
2.4, ρ(O) is rational and accepted and O contains a prime element. Corollary 2.2
again indicates that O is both fully elastic and asymptotically fully elastic.

Example 2.7. We take this example from [8]. Let V be a discrete valuation ring
with quotient field K. We denote by p the unique irreducible element of V . Let
L be a finite extension of K and B be the ring of integers of L over V . B is a
principal ideal domain with finitely many irreducible elements. Suppose that p
ramifies in B (i.e., p = πe for some irreducible π ∈ B and integer e ≥ 2). Let
R = V + xB[x]. By [8, Theorem 3.3], ρ(R) = e+1

2 and is accepted. Moreover, [8,
Theorem 3.1] guarantees the existence of a prime element in R. Hence R is both
fully elastic and asymptotically fully elastic.

Example 2.8. [9, Corollary 3.10] indicates that a large class of Krull monoids (see
[13, Chapter 2.5]) are fully elastic. It is not known in general if all Krull monoids
are fully elastic. Yet here is an example of a relatively simple Krull monoid to
which our Theorem applies. Let 1 ≤ a1 ≤ a2 ≤ · · · ≤ an−1 < an be a sequence of
integers with n ≥ 3. Let

M = {(x1, · · · , xn, xn+1) | a1x1 + · · ·+ anxn − anxn+1 = 0 with each xi ∈ N0}.
By [10, Proposition 1.2], M is a Krull monoid with finitely many irreducible ele-
ments. Hence, by [1, Theorem 7] M is finitely generated and has accepted elasticity.
Since the element (0, . . . , 0, 1, 1) is actually prime, Theorem 2.2 again indicates that
M is both fully elastic and asymptotically fully elastic.
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Example 2.9. Let k0 ⊆ k1 ⊆ · · · kn−1 ( K be a sequence of finite fields and set
R = k0 + k1x + k2x

2 + · · · + kn−1x
n−1 + xnK[x]. The ring R is an order in the

factorial domain K[x] with conductor F = xnK[x]. The only prime ideal of R lying
above the conductor is xK[x] ∩ R and the only prime ideal of K[x] lying above
this prime ideal is clearly xK[x]. By Theorem 2.4, ρ(R) is rational and accepted.
By the Dirichlet-Kornblum Theorem [17], there is a prime element of K[x] of the
form f(x) = 1 + xn +

∑t
i=n+1 aix

i. Then f(x) + F = 1 + F is a unit in R/F so by
Lemma 2.3, f(x) is a prime in R as well. By Theorem 2.2, R is both fully elastic
and asymptotically fully elastic.

We may also obtain full elasticity and asymptotic full elasticity with other
hypotheses, as the next theorem illustrates.

Theorem 2.10. Let M be taut. If M contains a prime element, then M is fully
elastic and asymptotically fully elastic.

Proof. There is a sequence {f1, f2, f3, . . . } of elements in M such that limi→∞ ρ(fi) =
ρ(M). Since M is taut, then there exists a sequence n1, n2, . . . of nonnegative inte-
gers such that ρ(fni

i ) = ρ(fi). But we also know that ρ(fni
i ) ≥ ρ(fi), and therefore

limi→∞ ρ(fni
i ) = ρ(M) as well. Therefore by Lemma 2.1,

[1, ρ(M)) ∩Q ⊇ R(M) ⊇

( ∞⋃
i=0

[1, ρ(fni
i )]

)
∩Q = [1, ρ(M)) ∩Q.

A similar argument works for R(M). �

However, even if M does not have accepted elasticity and is not taut, if it
contains a prime then it may still be fully elastic. We demonstrate this with an
example which will require the following lemma.

Lemma 2.11. Let M be an atomic monoid containing a prime p, and let f ∈ M
be given. Then R(M) ⊇ { a/b ∈ Q | 1 ≤ a/b ≤ ρ(f), (a− b)|(L(f)− l(f)) }.

Proof. Let a/b with 1 ≤ a/b ≤ ρ(f) and (a− b)|(L(f)− l(f)) be given. Let

j =
bL(f)− al(f)

a− b
− l(f)

=
b(L(f)− l(f))

a− b
+ l(f).
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Clearly j is an integer under our assumptions; furthermore, since 1 ≤ a/b, j is
nonnegative. Now consider the element fpj . We have

ρ(fpj) =
L(f) + j

l(f) + j

=
aL(f)− bL(f) + bL(f)− al(f)
al(f)− bl(f) + bL(f)− al(f)

=
a(L(f)− l(f))
b(L(f)− l(f))

=
a

b
.

�

Example 2.12. Consider the multiplicative monoid M of Z+nxZ[x]. If n = p1 · · · pk

is a squarefree integer (with each pi prime), then ρ(M) = k and M does not have
accepted elasticity [14]. Again, by [14], we have that ρ((nx)m) = (k(m−1)+1)/m.
Therefore ρ(nx) = k, but no m exists such that ρ((nx)m) = k = ρ(nx). Thus M
is not taut. But M is a submonoid of the unique factorization domain Z[x], which
is taut.

By Lemma 2.3, 1 + nx is prime in M . We now show that M is fully elastic.
By [14], ρ(M) has elasticity k. In addition, it is also shown in [14] that for f = nx,
L(f i) = k(i− 1) + 1 and l(f i) = i. Therefore, L(f i)− l(f i) = (k − 1)(i− 1). Note
that since ρ(f) = k, this signifies that, given a rational 1 ≤ a/b ≤ k, there is an
integer i such that ρ(f i) ≥ a/b and a− b|L(f i)− l(f i). That M is fully elastic now
follows from Lemma 2.11.

3. Full Elasticity in Monoids Containing No Primes

We now consider monoids which do not contain any prime elements (see for in-
stance Example 3.7) and hence our previous results do not apply. We open with
an example involving direct calculation.

Example 3.1. Let S ⊆ Z be infinite and let

Int(S, Z) = {f(x) | f(x) ∈ Q[x] with f(s) ∈ Z for all s ∈ S }
represent the ring of polynomials in Q[x] which are integer-valued on S. By [2,
Proposition 3.2], Int(S, Z) contains no prime elements and by [11, Theorem 4.5],
Int(S, Z) is fully elastic. We argue that Int(S, Z) is also asymptotically fully elastic.

By [11, Proposition 3.4], for every prime number p, there exists a sequence
i1, i2, . . . , it of integers such that the polynomial

fp(x) =
(x− i1)(x− i2) · · · (x− it)

p

is irreducible in Int(S, Z). Set

hp(x) = (x− i1) · · · (x− it).
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It is easy to see by the above that L(hp(x)k) = kt and l(hp(x)k) = 2k for any
k ≥ 1. By [11, Lemma 4.3], for any nonnegative integers k and s we have

L
(
hk

p(x)fs
p (x)

)
= {2j + (k − j)t + s | 0 ≤ j ≤ k} (3.1)

and hence ρ
(
hk

p(x)fs
p (x)

)
= kt+s

2k+s . Notice that (3.1) implies for each positive integer
n that

L
(
((hk

p(x)fs
p (x))n

)
= {2j + (nk − j)t + ns | 0 ≤ j ≤ nk}

and thus ρ
(
((hk

p(x)fs
p (x))n

)
= n(kt+s)

n(2k+s) = ρ
(
hk

p(x)fs
p (x)

)
. Hence ρ

(
hk

p(x)fs
p (x)

)
=

ρ
(
hk

p(x)fs
p (x)

)
for all k, s ≥ 0. Since these are the polynomials used to show full

elasticity in [11], we have full asymptotic elasticity as well.

In general, the calculation of the previous example is not always practical.
Hence, we isolate elements which will act as tools in elasticity arguments.

Definition 3.2. Call an element f ∈ M flexible if for all j ∈ N there exists a
sequence p1, p2, . . . , pj of irreducibles in M such that L(fp1p2 · · · pj) = L(f) + j
and l(fp1p2 · · · pj) = l(f) + j.

If a prime p exists in M , then every f ∈ M is flexible—simply take each
pi = p. It follows from Example 3.1 that each hp(x) is flexible. However, even when
no primes exist, flexibility allows one to create arbitrarily long finite sequences of
elements in M such every element in the sequence acts “independently” of the
elements that appear before it. In contrast to Example 3.1, in the next example
we produce a monoid with no irreducible flexible elements.

Example 3.3. Consider an additive primitive numerical monoid

S = {x1n1 + · · ·+ xknk | xi ∈ Z with xi ≥ 0} =: 〈n1, . . . , nk〉

minimally generated by n1, . . . , nk with k ≥ 2. We begin by showing that all large
elements in S have factorizations of varying lengths. To see this, let N =

∑k
i=1 nink

and suppose that n ∈ S with n > N . Write n =
∑k

i=1 yini. Clearly some yt > nk

(otherwise n ≤ N). We claim that ρ(n) > 1. If t < k then n =
(∑

i 6=t,k yini

)
+

(yt − nk)nt + (yk + nt)nk and ρ(n) ≥ (
∑k

i=1 yi)/((
∑k

i=1 yi) + (nt − nk))) > 1. If

t = k then write n =
(∑

i 6=1,k yini

)
+(y1+nk)n1+(yk−n1)nk and again ρ(n) > 1.

Let f = ni, a generator of S. We show that f is not flexible. First, notice that
any irreducible p ∈ S must satisfy p ≥ n1. Assume f is flexible and let j > N/n1.
Let p1, p2, . . . , pj be the sequence of irreducibles in M such that L(f + p1 + p2 +
· · ·+pj) = L(f)+j = j+1 and l(f +p1+p2+· · ·+pj) = l(f)+j = j+1 (and hence
the elasticity is 1). But this is a contradiction, since f + p1 + p2 + · · · + pj > N ,
so its elasticity must be strictly greater than 1. Therefore f is not flexible.

Theorem 3.4. Let M be an atomic monoid containing an element f such that
ρ(f) = ρ(f). If f i is flexible for all positive integers i, then R(M) ⊇ [1, ρ(f)]∩Q.
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Proof. Similar to the proof of Lemma 2.1, let a/b ∈ [1, ρ(f)] ∩ Q be given. Let
i = a − b and j = L(f)b − l(f)a. These quantities are both nonnegative since
1 ≤ a/b ≤ ρ(f). Since f i is flexible, there exists a sequence p1, p2, . . . , pj in M such
that L(f ip1p2 · · · pj) = L(f i) + j = iL(f) + j and l(f ip1p2 · · · pj) = l(f i) + j =
il(f) + j. By our choice of i and j, ρ(f ip1p2 · · · pj) = a/b. Therefore R(M) ⊇
[1, ρ(f)] ∩Q. �

Corollary 3.5. Let M be an atomic monoid with accepted elasticity and choose
f ∈ M such that ρ(f) = ρ(M). If f i is flexible for all positive integers i, then M
is fully elastic.

Theorem 3.6. Let M be taut. Let s = {f1, f2, f3 . . . } be a sequence of elements
of M such that limi→∞ ρ(fi) = ρ(M) and {n1, n2, n3, . . . } a sequence of positive
integers such that ρ(fni

i ) = ρ(fi) for all i. If gi = fni
i and each gj

i is flexible for
all positive integers j, then M is fully elastic.

Proof. If M has accepted elasticity then we may just use Corollary 3.5. So let us
suppose the contrary. Clearly the sequence {ρ(g1), ρ(g2), ρ(g3), . . . } also converges
to ρ(M) and ρ(gi) 6= ρ(M). Therefore by Theorem 3.4,

[1, ρ(M)) ∩Q ⊇ R(M) ⊇

( ∞⋃
i=1

[1, ρ(gi)]

)
∩Q = [1, ρ(M)) ∩Q.

�

We illustrate the previous three results with an example.

Example 3.7. Consider the multiplicative monoid M of K[x2, x3], where K is an
algebraically closed field of characteristic p > 0. Every f(x) ∈ M factors uniquely
in K[x] as a product uxn

∏k
i=1(1 + aix) of linear polynomials and a unit u. Note

that such a product falls in M precisely when n ≥ 2 or when n = 0 and
∑k

i=1 ai =
0.

We first show M has no primes. Suppose, to the contrary, that f(x) is prime
in M . Then f(x) divides f(x)f(−x) = u2[x2]n

∏k
i=1[1 − a2

i x
2], so by primality,

f(x) divides x2 or 1− a2
i x

2 for some i. But f(x) has order at least 2, so f = x2 or
f = 1−a2

i x
2. Clearly, x6 = x3 ·x3 shows that x2 is not prime in M , so f = 1−a2x2

for some nonzero a ∈ K. But 1− a2x2 is not prime by Lemma 2.3, and hence M
contains no primes.

We show that M is taut. Let f = xn
∏k

i=1(1 + aix) ∈ M be given. The ai

finitely generate a subfield F of K; for each t ≥ 1, every factor of f t will be a
polynomial over F . Let g be an irreducible factor of f in M , where

g = (xn)e
k∏

i=1

(1 + aix)ei

for some e, ei ≥ 0. Note that ne = 0, 2, or 3, for otherwise g factors in M as
x2(g/x2). If ne = 2 or 3, then no subproduct g′ of

∏k
i=1(1 + aix)ei can be in M
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for otherwise g factors in M as g′(g/g′). By the first paragraph of this example,
this requires that S = {a1, . . . , ak} is a zero-free sequence in (F,+), where each ai

appears ei many times in S. Since F has characteristic p, the ai generate a finite
subgroup of (F,+). Thus the possible S are finite in number and there are only
finitely many irreducible g with ne 6= 0 that divide some f t. Now suppose ne = 0.
Then

∑k
i=1 eiai = 0, so S = {a1, . . . , ak} is a zero sequence in (F,+), where each ai

appears ei many times in S. If S is not a minimal zero sequence, then it consists of
two zero subsequences S1 and S2. For j = 1, 2, set gj =

∏k
i=1(1 + akx)hi,j , where

hi,j is the number of times ai appears in Sj . Since each Sj is a zero sequence,
each gj ∈ M and so g is not irreducible in M . Therefore, when ne = 0, g is
irreducible only if S is a minimal zero sequence in (F,+). Since the ai generate a
finite subgroup of (F,+), there are only finitely many minimal zero sequences of
the form S. Thus we have shown U(f) is finite for each f ∈ M , so M is taut by
the commentary in section 1.

Next, we show that R′ = {ρ(f) | f ∈ M, f(0) 6= 0} is unbounded. Note that
if q 6= p is prime, then axq + 1 is irreducible in M for every nonzero a ∈ K. To see
this, let α be a root of axq +1 in K; then all the roots of axq +1 can be enumerated
as α, ζqα, . . . , ζq−1

q α, where ζq is some qth root of unity. Since q 6= p is prime, these
roots are all distinct, and axq + 1 factors in K[x] as

∏q−1
i=0 (x − ζi

qα). Any proper
nonempty subproduct will have a linear coefficient of the form α(ζi1

q + . . .+ζik
q ) for

some 0 ≤ i1 < . . . < ik ≤ q−1 and 1 ≤ k ≤ q−1. This linear coefficient cannot be
0 since any proper subset of {1, ζq, . . . , ζ

q−1
q } is linearly independent over Fp and

so axq +1 must be irreducible. Let {q1, q2, . . .} be a strictly increasing sequence of
prime numbers such that each qi > p and qi ∈ S. Then in M we have the following
two factorizations into irreducibles:

xq1qk − 1 = (xq1 − 1)(ζqk
xq1 − 1) · · · (ζqk−1

qk
xq1 − 1)

= (xqk − 1)(ζq1x
qk − 1) · · · (ζq1−1

q1
xqk − 1).

so ρ(xq1qk − 1) ≥ qk/q1. Hence supR′ = ∞.
Lastly, we show that any f ∈ M with f(0) 6= 0 is flexible. Let an arbitrary

such f be given (without loss, f(0) = 1) and factor it in K[x] as
∏k

i=1(1+aix). Let
F be the subfield of K generated by the ai, and choose α ∈ K such that [F (α) :
F ] > p. Set g = (1 + αx)p, which is irreducible in M . We claim L(fg) = L(f) + 1
and l(fg) = l(f) + 1. Suppose h is an irreducible factor of fg in M ; then h = f ′g′

where f ′ divides f in K[x] and g′ divides g in K[x]. The linear term of h is 0,
which is the sum of the linear terms of f ′ and g′. If g′ 6= 1, then its linear term is
rα for some 0 < r < p. If f ′ also has a nonzero linear term, then this implies that
α satisfies a non-trivial linear equation over F , a contradiction to the choice of α.
Thus f ′ ∈ M ; so h now factors in M as f ′(h/f ′). By irreducibility of h, f ′ = 1. Thus
h = g′, which necessarily implies h = g. Hence every factorization of fg contains g
as one of its irreducible factors and L(fg) = L(f) + 1 and l(fg) = l(f) + 1. Since
f ∈ M with f(0) 6= 0 was arbitrary, this shows that all such f are flexible.
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Thus we have shown all the necessary conditions to apply Theorem 3.6; every
K[x2, x3] is fully elastic for K an algebraically closed field of characteristic p > 0.

4. Elastic Properties of K[[x; S]]

We close by extending a result of [9] where the authors offer the power series
subring K[[xn, xn+1, . . . , x2n−1]] (with K any field) as an example of an integral
domain with finite elasticity which is not fully elastic. We show that this holds
for any such ring of the form M = K[[xn1 , xn2 , . . . , xnk ]] =: K[[x;S]] where S =
〈n1, . . . , nk〉 is a primitive numerical monoid with Frobenius number F(S). We
will require a lemma taken from [9].

Lemma 4.1 (Theorem 2.2 of [9]). Let S = 〈n1, . . . , nt〉 be a numerical monoid,
where n1, . . . , nt ∈ N minimally generate S and t ≥ 2. Then S is not fully elastic.
In particular, there exists N ∈ N and α ∈ Q where α > 1, such that for all n ∈ S
where n > N , ρ(n) > α.

Example 4.2. Using Lemma 4.1, we extend Example 3.3 and show that no element
in a primitive numerical monoid is flexible. Let S, N and α be as in Lemma 4.1
and let f 6= 0 be an arbitrary element of S which we assume is flexible. For f ,
one can always pick a j large enough such that f + p1 + p2 + · · ·+ pj > N where
p1, p2, . . . , pj are irreducibles in S with L(f + p1 + p2 + · · · + pj) = L(f) + j and
l(f + p1 + p2 + · · · + pj) = l(f) + j. Moreover, once can pick large j such that
(L(f)+j)/(l(f)+j) < α. Hence, ρ(f+p1+p2+· · ·+pj) = (L(f)+j)/(l(f)+j) < α,
a contradiction.

If f(x) =
∑

s∈S fsx
s ∈ K[[x;S]], then set ord(f(x)) = min{s | s ≥ 0 and fs 6=

0}. We can observe the following: 1) a nonzero element f(x) with ord(f(x)) = 0 is
a unit in M , 2) any irreducible element f(x) ∈ M must satisfy n1 ≤ ord(f(x)) ≤
F(S) + n1 and ord(f(x)) ∈ S, 3) Any element f(x) with ord(f(x)) = ni is irre-
ducible in M . We begin with a lemma.

Lemma 4.3. Let n ∈ N be given. Let T = { f(x) ∈ M | 0 < ord(f(x)) < n }. Then
R(T ) is a finite set.

Proof. Let m = ord(g) for some g ∈ T . Consider a factorization of g in M , say
g(x) = uf1 · · · ft, where u is a unit in M and each fi is irreducible in M . Clearly
then ord(fi) ∈ S, n1 ≤ ord(fi) ≤ F(S) + n1 and m =

∑t
i=1 ord(fi). Thus t, the

length of this factorization, must be a positive integer satisfying the inequalities:
tn1 ≤ m ≤ t(F(S) + n1). Thus for any g ∈ T with ord(g) = m, we have

L(g) ⊆
{

t ∈ N
∣∣∣n1 ≤

m

t
≤ F(S) + n1

}
,

which is a finite set. Thus there are only finitely many possibilities for ρ(g) for g
of order m, and varying over the finitely many values of m we obtain the desired
result. �
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Theorem 4.4. Let S be a nontrivial numerical monoid and K a field. Then K[[x;S]]
is not fully elastic.

Proof. Let N and α be as defined in Lemma 4.1. Fix n > max(N +F(S)+1, (2nt+
1)F(S)+ 1) and consider U = { f ∈ M | ord(f) ≥ n }. Let g ∈ U and m = ord(g).

In K[[x]], we see that g = uxm where u has order 0. If u ∈ K[[x;S]], then g
is an associate of xm in K[[x;S]]. Thus LM (g) = LS(m) and ρM (g) = ρS(m) > α
by the assumption on m ≥ n.

If u /∈ K[[x;S]], then let k be the least positive integer such that xku ∈
K[[x;S]]. Clearly k ≤ F(S) + 1. Factor xku into irreducibles in K[[x;S]]; then
xku =

∏r
i=1 xkivi. Each ki is in S with n1 ≤ ki ≤ k and each vi is not a unit

of K[[x;S]] by the minimality of k. Note that r ≤ k/n1 and that since m >
(2nt + 1)F(S) + 1, we have m− k > F(S) + 1 and m− k ∈ S.

Thus g factors as (xm−k)
∏r

i=1 xkivi and so:

LM (g) ≥ LS(m− k) + r

lM (g) ≤ lS(m− k) + r.

As a result, ρM (g) ≥ (LS(m− k) + r)/(lS(m− k) + r). But

ρS(m− k)− LS(m− k) + r

lS(m− k) + r
=

rLS(m− k)− rlS(m− k)
lS(m− k)2 + rlS(m− k)

<
rLS(m− k)− rlS(m− k)

lS(m− k)2
=

rρS(m− k)− r

lS(m− k)

≤ ρS(m− k)− 1
2

=
ρS(m− k)

2
− 1

2

The last inequality follows since lS(m− k)/r ≥ 2. Indeed, r ≤ k/n1 ≤ F(S)
and m − k ≥ 2ntF(S) so lS(m − k) ≥ 2F(S). From the above inequalities we
immediately see that ρM (g) > ρS(m − k)/2 + 1/2 > α/2 + 1/2 > 1 by the
assumption that m − k > N . Therefore in both cases, we have concluded that
R(U) ∩ [1, α/2 + 1/2] = ∅. In addition, by Lemma 4.3, R(T ) is a finite set, where
T is the set of elements of order less than n. Since [1, α/2+1/2]∩Q is infinite and
R(K[[x;S]]) = R(T ) ∪R(U), K[[x;S]] cannot be fully elastic. �
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