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Abstract. Let M be a Krull monoid. Then every element of M may be

written as a finite product of irreducible elements. If for every a ∈ M , each
two factorizations of a have the same number of irreducible elements, then M

is called half-factorial. Using a property of element exponentiation, we provide

a new characterization of half-factoriality, valid for all Krull monoids whose
class group has torsion-free rank at most one.

1. Introduction and Main Result

The arithmetic of Krull monoids has attracted a lot of attention in recent years
[4, 12, 13, 15], and the present paper is devoted to that topic. Recall that an integral
domain is a Krull domain if and only if its multiplicative monoid of nonzero elements
is a Krull monoid, and a noetherian domain is Krull if and only if it is integrally
closed. A more detailed discussion of Krull monoids will be given in Section 2.
Half-factoriality is one of the most classic properties of factorization theory (see the
surveys [5, 6] and [20, 23] for recent progress on half-factorial domains). We recall
some basic definitions which allow us to formulate the main result of the present
paper.

Suppose that M is a Krull monoid with class group G, GP ⊆ G the set of
classes containing prime divisors, and let a ∈ M . Then a has a factorization
a = u1 · . . . · uk into irreducible elements (atoms) u1, . . . , uk ∈ M . The number
of factors, k, is called the length of the factorization. The set L(a) of all possible
factorization lengths is the set of lengths of a, and ρ(a) = sup L(a)/min L(a) is
called the elasticity of a. The monoid M is said to be half-factorial if |L(a)| = 1
for all a ∈ M (in this case we also say that the set GP is half-factorial). Suppose
that every divisor class of G contains a prime divisor. Then it is classic that M
is half-factorial if and only if |G| ≤ 2. This is far from being true in general. On
the contrary, it is an open conjecture that for every abelian group A there is a
half-factorial Krull monoid with class group isomorphic to A (see [14, Proposition
3.7.9] and [11]). Moreover, even in the case of a finite class group, the maximal
size and the structure of half-factorial sets is understood only in very special cases
[19, 24, 25, 26, 27].

The main aim of the present paper is to establish a new characterization of
half-factoriality which is valid for a large class of Krull monoids.
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Theorem 1.1. Let M be a Krull monoid, ϕ : M → F a cofinal divisor homomor-
phism into a free monoid F and G = C(ϕ) is class group. If the torsion-free rank
of G is at most 1, then the following statements are equivalent :

(a) M is half-factorial.
(b) We have ρ(a) = ρ(am) for all a ∈M and all m ∈ N.

Property (b) of the above theorem was recently studied in the context of finitely
generated monoids [8], and closely related concepts were investigated in [2]. In
Section 3 we will provide an example showing that the above characterization no
longer holds if the torsion-free rank of the class group is larger than one.

In the development of this manuscript, we communicated several ideas and early
results with P. Garćıa-Sánchez and J. Rosales [8, 9], who gave helpful feedback
and discovered a counterexample for (b) ⇒ (a) in the setting of finitely generated
monoids [8, Example 1]. Those authors then independently pursued a characteriza-
tion of (b) for finitely generated monoids. Our theorems, obtained independently,
concern the question of half-factoriality in Krull monoids.

2. Preliminaries

Our notation and terminology are consistent with [14]. We briefly gather some
key notions.

Monoids and Factorizations. By a monoid, we mean a commutative, cancella-
tive semigroup with unit element. Let M be a monoid. We denote by A(M) the
set of irreducible elements (atoms) of M , by M× the group of invertible elements,
and by Mred = {aM× | a ∈ M} the associated reduced monoid of M . We denote
by q(M) a quotient group of M with M ⊆ q(M). For a set P , we denote by
F(P ) the free (abelian) monoid with basis P . Then every a ∈ F(P ) has a unique
representation in the form

a =
∏
p∈P

pvp(a) with vp(a) ∈ N0 and vp(a) = 0 for almost all p ∈ P .

We call |a| =
∑

p∈P vp(a) the length of a. The free monoid Z(M) = F
(
A(Mred)

)
is called the factorization monoid of M , and the unique homomorphism

π : Z(M)→Mred satisfying π(u) = u for each u ∈ A(Mred)

is called the factorization homomorphism of M . For a ∈M , we set

ZM (a) = Z(a) = π−1(aM×) ⊆ Z(M) is the set of factorizations of a ,

LM (a) = L(a) =
{
|z|
∣∣ z ∈ Z(a)

}
⊆ N0 is the set of lengths of a,

L(a) = sup L(a) ∈ N ∪ {∞}, `(a) = min L(a), and if a /∈M×, then

ρ(a) = L(a)/`(a) is the elasticity of a .

Note that L(a) = {0} if and only if a ∈ M×. We define the elasticity of M to
be ρ(M) = sup{ρ(x) |x ∈ M\M×}. M has accepted elasticity if ρ(M) < ∞ and
there exists a ∈M with ρ(a) = ρ(M). We say that M is atomic if |Z(a)| ≥ 1 for all
a ∈M . If N ⊆M are reduced monoids, then N is divisor closed in M if whenever
a ∈ N and b, c ∈M with a = bc, then b, c ∈ N .

Let G be an additive abelian group and G0 ⊆ G a subset. Then [G0] ⊆ G denotes
the submonoid generated by G0 and 〈G0〉 ⊆ G0 denotes the subgroup generated
by G0. Set Tor(G) to be the torsion elements of G. A family (ei)i∈I of elements



HALF-FACTORIAL KRULL MONOIDS 3

of G is said to be independent if they are independent in G as a Z-module, i.e. if
ei 6= 0 for all i ∈ I and, for every family (mi)i∈I ∈ Z(I),∑

i∈I
miei = 0 implies miei = 0 for all i ∈ I .

The torsion-free rank r0(G) of G is the cardinality of a maximal independent family
in G/Tor(G). Thus G is a torsion group if and only if r0(G) = 0.

Krull monoids. The theory of Krull monoids is presented in the monographs
[14, 17, 18]. We briefly summarize what is needed in the sequel. Let M and D be
monoids. A monoid homomorphism ϕ : M → D is called

• a divisor homomorphism if ϕ(a) | ϕ(b) implies a | b, for all a, b ∈M .

• cofinal if, for every a ∈ D, there exists some u ∈M such that a |ϕ(u).

• a transfer homomorphism if ϕ(M)D× = D, ϕ−1(D×) = M×, and whenever
ϕ(m) = bc, there exist v, w ∈M and e ∈ D× such that m = vw, ϕ(v) = eb,
and ϕ(w) = e−1c.

We call C(ϕ) = q(D)/q(ϕ(M)) the class group of ϕ and use additive notation for
this group. For a ∈ q(D), we denote by [a] = [a]ϕ = a q(ϕ(M)) ∈ q(D)/q(ϕ(M))
the class containing a. If ϕ : M → F(P ) is a cofinal divisor homomorphism, then

GP = {[p] = pq(ϕ(M)) | p ∈ P} ⊆ C(ϕ)

is called the set of classes containing prime divisors, and we have [GP ] = C(ϕ).
If M ⊆ D is a submonoid, then M is called cofinal (resp., saturated) in D if the
imbedding M ↪→ D is cofinal (resp., a divisor homomorphism).

The monoid M is called a Krull monoid if it satisfies one of the following equiv-
alent conditions [14, Theorem 2.4.8] :

• M is v-noetherian and completely integrally closed.

• Mred is a saturated submonoid of a free monoid.

In particular, M is a Krull monoid if and only if Mred is a Krull monoid. A domain
is a Krull domain if and only if its multiplicative monoid is a Krull monoid, and a
noetherian domain is Krull if and only if it is integrally closed. Regular congruence
monoids in Krull domains are Krull [14, Proposition 2.11.6]. Monoid domains and
power series domains that are Krull are discussed in [16, 21, 22]. For the role of
Krull monoids in module theory see [7]. The arithmetic of Krull monoids is studied
via transfer homomorphisms and associated block monoids. We recall the required
terminology and collect the results needed for the sequel.

Monoids of zero-sum sequences and block monoids. Let G be an additive
abelian group, G0 ⊆ G a subset and F(G0) the free monoid with basis G0. In
the tradition of combinatorial number theory, the elements of F(G0) are called
sequences over G0. Thus a sequence S ∈ F(G0) will be written in the form

S =
∏
g∈G0

gvg(S) ,

and we use all the notions (such as the length) as in general free monoids. If S is
not the unit element, then we can write S = g1 · · · · · gl and tacitly assume l ∈ N
and g1, . . . , gl ∈ G0. We call Supp(S) = {g ∈ G0 | vg(S) > 0} the support of S and
σ(S) =

∑
g∈G0

vg(S)g the sum of S, which is an element of G. The monoid

B(G0) = {S ∈ F(G0) | σ(S) = 0}
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is called the monoid of zero-sum sequences over G0, and its elements are called
zero-sum sequences over G0. We suppress mention of the group G, since the same
monoid B(G0) is attained no matter which group G extending 〈G0〉 we are working
inside. We shall freely use the following fact without further mention:

Fact 2.1. If S′ ⊆ S ⊆ G, then B(S′) is a divisor-closed submonoid of B(S). [14,
Prop. 2.5.6]

For every arithmetical invariant ∗(M) defined for a monoid M , we write ∗(G0)
instead of ∗(B(G0)). In particular, we set A(G0) = A(B(G0)). Clearly, B(G0) ⊆
F(G0) is saturated, and hence B(G0) is a Krull monoid.

We define the Davenport constant of G0 by

D(G0) = sup
{
|U |

∣∣ U ∈ A(G0)
}
∈ N0 ∪ {∞} ,

which is a central invariant in zero-sum theory (see [10] for its relevance in factor-
ization theory).

Fact 2.2. If G0 is finite, then D(G0) < ∞ and B(G0) is finitely generated [14,
Theorem 3.4.2].

We will make substantial use of the following result [14, Section 3.4] relating
Krull monoids to associated block monoids.

Lemma 2.3. Let M be a Krull monoid, ϕ : M → F = F(P ) a cofinal divisor
homomorphism, G = C(ϕ) its class group, and GP ⊆ G the set of classes containing

prime divisors. Let β̃ : F → F(GP ) denoted the unique homomorphism defined by

β̃(p) = [p] for all p ∈ P . Then homomorphism β = β̃ ◦ ϕ : M → B(GP ) is a
transfer homomorphism. In particular, we have

1. LM (a) = LB(GP )

(
β(a)

)
and hence ρ(a) = ρ

(
β(a)

)
for all a ∈M .

2. M is half-factorial if and only if B(GP ) is half-factorial.

The homomorphism β is called the block homomorphism, and B(GP ) is called
the block monoid associated to ϕ.

3. Technical results

The current manuscript will concentrate on a concept called strong tautness,
related to element exponentiation.

Definition 3.1. An atomic monoid M is taut if for every nonunit x ∈M , ρ(x) <
∞ and there is an n ∈ N such that for all m ≥ n, ρ(xn) = ρ(xm). M is strongly
taut if in the definition of taut we can universally take n = 1.

Many monoids are taut, including all finitely-generated monoids [1, Thm 12]
and, more generally, all monoids M such that for all nonunits x ∈ M , the divisor
closure [[x]] of {x} is finitely generated. The hypothesis of tautness allows one to
conclude many strong factorization properties of the monoid; as an example, see
[2, 3]. Because ρ(x) = 1 for all its elements, a half-factorial monoid is trivially taut
and strongly taut. Over block monoids, both half-factoriality and strong tautness
have finite character. That is to say, the block monoid B(S) is half-factorial
(resp. strongly taut) iff each B(S′) is half-factorial (resp. strongly taut) for all
finite S′ ⊆ S. Indeed, verifying these properties in B(S) involves inspecting the
factorizations of each zero-sum sequence B; the factors of B are all elements of the
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divisor closed submonoid B(Supp(B)) (by Fact 2.1) and Supp(B) is a finite subset of
S. Thus to prove the equivalence of strong tautness and half-factoriality, it suffices
to verify the equivalence for all finite S′ ⊆ S. In the block monoid, the trivial zero-
sum sequence 0 is a prime element, and thus must appear in every factorization.
Hence, it has no effect on factorization properties such as half-factoriality or strong
tautness (see [2] for more details). For the sequel, we shall safely assume 0 /∈ S.

In this article, we investigate the relationship between strong tautness and half-
factoriality in Krull monoids. We prove that for (a generalization of) Krull monoids
with class group of torsion-free rank at most 1, the conditions are equivalent, so that
strong tautness provides a characterization of half-factoriality for such monoids. For
Krull monoids whose class group is torsion, strong tautness thus yields an alter-
nate characterization of the old and well-known characterization of half-factoriality
involving the semilength function known as the cross number (see [14, Proposition
6.7.3]). When the class group has torsion-free rank 2 or greater, the properties need
not be equivalent, as demonstrated by Example 3.8.

We now collect several simple observations about element exponentiation in gen-
eral monoids, as well as basic results about block monoids over certain groups of
torsion-free rank at most 1.

Proposition 3.2. Let M be an atomic monoid, n ∈ N and x ∈M a nonunit with
ρ(x) finite. If ρ(xn) = ρ(x), then L(xn) = nL(x) and l(xn) = nl(x).

Proof. Since nL(x) ≤ L(xn) and nl(x) ≥ l(xn), if either inequality were strict, we
would have ρ(xn) > ρ(x). �

Proposition 3.3. If M is an atomic monoid with accepted elasticity and x is any
element of M for which ρ(x) = ρ(M), then

1. ρ(xn) = ρ(x) for all n ∈ N
2. if a ∈ A(M) appears in both a longest and a shortest factorization of x, then
ρ(M) = ρ(x) = 1, i.e. M is half-factorial.

Proof. The first statement is immediate: ρ(x) ≤ ρ(xn) ≤ ρ(M) = ρ(x). For the
second statement, let such an a be given and consider x/a ∈ M . If x = a, then
ρ(M) = ρ(x) = 1. Otherwise, we have L(x/a) = L(x) − 1 and `(x/a) = `(x) − 1,
so if ρ(x) > 1 then ρ(x/a) > ρ(x) = ρ(M), a contradiction. �

Remark 3.4. Let S be a finite subset of an abelian group of torsion-free rank at
most 1. Then 〈S〉 is a finitely-generated abelian group of torsion-free rank at most
1, hence 〈S〉 is isomorphic to either a finite abelian group H or the direct product
of Z and H, for some finite abelian group H. Without loss of generality in proofs,
when dealing with a fixed finite subset S, we shall assume that S ⊆ Z⊕H.

Definition 3.5. If M is an atomic monoid, then a ∈M is absolutely irreducible
if whenever b ∈ A(M) and b | an for some n ∈ N, then a and b are associates.

Note that since M is atomic, any absolute irreducible must be irreducible. There
are several equivalent statements for a being absolutely irreducible, for example,
that the divisor-closed submonoid [[a]] is a unique factorization monoid. For further
general properties, see [14, Definition 7.1.3]. In the context of block monoids,
absolute irreducibility is equivalent to isolating a minimal support set.
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Proposition 3.6. Let G be an abelian group and S ⊆ G. Then B ∈ A(B(S)) is
absolutely irreducible iff for all B′ ∈ A(B(S)) with Supp(B′) ⊆ Supp(B), we have
B′ = B.

Proof. Since block monoids are reduced, we do not need to be concerned with
associates. If B,B′ ∈ A(B(S)) with Supp(B′) ⊆ Supp(B), then there is some
power Bn of B such that B′|Bn. Conversely, since B(Supp(B)) is divisor-closed in
B(S) (Fact 2.1), any factor B′ of some Bn must be an element of B(Supp(B)), i.e.
Supp(B′) ⊆ Supp(B). Thus absolute irreducibility of B is equivalent to the stated
property about supports. �

In a torsion group G, we immediately conclude by the previous proposition that
the absolute irreducibles are the zero-sum sequences gordG(g) for g ∈ S. For groups
of torsion-free rank 1, the absolute irreducibles are also easily classified.

Lemma 3.7. Let G is a group of torsion-free rank at most 1 and S ⊆ G. The
absolute irreducibles of B(S) are exactly the zero-sum sequences of the form:

1. gordG(g) for some g ∈ S ∩ Tor(G), or
2. B an irreducible with |Supp(B)| = 2 and Supp(B) ⊆ S\Tor(G).

Furthermore, for any zero-sum sequence A ∈ B(S), there is an n ∈ N such that An

factors as a product of absolute irreducibles.

Proof. As already mentioned, elements of the first kind are absolutely irreducible.
By the minimality of support (Proposition 3.6), any other absolute irreducibles in
B(S) must have support contained in G\Tor(G).

Now suppose that B = gnhm is an irreducible where g and h are elements of S
of infinite order. The support of B is clearly minimal because of the infinite order
of g and h. B is also the unique irreducible with {g, h} as its support. Indeed, let
A = gihj be irreducible for some i, j ∈ N. Since B is irreducible, either i ≥ n or
j ≥ m; without loss of generality, assume the former. Since A is also irreducible,
j ≤ m. Since n · g = m · h and i · g = j · h, we get mi · h = ni · g = nj · h, and
because h is not torsion, mi = nj. Thus 1 ≤ m/j = n/i ≤ 1, so m = j and n = i
and B is absolutely irreducible by Proposition 3.6.

We now shall show that any other A ∈ A(B(S)) does not have minimal support
(under inclusion) and so cannot be absolutely irreducible. This will fall out of our
proof of the second statement of the lemma, namely that any zero-sum sequence
A ∈ B(S) has a power which factors as a product of absolute irreducibles.

We proceed by induction on the cardinality of Supp(A). Since Supp(A) is finite,
we may assume by Remark 3.4 that Supp(A) ⊆ Z ⊕ H for some finite group H.
Set e = exp(H). Then Ae = A1A2, where Supp(A1) ⊆ H and Supp(A2) ∩H = ∅.
Clearly A1 factors as a product of the absolute irreducibles gord(g) for g ∈ Supp(A1),
so we are left with the case where Supp(A) contains no torsion elements (and
thus |Supp(A)| ≥ 2). We shall show that a power of A factors as a product of
absolute irreducibles of the second kind. If |Supp(A)| = 2, then A is necessarily
a power of the unique absolute irreducible on that support. Assume now, A =
(m1 + g1)a1 · · · (mk + gk)ak(−n1 + h1)b1 · · · (−nl + hl)

bl , where each mi, nj ∈ N,
gi, hj ∈ H, ai, bi ≥ 1 and k + l > 2.

If akmk ≥ blnl, set x = mke. The zero-sum sequence B = (mk + gk)blenl(−nl +
hl)

blx is a power of the absolute irreducible with support {mk + gk,−nl + hl}.
Furthermore, B divides Ax. Indeed vmk+gk(Ax) = akx > blenl = vmk+gk and
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v−nl+hl
(Ax) = blx = v−nl+hl

(B). Since −nl + hl is not in the support of Ax/B, A
does not have minimal support and thus is not absolutely irreducible by Proposition
3.6. Also, by the induction hypothesis, there is a nonzero y ∈ N such that (Ax/B)y

factors as absolute irreducibles of the second kind. Thus xy is our desired exponent
for A. If akmk ≤ blnl, then an analogous proof applies with x = nle. �

We shall eventually show that absolute irreducibles play a critical role in de-
termining half-factoriality for restricted block monoids over groups of torsion-free
rank ≤ 1. As a contrast, we present the following example of Schmid [28] to show
that there are strongly taut block monoids over groups of torsion-free rank 2 or
more which are not half factorial. This example was adapted from an example of
Garćıa-Sánchez and Rosales for finitely generated monoids [8, Example 1].

Proposition 3.8. Let G be an abelian group of torsion-free rank 2 or more and
let e1, e2 ∈ G be two independent elements of infinite order. Set e0 = e1 + e2. Let
S = {e0, e1, e2,−e0,−e1,−e2}. Then B(S) is strongly taut but not half factorial.

Proof. For i ∈ {0, 1, 2}, set Ai = (−ei)ei, which are clearly absolute irreducibles by
Proposition 3.6. Set U = (−e0)e1e2 and −U = e0(−e1)(−e2), which are also abso-
lutely irreducible and set W = (−U)U = A0A1A2. These irreducible factorizations
have different lengths, so B(S) is not half factorial. Note that A0, A1, A2, U,−U
are the only irreducibles of B(S). From this we conclude that the longest factor-
ization of Wn has length 3n and the shortest factorization of Wn has length 2n, so
ρ(Wn) = 3

2 for all n ∈ N.
Now let B ∈ B(S) be an arbitrary zero-sum sequence and write vs(B) for the

multiplicity of a given s ∈ S in B. There is a maximal n ∈ N0 such that Wn divides
B, call it w(B). We claim that L(B) = 3w(B) + r(B) and l(B) = 2w(B) + r(B),
where

r(B) = ve0(B) + ve1(B) + ve2(B)− 3w(B).

We prove this by induction on r(B). We see that r(B) = 0 iff B = Wn for
some n ∈ N and in this case we have already shown the length computations to
hold. Suppose r(B) > 0, so that B/Ww(B) is nontrivial. Suppose U |B/Ww(B),
so that ve0(B), v−e1(B), v−e2(B) > w(B). We claim that U must appear in every
factorization of B. Assume otherwise, i.e., there is some factorization F of B in
which no U appears. Considering supports, we must then have ve0(B) copies of
A0, v−e1(B) copies of A1, and v−e2(B) copies of A2 in F . But then we have
min{ve0(B), v−e1(B), v−e2(B)} > w(B) copies of W dividing B, a contradiction.
Hence U appears in every factorization of B and thus L(B) = L(B/U) + 1 and
l(B) = l(B/U)+1. Since U |B/Ww(B), we conclude w(B/U) = w(B), so r(B/U) =
r(B) − 1 and our induction hypothesis applies. Analogous arguments hold if any
of the other irreducibles divided B/Ww(B).

Given this knowledge about longest and shortest factorization lengths, we im-
mediately conclude strong tautness. For w(Bk) = kw(B) and so r(Bk) = kr(B).
Thus ρ(Bk) = ρ(B). �

Note that in this example, all the irreducibles are absolutely irreducible. The
major difference between this example and rank ≤ 1 groups is the size of the
support. For a group of rank ≤ 1, for any s ∈ S, all the absolute irreducibles
in which s appears have the same cardinality for their support. Namely, if s is
torsion, the unique absolute irreducible in which s appears has singleton support; if
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s is infinite order, then it may appear in the support of many absolute irreducibles,
but all these absolute irreducibles have support of size 2. On the other hand, in
this example, every s ∈ S appears in the support of an absolute irreducible of size
2 and one of size 3. It could be an area of future research to examine whether this
property of locally uniform support size is necessary for half-factoriality.

4. Main Result

We now can describe the configurations that control the behavior of B(S) with
respect to half factoriality and strong tautness. By a semigroup, we mean a set
with a binary operation which is associative but need not have identity.

Definition 4.1. Let S ⊆ G, where G is a group of torsion-free rank 1. S is nice
if S can be enumerated as {s1, s2, s3, s4}, with the si all distinct and of infinite
order, such that the semigroup generated by S contains 0, but the two semigroups
generated by {s1, s2} and {s3, s4} do not contain 0.

Intuitively, nice subsets correspond to those S which consist of two “positive”
elements and two “negative” elements. In more detail, if S is nice, then since S
is finite, we may assume by Remark 3.4 that S ⊆ Z ⊕ H, for some finite abelian
group H. We then find that S = {m2 + g2,m1 + g1,−n1 + h1,−n2 + h2}, for some
m2,m1, n1, n2 ∈ N and g2, g1, h1, h2 ∈ H.

We shall now show that half-factoriality and strong tautness are equivalent for
nice subsets of groups G of torsion-free rank 1.

Lemma 4.2. Let S be a nice subset of a group G of torsion-free rank 1. Then
there exists a zero-sum sequence B ∈ B(S) with Supp(B) = S and ρ(B) = 1.

Proof. After identification, we may assume without loss of generality that S =
{m2+g2,m1+g1,−n1+h1,−n2+h2} ⊆ Z⊕H for some finite abelian group H. Let
A1, A2 be the (unique) absolute irreducibles having support {m1 + g1,−n1 + h1}
and {m2 + g2,−n2 + h2}, respectively. Then Supp(A1A2) = S and A1A2 has a
factorization of length 2. Consider, then, the nonempty set of zero-sum sequences
B such that `(B) = 2 and Supp(B) = S. This set is partially ordered by the
“divides” relation, namely, for A and B in the set, A ≤ B iff A|B. Since B(S) is
a finitely generated atomic monoid (Fact 2.2), we may choose a zero-sum sequence
B in the set which is minimal under this partial order.

Consider any other factorization B1 · · ·Bk of B into irreducibles. If some Bi has
three or more elements in its support, then we may choose an irreducible factor Bj

with j 6= i such that Supp(BiBj) = S. But then Supp(BiBj) = S and BiBj factors
as the product of two irreducibles, so by minimality, B = BiBj and k = 2. The
remaining case is when all the Bi have exactly two elements in their support, one
of the form mi + gi and one of the form −nj + hj . Since Supp(B) = S, a simple
inspection of cases shows that two of the irreducibles Bi and Bj together will have
Supp(BiBj) = S, so by minimality B = BiBj . Thus all factorizations of B have
length 2 and ρ(B) = 1. �

Theorem 4.3. If S ⊆ G is nice, then B(S) is strongly taut iff B(S) is half factorial.

Proof. For the nontrivial direction, suppose B(S) is strongly taut and let B be the
zero-sum sequence guaranteed by Lemma 4.2. Let A be any element of B(S). Since
Supp(B) = S, we may choose r ∈ N such that A|Br. Then Br+1/A is a nontrivial
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zero-sum sequence and we may factor it into x irreducibles, for some x ≥ 1. By

strong tautness, 1 = ρ(B) = ρ(Br+1) ≥ x+L(A)
x+`(A) , so L(A) = `(A). �

Theorem 4.4. Suppose G is a group of torsion-free rank 0 or 1 and S ⊆ G. Then
the following are equivalent:

1. B(S) is half factorial.
2. B(S) is strongy taut.
3. For every nice T ⊆ S, B(T ) is strongly taut and for every irreducible
a ∈ A(B(S)), ρ(an) = ρ(a) = 1 for all n.

4. For every nice T ⊆ S, B(T ) is half factorial and for every irreducible
a ∈ A(B(S)), ρ(an) = ρ(a) = 1 for all n.

Proof. (1) ⇒ (2) follows from half-factoriality implying strong tautness, while
(2)⇒ (3) follows from the definition and finite character of strong tautness. Con-
ditions (3) and (4) are equivalent by Theorem 4.3.

For (3) ⇒ (1), suppose (3) (and thus (4)). By the finite character of half-
factoriality, we reduce to showing that B(S′) is half factorial for every finite S′ ⊆ S.
Let some such S′ be given; assume . We may assume 0 /∈ S′ and that S′ has no
extraneous elements.

Since S′ is a finite subset of an abelian group of torsion-free rank at most 1, by
Remark 3.4 we may assume that S′ ⊆ Z⊕H, where H is a finite abelian group. By
Fact 2.2, B(S′) is finitely-generated and thus has accepted elasticity by [1, Thm 7].

Assume ρ(S′) > 1 and fix B ∈ B(S′) such that ρ(B) = a
b = ρ(S′). Then L(B) =

aR and `(B) = bR for some positive integer R, and we can obtain irreducible
factorizations B = α1 · · ·αaR = β1 · · ·βbR. By Lemma 3.7 there is a positive
integer w such that, simultaneously, each of the αw

i and βw
j factors as a product

of absolute irreducibles. Since ρ(aw) = 1 for all irreducibles a, each αw
i and βw

j

factors as exactly w irreducibles by Proposition 3.2. On the other hand, Proposition
3.3 implies ρ(Bw) = ρ(B), so again by Proposition 3.2, L(Bw) = wL(B) and
`(Bw) = w`(B). Thus we obtain factorizations:

(4.1)

aR∏
i=1

w∏
j=1

Pi,j = Bw =

bR∏
i=1

w∏
j=1

Qi,j

where the factorization on the left is a longest factorization of Bw, the factorization
on the right is a shortest, and each Pi,j and Qi,j is absolutely irreducible.

We claim that Supp(B) ∩ H is empty. For if h ∈ H were in the support, then
hordH(h) would have to appear in any factorization of Bx into absolute irreducibles–
in particular the longest and shortest factorizations in equation 4.1. Twice applying
Proposition 3.3, we see ρ(Bw) = ρ(B) = ρ(B(S′)) = 1, a contradiction.

Let U be an arbitrary absolute irreducible among the Pi,j in the longest fac-
torization of Bw. Then Supp(U) = {m + g,−n + h} for some m,n ∈ N and
g, h ∈ H by Lemma 3.7. If U also appears in the shortest factorization (this would
occur, for instance, if −n + h were the sole element of Supp(B) with a negative
integer component), then ρ(Bw) = ρ(B) = ρ(B(S′)) = 1 by Proposition 3.3, a
contradiction. Hence we may choose distinct absolute irreducibles V,W in the
shortest factorization of Bw such that V 6= U , W 6= U , Supp(V ) ⊇ {mi + gi} and
Supp(W ) ⊇ {−nj +hj}. Set T = Supp(V )∪Supp(W ), which has exactly two “neg-
ative” and two “positive” elements by the characterization of absolute irreducibles
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(Lemma 3.7). Hence T is a nice subset and B(T ) is strongly taut and half-factorial
by assumption.

Taking y = max{mi exp(H), nj exp(H)}, we guarantee that U divides (VW )y in
B(T ). By Lemma 3.7, we may choose an z ∈ N such that the zero-sum sequence
((VW )y/U)z factors into absolute irreducibles. Appending Uz to this factoriza-
tion, we obtain a factorization F of (VW )yz into absolute irreducibles in which U
appears. By the half-factoriality of B(T ), this factorization must have length 2yz.

ConsiderBwyz. By Propositions 3.3 and 3.2, L(Bwyz) = yzL(Bw) and l(Bwyz) =
yzl(Bw). As a longest factorization of Bwyz, take the longest factorization of Bw

from equation 4.1 and repeat it yz times. This factorization consists entirely of
absolute sequences and contains U . Analogously, the shortest factorization of Bw

in equation 4.1 repeated yz times yields a shortest factorization of Bwyz. This
factorization will have an occurrence of (VW )yz, which we may substitute with the
factorization F of (VW )yz. This substitution does not change the length of the
factorization of Bwyz, so it yields an alternate shortest factorization of Bwyz which
contains U . So Bwyz has U in common between a longest and a shortest factor-
ization, a contradiction by Proposition 3.3 since ρ(Bwyz) = ρ(B) = ρ(B(S′)) > 1.
Since we have achieved contradiction in all cases, ρ(B(S′)) = ρ(B(S′)) = 1 and our
block monoid is half-factorial. �

We are now ready to prove our main theorem.

Proof of Theorem 1.1. Let M be a Krull monoid, ϕ : M → F = F(P ) a cofinal
divisor homomorphism, G = C(ϕ) its class group having torsion-free rank at most
one, and GP ⊆ G the set of classes containing prime divisors. By Lemma 2.3, it is
sufficient to prove the assertion for the block monoid B(GP ) instead of doing it for
M , since properties such as strong tautness and half-factoriality transfer over. But
the equivalence of these properties for B(GP ) is immediate from Theorem 4.4. �
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