Table of Contents

◆ Preface

◆ How to Use the Handbook

◆ Selecting Spring Configuration
 Push, Pull, Twist or Energy Storage Applications: Common Available Configurations.

◆ Spring Materials

◆ Residual Stress, Fatigue and Reliability
 Load-Carrying Ability, Fatigue Terminology, Modified Goodman Diagram, Weibull Analysis, Load Loss.

◆ Helical Compression Springs

◆ Helical Extension Springs
 Initial Tension, Types of Ends and Dimensions, Design Equations, Choice of Operating Stress for Static and Cyclic Applications, Commercial Tolerances.

◆ Garter Springs
 Joint Design, Design Equations and Tolerances.
Table of Contents

- **Helical Torsion Springs**
 Mean Diameter, Length, Design Equations for Rate and Stress, End Configurations, Natural Frequency, Choice of Operating Stress for Static and Cyclic Applications, Double Torsion and Rectangular Wire Springs, Tolerances.

- **Retaining Rings**
 External and Internal Types, Ends, Design Equations, Choice of Stress Level, Tolerances.

- **Belleville Spring Washers**

- **Flat Springs**
 Design Considerations and Equations for Cantilever and Simple Beams, Choice of Stress Level and Tolerances.

- **Special Spring Washers**
 Design Considerations and Equations for Curved, Wave and Finger Washers, Choice of Stress Level and Tolerances.

- **Power Springs**
 General Design Considerations and Equations, Operating Stress for Power and Prestressed Power Springs.

- **Constant Force Springs**
 Extension Type, Design Equations, Mounting and Tolerances, Motor Type Design Equations for "A" and "B" type Motors, Operating Stress and Tolerances.

- **Spiral Springs**
 Design Equations for Hair Springs and Brush Springs.

- **Volute Springs**
 Design Equations and Choice of Operating Stress Level.

- **Wire Forms**
 General Information and How to Specify.

- **Index and Reference Information**
 Glossary of Spring Terminology, Bibliography, Trademarks, Conversion Factors, Abbreviations and Symbols, and Hardness Scale Conversion.
The World of Associated Spring
When the first spring was produced is not known; however, it very likely was a bow. The bow was used to store energy which could be released at a precise moment, upon command by the bowman. The first formal study of flexible members was made by Robert Hooke in 1678. Hooke's famous law, which states that "deflection is proportional to load," is still the basis for spring design. Our knowledge of springs and springmaking has advanced considerably since Hooke's first statement, owing to progress in technology to measure and predict stress, improved material technology and improved manufacturing methods.

Initially, springmakers were wire benders - people who shaped wire into a helix or other suitable form. As technology grew, manufacturers started to specialize. Springs must apply a force, or store and release a predictable amount of energy, over a relatively large deflection. Springs are more similar to an instrument than to a standard metal part. Those wire benders and stampers who recognized this and became skilled in the art of spring design soon became members of a unique group of metal formers known as springmakers.

More recently, springmakers and designers have specialized further, producing only a few types of springs. Associated Spring has facilities throughout the world and these facilities each produce a specific range of springs. On a global basis, Associated Spring produces all types of springs.
This handbook is written for those who design parts to perform a spring function. The first section discusses different spring functions and relates them to specific configurations. Having read the section, Selecting Spring Configurations, a designer can select one or possibly two spring configurations that will perform the desired function on a cost-effective basis. The Spring Materials section, is written in a similar manner to lead a designer to the most cost-effective material for an intended application. At some point in the design process, the designer must select the level of operating stress, weighing the benefits associated with improved reliability or performance against added cost. The Residual Stress, Fatigue and Reliability section, is provided as background information to assist the designer in making these judgments. Remaining sections show the designer how to design and specify various types of springs for many applications. Spring design is an interactive process, and may require repeating operations until the best design is achieved.

Because of spring complexity, many simplifying assumptions are made in the design process. These assumptions have proven over the years to be reliable. But because such assumptions exist, the calculations are not always exact. Therefore, for critical or unusual springs, these assumptions may not be satisfactory, and more complex design procedures may be required. In these situations, designers should rely on the experience of a springmaker or confirm the design with sample parts.
This handbook is written for design engineers, as a practical guide to those responsible for designing springs. Springs are flexible members that store energy. Design considerations for members that experience large deflections are quite different from those used for rigid structures. A sufficient amount of detail has been included so that those designers without access to a computerized program can generate an optimum solution to a spring design problem.

Many designs do not perform well in service due to incomplete or unclear definition. The assumption is made throughout this handbook that the designer knows the functional requirements of a spring, its space limitations, the environment in which it operates, its service requirements and any special considerations. Functional requirements are usually expressed as a load at a test position and/or a spring rate. Space limitations are defined by describing the envelope in which a spring is expected to operate. Environment can be characterized by the operating temperature and a description of substances in contact with a spring. Service requirements are the expected life, frequency of loading, rate of loading and permissible relaxation. Special considerations might involve, for example, restrictions due to assembly, electrical conductivity or magnetic requirements. To make a cost-effective design, it is essential to have the design problem clearly defined.

This handbook follows the design sequence illustrated in Figure 1-1. Section 2, Selecting Spring Configuration, reviews the methodology for choosing the best type of spring configuration to perform and intended function. Frequently, the choice of configuration is obvious to experienced designers. The inexperienced, and occasionally the experienced designer (in critical situations), should first review Section 2 to be sure that the most cost-effective configuration has been selected. The second major design decision is choice of material. Section 3, Spring Materials, gives information required to select one or two candidate materials for the design. Section 4, Residual Stress, Fatigue and Reliability, gives background information necessary to select a stress level that will yield a satisfactory balance between cost and
How to Use the Handbook

reliability. Remaining sections discuss each type of spring configuration in detail. These sections enable a designer, having chosen the configuration and material, to select a stress level, design a spring and then specify the spring to a springmaker. In many cases, examples are included to demonstrate the design process. In most sections, recommendations are made on stress levels for both fatigue and static service.

Material recommendations and design methods discussed here are the result of many years of experience and have proven to be reliable. Spring design is a very complex subject. Frequently the state of stress is not accurately known. Geometrical configurations are often difficult to describe mathematically. Simplifying assumptions have been made which, in some cases, may lead to inaccuracies. When parts are made to a design, fabrication considerations are occasionally encountered that alter performance. Materials do not always behave as predicted. Although the best judgment has been used in writing this handbook, resulting designs will not always be optimum. For critical springs it is advisable to call on the experience of Associated Spring’s engineering staff, and to have samples made and tested prior to committing a design to production.

Many designers have calculators and computers to support their design efforts. Most calculators use an
algebraic logic that is easily programmed from equations and procedures set forth in this handbook. Designers fortunate enough to have a computerized design program available are relieved from numeric detail. Nevertheless, notes on how to specify a spring, manufacturing tips, and other information dedicated to a specific spring configuration should be reviewed. This information is not generally available in design programs and yet frequently is necessary to achieve the most cost-effective design.

For many spring applications it is possible to use standard spring designs which save engineering time, avoid tooling costs and special manufacturing lot charges. Associated Spring has available more than 5,000 pre-engineered spring designs. Compression, extension, torsion and constant force springs are maintained in stock, as are belleville, curved, finger, and wave spring washers. Standard spring designs available through the Associated Spring SPEC Program are discussed further in Section 20.
It is essential that a designer select the optimum spring configuration to perform an intended function. A three-step procedure has been developed for this task. The first step is to define the primary spring function in terms of push, pull, twist or energy storage. The second step is to review various alternative configurations and select one or two best candidates. The third step is to review candidate configurations with respect to cost and special considerations.

Having defined primary spring function as either push, pull, or twist, the next step is to review all possible spring configurations that perform this function and select the one which meets space requirements most economically. Various spring configurations are listed in Table 2-1 with helpful comments to aid in selecting one or two candidates. Helical compression springs, spring washers, volute springs and beam springs all perform a push function. For large deflections, helical compression springs are most commonly chosen; for small deflections, spring washers are most common. Volute springs have high damping capacity and good resistance to buckling, but are not common because of relatively high manufacturing costs. Beam springs are produced in a wide variety of shapes and can push or pull. Frequently, beam springs are required for functions in addition to the spring function, and sometimes are an integral element of a larger part.

Helical torsion and spiral spring configurations perform the twist function. Helical torsion springs are often used as a counterbalance for doors, lids or other mechanisms that rotate on a shaft. Spiral hair springs have a low hysteresis and are used in instruments and watches. Brush springs received their name
from their primary application of holding brushes against commutators in electric motors. Power springs are often called clock or motor springs and are used to store energy for clocks, toys and other devices. Prestressed power springs are a special type of power spring which have a very high energy storage capacity and are most commonly used on retractors for seat belts. Level Torq® springs provide an essentially constant torque over many revolutions.

The pull function is performed by extension springs, drawbar spring assemblies and constant force springs, with helical extension springs being most common. Drawbar spring assemblies are useful when a fixed stop is required. Constant force springs are similar to power springs; however, they are loaded by pull rather than twist.

Retaining rings and garter springs were especially developed to perform either push or pull. Retaining rings retain or locate parts in bearings and on shafts. Garter springs are used primarily in oil seals.

Often a spring design function is expressed in terms of energy storage capacity. In machines, springs are frequently used to store kinetic energy from moving components during deceleration, and release this energy during acceleration to reduce peak loads. Spring motors are used to power clocks, toys and many other mechanical devices. Torsion springs are used in window shades and garage doors, primarily for their ability to store energy.

Energy storage capacity (ESC) is defined as the amount of work done by a spring or the energy stored per unit volume of active spring material. Energy storage capacity is proportional to the square of the maximum operating stress level, divided by the modulus of elasticity, multiplied by a constant. Theoretical capacities are shown for various spring configurations in Table 2-2. Space efficiency, another measure of spring design efficiency, is the volume of active spring material divided by the volume of the envelope occupied by the spring when fully deflected. The product of ESC and space efficiency is the amount of energy a spring configuration can store per unit volume of the envelope it occupies. Typical ranges of energy storage capacity per unit volume of envelope for some spring geometries are also listed in Table 2-2. These values are approximate, and refer to springs in fully deflected positions without regard to inactive material or stress correction factors. The space efficiency concept is not meaningful for some spring configurations, such as cantilevers and extension springs. Prestressed power springs, power springs and helical compression spring designs are most suitable for energy storage applications.

ESC divided by the product of the density and cost per pound gives energy storage ability per unit cost. This is a convenient method for making rough comparisons of various spring materials.

Final step in the selection process is to consider other restrictions imposed by design criteria. Cost is always a restriction. Although specific comments on cost cannot be addressed until a spring is designed, some useful generalizations can be considered here. For sample and small quantities, Stock Precision Engineered Components (SPEC), Section 20, are available from Associated Spring at considerably less cost than custom designed springs. Custom designed springs from wire are generally less costly than springs from strip. This is because there is very little scrap from wire. Many flat springs are blanked from strip with a concomitant loss of material. Springs made from prehardened material tend to be less costly.
than springs hardened after forming. Sharp bends tend to increase manufacturing costs and cause stress concentrations that can result in early failure.

Compression springs and several other types of common springs are made on universal tooling. Most flat springs and special wire forms require special tooling. The ability to maintain tolerances varies considerably for different spring configurations. In general, tolerances controlled by metal forming processes are substantially greater than tolerances controlled by metal cutting.
Spring Washer (Section 11 and 13)

Belleville
Push—high loads, low deflections—choice of rates (constant, increasing, or decreasing).

Wave
Push—light loads, low deflection—uses limited radial space.

Slotted
Push—higher deflections than bellevilles.

Finger
Push—for axial loading of bearings.

Curved
Push—used to absorb axial end play.
Volute (Section 17)

Push—may have an inherently high friction damping.

Beam (Section 12)

- Cantilever, Rectangular Section

Push or pull—wide range of loads, low deflection range.

- Cantilever, Trapezoidal Section

- Simple Beam
Helical Torsion (Section 9)
Round or Rectangular Wire
Twist—constant rate.

Spiral (Section 16)
Hairspring
Twist.

Brush
Twist or Push.

Power, Motor or Clock (Section 14)
Twist—exerts torque over many turns.
Supplied in retainer.
Removed from retainer.
Prestressed Power (Section 14)

- Twist—exerts torque over many turns.
- Supplied in retainer.
- Removed from retainer.

Constant Force Spring Motor Level Torq (Section 15)

- Twist—exerts close-to-constant torque over many turns.
<table>
<thead>
<tr>
<th>TYPE</th>
<th>CONFIGURATION</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helical Extension</td>
<td></td>
<td>Pull—wide load and deflection range—constant rate.</td>
</tr>
<tr>
<td>Drawbar</td>
<td></td>
<td>Pull—extension to a solid stop.</td>
</tr>
<tr>
<td>Constant Force</td>
<td></td>
<td>Pull—very long deflection at constant load or low rate.</td>
</tr>
<tr>
<td>TYPE</td>
<td>CONFIGURATION</td>
<td>ACTION</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Retaining Rings (Section 10)</td>
<td>Round or Rectangular Wire</td>
<td>Pull or push to resist axial loads.</td>
</tr>
<tr>
<td>Garter (Section 8)</td>
<td>Extension</td>
<td>Pull with radial pressure.</td>
</tr>
<tr>
<td></td>
<td>Compression</td>
<td>Push with radial pressure.</td>
</tr>
</tbody>
</table>
Table 2-2. Energy Storage Capacity (ESC) of Various Spring Configurations.

<table>
<thead>
<tr>
<th>Type of Spring</th>
<th>Energy Storage Capacity</th>
<th>Space Efficiency</th>
<th>Notes</th>
<th>Typical Amounts of Energy Stored in Spring Space Envelope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression or Extension (round wire)</td>
<td>$\frac{S^2}{4G}$</td>
<td>$\frac{\pi C}{(C+1)^2}$</td>
<td>(3)</td>
<td>$1.5-15 \times 10^{-4}$ 1.8-18</td>
</tr>
<tr>
<td>Compression or Extension (square wire)</td>
<td>$\frac{S^2}{6.5G}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rectangular Cantilever & Simply Supported Beam</td>
<td>$\frac{S^2}{18E}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cantilever Beam-Triangular Plan</td>
<td>$\frac{S^2}{6E}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helical Torsion Spring (round wire)</td>
<td>$\frac{S^2}{8E}$</td>
<td>$\frac{\pi C}{(C+1)^2}$</td>
<td></td>
<td>$1.0-5 \times 10^{-4}$ 1.2-6</td>
</tr>
<tr>
<td>Helical Torsion Spring (square wire)</td>
<td>$\frac{S^2}{6E}$</td>
<td>$\frac{4C}{(C+1)^2}$</td>
<td></td>
<td>$1.5-8 \times 10^{-4}$ 1.8-9.7</td>
</tr>
<tr>
<td>Spiral Torsion (round wire)</td>
<td>$\frac{S^2}{8E}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belleville Washer</td>
<td>$\frac{S^2}{10E}$ to $\frac{S^2}{40E}$</td>
<td>0.6-0.9</td>
<td>(4)</td>
<td>$0.5-5 \times 10^{-4}$ 0.6-6</td>
</tr>
<tr>
<td>Power Spring</td>
<td></td>
<td>0.4-0.6</td>
<td>(5)</td>
<td>$10-17 \times 10^{-4}$ 12-20</td>
</tr>
<tr>
<td>Prestressed Power Spring</td>
<td></td>
<td>0.4-0.6</td>
<td>(5)</td>
<td>$25-30 \times 10^{-4}$ 30-35</td>
</tr>
<tr>
<td>Typical Lead Acid Battery</td>
<td></td>
<td></td>
<td></td>
<td>$2,500-3,300 \times 10^{-4}$ 3,000-4,000</td>
</tr>
</tbody>
</table>

(1) Energy storage capacity $= \frac{1}{1} \int f df$, where $V =$ volume of active spring material. Note that stress correction factors due to spring geometry have been omitted.

(2) Space efficiency is defined as volume of active spring material V divided by the space envelope of the spring at maximum deflection.

(3) Space efficiency does not apply to extension springs.

(4) Ratio of O.D. to I.D. of 2 is preferred for most designs.

(5) For most efficient design, the amount of space occupied by spring material equals half of the space occupied by the spring in the free position. Because of friction, difficulty in estimating the amount of active material and number of turns in the free position, determine the ESC by estimating or measuring the area under the torque revolution curve.
Spring Materials

Chemical and Physical Characteristics
While certain materials have come to be regarded as spring materials, they are not specially designed alloys. Spring materials are high strength alloys which often exhibit the greatest strength in the alloy system. For example: in steels, medium and high-carbon steels are regarded as spring materials. Beryllium copper is frequently specified when a copper base alloy is required. For titanium, cold-worked and aged Ti-13V-11Cr-3Al is used. The energy storage capacity of a spring is proportional to the square of the maximum operating stress level divided by the modulus. An ideal spring material has high strength, a high elastic limit and a low modulus. Because springs are resilient structures designed to undergo large deflections, spring materials must have an extensive elastic range. Other factors such as fatigue strength, cost, availability, formability, corrosion resistance, magnetic permeability and electrical conductivity can also be important and must be considered in light of cost/benefit. Consequently, careful selections must be made to obtain the best compromise.

Table 3-1. Typical Properties of Common Spring Materials.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Young’s Modulus E (1) Mpa 10^3</th>
<th>Modulus of Rigidity G (1) Mpa 10^6</th>
<th>Density (1) g/cm³</th>
<th>Elec. Conductivity (1) % IACS</th>
<th>Sizes Normally Available (2)</th>
<th>Typical Surface Quality (3)</th>
<th>Max Service Temp(4) °C °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Steel Wires:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Music (5)</td>
<td>207 (30)</td>
<td>79.3 (11.5)</td>
<td>7.86 (0.284)</td>
<td>7</td>
<td>0.10 (0.04)</td>
<td>6.35 (0.250)</td>
<td>a</td>
</tr>
<tr>
<td>Hard Drawn (5)</td>
<td>207 (30)</td>
<td>79.3 (11.5)</td>
<td>7.86 (0.284)</td>
<td>7</td>
<td>0.13 (0.005)</td>
<td>16 (0.625)</td>
<td>c</td>
</tr>
<tr>
<td>Oil Tempered</td>
<td>207 (30)</td>
<td>79.3 (11.5)</td>
<td>7.86 (0.284)</td>
<td>7</td>
<td>0.50 (0.020)</td>
<td>16 (0.625)</td>
<td>c</td>
</tr>
<tr>
<td>Valve Spring</td>
<td>207 (30)</td>
<td>79.3 (11.5)</td>
<td>7.86 (0.284)</td>
<td>7</td>
<td>1.3 (0.050)</td>
<td>6.35 (0.250)</td>
<td>a</td>
</tr>
<tr>
<td>Alloy Steel Wires:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrome Vanadium</td>
<td>207 (30)</td>
<td>79.3 (11.5)</td>
<td>7.86 (0.284)</td>
<td>7</td>
<td>0.50 (0.020)</td>
<td>11 (0.435)</td>
<td>a,b</td>
</tr>
<tr>
<td>Chrome Silicon</td>
<td>207 (30)</td>
<td>79.3 (11.5)</td>
<td>7.86 (0.284)</td>
<td>5</td>
<td>0.50 (0.020)</td>
<td>9.5 (0.375)</td>
<td>a,b</td>
</tr>
<tr>
<td>Stainless Steel Wires:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austenitic Type 302</td>
<td>193 (28)</td>
<td>69.0 (10.0)</td>
<td>7.92 (0.286)</td>
<td>2</td>
<td>0.13 (0.005)</td>
<td>(0.375)</td>
<td>b</td>
</tr>
<tr>
<td>Precipitation Hardening 17-7 PH NiCr A286</td>
<td>203 (29.5)</td>
<td>75.8 (11.1)</td>
<td>7.81 (0.282)</td>
<td>2</td>
<td>0.08 (0.002)</td>
<td>(0.500)</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>200 (29)</td>
<td>71.7 (10.4)</td>
<td>8.03 (0.290)</td>
<td>2</td>
<td>0.40 (0.016)</td>
<td>5 (0.200)</td>
<td>b</td>
</tr>
</tbody>
</table>

Table 3-1 lists some commonly used alloys along with data for material selection purposes. Data on mechanical properties are presented in the Spring Wire and Spring Strip subsections. Specifications have been written by many national and international organizations. These specifications are cross-referenced to Associated Spring specifications in Table 3-2. However, correlation between the specifications is only approximate. Associated Spring specifications were developed exclusively for high quality material for spring applications and are generally more detailed and stringent than other specifications.

Surface quality has a major influence on fatigue strength and is often not clearly delineated on national specifications. It is important to use only those materials with the best surface integrity for fatigue applications, particularly those in the high cycle region.

In steel alloys, for which processing costs are a large fraction of product cost, surface quality can vary over an appreciable range. Depth of surface imperfections, such as seams, pits and die marks, can be up to 3.5% of diameter for commercial spring wire grades (ASTM A-227 and A-229). Various intermediate qualities can be obtained. Highest levels are represented by music and valve spring quality grades which are

<table>
<thead>
<tr>
<th>Copper Base Alloy Wires:</th>
<th>103</th>
<th>103</th>
<th>117</th>
<th>128</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphor Bronze (A)</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td>21</td>
<td>17</td>
</tr>
<tr>
<td>Silicon Bronze (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silicon Bronze (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium Copper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Brass, CA260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nickel Base Alloys:</th>
<th>214</th>
<th>214</th>
<th>186</th>
<th>179</th>
<th>179</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inconel® Alloy 600</td>
<td></td>
<td></td>
<td>1.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Inconel Alloy X750</td>
<td></td>
<td></td>
<td>1.6</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Ni-Span-C®</td>
<td></td>
<td></td>
<td>1.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Monel® Alloy 400</td>
<td></td>
<td></td>
<td>1.5</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Monel Alloy K500</td>
<td></td>
<td></td>
<td>1.5</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carbon Steel Strip:</th>
<th>207</th>
<th>207</th>
<th>207</th>
<th>207</th>
<th>207</th>
</tr>
</thead>
<tbody>
<tr>
<td>AISI 1050</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>AISI 1065</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>AISI 1074, 1075</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>AISI 1095</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Bartex®</td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stainless Steel Strip:</th>
<th>193</th>
<th>203</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austenitic Type 301, 302</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation Hardening 17-7PH</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Copper Base Alloy Strip:</th>
<th>103</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphor Bronze (A)</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>Beryllium Copper</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

1. Elastic moduli, density and electrical conductivity can vary with cold work, heat treatment and operating stress. These variations are usually minor but should be considered if one or more of these properties is critical.

2. Diameters for wire; thickness for strip.

3. Typical surface quality ratings. (For most materials, special processes can be specified to upgrade typical values.)
 a. Maximum defect depth: 0 to 0.5% of d or t.
 b. Maximum defect depth: 1.0% of d or t.
 c. Defect depth: less than 3.5% of d or t.

4. Maximum service temperatures are guidelines and may vary due to operating stress and allowable relaxation.

5. Music and hard drawn are commercial terms for patented and cold-drawn carbon steel spring wire.

INCONEL, MONEL and Ni-SPAN-C are registered trademarks of International Nickel Company, Inc. BARTEX is a registered trademark of Theis America, Inc.
Spring Materials

virtually free of surface imperfections. Decarburization, which can also adversely affect fatigue performance, follows a similar pattern. Surface quality of spring materials is a function of the care exercised in their production and processes employed. Materials produced with a high level of surface integrity are more costly than commercial grades.

Elastic Modulus

The modulus of elasticity in tension and shear is vital to spring design. Table 3-1 lists recommended values for commonly used spring alloys. For most steels and age-hardenable alloys, the modulus varies as a function of chemical composition, cold work and degree of aging. Usually variations are small and can be compensated for by adjustment of reference parameters of the spring design, (e.g. number of active coils, and coil diameter).

For most materials, moduli are temperature-dependent and vary inversely with temperature by approximately 2% per 55°C (100°F). Since nonambient temperature testing is costly, design criteria should be specified at room temperature after having made appropriate compensation for the application temperature. Certain nickel-chromium-iron alloys are designed to have a constant modulus over the temperature range from –5° to 65°C (-50° to 150°F) and are exceptions to the above rule.

For true isotropic materials, the elastic moduli in tension (E) and shear (G) are related through Poisson’s ratio by the expression:

\[\mu = \frac{E}{2G} - 1 \]

so that, for common spring materials, any one of the parameters may be approximated using the other two.

Magnetic Characteristics

For most applications, the question of "magnetic or not" is adequately answered with the use of a permanent magnet. For some applications, even very low levels of magnetic behavior can be detrimental. Then, it is desirable to know the magnetic permeability of candidate materials and reach agreement between parties on a maximum allowable value. Table 3-3 lists approximate values for a number of low permeability materials along with other frequently used alloys.

Since permeability can be altered by cold work, some variation can be expected. In general, low permeability materials are more expensive so designers should specify low levels only when absolutely necessary. Often, nitrogen strengthened manganese stainless steels are good choices because they have good strength at moderate cost.

Heat Treatment of Springs

Heat-treating temperatures for springs can be divided into two ranges. Low temperature heat treatments in the 175° to 510°C (347° to 950°F) range are applied to springs after forming to reduce residual stresses and stabilize parts dimensionally. For carbon steels, stainless steels and some age- hardenable alloys, low
temperature heat treatments are used to increase or restore the set point. Electroplated carbon steel parts are heat-treated at low temperatures prior to plating, and baked afterward to reduce the susceptibility to hydrogen embrittlement. Most low temperature stress relieving and age-hardening of springs are done in air and a moderate amount of oxide may be formed on the part. No detrimental effects of this oxide have been noted.

High temperature heat treatments are used to strengthen annealed material after spring forming. High-carbon steels are strengthened by austenitizing in the temperature range 760° to 900°C (1480° to 1652°F), quenching to form martensite and then tempering. Some nickel base alloys are strengthened by high temperature aging treatments. Because substantial oxidation occurs at these elevated temperatures, it is advisable to prevent excessive oxidation by using an appropriate protective atmosphere.

Heat treatments suitable for many commonly used materials are listed in Table 3-4. Selection of a temperature within a given range can only be made after considering the material, size, strength level, application conditions and desired characteristics. For additional guidance, Associated Spring engineers should be consulted. Unless otherwise noted, 20 to 30 minutes of exposure at temperature is sufficient to obtain the bulk of the stress-relieving effect.

Many spring-like parts involve forms which preclude the use of prehardened material. In these cases, soft or annealed material must be used and heat-treated to attain spring properties after forming. Thin high-carbon and alloy steel parts become distorted when hardened by quenching. Distortion may be reduced by fixture tempering; however, this process is costly and should be avoided if at all possible by using pretempered materials.

<table>
<thead>
<tr>
<th>Associated Spring Specs</th>
<th>Common Trade Names</th>
<th>SAE</th>
<th>ASTM</th>
<th>AMS</th>
<th>Military</th>
<th>British BS</th>
<th>German DIN</th>
<th>Japanese JIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring Wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-5</td>
<td>Music Wire</td>
<td>1085 J 178</td>
<td>A228</td>
<td>5112</td>
<td>S-46049</td>
<td>QW-470 (obsolete)</td>
<td>1408 or 5216</td>
<td>17223, Sheet 1, 1.1200</td>
</tr>
<tr>
<td>AS-10</td>
<td>Oil Tempered Carbon Steel</td>
<td>1066 J 316</td>
<td>A229</td>
<td></td>
<td>QW-428</td>
<td>2803, grade 3</td>
<td>17223, Sheet 2, 1.1230</td>
<td>G3560, SWO-A, B</td>
</tr>
<tr>
<td>AS-20</td>
<td>Cold Drawn Carbon Steel</td>
<td>1066 J 113</td>
<td>A227</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-25</td>
<td>Oil Tempered Carbon Steel*</td>
<td>1070</td>
<td>A230</td>
<td>5115</td>
<td></td>
<td>2803, Grades 1&2</td>
<td>17223, Sheet 2</td>
<td>G3561, SWO-V</td>
</tr>
</tbody>
</table>

Table 3-2. Related Spring Material Specifications.
Spring Materials

AS-32 Oil Tempered Chrome Vanadium*
- 6150 J 132
- A232
- 6450 W-22826
- QW-412 47
- 50
- 17225, 50CrV4
- G3565, SWOCV-V

AS-33 Oil Tempered Chrome Silicon*
- 9254 J 157
- A401
- QW-412 48A
- 17225, 67SiCr5
- G3566, SWOSC-V

AS-35 Stainless Steel
- 30301
- 30302 J 230
- A313; Type 301, Type 302
- 5688 QW-423 (obsolete)
- 58A 2056
- 14300 17224
- G4314, SUS 302

AS-36 17-7 PH
- J 217
- A313; Type 631
- 5678
- 17224, 14568
- G4314, SUS 631J 1

AS-44 Inconel X-750
- 6698, 6699
- 17224, 14568
- G4314, SUS 631J 1

AS-45 Copper Beryllium
- CA-172 B197
- 4725, Cond. A
- QW-530, Cond. A
- 2873, CB101
- 17666, 2.1247.55

AS-55 Spring Brass
- CA-260 B134, #260
- QW-321, #260
- 2786, CZ107
- 17660, 2.0265

AS-60A Phosphor Bronze
- CA-510 B159, #510
- 4720
- 2873, PB102
- 17662, 2.1030.39

AS-60C Phosphor Bronze
- CA-521 #521

AS-70 Chromium Steel
- 5160H A 304 A 689
- 970, Part 5

Spring Strip

<table>
<thead>
<tr>
<th>AS-100</th>
<th>1095</th>
<th>A682 A684</th>
<th>5121 5122</th>
<th>S-7947 Annealed Cold-Rolled</th>
<th>44D</th>
<th>1449, Part 3B, C5100</th>
<th>17232, 1.1274</th>
<th>G3311, 5K4M</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-101</td>
<td>1074 1075</td>
<td>A682 A684</td>
<td>5120</td>
<td></td>
<td>42E</td>
<td>1449, Part 3B, C5 C580</td>
<td>17222, 1.1210</td>
<td>G3311, 575M</td>
</tr>
<tr>
<td>AS-102</td>
<td>1050</td>
<td>A682 A684</td>
<td>5085</td>
<td></td>
<td></td>
<td>1449, Part 3B, C550</td>
<td></td>
<td>G3311, 550C M</td>
</tr>
<tr>
<td>AS-103</td>
<td>1065</td>
<td>A682 A684</td>
<td>5115</td>
<td></td>
<td>42F</td>
<td>1440, Part 3B, C560, C570</td>
<td>17222, 1.1230</td>
<td>G3311, 565C M</td>
</tr>
<tr>
<td>AS-105 Bartex</td>
<td>1085</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS-135-A Stainless Steel</td>
<td>30301 30302</td>
<td>A177</td>
<td>5517 5518, 5519</td>
<td>S-5059 QQ S-766</td>
<td>58A</td>
<td>1449, Part 4, 302 S-25</td>
<td>17224, 1.4310</td>
<td>G4313, SUS-301-CSP</td>
</tr>
<tr>
<td>AS-135-B Stainless Steel</td>
<td>30301 30302</td>
<td>A177</td>
<td>5517 5518, 5519</td>
<td>S-5059 QQ S-766</td>
<td>58A</td>
<td>1449, Part 4, 302 S-25</td>
<td>17224, 1.4310</td>
<td>G4313, SUS-301-CSP</td>
</tr>
</tbody>
</table>
Table 3-3. Magnetic Characteristics of Some Materials.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Permeability at 200 Oersted, Room Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>Nonmagnetic</td>
</tr>
<tr>
<td>Brasses, Bronzes</td>
<td></td>
</tr>
<tr>
<td>Carbon Steels</td>
<td></td>
</tr>
<tr>
<td>Elgiloy®</td>
<td>1.000035</td>
</tr>
<tr>
<td>Inconel Alloys:</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>1.01</td>
</tr>
<tr>
<td>625</td>
<td>1.0006</td>
</tr>
<tr>
<td>X-750</td>
<td>1.0035</td>
</tr>
<tr>
<td>Stainless Steels:</td>
<td></td>
</tr>
<tr>
<td>Type 301, spring temper</td>
<td>> 30</td>
</tr>
<tr>
<td>Type 302, spring temper</td>
<td>> 12</td>
</tr>
<tr>
<td>631 (17-7 PH)</td>
<td>> 40</td>
</tr>
<tr>
<td>XM-28: Nitronic® 32*</td>
<td>1.011</td>
</tr>
<tr>
<td>Nitronic 50*</td>
<td>1.004</td>
</tr>
<tr>
<td>Titanium Alloys</td>
<td>Nonmagnetic</td>
</tr>
</tbody>
</table>

*Nitrogen-strengthened manganese stainless steels.

ELGILOY is a registered trademark of Katy Industries, Inc. NITRONIC is a registered trademark of Armco, Inc.
Tempering is an effective stress-relieving treatment and results in negligible levels of residual stress. Some spring materials, such as beryllium copper and 17-7 PH, are strengthened after forming by age hardening. This provides a good stress relief, but may also cause distortion unless special techniques are used.

Environmental Considerations

Frequently, operating environment is the single most important consideration for proper spring material selection. For successful application, material must be compatible with the environment and withstand effects of temperature and corrosion without an excessive loss in spring performance. Corrosion and elevated temperatures decrease spring reliability. The effect of temperature on spring materials is predictable and discussed below. Compatibility of spring materials and spring coating systems with corrosive environments is discussed in general terms. For specific applications, the designer is urged to rely upon previous experience or consult with Associated Spring engineers.

Stress Relaxation

<table>
<thead>
<tr>
<th>Materials</th>
<th>Heat Treatment °C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patented and Cold-Drawn Steel Wire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tempered Steel Wire:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>190–230</td>
<td>375–450</td>
</tr>
<tr>
<td>Alloy</td>
<td>260–400</td>
<td>500–750</td>
</tr>
<tr>
<td>Austenitic Stainless Steel Wire</td>
<td>315–425</td>
<td>600–800</td>
</tr>
<tr>
<td></td>
<td>230–510</td>
<td>450–950</td>
</tr>
<tr>
<td>Precipitation Hardening Stainless Wire (17–7 PH):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition C</td>
<td>480/1 hour</td>
<td>900/1 hour</td>
</tr>
<tr>
<td>Condition A to TH 1050</td>
<td>760/1 hour cool to 15°C followed by 565/1 hour</td>
<td>1400/1 hour cool to 60°F followed by 1050/1 hour</td>
</tr>
<tr>
<td>Monel:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alloy 400</td>
<td>300–315</td>
<td>575–600</td>
</tr>
<tr>
<td>Alloy K500, Spring Temper</td>
<td>525/4 hours</td>
<td>980/4 hours</td>
</tr>
<tr>
<td>Inconel:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alloy 600</td>
<td>400–510</td>
<td>750–950</td>
</tr>
<tr>
<td>Alloy X-750:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*1 Temper</td>
<td>730/16 hours</td>
<td>1350/16 hours</td>
</tr>
<tr>
<td>Spring Temper</td>
<td>650/4 hours</td>
<td>1200/4 hours</td>
</tr>
<tr>
<td>Copper Base, Cold Worked (Brass, Phosphor Bronze, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium Copper:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pretempered (Mill Hardened)</td>
<td>175–205</td>
<td>350–400</td>
</tr>
<tr>
<td>Solution Annealed,</td>
<td>205</td>
<td>400</td>
</tr>
<tr>
<td>Temper Rolled or Drawn</td>
<td>315/2-3 hours</td>
<td>600/2-3 hours</td>
</tr>
<tr>
<td>Annealed Steels:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon (AISI 1050 to 1095)</td>
<td>800–830*</td>
<td>1475–1525*</td>
</tr>
<tr>
<td>Alloy (AISI 5160H 6150, 9254)</td>
<td>830–885*</td>
<td>1525–1625*</td>
</tr>
</tbody>
</table>

*Time depends on heating equipment and section size. Parts are austenitized then quenched and tempered to the desired hardness.
Primary concern for elevated temperature applications of springs is stress relaxation. Stress relaxation is the loss of load or available deflection that occurs when a spring is held or cycled under load. Temperature also affects modulus, tensile and fatigue strength. For a given spring, variables which affect stress relaxation are: stress, time and temperature, with increases in any parameter tending to increase the amount of relaxation. Stress and temperature are related exponentially to relaxation. Curves of relaxation versus these parameters are concave upward as is shown in Figures 3-1 and 3-2. Other controllable factors affecting relaxation include:

1. Alloy Type- more highly alloyed materials are generally more resistant at a given temperature or can be used at higher temperatures.

2. Residual Stress- residual stresses remaining from forming operations are detrimental to relaxation resistance. Therefore, use of the highest practical stress-relief temperatures is beneficial. Show peening is also detrimental to stress relaxation resistance.

3. Heat Setting- various procedures can be employed to expose springs to stress and heat for varying times to prepare for subsequent exposures. Depending on the method used, the effect is to remove a usually large first-stage relaxation and/or to establish a residual stress system which will lessen relaxation influences. In some cases, the latter approach can be so effective that in application, compression springs may "grow" or exhibit negative relaxation. Increase in free length does not usually exceed 1 to 2%.

4. Grain Size- coarse grain size promotes relaxation resistance. This phenomenon is used only in very high temperature applications.

Because so many variables are involved, it is impossible to cite comprehensive data in a publication of this type, but Table 3-1 does show approximate maximum service
Fig. 3-1. Relaxation versus Initial Stress for Spring Materials.

Initial stress (10^3 psi)

25 50 75 100 125 150

18
16
14
12
10
8
6
4
2

Relaxation (%)

200 400 600 800 1000

Initial stress (MPa)

Carbon steel
Chrome silicon

Plain springs
Shot-peened
Shot-peened and Heat set

Exposure of 100 hours at 149°C (300°F)
Stresses calculated at room temperature
temperatures for many commonly used materials. It should be remembered that, if a material is used at its maximum temperature, a substantial reduction must be made in applied stress from that used at room temperature.

Corrosion
The effect of a corrosive environment on spring performance is difficult to predict with certainty. General corrosion, galvanic corrosion, stress corrosion and corrosion fatigue reduce life and load-carrying ability of springs. The two most common methods employed to combat effects of corrosion are to specify materials that are inert to the environment and to use protective coatings. Use of inert materials affords the most
reliable protection against deleterious effects of all types of corrosion; however, this is often costly and sometimes impractical. Protective coatings are often the most cost-effective method to prolong spring life in corrosive environments. In special situations, shot peening can be used to prevent stress corrosion and cathodic protection systems can be used to prevent general corrosion.

Coatings may be classified as galvanically sacrificial or simple barrier coatings. Sacrificial coatings for high carbon steel substrates include zinc, cadmium (and alloys thereof) and, to a lesser degree, aluminum. Due to its toxicity, cadmium coating should only be specified when absolutely necessary. Because sacrificial coatings are chemically less noble than steel, the substrate is protected in two ways. First, the coating acts as a barrier between substrate and environment. Second, galvanic action between coating and substrate cathodically protects the substrate. This characteristic allows sacrificial coatings to continue their protective role even after the coating is scratched, nicked or cracked. The amount of damage a sacrificial coating can sustain and still protect the substrate is a function of the size of the damaged area and the efficiency of the electrolyte involved. The salt spray life criteria for three thicknesses of sacrificial coatings are shown in Table 3-5. Use of conversion coatings, such as chromates, lengthens the time of protection by protecting sacrificial coatings. Salt spray (fog) is an accelerated test and results may, or may not, correlate with corrosive activity in the actual environment. The test is useful as a control to ensure the coating was applied properly.

Metallic coatings are normally applied by electroplating. Since most high hardness steels are inherently very susceptible to hydrogen embrittlement, plating must be carried out with great care to minimize embrittlement and subsequent delayed fracture. A baking operation after plating is also essential. The designer should observe these points during design and specifications:

1. Minimize sharp corners and similar stress-concentration points in design.
2. Keep hardness as low as possible.
3. Keep operating stress down, in accordance with lowered hardness value.
4. Specify plating thickness, depending upon requirements.
5. Specify that parts be baked after plating.
6. Consider use of HEP® strips to monitor the plating operation.
7. Residual stress from forming operations must be reduced by stress relief at the highest practical temperature. Otherwise the combined effect of residual tension and hydrogen absorbed during plating can induce cracking even before plating is complete.

Similar cautions apply if acid cleaning procedures are contemplated.

Mechanical plating provides an effective means of zinc of cadmium protection with minimum hydrogen embrittlement. It is particularly recommended where parts have high residual stress, have been hardened above HRC48 and are used with high static loads. The process can only be applied to parts that do not tangle and have a clean, fully accessible surface. Hydrogen embrittlement, although unlikely, is still possible if parts are cleaned by pickling. When appropriate, coatings of zinc, tin, cadmium, or an alloy of cadmium can be applied by mechanical plating processes.

Cadmium, zinc or more commonly alloys of the two can be applied to steel spring wire during its production, and under some circumstances this alternative is highly desirable. It is best suited to small diameter wire and, in general, for the production of springs not requiring grinding.

Springs are almost always in contact with other metal parts. In a corrosive environment, it is important that the spring material be more noble than components in contact with it. Table 3-6 shows a partial list of alloys in increasing order of nobility. When any two alloys are placed in contact in the presence of an electrolyte, the less noble alloy (higher on the list) will be attacked. The attack will be significantly more vigorous than that of the electrolyte acting by itself.

<table>
<thead>
<tr>
<th>Order of Nobility</th>
<th>Galvanic Series with electrolyte such as seawater.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnesium</td>
<td>Least noble (+), Anodic</td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
</tr>
<tr>
<td>Steel or Iron</td>
<td></td>
</tr>
<tr>
<td>Cast Iron</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel, series 300 (active)</td>
<td></td>
</tr>
<tr>
<td>Hastelloy C</td>
<td></td>
</tr>
<tr>
<td>Nickel (active)</td>
<td></td>
</tr>
<tr>
<td>Inconel (active)</td>
<td></td>
</tr>
<tr>
<td>Hastelloy B</td>
<td></td>
</tr>
<tr>
<td>Brasses, Bronzes</td>
<td></td>
</tr>
<tr>
<td>Monel</td>
<td></td>
</tr>
<tr>
<td>Nickel (passive)</td>
<td></td>
</tr>
<tr>
<td>Inconel (passive)</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel, series 300 (passive)</td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>Most noble (-), Cathodic</td>
</tr>
</tbody>
</table>

HASTELLOY is a registered trademark of Cabot Corporation.
The list of coatings, which protect the base material by acting as a barrier to the environment, is extensive and increases as new finishes and techniques are developed. Table 3-7 shows protection available from some of the common barrier finishes. This information is not for selection purposes; it simply shows the range of protection afforded. In fact, the hours of salt spray protection may only be valid for the specimen and test conditions employed in this series of tests. The tests were conducted on springs, which had undergone 4 million cycles in a fatigue test prior to salt spray exposure.

While coatings frequently increase in effectiveness as their thicknesses are increased, cautions are in order. Tendencies to crack increase as coating thickness increases, and the coating increases the size of the spring. For example, coatings increase the solid height and diametral clearances required for compression springs. Brittle coatings such as epoxy can ship under impact, leaving unprotected spots. Tough coatings such as vinyl resist chipping, but bruises, tears of abrasions can expose the base material and trap corrosive agents. This allows corrosion to continue after exposure, and in these circumstances coated springs occasionally exhibit shorter lives than uncoated springs.

Frequently oils, waxes or greases provide adequate protection. Effectiveness of these coatings is often dependent on the nature of the surface to be protected. In general, lustrous or smooth parts will not retain oils, and waxes, paraffin-based oils or greases are recommended. Steels can be phosphate coated by a conversion process. Phosphate coatings have a high retention for oils, greases or paints. The combination of a phosphate and oil coating becomes a corrosion inhibitor more effective than either of the components. A similar effect is obtained by retaining or deliberately forming oxides on metal surfaces to hold corrosion inhibitors or lubricants. Oil tempered spring wire is a notable example of this technique.

Spring Wire
Tensile properties of spring wire vary with size (Figure 3-3). Common spring wires with the highest strength are ASTM 228 and ASTM 401 materials. ASTM A313 Type 302, A232 and A230 materials have slightly lower tensile strength with surface qualities suitable for fatigue applications. Hard-drawn (ASTM 227) and oil tempered (ASTM 229) are also supplied at lower strength levels and are most suitable for static applications.

Most spring wires can be wrapped on their own diameter (bent around a pin with a diameter equal to the wire diameter). Exceptions include some copper-bases alloys and large diameter and/or high strength alloys. Because stress relieving increases yield strength of cold drawn spring wire, all sharp bends of this grade material should be made prior to stress relief.
Cost and Availability

Cost and availability of spring wire have an important bearing on custom-made springs. Frequently the designer can minimize cost and improve delivery by selecting preferred sizes of wire (Table 3-8). Associated Spring stocks a large inventory of preferred sizes and should be consulted especially when quantities are relatively low. Since absolute costs change very quickly, material costs are presented on a relative basis. Changes in ranking with the passage of time are possible. Other factors such as wire size, surface quality and quantity also affect price per pound. Table 3-9 shows data for quantities large enough to avoid extra costs for 2 mm (0.079") wire. For all materials, processing to small sizes adds significantly to basic alloy cost. Production of high quality surfaces may carry a cost premium. As the base alloy value increases, these factors, though still important, represent a smaller fraction of the total raw material cost. Patented and cold-drawn wire (ASTM A227) is used as a base with an assigned value of 1.0. When the amount of material required is large, choice of material is very important, for it will usually be the major element in the spring cost. If the amount of material is small and particularly if quick delivery is important, immediate availability rather than cost often dictates the material choice.

Springmaking operations rarely change the diameter of the material. Since spring properties are often dependent upon diameter to the fourth power or thickness to the third power, tolerances on spring wire are critical. Standard tolerances are shown in Table 3-10. Closer tolerances are available on request.
Spring Materials

Table 3-8. Preferred Diameters for Spring Steel Wire.

<table>
<thead>
<tr>
<th>Metric Sizes (mm)</th>
<th>English Sizes (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Preference</td>
<td>First Preference</td>
</tr>
<tr>
<td>Second Preference</td>
<td>English Sizes (in.)</td>
</tr>
<tr>
<td>Third Preference</td>
<td>Second Preference</td>
</tr>
<tr>
<td>0.10</td>
<td>0.004</td>
</tr>
<tr>
<td>0.12</td>
<td>0.005</td>
</tr>
<tr>
<td>0.16</td>
<td>0.006</td>
</tr>
<tr>
<td>0.20</td>
<td>0.008</td>
</tr>
<tr>
<td>0.25</td>
<td>0.010</td>
</tr>
<tr>
<td>0.30</td>
<td>0.012</td>
</tr>
<tr>
<td>0.40</td>
<td>0.014</td>
</tr>
<tr>
<td>0.50</td>
<td>0.016</td>
</tr>
<tr>
<td>0.60</td>
<td>0.018</td>
</tr>
<tr>
<td>0.80</td>
<td>0.020</td>
</tr>
<tr>
<td>1.0</td>
<td>0.022</td>
</tr>
<tr>
<td>1.1</td>
<td>0.024</td>
</tr>
<tr>
<td>1.2</td>
<td>0.026</td>
</tr>
<tr>
<td>1.4</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Fig. 3-3. Minimum Tensile Strengths of Spring Wire.

The diagram illustrates the minimum tensile strength of spring wire as a function of wire diameter, with various materials labeled such as ASTM A228, ASTM A313, and Inconel Alloy X-750 (Spring Temper).
Spring Strip
Most flat springs are made from AISI grades 1050, 1065, 1074, and 1095 steel strip. These compositions are listed in ASTM specifications A682 and A684.

Tensile strength and formability characteristics are shown in Figure 3-4. The vertical inclined bands delineate three strength levels as functions of stock thickness and hardness. Horizontal curves indicate minimum bending radii required for the strength levels they intersect. Interpolations can be made between any two bands or lines for intermediate levels. Formability criteria are given for relatively smooth bends made at reasonable bending rates. Operations which apply forming forces other than smooth bending, or have impact characteristics, may require larger radii to prevent fracture. Four-slid part manufacture, progressive die work and secondary forming are examples of operations that often produce less than ideal bending.

<table>
<thead>
<tr>
<th>Thickness (in.)</th>
<th>Tensile Strength (ksi)</th>
<th>Formability (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.1</td>
<td>0.030</td>
</tr>
<tr>
<td>1.2</td>
<td>1.4</td>
<td>0.035</td>
</tr>
<tr>
<td>1.6</td>
<td>1.8</td>
<td>0.038</td>
</tr>
<tr>
<td>2.0</td>
<td>2.2</td>
<td>0.042</td>
</tr>
<tr>
<td>2.5</td>
<td>2.8</td>
<td>0.045</td>
</tr>
<tr>
<td>3.0</td>
<td>3.5</td>
<td>0.048</td>
</tr>
<tr>
<td>4.0</td>
<td>4.5</td>
<td>0.051</td>
</tr>
<tr>
<td>5.0</td>
<td>5.5</td>
<td>0.055</td>
</tr>
<tr>
<td>6.0</td>
<td>6.5</td>
<td>0.059</td>
</tr>
<tr>
<td>7.0</td>
<td></td>
<td>0.063</td>
</tr>
<tr>
<td>8.0</td>
<td>7.5</td>
<td>0.067</td>
</tr>
<tr>
<td>9.0</td>
<td>8.5</td>
<td>0.072</td>
</tr>
<tr>
<td>10.0</td>
<td>9.0</td>
<td>0.076</td>
</tr>
<tr>
<td>11.0</td>
<td></td>
<td>0.081</td>
</tr>
<tr>
<td>12.0</td>
<td>11.0</td>
<td>0.085</td>
</tr>
<tr>
<td>13.0</td>
<td></td>
<td>0.092</td>
</tr>
<tr>
<td>14.0</td>
<td>13.0</td>
<td>0.098</td>
</tr>
<tr>
<td>15.0</td>
<td></td>
<td>0.102</td>
</tr>
<tr>
<td>16.0</td>
<td></td>
<td>0.112</td>
</tr>
</tbody>
</table>
Direction of bending with respect to rolling direction is an important consideration. Formability of strip is greater in transverse than in longitudinal directions (Figure 3-5). If a part is designed with two identical bends at 90º to each other, it is common practice to orient the part so that both bends are made at 45º to rolling direction. Dimensionless parameter $2r/t$, often referred to as bend factor, is frequently used as a measure of formability. Materials with low values are more formable than materials with high values. This measure is only a guide since it does not allow for tooling considerations and complex strains associated with forming operations.

Spring steels are normally produced to specified hardness levels which are related to tensile strength (Figure 3-6). Composition is not shown in Figure 3-4 because the lowest carbon level (AISI 1050) can be used at high strength levels and the highest carbon level (AISI 1095) can be tempered to the lowest strength
levels. In general, higher carbon levels are used when strength is critical and lower carbon levels when formability is critical.

![Minimum Transverse Bending Radii for Various Tempers and Thicknesses of Tempered Spring Steel.](image1)

![Orientation of Bend Axis to Rolling Direction for Transverse and Longitudinal Bends.](image2)

Hardness levels above HRC 50 result in high strength but are not generally recommended due to notch sensitivity. Surface and edge smoothness become critical and plated parts become highly susceptible to static fracture due to trapped hydrogen.

Parts which cannot be made within formability limits of pretempered strip are made from annealed strip and hardened and tempered after forming. To maintain critical dimensions, it is often necessary to fixture temper these parts. Sharp bends are not only difficult to fabricate but are also undesirable in service because of stress concentration. The formability limits of annealed spring steels are presented in Table 3-11.
In flat spring designs where the edge of the strip becomes an edge of the part, the type of edge is important, particularly for cyclic applications. Common types of edges available are shown in Figure 3-7. Slit edge (No. 3) and deburred (No. 5) are preferred for blanked parts and static applications. No. 1 round edge is recommended for cyclic applications to reduce the stress concentration and eliminate the edge flaws due to slitting. Configurations shown in Figure 3-7 are approximate, and it is advisable to use both the numerical designation and a description when specifying edge condition.

Commercial thickness tolerances for spring steel strip are presented in Table 3-12. Many flat springs and spring washer designs can tolerate this variation. Since the load varies as the cube of the thickness, critical designs may require closer tolerances.

Other Spring Materials
A variety of materials other than carbon steel strip is used for flat springs (Table 3-13). When high conductivity is required, copper base alloys are usually specified. Stainless steels are used in applications
Spring Materials

requiring heat or corrosion resistance. Typical tensile strength levels for these alloys after heat treatment are shown in Table 3-13. Bend factors and tensile elongations are for alloys in "as received" condition prior to final heat treatment.

Specifying Hardness

Hardness tests are used extensively to inspect strip and flat springs and it is necessary to specify the correct scale. Recommended hardness scales for steels are presented in Table 3-14. To obtain accurate readings free from the effect of the anvil, it is important to limit the thickness of the material for each hardness scale as shown in Figure 3-8 for hard materials and Figure 3-9 for soft materials.
Table 3–11. Formability of Annealed Spring Steels.

<table>
<thead>
<tr>
<th>Thickness (t) mm (in.)</th>
<th>Direction of Bend</th>
<th>AISI 1050 N_t/t</th>
<th>AISI 1065 N_t/t</th>
<th>AISI 1074, 1075 N_t/t</th>
<th>AISI 1095 N_t/t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Annealed (standard lowest max.)</td>
<td>Annealed (special lowest max.)*</td>
<td>Annealed (standard lowest max.)</td>
<td>Annealed (special lowest max.)*</td>
</tr>
<tr>
<td>1.9 mm (0.076)-over</td>
<td>⊥</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>0.9–1.89 mm (0.036–0.075")</td>
<td>⊥</td>
<td>1.5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>0.37–0.89 mm (0.015–0.035")</td>
<td>⊥</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.2–0.36 mm (0.008–0.014")</td>
<td>⊥</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Formability is determined by slowly bending a sample over 180° until its ends are parallel. The measured distance between the ends is N_t.
For example, if N_t = 4 and t = 2, then N_t/t = 2

*Available as Barco-Form® from Wallace Barnes Steel subsidiary of Theis of America, Inc.

Table 3–12. Typical High-Carbon Strip Thickness Tolerances.

<table>
<thead>
<tr>
<th>Thickness: mm (in.)</th>
<th>Thickness Tolerance: ± mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strip Width: mm (in.)</td>
</tr>
<tr>
<td></td>
<td>12.7–76.1 (0.50–2.99)</td>
</tr>
<tr>
<td></td>
<td>76.2–304.8 (3.00–12.00)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thickness: mm (in.)</th>
<th>Strip Width: mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10–0.25 (0.004–0.010)</td>
<td>0.005 (0.00020)</td>
</tr>
<tr>
<td>0.25–0.51 (0.010–0.020)</td>
<td>0.006 (0.00025)</td>
</tr>
<tr>
<td>0.51–0.76 (0.020–0.030)</td>
<td>0.009 (0.00035)</td>
</tr>
<tr>
<td>0.76–1.02 (0.030–0.040)</td>
<td>0.010 (0.00040)</td>
</tr>
<tr>
<td>1.02–1.52 (0.040–0.060)</td>
<td>0.013 (0.00050)</td>
</tr>
<tr>
<td>1.52–2.03 (0.060–0.080)</td>
<td>0.025 (0.00100)</td>
</tr>
<tr>
<td>2.03–2.54 (0.080–0.100)</td>
<td>0.038 (0.00150)</td>
</tr>
<tr>
<td>2.54–3.18 (0.100–0.125)</td>
<td>0.051 (0.00200)</td>
</tr>
</tbody>
</table>

Precision rolled high-carbon steel strip is available commercially at tolerances considerably less than the values stated above.
Fig. 3-8. Minimum Safe Thicknesses for Hardness Testing Hard Materials.

Fig. 3-9. Minimum Safe Thicknesses for Hardness Testing Soft Materials.
Table 3-13. Typical Properties of Spring Temper Alloy Strip.

<table>
<thead>
<tr>
<th>Material</th>
<th>Tensile Strength MPa (10^5 psi)</th>
<th>Rockwell Hardness</th>
<th>Elongation (1) Percent</th>
<th>Bend Factor (1) (2r/t trans. bends)</th>
<th>Modulus of Elasticity 10^4 MPa (10^6 psi)</th>
<th>Poisson's Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel, spring temper</td>
<td>1700 (246)</td>
<td>C50</td>
<td>2</td>
<td>5</td>
<td>20.7 (30)</td>
<td>0.30</td>
</tr>
<tr>
<td>Stainless 301</td>
<td>1300 (189)</td>
<td>C40</td>
<td>8</td>
<td>3</td>
<td>19.3 (28)</td>
<td>0.31</td>
</tr>
<tr>
<td>Stainless 302</td>
<td>1300 (189)</td>
<td>C40</td>
<td>5</td>
<td>4</td>
<td>19.3 (28)</td>
<td>0.31</td>
</tr>
<tr>
<td>Monel 400</td>
<td>690 (100)</td>
<td>B95</td>
<td>2</td>
<td>5</td>
<td>17.9 (26)</td>
<td>0.32</td>
</tr>
<tr>
<td>Monel K500</td>
<td>1200 (174)</td>
<td>C34</td>
<td>40</td>
<td>5</td>
<td>17.9 (26)</td>
<td>0.29</td>
</tr>
<tr>
<td>Inconel 600</td>
<td>1040 (151)</td>
<td>C30</td>
<td>2</td>
<td>2</td>
<td>21.4 (31)</td>
<td>0.29</td>
</tr>
<tr>
<td>Inconel X-750</td>
<td>1050 (152)</td>
<td>C35</td>
<td>20</td>
<td>3</td>
<td>21.4 (31)</td>
<td>0.29</td>
</tr>
<tr>
<td>Copper-Beryllium</td>
<td>1300 (189)</td>
<td>C40</td>
<td>2</td>
<td>5</td>
<td>12.8 (18.5)</td>
<td>0.33</td>
</tr>
<tr>
<td>Ni-Span-C</td>
<td>1400 (203)</td>
<td>C42</td>
<td>6</td>
<td>2</td>
<td>18.6 (27)</td>
<td>—</td>
</tr>
<tr>
<td>Brass CA 260</td>
<td>620 (90)</td>
<td>B90</td>
<td>3</td>
<td>3</td>
<td>11 (16)</td>
<td>0.33</td>
</tr>
<tr>
<td>Phosphor Bronze</td>
<td>690 (100)</td>
<td>B90</td>
<td>3</td>
<td>2.5</td>
<td>10.3 (15)</td>
<td>0.20</td>
</tr>
<tr>
<td>17-7 PH RH950</td>
<td>1450 (210)</td>
<td>C44</td>
<td>6</td>
<td>flat</td>
<td>20.3 (29.5)</td>
<td>0.34</td>
</tr>
<tr>
<td>17-7 PH Condition C</td>
<td>1650 (239)</td>
<td>C46</td>
<td>1</td>
<td>2.5</td>
<td>20.3 (29.5)</td>
<td>0.34</td>
</tr>
</tbody>
</table>

(1) Before heat treatment.

Table 3-14. Recommended Hardness Scales for Hard and Soft Spring Alloys.

<table>
<thead>
<tr>
<th>Thickness: mm (in.)</th>
<th>Tempered Steel</th>
<th>Annealed Steel and Nonferrous Alloys</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89 (0.035) and over</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>0.64-0.86 (0.025-0.034)</td>
<td>A</td>
<td>45T</td>
</tr>
<tr>
<td>0.35-0.61 (0.015-0.024)</td>
<td>30N</td>
<td>30T</td>
</tr>
<tr>
<td>0.20-0.36 (0.008-0.014)</td>
<td>15N</td>
<td>15T</td>
</tr>
<tr>
<td>Under 0.20 (0.008)</td>
<td>DPH</td>
<td>DPH</td>
</tr>
</tbody>
</table>
Introduction

One of the most difficult judgements required of a designer involves selection of operating stress level. Choice of operating stress level impacts the cost, performance, life and reliability of the spring. Specific recommendations for operating stress levels are made in each section for each type of spring configuration. Performance of a spring is based on the resultant stress level experienced by the spring, which is an interaction of the applied and residual stress. Springmakers frequently induce residual stresses in springs to enhance performance. These stresses, while beneficial in one mode of spring operation, can be detrimental in another. Because recommendations on operating stress levels assume a particular set of residual stresses, it is important for the designer to have a basic knowledge of residual stresses. In this section, a general discussion on residual stress in springs, fatigue and reliability is presented to assist the designer in selecting the operating stress level.

Residual Stresses

Residual stresses are the result of nonuniform plastic strains within a body. In an unrestrained body, residual stresses are balanced. That is, compressively stressed zones are balanced by zones stressed in tension. Residual stresses can be introduced by mechanical methods such as bending, twisting or by thermal methods such as quenching. Shot peening is a special mechanical method designed to introduce residual compressive stresses at the surface. In the spring industry, favorable residual stresses are employed to increase load-carrying ability and/or increase fatigue strength.
Residual Stresses for Increased Load-Carrying Ability

As in the case of prestressed building structures, the goal in spring structures is to establish a residual stress opposite that encountered in the application. Highest operating stresses in springs are at the surface. For example, on a compression spring the objective is to establish residual compression at the surface, balanced by residual tension at the core in order to increase the load-carrying ability.

Some torsion springs, flat coil springs and retaining rings have the desired residual stress pattern as a natural result of the forming process. The designer is cautioned that, although residual stresses add to the load-carrying ability in one direction, these same residual stresses subtract from the load-carrying ability when the direction is reversed. For example, torsion springs have residual stress patterns allowing high load-carrying ability when the loading results in a reduction of the body coil diameter. Severe reductions in capacity and excessive set will result if torsion springs which have not been stress-relieved are loaded so as to increase the coil diameter.

Most springs do not contain beneficial residual stresses as a result of forming. After these springs have been stress-relieved, springmakers frequently induce a favorable residual stress pattern. Regardless of what method is used, the favorable pattern is established by plastically deforming the spring in the same direction or in the same mode in which the ultimate application will deform the spring elastically. Unless plastic deformation occurs, no residual stress, beneficial or otherwise, will be induced.

Knowing the necessary predeformation shape and/or dimensions which will lead to the desired finished shape is one aspect of the art and science of springmaking.

Compression springs are a good example of residual stress engineering. As coiled, material at the inner surface is in residual (bending with some twisting) tension; the outer surface is in residual compression. Neither is beneficial, so stress relieving is required. If after stress relief, a spring does not set when compressed to "solid" it will not be residually stressed and will have a low energy storage capacity. If the stress in the spring exceeds the yield strength of the material when the spring is compressed to solid, plastic deformation will impart beneficial residual stress in the spring. Springmakers refer to this process as "removing set". Removing set can increase the load-carrying ability of springs by 45 to 65% and allows storage of twice the energy per pound of material.

Why aren’t all springs made this way? For small springs the procedures involve extra operations which may not be cost-effective. Some designs and applications are not amenable to set removal. For example, steel springs which require plating as a final operation should be free of residual stresses when plated. Finally, some springs, such as extension springs with high initial tension, cannot have set removed without removing an appreciable amount of initial tension.
Residual Stresses for Increased Fatigue Strength

In some applications, springs must operate for hundreds of millions of cycles. All materials have finite limits to their ability to withstand cyclic stressing. Residual stresses can either detract from the basic fatigue resistance of a material or enhance it. Many designers are accustomed to adding residual stresses to mean stress in order to estimate fatigue life. Residual stresses due to set removal, which increase the load-carrying ability of springs stressed in torsion, have only a small effect on fatigue performance and in most applications should be ignored. To simplify this handbook, recommended operating stress and methods used to estimate fatigue life have already taken into account residual stresses imparted to the spring by the springmaker. The designer should not make allowances for these residual stresses in his calculation unless the residual stress pattern is likely to change prior to or during usage.

Shot peening is a very effective means of enhancing fatigue performance of springs. A machine is used to propel steel shot with diameters ranging from 0.2 to 1.4 mm (0.008" to 0.055") at the spring. Propelled at high velocities, the shot particles impact the spring surface with enough energy to induce plastic deformation. This produces a shell on the outside portion of the peened part which is biaxially stressed in compression. The balancing residual tension is located within the spring, well below the surface. These biaxial, residual compressive stresses lower the mean tensile stress on the surface of springs during cycling and significantly increase fatigue performance. Residual peening stresses also minimize the detrimental effect of stress concentrations due to pits, scratches, seams and other surface defects. Shot peening does not heal defects in the material, but it does render any defects less likely to induce failure under a given set of operating conditions.

Shot peening does not enhance load-carrying capacity of springs. In fact, peening can damage this capacity by depressing yield strength of material in the plastically deformed zones. In springs with heavy sections, the peened zone represents a small fraction of total volume so the effect is often undetectable. Fortunately the set point of peened high-carbon steel springs can be restored by a low temperature heat treatment in the 200° to 250° C (392° to 482° F) range while preserving most of the benefits of the peening process. Exposure of peened parts to higher temperatures results in a significant loss of benefits. Shot peening is detrimental to stress relaxation resistance, even at temperatures below 230° C (446° F) (Figures 3-1 and 3-2).

Fatigue

Fatigue is a vital element of spring engineering because: materials have finite fatigue limits, springs operate at high stresses and springs frequently are required to operate for many cycles. Fatigue is an irreversible process that proceeds in three stages; crack initiation, crack propagation and fracture. In order for fatigue to occur, the spring must be subjected to cyclic stresses, the stresses must have a tensile component and there must be plastic strain. The plastic strain is often localized and too small to measure.
Fatigue is often considered as either high cycle (that which occurs under the influence of relatively low stress exposures and resulting in cycle life of greater than 5×10^5 cycles) or low cycle (resulting from relatively high stress exposure leading to cycle life of less than 5×10^4 cycles). Precise boundaries for these regions have not...
been established and a gap exists between them. Relatively ductile spring materials perform well in low cycle fatigue applications. Low cycle fatigue life is not significantly improved by shot peening nor severely reduced by minor surface imperfections. High strength spring material performs well in high cycle fatigue applications. High cycle fatigue strength is markedly improved by shot peening and severely reduced by seemingly minor surface imperfections.

Before presenting fatigue data, it is necessary to define some commonly used terms. Stress range (S_R) is equal to the maximum stress (S_{max}) minus the minimum stress (S_{min}). Mean stress (S_{mean}) is half the sum of maximum and minimum stresses. Stress amplitude ($S_{\text{amplitude}}$) is equal to maximum stress minus mean stress. These relationships are illustrated schematically in Figure 4-1. Stress ratio is the ratio of minimum stress to maximum stress. For most spring applications the stress ratio is positive and in the 0 to 0.8 range.

Typically, fatigue data are presented in the form of S-N curves (Figure 4-2) which is a graph of stress versus the log of the cycle life at a specified percent survival. Although it is common practice to specify a percent survival on S-N curves developed for specific applications, it is not
Residual Stress, Fatigue and Reliability

Possible to specify percent survival on S-N curves used for general design purposes, due to wide variations in applications, material quality and spring-making practices encountered. There is a separate S-N curve for each material by size and also by stress type (torsion or bending). To predict part life at a different stress ratio, a Goodman diagram (Figure 4-3) can be combined with an S-N curve for the spring material in question.

Residual Stress, Fatigue and Reliability

First, an S-N curve is developed from the test data at a known stress ratio, and corrected to a 0 stress ratio using a modified Goodman method. In a typical modified Goodman diagram (4-3), the abscissa is used as a double scale – a log scale for the number of cycles, N, and a linear scale labeled minimum stress with the same scale as the ordinate or maximum stress scale.

Second, a 45° line is drawn from the origin of the plot. On this line, point A is marked...
Residual Stress, Fatigue and Reliability

Corresponding to the ultimate strength of the material. This is the tensile strength for structures in bending and torsional strength for structures in torsion. Torsional strength can be estimated as two-thirds of tensile strength. These two lines constitute the combined S-N and Goodman diagrams for the given material and state of stress.

Then to develop a specified service life, a vertical line is drawn from the appropriate value on the N scale to the S-N curve. At the intersection B, a horizontal line is drawn to intersect the ordinate or maximum stress scale. From point C, a straight line is drawn to the tensile strength point A. Along line AC lie the stress combinations that meet the desired life.

This procedure for estimating fatigue life is approximate and should only be used in the absence of specific data. For critical applications, it is necessary to test prototype springs to obtain data under conditions which simulate operation.

Reliability
Reliability is the probability that a spring will perform for a given period of time at a specified confidence level. Because reliability of spring components is often critical to system performance, it is important that the designer consider the reliability required, either quantitatively, and inform the springmaker. The most common failure modes for springs are fracture due to fatigue and excessive loss of load due to stress relaxation. Different methods are required to predict reliability for each failure mode. A simple approach to reliability is presented below. The interested reader is referred to treatments in References 1 and 2.

Reliability and Fatigue
Many variables such as operating stress, operating environment, material strength and surface condition interact to cause a range of lives. Distribution of fatigue life is not normal or gaussian. The Weibull distribution provides a useful means to analyze fatigue life data. To predict the percent survival, test results are first ranked in order of ascending life.

A median rank is assigned to each failure on the basis of number of specimens tested. Median rank is the order number minus 0.3 divided by number of specimens plus 0.4. Order number is the rank within sample and sample number is the total number of specimens. If the sample size is 12, median rank for the second failure is 13.7%.
Median ranks are plotted against life on special Weibull probability paper (Figure 4-4). If the plot of test failures follows a straight line, the line may be extrapolated to estimate the percentage of the population which is expected to survive a specific number of cycles. Accuracy of the extrapolation increases as the number of failures increases. For example, based on line A in Figure 4-4, 90% of the population is expected to survive 2 million cycles. The statistical "confidence" for line A is 50%. This simply states that if a large number of identically selected groups of A’s are tested, results are expected to equally distribute on either side of line A. The percent survival is now defined in Figure 4-4 and is expressed as 90% of the springs will survive 2 million cycles with a confidence level of 50%. Life of 2 million cycles is sometimes referred to as the S\textsubscript{10} life. The term S\textsubscript{10} applies to the number of cycles where 10% of the springs will fail and 90% will survive.

Specifying a high survival rate of 99.9% with a high level of confidence (95 to 99%) requires extensive testing which is not warranted in most situations. To assure high reliability levels and avoid excessive testing costs, designers often specify S\textsubscript{10} life test conditions that are considerably more severe than encountered in the application. S\textsubscript{10} life is often used as a quality assurance acceptance criterion.
Although S_{10} life is a good measure of reliability, springs with the same S_{10} life can have different reliabilities at other survival rates, as illustrated by curve B in Figure 4-4. Curve B has a lower slope than curve A, indicative of more scatter in the data. Even though the S_{10} lives are identical, the first failure from B population will occur before the first failure from A population. Conversely, the last failure from B population will occur after the last failure from A population. Variations in surface quality and test environments contribute to the scatter or variations in slope of the Weibull curves.

Reliability and Load Loss

Load loss due to stress relaxation is usually controlled by specifications that require the spring to be held in a deflected position at a test temperature for a period of time. Relaxation is then expressed as a percent of load loss at a test height by the following formula:

$$\frac{P_O - P_F}{P_O} \times 100 = \% \text{ load loss}$$

P_O is the load at test height before stress relaxation testing and P_F is the load at test height after testing. When large numbers of springs are tested, the observed percent of load loss is normally distributed. Load loss requirements are best specified as maximum average load loss (50% confidence) or maximum load loss at another confidence level such as 97.5%. Use of very high confidence levels requires extensive testing. For designs that require very high reliability, the test time, temperature and/or stress should be considerably more severe than conditions encountered in operation.
Helical Compression Springs

Introduction
Helical compression springs are used to resist applied compression forces or to store energy in the push mode. They have the most common spring configuration and are found in many applications such as automotive, aerospace and consumer goods. While the most prevalent form of compression spring is a straight cylindrical spring made from round wire, many other forms are produced. Conical, barrel, hourglass or cylindrical forms are available, with or without variable spacing between coils. Such configurations are used to reduce solid height, buckling and surging, or to produce nonlinear load deflection characteristics. Energy storage capacity is greater for round wire compression springs than for rectangular wire compression springs and can be increased by nesting. Rectangular wire is sometimes employed to reduce solid height or increase the space efficiency of the design. Most die springs are made from rectangular wire for this reason. The SPEC line of springs contains hundreds of compression spring designs using wire sizes from 0.15 to 5.26 mm (0.006" to .207") diameter music or stainless steel wire. Specifying SPEC springs saves design time, reduces cost for low volume applications and offers improved delivery.

Helical Compression Spring Terminology
Special terminology has evolved in the spring industry to describe features of helical compression springs. These terms are defined and the relationship between terms is reviewed in Figure 5-1. Communication between designer and springmaker is improved if these common terms are used.

Spring Diameter
Outside diameter, inside diameter and mean diameter are all used to describe helical compression spring dimensions. Mean diameter is equal to the sum of O.D
and I.D. divided by two, and is employed in spring design calculations for stress and deflection. The O.D. is specified for springs that operate in a cavity, while the I. D. is specified for springs that operate over a rod, seat or shaft. Minimum diametral clearance between the spring and cavity or rod is:

0.05D – when \(D_c \) is greater than 13 mm (0.512”)
0.10D – when \(D_c \) is less than 13 mm (0.512”)

\(D_c \) is the diameter of the rod or cavity.

Diameter increases when a spring is compressed. Although the increase in diameter is usually small, it must be considered when minimum clearances are established. The increase in diameter is a function of initial spring pitch and can be estimated from the following equation where \(p \) = pitch.

\[
O.D. \text{ at solid} = \sqrt{D^2 + \frac{p^2 - d^2}{\pi^2}} + d
\]

If the spring ends are allowed to unwind, the O.D. at solid may be greater than calculated by this equation. Long springs buckle (see Figure 5-8) and may require lateral support and larger diametral clearances.

Spring Index

Spring index is the ratio of mean diameter to wire diameter or radial dimension of the cross section (Figure 5-15). The preferred index range is 4 to 12. Springs with
high indexes tangle and may require individual packaging, especially if the ends are not squared. Springs with indexes lower than 4 are difficult to form.

Free Length
Free length is overall spring length in the free or unloaded position (Figure 5-1). If loads are not critical, free length should be specified. When definite loads are required, free length could be a reference dimension that can be varied to meet load requirements. Pitch is the distance between centers of adjacent coils and is related to free length and number of coils.

Type of Ends
Types of ends available are: plain ends, plain ends – ground, squared ends and squared ends – ground (Figure 5-2). To improve squareness and reduce buckling during operation, a bearing surface of at least 270° is required. Squared and ground springs are normally supplied with a bearing surface of 270° to 330°. Additional grinding results in thin sections. “Squared ends only” are preferred on springs with small wire diameters (less than 0.5 mm or 0.020”), a large index (greater than 12) or low spring rates. Squared ends cost less to manufacture than squared and ground ends.

Helical Compression Springs

Number of Coils
Total number of coils should be specified as a reference number. For springs with squared ends, the total number of coils minus two is the number of active coils. There is some activity in end coils, but during deflection some active material comes in contact with the end coils and becomes inactive. Experience indicates that this equation is a good approximation. The number of active coils in springs with plain ends is greater than those with squared ends and depends upon the seating method employed. Some useful guidelines for estimating the number of active coils are presented in Table 5-1.

Solid Height
Solid height is the length of a spring with all coils closed. For ground springs, solid height is the number of coils multiplied by wire diameter. For unground springs, solid height is the number of coils plus one,
Helical Compression Springs

Fig. 5-2. Types of Ends for Helical Compression Springs.

Plain Ends
Coiled Right-hand

Squared and Ground Ends
Coiled Left-hand

Squared or Closed Ends
Not Ground, Coiled Right-hand

Plain Ends Ground
Coiled Left-hand

Table 5-1. Guidelines for Dimensional Characteristics of Compression Springs.

<table>
<thead>
<tr>
<th>Dimensional Characteristics</th>
<th>Open or Plain (Not ground)</th>
<th>Open or Plain (Ground)</th>
<th>Squared Only</th>
<th>Squared and Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Height ((L_s))</td>
<td>((N_t + 1)d)</td>
<td>(N_t d)</td>
<td>((N_t + 1)d)</td>
<td>(N_t d^*)</td>
</tr>
<tr>
<td>Pitch ((p))</td>
<td>(\frac{L_f - d}{N_a})</td>
<td>(\frac{L_f}{N_t})</td>
<td>(\frac{L_f - 3d}{N_a})</td>
<td>(\frac{L_f - 2d}{N_a})</td>
</tr>
<tr>
<td>Active Coils ((N_a))</td>
<td>(\frac{L_f - d}{p})</td>
<td>(\frac{L_f - 1}{p})</td>
<td>(\frac{L_f - 3d}{p})</td>
<td>(\frac{L_f - 2d}{p})</td>
</tr>
<tr>
<td>Total Coils ((N_t))</td>
<td>(N_a)</td>
<td>(N_a + 1)</td>
<td>(N_a + 2)</td>
<td>(N_a + 2)</td>
</tr>
<tr>
<td>Free Length ((L_f))</td>
<td>(p N_t + d)</td>
<td>(p N_t)</td>
<td>(p N_a + 3d)</td>
<td>(p N_a + 2d)</td>
</tr>
</tbody>
</table>

*For small index springs lower solid heights are possible.

multiplied by wire diameter (Table 5-1). If critical, solid height should be specified as a maximum dimension. After allowances are made for plating or other coatings, it is good practice to add one-half of the wire diameter to determine maximum solid height. With larger wire sizes and fewer coils, this allowance can be decreased. Solid height is often measured by applying a force equal to 110 to 150% of the calculated load at solid. If solid height is not critical, this dimension should be omitted.
Direction of Coiling

A helical compression spring can be either left or right-hand coiled. If the index finger of the right hand can be bent to simulate direction of coil, so that the fingernail and coil tip are approximately at the same angular position, the spring is right-hand wound (Figure 5-3). If the index finger of the left hand simulates the coil direction, the spring is left-hand wound. If direction of coiling is not specified, springs may be coiled in either direction. Nested springs with small diametral clearances should be coiled in opposite directions.

Squareness and Parallelism

Squareness of helical compression springs can be measured by standing a sample spring on end on a horizontal flat plate and bringing the spring against a straightedge at right angles to the plate. The spring is rotated to produce a maximum out-of-square dimension e_s (Figure 5-1). Normally squared and ground springs are square within 3° when measured in the free position. Squareness should be checked at both ends. Specifying squareness or parallelism in the free position does not assure squareness or parallelism under load.

Parallelism (Figure 5-1) refers to the relationship of the ground ends, and is determined by placing a spring on a flat plate and measuring the maximum difference in free length around the spring circumference e_p.

Hysteresis

Hysteresis is the loss of mechanical energy under cyclic loading and unloading of a spring. It results from frictional losses in the spring support system due to a tendency of the ends to rotate as the spring is compressed. Hysteresis for compression springs is low and the contribution due to internal friction in the spring material itself is generally negligible.
Spring Rate

Spring rate for helical compression springs is defined as the change in load per unit deflection and is expressed as shown:

\[k = \frac{P}{f} = \frac{Gd^4}{8D^3N_a} \]

This equation is valid when the pitch angle is less than 15° or deflection per turn is less than D/4. For large deflections per turn, a deflection correction factor (Reference 3) should be employed.

The load deflection curve for helical compression springs is essentially a straight line up to the elastic limit, provided that the amount of active material is constant. The initial spring rate and the rate as the spring approaches solid often deviate from the average calculated rate. When it is necessary to specify a rate, it should be specified between two test heights which lie within 15 to 85% of the full deflection range (Figure 5-4).

When compression springs are used in parallel, the composite rate is the sum of the rates for individual springs. For compression springs in series, the rate is calculated from:
This relationship is often used to calculate the rate for springs with variable diameters. The technique involves dividing the spring into many small increments and calculating the rate for each increment. The rate for the whole spring is computed from the rate of the increments according to the equation above.

Stress

Wire in a helical compression spring is stressed in torsion. Torsional stress is expressed as:

\[
k = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \cdots + \frac{1}{k_n}}
\]
Bending stresses are present but can be ignored except when the pitch angle is greater than 15° and deflection of each coil greater than D/4 (Reference 3). Under elastic conditions, torsional stress is not uniform around the wire cross section due to coil curvature and a direct shear load. Maximum stress occurs at the inner surfaces of the spring and is computed using a stress correction factor. The most widely used stress correction factor \(K_{W1} \) is attributed to Wahl. It is shown below and in Figure 5-5.

\[
K_{W1} = \frac{4C - 1}{4C - 4} + \frac{0.615}{C}
\]

In some circumstances after yielding occurs, resultant stresses are distributed more uniformly around the cross section. Then, a stress correction factor \(K_{W2} \) which accounts only for the direct shear component is used.

\[
K_{W2} = 1 + \frac{0.5}{C}
\]

In other circumstances, such as static loading at elevated temperatures, stress distribution tends to become uniform around the cross section and can best be estimated by using no correction factor. Use of different stress correction factors can lead to confusion. In published data, it is essential to know which stress correction factors were used. (The stress correction factor used by a designer must be the same as that used to develop the data.) Methods to calculate stress for different applications and the use of stress correction factors will be discussed in the following paragraphs on choice of operating stresses.
Loads

When deflection is known, loads are determined by multiplying deflection by the spring rate (Equation 5-2). When the stress is known or assumed, loads are determined from Equation 5-4. The procedure used to determine loads of variable rate springs is complex. In this case, the load deflection curve is approximated by a series of short chords. The spring rate is calculated for each chord and multiplied by deflection to obtain the load. The load is then added to that calculated for the next chord. The process is repeated until load has been calculated for the desired value of deflection (Figure 5-6).

Loads should be specified at a test height. Because the load deflection curve is often not linear at very low loads or at loads near solid, loads should be specified at test heights between 15 and 85% of the full deflection range (Figure 5-4).

Loads are classified as static, cyclic or dynamic. In static loading applications, the spring is expected to operate between specified loads only a few times. Frequently, springs in static applications remain loaded for long periods of time. In typical cyclic applications, springs are required to cycle between specified loads from 10,000 to more than a billion cycles. During dynamic loading, the rate of load application is high and causes a surge wave in the spring which will induce stresses that exceed the value calculated from Equation 5-4.
Buckling of Compression Springs

Compression springs that have lengths greater than four times the spring diameter can buckle. If properly guided, either in a tube or over a rod, buckling can be minimized. However, friction between the spring and tube or rod will affect the loads, especially when the aspect ratio \((L_f/D)\) is high.

Critical buckling conditions are shown in Figure 5-7 for axially loaded springs with squared and ground ends. Curve A is for springs with one end on a flat plate and the other end free to tip (Figure 5-8). It indicates that buckling will occur when the spring design is above and to the right of the curve. A tendency for buckling is considerably less for springs compressed between parallel plates as shown in curve B. For applications requiring springs with a high aspect ratio and large deflections, several springs can be used in series in a tube or over a rod, with guides between the springs to prevent binding.

Choice of Operating Stress - Static Conditions

For static applications, the yield strength or stress relaxation resistance of the material limits the load-carrying ability of a spring. The spring is required to operate for a limited number of cycles, and the velocity of the end coils is low to preclude high stresses due to surging or impact conditions. Maximum allowable torsional stress for helical compression springs used in static applications is presented in Table 5-2 as a percentage of the tensile strength for common spring materials. For springs that do not contain beneficial residual stresses induced by
set removal, maximum allowable torsional stress values are from 35 to 50% of the tensile strength. To calculate the stress before set removal, it is necessary to use the K_{W1} correction factor. If the calculated stress at solid is greater than the indicated percentage of tensile strength, the spring will take a permanent set when deflected to solid. Amount of set is a function of the amount that calculated stress at solid exceeds the indicated percent of tensile strength.

To increase the load-carrying ability of springs in static applications, it is common practice to make the spring longer than its required free length and to compress the spring to solid. This causes the spring to set to the desired final length and induces favorable residual stresses. This process is called removing set or presetting and can be conducted at either room or elevated temperatures. The loss of deflection from the free position to solid by cold set removal should be at least 10%. If the set is less, it is difficult to control the spring's free length. Ratios of stress greater than 1.3 lead to distortion and do not appreciably increase the load-carrying ability. This is illustrated schematically in Figure 5-9.
Allowable torsion stresses in springs with set removed (Table 5-2) are significantly higher than for springs that have not had set removed. It is important to note that because yielding has occurred during presetting, the stress is relatively uniform around the cross section and it is calculated using the K_{W_2} stress correction factor. Set removal is an added springmaking operation which increases the manufacturing cost but greatly increases the energy storage capacity of the spring. Set removal is common for critical springs made from premium materials. In some instances, springs have the set removed during an assembly operation.

Table 5-2. Maximum Allowable Torsional Stresses for Helical Compression Springs in Static Applications. Bending or buckling stresses not included.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Maximum % of Tensile Strength Before Set Removed (K_{W_1})</th>
<th>After Set Removed (K_{W_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patented and cold drawn carbon steel</td>
<td>45</td>
<td>60-70</td>
</tr>
<tr>
<td>Hardened and tempered carbon and low alloy steel</td>
<td>50</td>
<td>65-75</td>
</tr>
<tr>
<td>Austenitic stainless steels</td>
<td>35</td>
<td>55-65</td>
</tr>
<tr>
<td>Nonferrous alloys</td>
<td>35</td>
<td>55-65</td>
</tr>
</tbody>
</table>
If the calculated stress using the K_{W2} stress correction factor exceeds the percentage of tensile strength indicated in Table 5-2, the spring cannot be made. In this case, it is necessary to either lower the stress by altering spring design or selecting a higher strength material.

In some applications, maximum operating stress is limited by material stress relaxation resistance and amount of load loss that the design can tolerate. When load is constant, these designs are limited by material creep resistance. When the spring is compressed at a fixed test height, stress relaxation resistance of the material is limiting. Designs limited by stress relaxation resistance are more common than designs limited by creep resistance. It is suggested that creep-limited designs be reviewed by Associated Spring engineers.

Stress relaxation is defined as percent load loss according to the following relationship:

\[
\% \text{ Relaxation} = \frac{P_0 - P_F}{P_0} \times 100
\]

P_0 is load at test height before testing.
P_F is load at test height after testing.

Typical stress relaxation data (Figure 5-10) indicate that at high stresses, some spring materials such as music wire exhibit appreciable stress relaxation after only 100 hours at temperatures as low as 100°C (212°F). These data are only representative of the conditions indicated. Stress relaxation is affected by material, spring processing variables, time, temperature and stress. Associated Spring engineers should be contacted for critical applications involving stress relaxation resistance.

When set is removed at an elevated temperature, the process is called heat setting. It significantly improves the stress relaxation resistance of springs (Figure 3-2) at moderate temperatures and is frequently a more cost-effective method for achieving low levels of stress relaxation than specifying a more costly spring material.
Choice of Operating Stress - Cyclic Applications

In cyclic applications, the load-carrying ability of a spring is limited by material fatigue strength. Velocity of end coils is low compared to the natural frequency. To select the optimum stress level, it is necessary to balance spring cost versus reliability. Reducing operating stresses increases spring reliability as well as cost. A complete knowledge of operating environment, expected life, stress range, frequency of operation, speed of operation and permissible levels of stress relaxation are required in order to make the best choice between cost and reliability.

Because maximum stress is at the wire surface, any surface defects such as pits or seams severely reduce fatigue life. Shot peening improves fatigue life and minimizes the harmful effect of surface defects, but it does not totally remove them.

Maximum allowable design stresses for fatigue applications should be calculated using the K_{W1} correction factor and are shown for common spring materials in Table 5-3. These values are for a stress ratio of 0 in an ambient environment with no surging. Note that shot peening increases the fatigue strength by as much as 20% at lives of 10 million cycles.

Values in Table 5-3 are guidelines for designers and should only be used in the absence of specific data. Most springs designed to recommended stress levels
Helical Compression Springs

will exceed the indicated lives; however, in the absence of detailed information on material, manufacturing method and operating conditions, it is not possible to quantify the reliability level.

Fatigue Life Estimation Example

Fatigue life at other stress ratios can be determined from Table 5-3 according to the procedures outlined in Section 4. A short example illustrates the procedure:

Estimate the fatigue life of a not-shot-peened helical compression spring loaded sinusoidally at a rate of one cycle per second. The spring is flooded with oil and operates at a maximum temperature of 40°C (104°F). The material is ASTM A228 wire and ends are squared and ground. The design is given here:

\[d = 1.00 \text{ mm (0.039")} \]
\[C = 8 \]
\[L_f = 20.5 \text{ mm (ref) (0.807")} \]
\[L_1 = 17.5 \text{ mm (0.689")} \]
\[L_2 = 10 \text{ mm (0.394")} \]
\[L_S = 8 \text{ mm (0.315")} \]
\[N_t = 8 \]

Spring rate is determined from equation:

\[k = \frac{Gd^4}{8D^3N_a} = 3.2 \text{ N/mm} \]

Loads are calculated from the deflections and found to be:

\[P_1 = (20.5 - 17.5) \times 3.2 = 9.6 \text{ N} \]
\[P_2 = (20.5 - 10.0) \times 3.2 = 33.6 \text{ N} \]
\[P_S = (20.5 - 8) \times 3.2 = 40 \text{ N} \]

Stresses are calculated using Equation 5-4 and are:
Helical Compression Springs

Tensile strength of the wire is 2180 MPa (Figure 3-3). The stress at solid is 44% of the tensile strength. Referring to Table 5-2, the maximum stress allowable before set removal for ASTM A228 is 45% of tensile strength. Therefore, the spring can be made and does not require set removal.

To estimate the fatigue life, it is necessary to:

1. Plot an S-N curve on a modified Goodman diagram (Figure 5-11) using the data from Table 5-3 for not-shot-peening springs and a tensile strength of 2180 MPa.
2. Plot point A on the 45° line at 67% of the tensile strength.
3. Plot the stress range coordinates, point B.
4. Estimate the life by drawing a line through AB. At the intersection of this line with the vertical axis, point C, draw a horizontal line to intersect a S-N curve. The point of intersection, D is the estimated life of 2,500,000 cycles.

Dynamic Loading – Impact

When a spring is loaded or unloaded, a surge wave is established which transmits torsional stress from the point of loading along the spring length to the point of restraint. The surge wave travels at a velocity approximately 1/10 of the normal torsional stress wave. Velocity of the torsional stress wave (V_T) is given by:

$$V_T = 10.1 \sqrt{\frac{G\rho}{\rho}} \text{ m/sec} \quad (or) \quad V_T = \sqrt{\frac{G\rho}{\rho}} \text{ in./sec} \quad (5.8)$$

Velocity of the surge wave (V_s) varies with material and spring design, but is usually in the range of 50 to 500 m/sec. The surge wave limits the rate at which a spring can absorb or release energy by limiting impact velocity V.

$$S = \frac{8PD}{\pi d^3} K_{w1}$$

$S_1 = 232$ MPa

$S_2 = 810$ MPa

$S_s = 965$ MPa
Table 5-3. Maximum Allowable Torsional Stresses for Round Wire Helical Compression Springs in Cyclic Applications.

<table>
<thead>
<tr>
<th>Fatigue Life (cycles)</th>
<th>Percent of Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM A228, Austenitic Stainless Steel and Nonferrous</td>
</tr>
<tr>
<td></td>
<td>Not Shot-Peened</td>
</tr>
<tr>
<td>10^5</td>
<td>36</td>
</tr>
<tr>
<td>10^6</td>
<td>33</td>
</tr>
<tr>
<td>10^7</td>
<td>30</td>
</tr>
</tbody>
</table>

This information is based on the following conditions: no surging, room temperature and noncorrosive environment.

Stress ratio in fatigue $= \frac{S_{minimum}}{S_{maximum}} = 0$
Fig. 5–10. Spring Relaxation Data for Various Materials. Springs were preset at room temperature and tested 100 hours at the indicated temperatures. The initial stress is K_{W1} corrected.
Impact velocity is the spring velocity parallel to the spring axis and is a function of stress and material constants shown as:

\[V \approx 10.1S \sqrt{\frac{g}{2\rho G}} \text{ m/sec (or)} \quad V \approx \frac{S}{\sqrt{2\rho G}} \text{ in./sec} \]

This is a surprising result because impact velocity and stress are independent of the spring configuration. For steels, impact velocity reduces to:

\[V = \frac{S}{35.5} \text{ m/sec (or)} \quad V = \frac{S}{131} \text{ in./sec} \]

If a spring is compressed to a given stress level and released instantaneously, the maximum spring velocity is expressed as the stress divided by 35.5. Similarly, if a spring is loaded at a known velocity, instantaneous stress can be calculated. At very high loading velocities, instantaneous stress will exceed the stress calculated from the conventional static formula (Equation 5-4) and will limit design performance. These equations for impact velocity are only concerned with the primary surge wave. Frequently, this wave will reflect from the other end of the spring, increasing stress. Springs loaded at high velocities are frequently subject to resonance phenomena.

When the ratio of the weight to be accelerated to the weight of the spring is less than 1, surge wave theory accurately predicts design performance (Figure 5-12). At high weight ratios and lower velocities, and energy balance is used to predict velocity of a weight projected from the spring end or deflection of the spring when impacted by a mass. Velocity and deflection are related as:

For horizontal loading:

\[f = 31.6V \sqrt{\frac{W}{gk}} \text{ mm (or)} \quad f = V \sqrt{\frac{W}{gk}} \text{ in.} \]

For vertical loading:
f = 31.6V \sqrt{\frac{W}{k}} + \frac{W}{k} \text{ mm} \quad \text{(or)} \quad f = V \sqrt{\frac{W}{gk}} + \frac{W}{k} \text{ in.}

W/g is the mass that is being accelerated or decelerated and V is the axial velocity of the spring.

These equations assume that the spring is massless and should only be used when the spring mass is less than ¼ of the mass to be accelerated.

When the ratio of spring load to weight is less than 4, the energy required to accelerate the spring itself becomes appreciable. By assuming that all mass of the spring is concentrated at the moving end, Equations 5-10 and 5-11 can be corrected by substituting \((W + W_s/3)\) for \(W\) where \(W_s\) is the spring weight.

Dynamic Loading - Resonance

Resonance occurs in a spring when the frequency of the cyclic loading is near
natural spring frequency or a multiple of it. Resonance can increase individual coil deflection and stress levels well above amounts predicted by static or equilibrium analysis. Resonance can also cause spring bounce, which results in loads considerably lower than calculated at the minimum spring deflection. To avoid resonance, natural spring frequency should be at least 13 times the operating frequency.

The natural frequency of a compression spring is inversely proportional to the time required for a surge wave to traverse the spring. For a compression spring without damping and with both ends fixed:

\[
\begin{align*}
\text{metric:} & \quad n = \frac{1.12 \times 10^3d}{D^2N_a} \sqrt{\frac{Gg}{\rho}}; \quad \text{for steel} \quad n = \frac{3.5 \times 10^3d}{D^2N_a} \\
\text{English:} & \quad n = \frac{d}{9D^2N_a} \sqrt{\frac{Gg}{\rho}}; \quad \text{for steel} \quad n = \frac{14000d}{N_aD^2}
\end{align*}
\]

If a spring cannot be designed so the natural frequency is more than 13 times operating frequency, or if the spring is to serve as a vibration damping device, it must utilize one of several methods of energy absorption. Generally, these are friction devices in which the spring rubs against another element such as an internal damper coil, arbor, housing or another portion of the spring. Variable pitch springs and springs in combination are also occasionally used to avoid or minimize resonant frequency effects.
For a vibration isolation system, the essential characteristic is that the natural frequency of the spring-mass system be as far as possible from the disturbing frequency. Filtering of disturbing forces may be calculated as:

\[
\text{% of force transmitted} = \frac{1}{(n_d/n)^2 - 1} \times 100
\]

where \(n_d \) is the frequency of the disturbing force and \(n \) the natural frequency of the spring-mass system (Figure 5-13).

If \(n_d/n \) is less than 1, the denominator in Equation 5-14 should be changed to \(1 - (n_d/n)^2 \). Note that the frequency \(n \) in this equation is the frequency of the spring-mass system and not the natural spring frequency. In fact, the most commonly used equation neglects the spring weight and is only deflection dependent. The general equation is:

\[
n = \frac{15.8}{\pi} \sqrt{\frac{gk}{P}} \quad \text{metric (or) } n = \frac{1}{2\pi} \sqrt{\frac{gk}{P}} \quad \text{English}
\]

Special Springs

Previously in this section, design considerations for round wire helical compression springs of uniform diameter were discussed. These design techniques are modified below and applied to many special spring configurations. Special springs are chosen to fulfill a unique set of design criteria. Springs from rectangular wire and stranded wire as well as variable diameter springs with conical, hourglass and barrel shapes, are discussed below. Helpful guidelines for nested springs are also reviewed.

Rectangular Wire

In applications where space is limited and particularly where solid height is restricted, springs designed from rectangular or keystone wire are often selected. Associated Spring manufactures hundreds of rectangular wire spring designs. These springs are commonly referred to as die springs and are available for immediate delivery.
Springs made from rectangular wire, with the width of the rectangle perpendicular to the spring axis, store more energy in a smaller space than equivalent round wire springs. Even though stress distribution around the rectangular cross section is not as uniform as the round wire section, the energy storage capacity is higher because more material can be incorporated into the allocated space. Rectangular wire is more costly than round wire, but less costly than keystoned wire. Keystoned wire is processed specially so that deformation during spring winding or coiling causes the cross section to become approximately rectangular. Distortion of the cross section can be estimated from the equation presented in Figure 5-14. However, distortion depends upon the manufacturing technique employed and this equation is at best an approximation. Axial dimensional change of the wire must always be considered when calculating solid heights of rectangular springs.

The rate for a compression spring made from rectangular wire is expressed as follows:

$$k = \frac{P}{f} = \frac{Gbt^3}{NaD^3}K_2$$

Since the wire is loaded in torsion, the rate is the same whether the wire is wound on flat or on edge (Figure 5-15). Values for the constant K_2 are shown in Figure 5-16. Stress is expressed as:
Values for K_1 are shown in Figure 5-16, while values for the stress correction factor for springs wound on the flat (K_F) and springs wound on edge (K_E) are shown in Figure 5-17 and 5-18. When rectangular wire is produced by rolling round wire or if the cross section of the wire deviates significantly from a rectangle, additional correction factors are required. Whenever a round wire cannot be used because the solid height exceeds specifications, it is possible to try a rectangular wire coiled on edge where:

$$t = \frac{2d}{1 + b/t}$$

and d is equal the wire diameter for the equivalent round wire spring. A typical value for a width to thickness ratio of 2 may be assumed in the initial design calculations.

Stranded Wire Springs

Long springs with many coils, when subjected to high rates of load application as in automatic weapons, encounter shock wave motion and can literally be torn apart. Stranded-wire springs are often the most successful solution to such problems because of the friction resistance between the strands.
Helical Compression Springs

To function properly, the helix of a spring must be opposite in direction to the helix of the strands, so that the strands bind together when the spring is compressed. The stranded-wire spring may be wound with 2, 3, or more strands. Springs with four or more strands and made with a center wire core to assure necessary stability. Ends should be soldered, brazed or welded to prevent unraveling.

Recognizing that a stranded-wire spring can be considered as single-wire springs arranged in parallel, spring rate is derived on the basis given by:

$$k = \frac{KnGd^4}{8D^3N_a}$$

where $K =$ correction factor and $n =$ number of strands. For a three-strand spring, $K = 1.05$.
An approximation for torsional stress in each wire of the strand is given by Equation 5-4:

$$S = \frac{8PD}{\pi d^3} K_W$$

Maximum allowable stress after set removal should not exceed 55 to 60% of the material tensile strength. Wire diameter (d_s) for a single strand in a stranded wire spring is less than the wire diameter for a monolithic spring with the same mean diameter and rate.

<table>
<thead>
<tr>
<th>Number of Strands</th>
<th>Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>d_s greater than 0.79 d</td>
</tr>
<tr>
<td>3</td>
<td>d_s greater than 0.69 d</td>
</tr>
<tr>
<td>4</td>
<td>d_s greater than 0.63 d</td>
</tr>
</tbody>
</table>

Stress in the stranded-wire spring is also less than the stress in an equivalent monolithic spring.
Fig. 5-17. Stress Correction Factors for Rectangular Wire Compression Springs Wound on Flat.

Fig. 5-18. Stress Correction Factors for Rectangular Wire Compression Springs Wound on Edge.
Variable Diameter Springs

Conical, hourglass and barrel-shaped springs (Figure 5-19) are used in applications requiring a low solid height, increased lateral stability or resistance to surging. Conical springs can be designed so that each coil nests wholly or partly into an adjacent coil. Solid height can be as low as one wire diameter. Rate for conical springs usually increases with deflection (Figure 5-20) because the number of active coils decreases progressively as the spring approaches solid. By varying the pitch, conical springs can be designed to have a uniform rate. Rate for conical springs is calculated, as indicated previously, by considering the spring as many springs in series. Rate for each turn or fraction of a turn is calculated using Equation 5-2. Rate for a complete spring is then determined, remembering that the spring rate follows the series relationship given previously in Equation 5-3.

To calculate the highest stress at a given load, the mean diameter of the largest active coil at load is used. Solid height of a uniformly tapered, but not telescoping, spring with squared and ground ends made from round wire can be estimated from:

\[L_s = N_a \sqrt{d^2 - u^2} + 2d \]

where \(u \) = the O.D. large end minus the O.D. small end divided by \(2N_a \).
Designing a variable diameter spring so that adjacent coils rub against one another during deflection increases resistance to resonance phenomena but may also shorten spring life due to wear.

Barrel and hourglass springs are calculated as two conical springs in series.

Variable Pitch

Variable pitch springs (Figure 5-21) are used to achieve a variable rate similar to that shown in Figure 5-20 or in dynamic applications where the cyclic rate of load application is near the natural spring frequency. As turns of lesser pitch become inactive during deflection, the natural frequency of a spring changes. Throughout the cycle, the spring has a spectrum of frequency response and not a single resonant frequency. Thus, surging and spring resonance are minimized.

Nested Compression Springs

Helical compression springs are often used in combination because of space limitations and resonance considerations. A nest of compression springs can store more energy but will have lower natural frequencies than a single equivalent spring. Nested springs are not recommended when the diametral space is so restricted that a single spring would have an index of 5 or less. The following design practices apply to nested springs:

1. To prevent internesting, the springs should be wound alternately left and
right-handed.
2. Clearance between springs must be at least twice the diameter tolerance.
3. The most efficient distribution of load between individual springs varies with their indexes and the clearances between them. For a first approximation in designing a nest with two springs, one-third of the load should be on the inner spring and two-thirds on the outer spring.
4. Solid heights and free heights should be about the same for all springs.

These practices result in springs with approximately the same index.

Commercial Tolerances
Standard commercial tolerances for free length, diameter and load are presented in Tables 5-4, 5-5 and 5-6. Tolerance on squareness is 3°. These tolerances represent a good trade-off between manufacturing costs and performance in most applications. Certain premium spring materials and processing methods can be used to achieve tighter tolerances. If the application requires tighter tolerances, the required tolerance levels should be discussed with an Associated Spring engineer.

![Typical Variable Pitch Helical Compression Spring](http://home.asbg.com/ASPortal/Pages/Handbook/helical_compression_springs.htm)

For fatigue applications, spring life is often specified. Unless otherwise stated, life is interpreted as the S_{10} life. This is the life at which 90% of the springs are expected to survive with a 50% confidence level based on Weibul analysis.

Acceptable Quality Level (AQL)
Quality levels are often expressed by an AQL (for example MIL-STD-105, Sampling Procedures and Tables for Inspection by Attributes). Only critical attributes should be subject to an AQL on the drawing. Unnecessarily tight AQL’s will increase manufacturing and inspection costs. If tolerances must be close for proper functioning and if, for instance, nonconforming parts can be discarded at assembly, a standard AQL will minimize the parts cost. Springs assembled automatically, often require tight AQL on dimensions, while springs used in
instruments and critical machines often require tight AQL on loads and life. A close liaison between Associated Spring engineers and the designer during design and prototype phases is the best way to ensure optimum quality.

Packaging

Normally, compression springs and other custom parts are packaged in bulk. Compression springs with high pitch angles and large indexes are subject to tangling. Tangling not only makes it difficult to separate springs upon arrival but can also cause distortion. Special packaging systems such as the Spring Flow™ system where springs are packaged in rows (Figure 5-22) is one method to prevent tangling. Another method is to place springs on adhesive-coated corrugated panels. There are many other packaging methods used to prevent tangling and reduce shipment bulk.

<table>
<thead>
<tr>
<th>Number of Active Coils per mm(in.)</th>
<th>Tolerances: ±mm/mm (in./in.) of Free Length</th>
<th>Spring Index (D/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02 (0.5)</td>
<td>0.010 0.011 0.012 0.013 0.015 0.016 0.016</td>
<td>4 6 8 10 12 14 16</td>
</tr>
<tr>
<td>0.04 (1)</td>
<td>0.011 0.013 0.015 0.016 0.017 0.018 0.019</td>
<td></td>
</tr>
<tr>
<td>0.08 (2)</td>
<td>0.013 0.015 0.017 0.019 0.020 0.022 0.023</td>
<td></td>
</tr>
<tr>
<td>0.2 (4)</td>
<td>0.016 0.018 0.021 0.023 0.024 0.026 0.027</td>
<td></td>
</tr>
<tr>
<td>0.3 (8)</td>
<td>0.019 0.022 0.024 0.026 0.028 0.030 0.032</td>
<td></td>
</tr>
<tr>
<td>0.5 (12)</td>
<td>0.021 0.024 0.027 0.030 0.032 0.034 0.036</td>
<td></td>
</tr>
<tr>
<td>0.6 (16)</td>
<td>0.022 0.026 0.029 0.032 0.034 0.036 0.038</td>
<td></td>
</tr>
<tr>
<td>0.8 (20)</td>
<td>0.023 0.027 0.031 0.034 0.036 0.038 0.040</td>
<td></td>
</tr>
</tbody>
</table>

For springs less than 12.7 mm (0.500") long, use the tolerances for 12.7 mm (0.500"). For closed ends not ground, multiply above values by 1.7.

How to Specify

There are many ways to specify compression springs. Because the number of variables is large, it is useful for the designer to use the specification checklist that follows to be sure that all critical aspects are specified.

Compression Spring Design Example
Given: Squared and ground compression spring to work in a hole $D_H = 40$ mm (1.575") and exert $P_1 = 275$ N (61.8 lbf) at a height of $L_1 = 60$ mm (2.362") and $P_2 = 500$ N (112 lbf) at a height of $L_2 = 50$ mm (1.969"). Application: static at room temperature. Material: oil tempered wire ASTM A229. Spring must not set when compressed to solid height.

A. First estimate the wire diameter by solving equation (Equation 5-4) using approximate values for unknown factors and $K_{W1} = 1$.

Then, calculate O.D. and D.

Substitute this wire size in the load deflection equation (Equation 5-2) and solve for N_a. Repeat this process until a satisfactory solution is obtained.

1. Rearranging Equation 5-4 for uncorrected stress:

$$d = \sqrt[3]{\frac{2.55 \times P_2 \times D}{S_2}}$$

2. Assume tensile strength of ASTM A229 is 1500 MPa and $S_2 = 700$ MPa uncorrected:

$$d = \sqrt[3]{\frac{2.55 \times 500 \times 40}{700}} = 4.2 \text{ mm}$$

3. For clearance, assume O.D. = 0.95 D_H:

$$\text{O.D.} = 0.95 \times 40 = 38.0 \text{ mm}$$
D = 38.0 - 4.2 = 33.8 mm

\[C = \frac{D}{d} = \frac{33.8}{4.2} = 8.0 \]

Rate = \(k = \frac{500 - 275}{60 - 50} \) = 22.5 N/mm

\[N_a = \frac{Gd^4}{8D^3k} \]

\[N_a = \frac{(7.93 \times 10^4)(4.2)^4}{8(33.8)^3(22.5)} = 3.55 \]

Table 5-5. Coil Diameter Tolerances of Helical Compression and Extension Springs.

<table>
<thead>
<tr>
<th>Wire Dia., mm(in.)</th>
<th>4 (0.15)</th>
<th>6 (0.23)</th>
<th>8 (0.35)</th>
<th>10 (0.51)</th>
<th>12 (0.76)</th>
<th>14 (1.14)</th>
<th>16 (1.71)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.38 (0.015)</td>
<td>0.05 (0.002)</td>
<td>0.05 (0.002)</td>
<td>0.08 (0.003)</td>
<td>0.10 (0.004)</td>
<td>0.13 (0.005)</td>
<td>0.15 (0.006)</td>
<td>0.18 (0.007)</td>
</tr>
<tr>
<td>0.58 (0.023)</td>
<td>0.05 (0.002)</td>
<td>0.08 (0.003)</td>
<td>0.10 (0.004)</td>
<td>0.15 (0.006)</td>
<td>0.18 (0.007)</td>
<td>0.20 (0.008)</td>
<td>0.25 (0.010)</td>
</tr>
<tr>
<td>0.89 (0.035)</td>
<td>0.05 (0.002)</td>
<td>0.10 (0.004)</td>
<td>0.15 (0.006)</td>
<td>0.18 (0.007)</td>
<td>0.23 (0.009)</td>
<td>0.28 (0.011)</td>
<td>0.33 (0.013)</td>
</tr>
<tr>
<td>1.30 (0.051)</td>
<td>0.08 (0.003)</td>
<td>0.13 (0.005)</td>
<td>0.18 (0.007)</td>
<td>0.25 (0.010)</td>
<td>0.30 (0.012)</td>
<td>0.38 (0.015)</td>
<td>0.43 (0.017)</td>
</tr>
<tr>
<td>1.93 (0.076)</td>
<td>0.10 (0.004)</td>
<td>0.18 (0.007)</td>
<td>0.25 (0.010)</td>
<td>0.33 (0.013)</td>
<td>0.41 (0.016)</td>
<td>0.48 (0.019)</td>
<td>0.53 (0.021)</td>
</tr>
<tr>
<td>2.90 (0.114)</td>
<td>0.15 (0.006)</td>
<td>0.23 (0.009)</td>
<td>0.33 (0.013)</td>
<td>0.46 (0.018)</td>
<td>0.53 (0.021)</td>
<td>0.64 (0.025)</td>
<td>0.74 (0.029)</td>
</tr>
<tr>
<td>4.34 (0.171)</td>
<td>0.20 (0.008)</td>
<td>0.30 (0.012)</td>
<td>0.43 (0.017)</td>
<td>0.58 (0.023)</td>
<td>0.71 (0.028)</td>
<td>0.84 (0.033)</td>
<td>0.97 (0.038)</td>
</tr>
<tr>
<td>6.35 (0.250)</td>
<td>0.28 (0.011)</td>
<td>0.38 (0.015)</td>
<td>0.53 (0.021)</td>
<td>0.71 (0.028)</td>
<td>0.90 (0.035)</td>
<td>1.07 (0.042)</td>
<td>1.24 (0.049)</td>
</tr>
<tr>
<td>9.53 (0.375)</td>
<td>0.41 (0.016)</td>
<td>0.51 (0.020)</td>
<td>0.66 (0.026)</td>
<td>0.94 (0.037)</td>
<td>1.17 (0.046)</td>
<td>1.37 (0.054)</td>
<td>1.63 (0.064)</td>
</tr>
<tr>
<td>12.70 (0.500)</td>
<td>0.53 (0.021)</td>
<td>0.76 (0.030)</td>
<td>1.02 (0.040)</td>
<td>1.57 (0.062)</td>
<td>2.03 (0.080)</td>
<td>2.54 (0.100)</td>
<td>3.18 (0.125)</td>
</tr>
</tbody>
</table>
B. Find amount of space left between L_2 and L_s:
1. Compare to f_2.
2. Find the corrected stress at solid height.
3. Compare to tensile strength of material. See Figure 3–3, page 19.

\[
L_s = 5.55 \times 4.2 = 23.3
\]
\[
L_f = \frac{P_1}{k} + L_1 = \frac{275}{22.5} + 60 = 72.2 \text{ mm}
\]
\[
f_2 = 72.2 - 50 = 22.2 \text{ mm}
\]
\[
L_2 - L_s = 50 - 23.3 = 26.7 \text{ mm}
\]
\[
f_s = 72.2 - 23.3 = 48.9 \text{ mm}
\]
15% of 48.9 = 7.3 mm

\[
K_{w1} = \frac{4C - 1}{4C - 4} + \frac{.615}{C} = 1.18
\]
\[
P_s = f_s \times k = 48.9 \times 22.5 = 1100 \text{ N}
\]
\[
S_s = \frac{2.55P_sD}{d^3}K_{w1} = \frac{(2.55)(1100)(33.8)(1.18)}{(4.2)^3} = 1510 \text{ MPa}
\]

4. Tensile strength of 4.2 mm diameter wire = 1400 MPa. Before set is removed, maximum allowable torsional stress is 50% of TS or 700 MPa (Table 5–2, page 35). $S_s = 1510$ is greater than 700 MPa, and the spring will set.

C. Because $(L_2 - L_s) = 26.7 > 0.15f_s = 7.3$, there is more space available. Try a larger preferred wire size (Table 3–8, page 20) of 4.8 mm.

TS = 1400 MPa, $D = 38.0 - 4.8 = 33.2 \text{ mm}$, $C = 6.9$

\[
N_a = \frac{(7.93 \times 10^4)(4.8)^4}{8(33.2)^3(22.5)} = 6.4
\]
\[
L_s = 8.4 \times 4.8 = 40.3 \text{ mm}
\]
\[
L_2 - L_s = 50 - 40.3 = 9.7 \text{ mm}
\]
\[
f_s = 72.2 - 40.3 = 31.9 \text{ mm}
\]
\[
(L_2 - L_s) = 9.7 > 0.15f_s = 4.8 \text{ mm}
\]
\[
P_s = (31.9)(22.5) = 718 \text{ N}
\]
\[
K_{w1} = \frac{(4)(6.9) - 1}{(4)(6.9) - 4} + \frac{.615}{6.9} = 1.22
\]
\[
S_s = \frac{(2.55)(718)(33.2)(1.22)}{(4.8)^3} = 671 \text{ MPa}
\]
\[
S_s = 671 \text{ MPa or } \frac{671 \times 100}{1400} = 48\% \text{ of TS}
\]
Table 5-6. Load Tolerances of Helical Compression Springs.

<table>
<thead>
<tr>
<th>Length Tolerance ± mm (in.)</th>
<th>Tolerances: ±% of Load. Start with Tolerance from Table 5-4, page 42 Multiplied by Lf.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deflection from Free Length to Load, mm (in.)</td>
</tr>
<tr>
<td></td>
<td>1.27 (0.050)</td>
</tr>
<tr>
<td>0.13 (0.005)</td>
<td>12.</td>
</tr>
<tr>
<td>0.25 (0.010)</td>
<td>12.</td>
</tr>
<tr>
<td>0.51 (0.020)</td>
<td>22.</td>
</tr>
<tr>
<td>0.76 (0.030)</td>
<td>22.</td>
</tr>
<tr>
<td>1.00 (0.040)</td>
<td>22.</td>
</tr>
<tr>
<td>1.30 (0.050)</td>
<td>22.</td>
</tr>
<tr>
<td>1.50 (0.060)</td>
<td>22.</td>
</tr>
<tr>
<td>1.80 (0.070)</td>
<td>22.</td>
</tr>
<tr>
<td>2.00 (0.080)</td>
<td></td>
</tr>
<tr>
<td>2.30 (0.090)</td>
<td></td>
</tr>
<tr>
<td>2.50 (0.100)</td>
<td></td>
</tr>
<tr>
<td>5.10 (0.200)</td>
<td></td>
</tr>
<tr>
<td>7.60 (0.300)</td>
<td></td>
</tr>
<tr>
<td>10.2 (0.400)</td>
<td></td>
</tr>
<tr>
<td>12.7 (0.500)</td>
<td></td>
</tr>
</tbody>
</table>

First load test at not less than 15% of available deflection.
Final load test at not more than 85% of available deflection.
Fig. 5-22. Tangled Helical Compression Springs (Left) and Spring Flow Packaging.

Final Design Specifications:

Material: ASTM A229
Wire Diameter d: 4.8 mm (0.189") Reference
O.D.: 38.0 ± 0.4 mm (1.500 ± 0.050")
Free Length L_f: 72.2 mm (2.843") Reference
Test Height L_1: 60 mm (2.362")
Test Height L_2: 50 mm (1.969")
P_1: Load at L_1: 275 N (61.8 lbf) ± 11.0%
P_2: Load at L_2: 500 N (112 lbf) ± 7%
Final Design Stress S_f: 671 MPa (97,300 psi) or 48% TS
N_f: 8.4
Introduction
Helical extension springs store energy and exert a pulling force. Usually, they are made from round wire and are close-wound with initial tension. Typical applications include tape cassette player, balance scales, toys, garage doors, automatic washing machines and various types of spring tensioning devices.

Helical extension springs are stressed in torsion in the body. Design procedures for the body are similar to those discussed previously for compression springs (Section 5) with the following major exceptions. Most helical extension springs are coiled with initial tension, equal to the minimum force required to separate adjacent coils. Helical extension springs do not normally have set removed. Furthermore, unlike compression springs, extension springs do not have a solid stop to prevent overloading. For these reasons, design stress levels are generally lower for extension than for compression springs. A special type of extension spring, known as a drawbar spring (Figure 7-1), has a solid stop. It is essentially a compression spring with special hooks.

Fig. 7-1. Drawbar Spring Provides a Solid Stop.
The pulling force exerted by an extension spring body is transmitted to mating parts through hooks or loops. When stresses in the hooks are higher than in the spring body, the hooks limit spring performance.

Associated Spring includes hundreds of different extension spring designs with full twist loops in its SPEC line of stock springs. These extension springs are made from either music wire or stainless steel and are pre-engineered to meet a wide range of applications.

Initial Tension

Initial tension in an extension spring is measured according to the procedure illustrated in Figure 7-2. The linear portion of the load deflection curve is extrapolated to zero deflection. The point of intersection on the ordinate is initial tension P_1. The amount of initial tension that can be put into a spring depends upon its index, material, method of manufacture and postcoiling stress-relief treatment. Occasionally, in critical applications when stress is high, a high stress-relief temperature is required to minimize unfavorable residual stresses due to coiling or forming the hooks. High temperature stress relief reduces the amount of initial tension. Typical values of initial tension are shown in Figure 7-3. High strength materials such as small diameter music wire are able to support higher levels of initial tension than low strength materials such as large diameter hard-drawn wire.

Types of Ends

Extension springs require a method of attachment to other parts in an assembly. A wide variety of ends has
been developed and used successfully for many years – for example, threaded inserts, swivel hooks, twist loops, side loops, cross-center loops and extended hooks. Loops are attachment ends that have small gaps (Figure 7-6), while hooks are loops with a large gap. In fact, the variety of ends is almost unlimited. The most common configurations are those that can be formed during the springmaking operation.

Typical types include twist, cross center, side loops and extended hooks (Figure 7-4). Many of these configurations are made by bending the last coils of an extension spring to form loops. Most special hooks are formed from straight sections of wire on the so-called “tangent ends” of an extension spring body.

Guidelines for the lengths of common loops are presented in Figure 7-4. Although other
Helical Extension Springs configurations and lengths are available, common loops of preferred lengths are generally the most economical. If possible, a spring should be designed with one or both loops at the preferred length. For example, if a design requires a total loop length of equal to five times the I.D., a popular choice is one twist loop with a length equal to the I.D. and one extended loop with a length equal to four times the I.D. Whenever possible for extended loops, the designer should allow for a straight section approximately three wire diameters long at the end of the wire (A, Figure 7-4). Loops at each end can be made with a controlled angular relationship. Specifying an angular relationship may add to the cost; therefore, whenever and application permits, a random angular relationship should be allowed. Production of special end configuration may involve tool charges and generally results in increased costs.

![Fig. 7-4. Common End Configurations for Helical Extension Springs.](http://home.asbg.com/ASPortal/Pages/Handbook/helical_extension_springs.htm)

<table>
<thead>
<tr>
<th>Type</th>
<th>Configurations</th>
<th>Recommended Length * Min.- Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Twist Loop or Hook</td>
<td></td>
<td>0.5-1.7 I.D.</td>
</tr>
<tr>
<td>Cross Center Loop or Hook</td>
<td></td>
<td>I.D.</td>
</tr>
<tr>
<td>Side Loop or Hook</td>
<td></td>
<td>0.9-1.0 I.D.</td>
</tr>
<tr>
<td>Extended Hook</td>
<td></td>
<td>1.1 I.D. and up, as required by design</td>
</tr>
<tr>
<td>Special Ends</td>
<td></td>
<td>As required by design</td>
</tr>
</tbody>
</table>

* Length is distance from last body coil to inside of end. I.D. is inside diameter of adjacent coil in spring body.

Stresses in loops are often higher than in the spring body. This limits spring performance, particularly in cyclic applications. Generous bend radii in loops and reduced end coil diameters are two methods frequently employed to reduce stresses. In a full twist loop, stress reaches a maximum at point A in bending and a maximum in torsion at point B (Figure 7-5). Stress at these locations is complex, but can be estimated with reasonable accuracy by:

\[
S_A = \frac{16DP}{\pi d^3}K_1 + \frac{4P}{\pi d^2}\text{ bending} \quad (7-1)
\]

where \(K_1 = \frac{4C_1^2 - C_1 - 1}{4C_1(C_1 - 1)} \) and \(C_1 = \frac{2R_1}{d} \)

\[
S_B = \frac{8DP}{\pi d^3} \left(\frac{4C_2 - 1}{4C_2 - 4}\right) \text{ and } C_2 = \frac{2R_2}{d}\text{ torsion} \quad (7-2)
\]

Recommended practice is to make \(C_2 \) greater than four.
Extension Spring Dimensions
Free length of an extension spring is the distance between the inner surfaces of the ends (Figure 7-6). It is equal to the spring body length plus ends, where spring body length is given by \(L_{\text{body}} = d(N + 1) \). The gap, which is sometimes referred to as hook or loop opening, can be varied by the springmaker. Certain manufacturing processes require a minimum gap and the designer should consult Associated Spring engineers if a gap must be less than one-half wire diameter. The number of active coils in a spring is approximately equal to the number of coils in its body. For springs with threaded inserts or swivel hooks, the number of active coils is less than the total coils in the body. Hooks and loops add to the number of active coils. Allowances of 0.1 \(N_a \) are occasionally made for one-half twist loops. Allowances as large as 0.5 \(N_a \) can be made for some cross center, full twist and extended loops.

Design Equations
Design equations for extension spring are similar to compression springs. The rate is given by:

\[
k = \frac{P - P_1}{f} = \frac{Gd^4}{8D^3N_a}
\]

(7-3)

Where \(P_1 \) is initial tension. Stress is given by:

\[
S = \frac{8PD}{\pi d^3 K_w}
\]

(7-4)

Dynamic considerations discussed previously in Section 5 are generally applicable to extension springs. Natural frequency when one end is fixed is given by:
Choice of Operating Stress - Static
Recommended maximum stresses for extension springs used in static applications (Table 7-1) are similar to levels recommended for compression springs without set removal. For springs that cannot be adequately stress-relieved due to high initial tension requirements the maximum recommended stress in the body should be reduced to that recommended for their ends. Maximum recommended stress in the ends is lower than in the body because the wire is often stretched, marked or distorted during loop-making.

Choice of Operating Stress - Cyclic
Maximum recommended stresses for extension springs used in cyclic applications are presented in Table 7-2. These data are for stress-relieved springs with low levels of initial tension.
Clearances
Extension springs, when deflected, do not require central arbors or holes to prevent buckling. When a spring is dynamically loaded or unloaded suddenly (as a cam drop-off), it may vibrate laterally, inducing additional stresses. If clearance is not allowed, this lateral vibration may be noisy and result in premature failure from abrasion of the spring or adjacent parts.

Tolerances
Since requesting close tolerances can increase manufacturing costs, only those characteristics which are critical
to spring performance should have tolerances specified. Commercial free length, angular relationship of ends, and load tolerances are presented in Tables 7-3, 7-4, and 77-5 respectively. O.D. tolerances are the same as for compression springs (Table 5-5). These tables should be used only as a guide since some manufacturing operations have different process capabilities which can cause variations in tolerance values. For special applications requiring closer tolerances, consult Associated Spring engineers.

How to Specify
For minimum cost, it is important to specify springs properly. The following checklist is presented as a guide.
Table 7-5. Load Tolerances for Helical Extension Springs.

<table>
<thead>
<tr>
<th>Index</th>
<th>Body Length Divided by Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wire Diameter: mm(in.)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Lb f</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.38 (0.015)</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>18.5</td>
</tr>
<tr>
<td>6</td>
<td>16.8</td>
</tr>
<tr>
<td>4.5</td>
<td>15.0</td>
</tr>
<tr>
<td>2.5</td>
<td>13.1</td>
</tr>
<tr>
<td>1.5</td>
<td>10.2</td>
</tr>
<tr>
<td>0.5</td>
<td>6.2</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>16.8</td>
</tr>
<tr>
<td>6</td>
<td>15.8</td>
</tr>
<tr>
<td>4.5</td>
<td>14.2</td>
</tr>
<tr>
<td>2.5</td>
<td>12.3</td>
</tr>
<tr>
<td>1.5</td>
<td>10.0</td>
</tr>
<tr>
<td>0.5</td>
<td>6.2</td>
</tr>
</tbody>
</table>
Extension Spring Design Example
A spring is to be incorporated into an overload circuit breaker. It is to be preloaded at length \(L_1 = 25.00 \text{ mm (0.984")} \) and must exert a load of 17.5N (3.93 lbf), ±15%, when the circuit breaker is closed. If overload occurs, the circuit breaker is tripped and the spring is extended to a length \(L_2 = 29.00 \text{ mm (1.142")} \). The load must be 30 N ±12%, to operate a lock, preventing accidental resetting before the malfunction is corrected. Either twist or extended loops with generous radii are satisfactory. Because of surrounding components the maximum O.D. is 7 mm (0.276").
Probability of overloads is small and breaker operation is expected only three or four times in a year. The spring will not be extended beyond \(L_2 \) during service or installation.

For static application, in an ambient environment, the material selected is ASTM A227.

1. Assume a clearance on O.D. of 10%:
 O.D. = (0.9) (7) = 6.3 mm

2. Assume $S_2 = 700$ MPa uncorrected; let D = O.D. = 6.3 mm
 Calculate wire diameter d:

 $$d = \sqrt[3]{\frac{2.55PD}{S}} = \sqrt[3]{\frac{(2.55)(30)(6.3)}{700}} = 0.88 \text{ mm}$$

 Let $d = 0.9$ mm

 Tensile strength taken from Figure 3-3, page 19, is 1790 MPa.

3. Calculate mean diameter D and coil index C:

 $$D = \text{O.D.} - d = 6.3 - 0.9 = 5.4 \text{ mm},$$

 $$C = \frac{D}{d} = \frac{5.4}{0.9} = 6$$

4. Calculate mean stress at the extended length:

 $$L_2 = 29.00 \text{ mm}, \quad P_2 = 30 \text{ N}$$

 $$S_2 = \frac{2.55 P_2 D}{d^3} K_{W1}$$

 $$K_{W1} = \frac{4C - 1}{4C - 4} + \frac{0.615}{C} = \frac{4(6) - 1}{4(6) - 4} + \frac{0.615}{6} = 1.25$$

 $$S_2 = \frac{(2.55)(30)(5.4)(1.25)}{(0.90)^3} = 708 \text{ MPa or 40\% TS}$$

5. Calculate rate k:

 $$k = \frac{P_2 - P_1}{L_2 - L_1} = \frac{30 - 17.5}{29 - 25} = 3.13 \text{ N/mm}$$

6. Calculate number of coils N_a:

 $$N_a = \frac{G d^4}{8D^3 k} = \frac{(7.93 \times 10^6)(0.90)^4}{(8)(5.4)^3(3.13)} = 13.2$$
7. Calculate free length \(L_f \) and deflections \(f_1 \) and \(f_2 \); assume full twist loops:

\[
\begin{align*}
L_f &= 2(ID) + (N_a + 1)d = (2)(4.5) + (13.2 + 1)(0.9) \\
&= 21.78 \text{ mm} \\
f_1 &= L_1 - L_f = 25.00 - 21.78 = 3.22 \text{ mm} \\
f_2 &= L_2 - L_f = 29.00 - 21.78 = 7.22 \text{ mm}
\end{align*}
\]

8. Calculate initial tension \(P_1 \) and uncorrected stress due to initial tension \(S_t \):

\[
P_1 = P_t - kf_1 = 17.5 - (3.13)(3.22) = 7.42 \text{ N}
\]

\[
S_t = \frac{2.55 PD}{d^3} = \frac{(2.55)(7.42)(5.4)}{(0.90)^3} = 140 \text{ MPa}
\]

Refering to Figure 7-3, it can be seen that this is in the preferred range for initial stress for an index of 6.

9. Check stresses in the hooks:

Bending Stress:

\[
S_A = \frac{16PD}{\pi d^3} K_1 + \frac{4P}{\pi d^2}; K_1 = \frac{4C_2^2 - C - 1}{4C_2(C_2 - 1)}; \text{ let } C_1 = C
\]

\[
K_1 = \frac{4(6)^2 - 6 - 1}{4(6)(6 - 1)} = 1.142
\]

\[
S_A = \frac{(16)(30)(5.4)(1.142)}{\pi(0.90)^3} + \frac{4(30)}{\pi(0.90)^2} = 1340 \text{ MPa or 74.9\% TS}
\]

Torsional stress, where \(R_2 = 2.70 \text{ mm} \):

\[
S_B = \frac{8PD(4C_2 - 1)}{\pi d^3} \left(\frac{2R_2}{d} \right)
\]

\[
S_B = \frac{(8)(30)(5.4)}{\pi(0.90)^3} \left(\frac{4(6) - 1}{4(6) - 4} \right) = 651 \text{ MPa or 36\% TS}
\]

Final Specifications

- **Free Length** \(L_f \): 21.78 mm (0.854") Reference
- **Outside Diameter**: 6.3 ± 0.10 mm (0.248 ± 0.004")
- **Wire Diameter** \(d \): 0.9 mm (0.035") Reference
- **Initial Tension Load** \(P_t \): 7.45 N (1.68 lbf) Reference
- **Extended Length** \(L_1 \): 25.00 mm (0.984")
- **Extended Length** \(L_2 \): 29.00 mm (1.142")
- **\(P_1 \) Load** at \(L_1 \): 17.5 ± 2.0 N (3.93 ± 0.45 lbf)
- **\(P_2 \) Load** at \(L_2 \): 30 ± 2.5 N (6.74 ± 0.55 lbf)
- **Final Design Stress** \(S_2 \): 708 MPa (103,000 psi) 40% TS
- **\(N_a \)**: 13.2 Coils

Refer to the load tolerances for helical extension springs (Table 7-5). Tolerance on load for \(P_1 \) is ± 11\%, which is less than the required ± 15\%, and \(P_2 \) is ± 8\%, which is less than the required ± 12\%.
Introduction
Garter springs are helical extension or compression springs whose ends are connected so that each spring becomes a circle and exerts radial forces (Figure 8-1). Their primary application is in oil seals. Other uses include small motor belts, electrical connectors and piston-ring expanders.

Design methods for garter springs are continuations of methods developed for helical compression and extension springs. Generally, garter springs are designed with as low a rate as possible to provide a nearly constant force on a seal as it wears.

Joint Design and Considerations
Garter spring ends may be fastened together by interlocking loops, staking one coil of the female end into the nub end, soldering (for belt applications) or by screwing one end into the other. Associated Spring utilizes a special closure, called Interlock® which ensures positive and smooth connections (Figure 8-2).

 Regardless of the connecting joint used, its strength must be such that the joint will not separate when the spring is extended to its maximum diameter.

Spring Rate
Rate of an extension garter spring is expressed by the following equation:

\[k = \frac{P - P_1}{f} = \frac{Gd^4}{8D^2L_1} \text{ where } L_1 = \pi D_1 \approx N_d d \quad (8-1) \]

L_1 is the assembled length (not including the joint nib) and $D = \text{mean coil diameter}$. Index (D/d)
Garter Springs

should be greater than four. If an index of less than four is required, consult Associated Spring engineers. Circumferential load is \(P_e = P_1 + k_f \) for an extension type garter spring, where \(P_1 \) is initial tension and \(k_f \) is the load due to deflection. On a compression garter spring, since \(P_1 \) is equal to zero, \(P_c = k_f \).

Radial and Circumferential Load

Radial load \(P_r \) is defined as the load per unit length of circumference. The general equation for relating radial load \(P_r \) to circumferential load \(P \) is as follows:

\[
P_r = \frac{2P}{D_2} \quad (8-2)
\]

\(P \) is the load exerted by an extension spring at a deflection. Radial load can also be calculated directly using rate formulas where the deflection \(f = (D_2 - D_1) \):

For extension type garter springs:

\[
P_{r_{ext}} = 2\pi k - \frac{2\pi D_1 k}{D_2} + \frac{2P_1}{D_2} \quad (8-3)
\]

For compression type garter springs:

\[
P_{r_{comp}} = \frac{2\pi D_1 k}{D_2} - 2\pi k \quad (8-4)
\]
A compression garter spring is open-wound without initial tension.

In most cases, radial load is calculated by measuring circumferential load and using Equation 8-2 which relates them. A useful test procedure is to cut a spring 180° from the joint, then treat it as a normal extension spring.

Initial Tension and Stress
An ideal garter spring has a zero rate and applies a constant force as the seal wears. Since this condition is impossible, it is recommended that initial tension P_1 be as close to circumferential load value as the design will permit. Uncorrected stress due to P_1 should be limited to a range of 80 to 210 MPa (12,000 to 30,000 psi) with a preferred range of 110 to 150 MPa (16,000 to 22,000 psi) (See Figure 7-3). If P_1 is too low, it is difficult to control the free length which can cause the assembled diameter to vary. If P_1 is too high, it may not be possible to coil the spring because adjacent coils tend to climb over each other. This nonuniformity in the body diameter causes erratic loads.

Stress
Stress in a garter spring, based on circumferential load P, is derived from the equation used for compression and extension springs in static applications:

$$S = \frac{8PD}{\pi d^3} K_{W1}$$ \hspace{1cm} (8-5)

Final torsional stress should be within 275 to 415 MPa (40,000 to 60,000 psi) for most garter springs.
How to Specify
Only those characteristics which are critical to a garter spring’s performance should be given with tolerances. Noncritical characteristics should be given as reference. This will enable the manufacturer to meet mandatory specifications, such as loads and rates, without incurring extra costs. A suggested checklist for the designer is presented as a specification guide.

Garter Spring Design Example
The following information is given for a garter spring to be used in a radial shaft seal:

Given: Assembled free I.D. = D₁ = 21.00 mm (0.827”). Extended installed I.D. = D₂ = 24.50 mm (0.964”). Maximum outside diameter (spring body) = 1.90 mm (0.075”). Desired radial load = 0.2, ± 0.02 N/mm (1.1, ± .01 lbf/in.) of circumference at D₂. Material is ASTM A227.

1. Assembled length L₁, extended length L₂ and deflection f are calculated as follows:
 \[L₁ = \pi D₁ = \pi(21.00) = 66.00 \text{ mm} \]
 \[L₂ = \pi D₂ = \pi(24.50) = 77.00 \text{ mm} \]
 \[f = L₂ - L₁ = 77.00 - 66.00 = 11.00 \text{ mm} \]

2. Circumferential load P is determined using the Equation 8-2 relating radial and axial loads:
 \[P = \frac{F D₂}{2} = \frac{(0.2)(24.50)}{2} = 2.45 \text{ N} \]
3. Wire diameter is estimated assuming a design stress at the midpoint of the range, given in the previous section on stress, equal to 345 MPa, \(K_{w1} = 1.40 \) assuming an index of 4 to start and a mean coil diameter:

\[
D = \text{maximum outside coil diameter – tolerance on coil diameter} \\
D = 1.90 - 0.13 = 1.77 \text{ mm}
\]

\[
d = \sqrt[3]{\frac{8PD}{\pi S}} K_{w1} = \sqrt[3]{\frac{(8)(2.45)(1.77)(1.40)}{\pi(345)}} = 0.36 \text{ mm}
\]

Mean diameter is: \(D = 1.77 - 0.36 = 1.41 \text{ mm} \). The index which is \(1.41/0.36 = 3.9 \) is less than 4.

4. Assume a new wire diameter, \(d = 0.31 \text{ mm}, D = 1.77 - 0.31 = 1.46 \text{ mm} \).

5. Recalculate rate and load due to deflection:

\[
k = \frac{(7.93 \times 10^4)(0.31)^3}{(8)(1.46)^3(66)} = 0.138 \text{ N/mm}
\]

\[
k_f = (0.138)(11.00) = 1.52 \text{ N}. \text{ Because } k_f < P_e, \text{ the next step is to calculate the initial tension.}
\]

6. Initial tension \(P_e \) and stress \(S_l \) (uncorrected) are calculated as follows:

\[
P_e = P - k_f = 2.45 - 1.52 = 0.93 \text{ N}
\]

\[
S_l = \frac{8(0.93)(1.46)}{\pi(0.31)^3} = 116 \text{ MPa}
\]

The value of the stress due to initial tension is within the preferred range of 110 to 150 MPa, established in the paragraph on initial tension.

7. Final stress using \(K_{w1} = 1.33 \) for an index of 4.7, is:

\[
S = \frac{8PD}{\pi d^3} K_{w1} = \frac{(8)(2.45)(1.46)(1.33)}{\pi(0.31)^3} = 407 \text{ MPa}
\]

This is within the guidelines for design stresses in the previous paragraph on stress.

8. Radial load is now checked.

\[
P_{re} = 2\pi k - \frac{2\pi D_1 k}{D_2} + \frac{2P_1}{D_2}
\]

\[
P_{re} = 2\pi (0.138) - \frac{2\pi (2.1)(0.138)}{24.50} + \frac{(2)(0.93)}{24.50}
\]

\[
P_{re} = 0.2 \text{ N/mm}
\]
Garter Springs

Final Design Specifications:

Outside Coil Diameter: 1.77 ± 0.13 mm (0.070 ± 0.005")
Material: ASTM A227
Wire Diameter: 0.31 mm (0.012")

Load P at 77.00 mm (3.031"): 2.45 N (0.55 lbf), ± 10%

Assembled Length: 66.00 mm (2.598") Reference
Spring Rate: 0.138 N/mm (0.79 lbf/in.) Reference
Calculated Initial Tension: 0.93 N (0.21 lbf) Reference

Assembled I.D.: 21.0 ± 0.20 mm (0.827 ± 0.008")

Final Design Stress (K_{W1} corrected): 407 MPa (59,000 psi)

Stress Due to Initial Tension (uncorrected): 116 MPa (17,000 psi)
Helical Torsion Springs

Introduction
Helical springs used to apply a torque or store rotational energy are commonly referred to as torsion springs. The two most common types are single and double-bodied springs (Figure 9-1). Torsion springs are found in clothes pins, window shades, counterbalance mechanisms, ratchets and various types of machine components. They are also used as couplings between concentric shafts such as in a motor and pump assembly. Torsion springs are generally mounted around a shaft or arbor, and must be supported at three or more points. Various kinds of ends are available to facilitate mounting.

Torsion springs are stressed in bending. Rectangular wire is more efficient in bending than round wire, but due to the premium cost of rectangular wire, round wire is preferred. If possible, a torsion spring should always be loaded in a direction that causes its body diameter to decrease. The residual forming stresses are favorable in this direction, but unfavorable when the spring is loaded in a direction which increases body diameter. Unless there are unfavorable residual stresses in the end bends, springmakers normally heat-treat these springs at a low temperature to stabilize the end positions rather than to fully stress relieve them. If the direction of loading tends to increase body diameter, the springmaker should be advised to stress relieve the springs.

The Associated Spring SPEC line contains many torsion spring designs using stainless steel and music wire, either left or right-hand wound. These springs have tangent ends and are available for immediate delivery.

Number of Turns
The number of active turns in a helical torsion spring is equal to the number of body turns, plus a contribution from the ends. For straight torsion ends, this contribution is equal to one-third of the moment arms and is usually expressed as an equivalent number of turns:

\[N_e = \frac{L_1 + L_2}{3\pi D} \]

(9-1)
L₁ = length of the moment arm of the first end.

L₂ = length of the moment arm of the second end.

\[N_a = N_b + N_e \] \hspace{1cm} (9-2)

\(N_b \) = number of body turns.

Mean Diameter

Mean diameter is equal to I.D. plus O.D. divided by two. When the direction of loading ends to reduce the body diameter, the mean diameter changes with deflection according to:

\[D = \frac{D_1 N_b}{N_b + \theta} \] \hspace{1cm} (9-3)

where \(D_1 \) is initial mean diameter and \(\theta \) is deflection in revolutions. Clearance must be maintained between the shaft or tube and spring at all times to prevent binding. The ideal shaft size is equal to, or slightly less than, 90% of the I.D. when the spring is fully deflected (minimum diameter). Shafts significantly smaller than 90% should be avoided to prevent buckling during large deflections.

Length

Most torsion springs are close-wound, with body length equal to the wire diameter multiplied by the number of turns plus one. When a spring is deflected in the direction that will reduce the coil diameter, body length increases according to:

\[L = d(N_b + 1 + \theta) \] \hspace{1cm} (9-4)

For applications that require minimum hysteresis, springs should be designed with space between adjacent coils to reduce frictional losses.

Spring Rate

Spring rate for helical round wire torsion springs is given by:

\[k = \frac{M}{\theta} = \frac{Ed^4}{10.8DN_a} \] \hspace{1cm} (9-5)

The 10.8 factor is greater than the theoretical factor of 10.2 to allow for friction between adjacent spring coils and between the spring body and the arbor. This factor is based on experience and has been found to be satisfactory.
Loads for torsion springs should be specified at a fixed angular position (Figure 9-1). Presently, there is not a standard way to test loads for torsion springs. Consequently, in critical applications, it is advisable to contact Associated Spring engineers to establish a test method during prototype work.

Stress

Stress in torsion springs is due to bending, and for round wire is given by:

\[S = \frac{32M}{\pi d^3} K_B \]

During elastic deflection of a curved beam, the neutral axis shifts toward the center of curvature, causing higher stress at the inner surface than the outer. Wahl (Reference 3) has calculated the stress correction factor at the I.D. of a round wire torsion spring as:

\[K_{BID} = \frac{4C^2 - C - 1}{4C(C - 1)} \]

A convenient approximation for engineering calculations is:

\[K_{BID} = \frac{4C - 1}{4C - 4} \]
\[K_{BOD} = \frac{4C + 1}{4C + 4} \]

At low indexes, stress is significantly higher on the inner surface than the outer. These factors are useful to determine the stress range for cyclic applications and the set point for fully stress-relieved springs in static conditions.
Helical Torsion Springs

Applications. A stress correction factor of 1 is recommended to determine the set point of springs that have favorable residual stresses induced by yielding during forming. Yielding results in a more uniform stress distribution over the round cross section. Therefore, the actual stress correction factor approaches the recommended value of 1.

End Configurations

Some of the more common end configurations available are shown in Figure 9-2. Special configurations are available on request. In designing ends, it is important to recall that bends, loaded to decrease their radius of curvature, have favorable residual stresses. They can operate at higher applied stress levels than bends that increase the radius by loading. Frequently, spring performance is limited because the sharply bent ends have greater stress than the body. Equation 9-6 is generally employed to determine maximum bending stress in the ends. Torsion springs are subject to surging and resonance phenomena. The natural frequency n for a torsion spring with one end fixed is:

$$n = \frac{1.26 \times 10^3 d}{\pi D^2 N_a} \sqrt{\frac{E_g}{\rho}}; \text{ for steel } = \frac{2 \times 10^3 d}{D^2 N_a} \text{ metric (9-10)}$$

$$n = \frac{d}{8\pi D^2 N_a} \sqrt{\frac{E_g}{\rho}}; \text{ for steel } = \frac{8040d}{D^2 N_a} \text{ English}$$

and with both ends fixed:

$$n = \frac{2.5 \times 10^3 d}{\pi D^2 N_a} \sqrt{\frac{E_g}{\rho}}; \text{ for steel } = \frac{4 \times 10^3 d}{D^2 N_a} \text{ metric (9-11)}$$

$$n = \frac{d}{4\pi D^2 N_a} \sqrt{\frac{E_g}{\rho}}; \text{ for steel } = \frac{16080d}{D^2 N_a} \text{ English}$$

To avoid or minimize resonance phenomena, the natural frequency must be much greater than the operating frequency and/or the spring should contain initial tension.

Choice of Operating Stress – Static

Recommended maximum operating stresses for static applications are given as percentages of tensile strength in Table 9-1. For spring bodies or ends loaded in a direction that increases the radius of curvature, stress levels in the "stress-relieved" column are most appropriate. These stresses should be calculated using the appropriate K_B stress correction factor (Equation 9-8 or 9-9). When the outer surface is in tension, springs with a low index usually yield at the inner surface, while those with a high index may yield at the outer surface. For springs not stress-relieved and loaded in a direction that decreases the radius of curvature, the stress levels recommended for springs with favorable residual stress are appropriate. No stress correction factor is used since the spring has yielded.
Choice of Operating Stress – Cyclic
Maximum allowed operating stresses for cyclic applications are presented in Table 9-2 as percentages of tensile strength. All stresses are assumed to be calculated with the appropriate KB correction factor. This information can be used to estimate fatigue lives at other stress ranges by methods discussed previously (Section 4). Frequently, bending stresses are higher in the ends than in the body. In this situation, bear in mind that during forming of sharp bends, the wire may be stretched or marked, resulting in stress concentrations that reduce design stress levels below those recommended. Because of friction, the point of contact between torsion end and arbor is often the highest stressed area.

Double Torsion Springs
Double-bodied torsion springs are designed using the same methods as for single-bodied torsion springs. The rate for a double-bodied torsion spring is equal to the sum of the rates for each component. For the same wire diameter, coil diameter and wire length, double-bodied torsion springs have rates four times those of single-bodied types. Double-bodied torsion springs should be designed so they are coiled out from the center rather than in from the ends (Figure 9-3).

Rectangular Wire
Rectangular wire torsion springs have higher energy storage capacities than similar round wire springs. The general comments on round wire torsion springs apply to springs with rectangular wire. In producing springs
from rectangular wire, the wire cross-section distorts and becomes "keystoned" (Figure 9-4). The wire axial dimension b_1 can be estimated from:

$$b_1 = b \left(\frac{C + 0.5}{C} \right) \quad (9-12)$$

When axial length is critical, keystone-shaped wire can be purchased. This wire will have a near rectangular shape after coiling. The rate equation is:

$$k = \frac{M}{\theta} = \frac{Ebt^3}{6.6 \, D_{n_a}} \quad (9-13)$$

and the stress equation is:
These equations are for springs wound either on edge or on flat (Figure 9-4). Stress correction factor K_B is slightly lower than for round wire and can approximated by:

\[S = \frac{6M}{bt^2} K_B \quad (9-14) \]

\[K_{B1D} = \frac{4C}{4C - 3} \quad (9-15) \]
\[K_{BOD} = \frac{4C}{4C + 3} \quad (9-16) \]

Sharp corners on rectangular wire cause stress concentrations and should be avoided, while generous corner radii of rolled wire reduce the wire cross sections sufficiently to lower the rate.

Table 9-2. Maximum Recommended Bending Stresses (K_B Corrected) for Helical Torsion Springs in Cyclic Applications.

<table>
<thead>
<tr>
<th>Fatigue Life (cycles)</th>
<th>Percent of Tensile Strength</th>
<th>ASTM A228 and Type 302 Stainless Steel</th>
<th>ASTM A230 and A232</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Shot-Peened</td>
<td>Shot-Peened*</td>
<td>Not Shot-Peened</td>
</tr>
<tr>
<td>10^5</td>
<td>53</td>
<td>62</td>
<td>55</td>
</tr>
<tr>
<td>10^6</td>
<td>50</td>
<td>60</td>
<td>53</td>
</tr>
</tbody>
</table>

This information is based on the following conditions: no surging, springs are in the "as-stress-relieved" condition.
*Not always possible.

Fig. 9-4. Keystoned Cross Sections of Springs Wound on Edge and Flat
Helical Torsion Springs

Tolerances
Coil diameter and end position tolerances for helical torsion springs are presented in Tables 9-3 and 9-4 respectively. These tolerances should serve as guidelines, applied only to those dimensions critical to spring function. Closer tolerances are available upon request.

How to Specify
The accompanying checklist is suggested as a guide to designers and a vehicle for improved communications between designer and springmaker.

Design Example
Design a cabinet door hinge torsion spring to hold the door closed by exerting a torque \(M = 55 \text{ N mm} \) (0.49 lb-in.) at \(\alpha = 90^\circ \) (see Figure 9-1) between ends, each with a moment arm of 19 mm (0.748") and tangent to the body. Then the door is fully opened, the spring deflects through additional overtravel (\(\Delta \)) of 120\(^\circ\) or 1/3 revolution. Maximum spring length is 13 mm (0.512") and the spring operates over 6.0 mm (0.236") diameter arbor \(D_a \). Required life is 5,000 cycles. Use oil-tempered spring steel wire ASTM A229.

1. Assume a deflection \(\theta_1 \), from free to first loaded position is:
 \[\theta_1 = \Delta \theta = 1/3 \text{ revolution} \]
 Calculate \(\theta_2 \), the angular deflection to second loaded position:
 \[\theta_2 = \theta_1 + \theta = 2/3 \text{ revolution} \]

2. Calculate spring rate \(k \):
 \[k = \frac{M}{\theta} = \frac{55}{1/3} = 165 \text{ N mm/revolution} \]
 Calculate torque \(M_2 \) at \(\theta_2 \) deflection:
 \[M_2 = M_1 + k(\Delta \theta) = 55 + 165 (1/3) = 110 \text{ N mm} \]

3. Assume stress \(S_2 \) (at \(M_2 \)) to be equal to 1400 MPa and solve for:
 \[d = \sqrt[3]{\frac{32M_2}{\pi S_2}} = \sqrt[3]{\frac{32(110)}{\pi 1400}} = 0.9 \text{ mm} \]

4. Assuming the clearance between the arbor and spring inner surface to be 25\% of arbor diameter, calculate mean diameter:
 \[D = 1.25 \times D_a + d = 1.25 \times 6.0 + 0.9 = 8.4 \text{ mm diameter} \]

5. Calculate number of coils \(N_a \) from:
 \[N_a = \frac{Ed^4}{10.8Dk} = \frac{(20.7 \times 10^4)(0.9)^4}{10.8(8.4)(165)} = 9.1 \]
 where \(N_e = \frac{L_1 + L_2}{3\pi D} = \frac{38}{3\pi(8.4)} = 0.5 \)
 is a correction for ends. Therefore \(N_e = 8.6 \) coils
6. Adjust \(N_b \) so that partial coil agrees with the desired position of ends when spring is unloaded. Because \(90^\circ + 120^\circ \) is greater than \(180^\circ \), the desired partial coil is:

\[
\frac{540 - (90 + 360 \times 1/3)}{360} = 0.9
\]

Therefore, \(N_b = 8.9 \) and the adjusted mean diameter is:

\[
D = \frac{(20.7 \times 10^3)(0.9)^4}{10.8(8.9 + 0.5)(165)} = 8.1 \text{ mm}
\]

7. Calculate length of spring in loaded position:

\[
L = (N_b + 1 + \theta_i)d = (8.90 + 0.67 + 1) \times 0.9 = 9.5 \text{ mm}
\]

8. \(9.5 < 0.9 \times 13 = 11.7 \text{ mm} \), therefore the length is satisfactory.

9. Calculate clearance \(\Delta \):

\[
\Delta = \frac{D N_b}{N_b + \theta_i} - d - D_s = \frac{(8.9)(8.1)}{(8.9 + 0.66)} - 0.9 - 6.0 = 0.641 \text{ mm}
\]

10. Check whether the clearance is safe:

\[
0.64 \text{ mm} > 0.1 \times 6.0 = 0.60 \text{ mm}
\]

Therefore the clearance is satisfactory.

11. Check bending stress level for static application:

TS of 0.9 mm wire is 1870 MPa (271,000 psi) (Figure 3-3, page 19)

\[
S_2 = \frac{1400}{1870} = 75\% \text{ TS < 100\% (Table 9-1)}
\]

Therefore the stress level is satisfactory.

Final Design Specifications:

Material: ASTM A229

Outside Coil Diameter: 9.0 ± 0.09 mm (0.354 ± 0.0035")

Wire Diameter, \(d \): 0.9 mm (0.035") Reference

\(M_1 \) at \(a_1 \) position: 55 ± 5.5 N · mm (0.49 ± 0.05 lbf-in.)

\(M_2 \) at \(a_2 \) position: 110 N · mm (0.98 lbf-in.) Reference

\(N_b \): 8.9 coils ± 10º

Ends: Straight Torsion

Final Design Stress: 1400 MPa (203,000 psi) or 75% TS
HELICAL TORSION SPRING SPECIFICATION CHECKLIST

(Fill in required data only)

Material ________________________________

Working Conditions:
To work in ____________________________mm(in.) diameter hole
To work over ____________________________mm(in.) diameter shaft
Torque _______ N·mm.(lb-in.) , ± _______ N·mm.(lb-in.)
when angle between ends is _______degrees
Torque _______ N·mm.(lb-in.) , ± _______ N·mm.(lb-in.)
when angle between ends is _______degrees
Axial space required ________________________mm.(in.)
Direction of coil (right or left-hand) ________________
Maximum wound position _______ revolutions or degrees

Reference Data:
Wire diameter ____________________________mm(in.)
Mean diameter ____________________________mm(in.)
Number of coils ____________________________
Rate _______________ N·mm /revolution (lb-in./revolution)

Special Information:
Finish ________________________________
Loading (cyclic, impact, static, other) ________________
Required life ____________________________ cycles
Required reliability (see Section 4) ________________ revolutions
Operating deflection range ______________________ revolutions
Maximum operating temperature ___________________ °C(°F)
Operating environment __________________________

Table 9-3. Commercial Tolerances for Torsion Spring Coil Diameters.

<table>
<thead>
<tr>
<th>Wire Diameter mm (in.)</th>
<th>Tolerance: ± mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Spring Index D/d</td>
</tr>
<tr>
<td>0.38 (0.015)</td>
<td>0.05 (0.002)</td>
</tr>
<tr>
<td>0.58 (0.023)</td>
<td>0.05 (0.002)</td>
</tr>
<tr>
<td>0.89 (0.035)</td>
<td>0.05 (0.002)</td>
</tr>
<tr>
<td>1.30 (0.051)</td>
<td>0.05 (0.002)</td>
</tr>
<tr>
<td>1.93 (0.076)</td>
<td>0.08 (0.003)</td>
</tr>
<tr>
<td>2.90 (0.114)</td>
<td>0.10 (0.004)</td>
</tr>
<tr>
<td>4.37 (0.172)</td>
<td>0.15 (0.006)</td>
</tr>
<tr>
<td>6.35 (0.250)</td>
<td>0.20 (0.008)</td>
</tr>
</tbody>
</table>

Table 9-4. End Position Tolerances (for D/d Ratios up to and Including 16).

<table>
<thead>
<tr>
<th>Total Coils</th>
<th>Tolerance: ± Degrees*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 3</td>
<td>8</td>
</tr>
<tr>
<td>Over 3-10</td>
<td>10</td>
</tr>
<tr>
<td>Over 10-20</td>
<td>15</td>
</tr>
<tr>
<td>Over 20-30</td>
<td>20</td>
</tr>
<tr>
<td>Over 30</td>
<td>25</td>
</tr>
</tbody>
</table>

*Closer tolerances available on request.
Introduction
Retaining rings, also referred to as snap rings, primarily provide shoulders to locate or retain parts on shafts or in cylinders. Advantages of retaining rings are their economy of manufacture, ease of assembly and accuracy of positioning as compared to threaded fasteners.

The two major categories of retaining rings are internal and external (Figure 10-1). External rings are assembled over a shaft, while internal rings are assembled in a cylinder. Some external rings are installed over the shaft radially and require a larger gap than rings that are installed axially.

A primary design requirement is that a retaining ring stay in place throughout an assembly lifetime. Normally thrust loads are low. Provided the ring is loaded uniformly, thrust loads are not limited by material strength. After coiling, the material thickness near inner surface of the ring is greater than that of the original material (see Rectangular Wire). This change in thickness must be considered when selecting the wire and groove size. If required, an increase in thickness can be reduced by secondary operations.

End Configurations
Several common end configurations for retaining rings made from rectangular wire are shown in Figure 10-2. Selection of end configurations for round wire retaining rings is limited to inside and outside bends. Sharp bends in rectangular wire will cause it to keystone severely, and may require grinding to hold a specified maximum thickness.
Loads and Deflection

The maximum bending load on retaining rings usually occurs at a location opposite the gap during assembly and disassembly. Service loads are generally low. Loads and deflections are the same whether a ring is loaded externally or internally, as shown in the following equations:

\[
P_{f1} = P_{fE} = \frac{Ed^4f}{4D^3}; \text{ round wire, } \quad (10-1)
\]

90° from center of gap

\[
P_{f1} = P_{fE} = \frac{4Ebt^3f}{3\pi D^3}; \text{ rectangular wire, } \quad (10-2)
\]

90° from center of gap

\[
P_{f1} = P_{fE} = \frac{Ed^4F}{24D^3}; \text{ round wire, gap } \quad (10-3)
\]

\[
P_{f1} = P_{fE} = \frac{4Ebt^3F}{18\pi D^3}; \text{ rectangular wire, gap } \quad (10-4)
\]

\[f = \text{ total deflection at the middle of the ring.}\]
Retaining Rings

F = total deflection at the gap (see Figures 10-3 and 10-4).

Note that b is the axial dimension of the rectangular wire and t is the radial dimension.

Stress
Retaining ring bending stress depends upon direction of loading and is determined from equations in Table 10-1.

Choice of Stress Level
Most retaining rings are made from AISI 1065 steel at HRC 40 to 50 hardness level. Maximum allowable design stresses are shown in Table 10-2. Retaining rings fabricated by hardening and tempering after forming have no residual stresses; retaining rings fabricated from pretempered or hard-drawn wire contain residual stresses. If set is permitted in an application, stress levels can be increased by 10 to 20 percent depending on the amount of set permitted. If these higher stress levels must be used, consult Associated Spring engineers.

Fig. 10–2. Typical End Configurations for Internal and External Retaining Rings.
Fig. 10-3. Stress Correction Factors for Retaining Rings in Contraction Applications.
Retaining Rings

Tolerances
Standard tolerances for wire retaining rings are presented in Table 10-3. When measuring ring diameter, the scale must be held at right angles to the gap center line. Closer tolerances are available on request.

How to Specify
The accompanying checklist will aid an occasional designer of retaining rings in considering all pertinent specifications.

Retaining Ring Design Example
Design internal retaining rings of O.D. = 60.00 mm (2.362") and wire cross-sectional dimensions before coiling of t = 3mm (0.118") and b = 1.5mm (0.059"). They are to be used in an application where bore is 55.25 mm (2.175”), groove diameter is 58.25 mm (2.293") and width is 1.60 mm (0.063"). Material is (cold-drawn) ASTM A227 and finished ring hardness ranges from HRC 46 to 48, with a corresponding minimum tensile strength of 1525 MPa (221,000 psi). The rings must not set when assembled.
1. Calculate stress due to deflection f to assemble a ring:
 $f = \text{O.D. of ring minus the bore diameter}$
 $f = 60.00 - 55.25 = 4.75 \text{ mm}$

 Index $C = \frac{D}{t} = 19$. From Figure 10-3, the correction
 factor K_1 for stress calculations is 0.0035. Stress is
 calculated as follows:
 $$S_1 = \frac{fE K_1}{t} = \frac{(4.75)(20.7 \times 10^6)(0.0035)}{3}$$
 $S_1 = 1147 \text{ MPa or 75% TS}$

 Referring to Table 10-2, it can be seen that for patented
 and cold-drawn materials not stress-relieved, stresses in bending for infrequent deflections can be
 up to 100% TS without setting.

2. Ring material when coiled will keystone to some
 degree. To verify that a groove width is large
 enough, the finished dimension of the cross section is checked:
 $$b_1 = b \left(\frac{C + 0.5}{C}\right) = (1.5) \left(\frac{19 + 0.5}{19}\right) = 1.54 \text{ mm}$$

3. Load and stress at the assembled position are calcu-
 lated as follows:
 $f = \text{O.D. of ring minus installed groove diameter}$
 $f = 60.00 - 58.25$
 $f = 1.75 \text{ mm}$

 $$P = \frac{4Ef b t^3}{3\pi d^3} = \frac{4(20.7 \times 10^6)(1.75)(1.5)(3)^3}{3\pi(57)^3} = 33.6 \text{ N}$$
 $$S = \frac{3\pi P D^3 K_1}{4bt^4} = \frac{3\pi(33.6)(57)^3(0.0035)}{(4)(1.5)(3)^4}$$
 $S = 422 \text{ MPa or 28% TS}$

Final Design Specifications

Material: ASTM A227
Thickness: 1.5 mm (0.059")
Width: 3.0 mm (0.118")
Wound on Edge
O.D. in Free Position: 60.00 +0.78, -0.00 mm (2.126 +0.031, -0.000")
Stress During Assembly: 1147 MPa (166,000psi)
Load in Installed Position: 3.36 N (7.6 lbf) Reference
Stress in Installed Position: 442 MPa (61,000 psi)
Table 10-1. Stress Equations for Retaining Rings.

<table>
<thead>
<tr>
<th>Round Wire</th>
<th>Rectangular Wire</th>
<th>Deflection & Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_I = \frac{fE K_I}{d} \text{ or } \frac{4PD^3 K_I}{d^3}$</td>
<td>$S_I = \frac{fE K_I}{t} \text{ or } \frac{3\pi PD^3 K_I}{4bt^4}$</td>
<td>90° from center of gap</td>
</tr>
<tr>
<td>$S_E = \frac{fE K_E}{d} \text{ or } \frac{4PD^3 K_E}{d^3}$</td>
<td>$S_E = \frac{fE K_E}{t} \text{ or } \frac{3\pi PD^3 K_E}{4bt^4}$</td>
<td>At the gap</td>
</tr>
<tr>
<td>$S_E = \frac{fE K_E}{3d} \text{ or } \frac{8PD^3 K_E}{d^3}$</td>
<td>$S_E = \frac{fE K_E}{3t} \text{ or } \frac{3\pi PD^3 K_E}{2bt^4}$</td>
<td>90° from center of gap</td>
</tr>
</tbody>
</table>

d = wire diameter.
t = radial dimension of rectangular cross-section.
b = axial dimension.
f = deflection 90° from center of gap.
F = deflection at the gap of the ring.
$P_{FI} = P_{FE}$ is the load 90° from center of gap (Figure 10-3).
S_I = stress for internal rings.
S_E = stress for external rings.
K_I = correction factor given in Figure 10-3.
K_E = correction factor given in Figure 10-4.

Table 10-2. Maximum Design Stress Levels for Carbon Steel Retaining Rings in Static Applications.

<table>
<thead>
<tr>
<th>Type</th>
<th>Percent of Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stress-Relieved</td>
</tr>
<tr>
<td>External</td>
<td>80</td>
</tr>
<tr>
<td>Internal</td>
<td>80</td>
</tr>
</tbody>
</table>

Internal retaining rings contain favorable residual stresses as formed and are not usually stress-relieved. External rings contain unfavorable residual stresses as formed and are usually stress-relieved prior to use.
Table 10-3. Free Dimension Tolerances.

<table>
<thead>
<tr>
<th>Inside Diameter of Ring, Free mm (in.)</th>
<th>Inside Diameter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>External Rings mm (in.)</td>
<td>Internal Rings mm (in.)</td>
</tr>
<tr>
<td>under 32 (1.25)</td>
<td>+0.00 (0.000)</td>
<td>+0.38 (0.015)</td>
</tr>
<tr>
<td></td>
<td>−0.38 (0.015)</td>
<td>−0.00 (0.000)</td>
</tr>
<tr>
<td>32–76 (1.25–3)</td>
<td>+0.00 (0.000)</td>
<td>+0.78 (0.031)</td>
</tr>
<tr>
<td></td>
<td>−0.78 (0.031)</td>
<td>−0.00 (0.000)</td>
</tr>
<tr>
<td>76–127 (3–5)</td>
<td>+0.00 (0.000)</td>
<td>+2.00 (0.079)</td>
</tr>
<tr>
<td></td>
<td>−2 (0.079)</td>
<td>−0.00 (0.000)</td>
</tr>
<tr>
<td>127 (5) and over</td>
<td>+0.00 (0.000)</td>
<td>+3.17 (0.125)</td>
</tr>
<tr>
<td></td>
<td>−3.17 (0.125)</td>
<td>−0.00 (0.000)</td>
</tr>
</tbody>
</table>

RETAINING RING SPECIFICATION CHECKLIST

(Fill in required data only)

Material: Unless Otherwise Specified: AISI 1065

Working Conditions:

External ___________ Internal ___________

To work in __________ mm (in.) diameter, __________ mm (in.) groove width

Load ___________ N (lb) at __________ mm (in.)

Type of ends ___________

Method of assembly: axial __________ radial __________

Maximum gap during assembly __________ mm (in.)

Special Information:

Maximum operating temperature __________ °C (°F)

Operating environment __________

Finish __________

Design Data (Reference):

Material size __________ mm (in.)

Diameter of ring in free position __________ mm (in.)

http://home.asbg.com/ASPortal/Pages/Handbook/retaining_rings.htm (8 of 8) 11/18/2005 11:00:25 AM
Introduction
Belleville washers, Figure 11-1, also known as coned-disc springs and Belleville disc springs, were patented in France by Julien F. Belleville in 1867. When a load is applied, the washer tends to flatten causing radial and circumferential strains. This elastic deformation constitutes the spring action.

Belleville washers are used in two broad categories of applications. In one case, they provide very high loads at small deflections. Examples of these applications are stripper springs used in metal stamping dies and stacks of belleville washers used in recoil mechanisms and pressure relief valves. The other category utilizes the special nonlinear load deflection characteristics of belleville washers – particularly those with a constant load portion. In these applications, they maintain a constant force regardless of dimensional variations due to wear, temperature changes or tolerances. Typical applications include packing seals, lathe live centers and clutches.

The two types of performance depend on their height-to-thickness ratios. Typical load deflection curves for various ratios are shown in Figure 11-2. Note that the curve for low h/t ratios is nearly a straight line. At h/t = 1.41, the curve is nearly constant, with respect to load, for approximately the last 50% of deflection before flat and the first 50% deflection past flat. Above h/t = 1.41, the load decreases after reaching a peak. When h/t is greater than 2.83 (at some point beyond flat) the washer will snap through and will require a force to restore it to its free position.

Design formulas are complex and present a difficult challenge to an occasional spring designer. Associated Spring has hundreds of pre-engineered belleville washer designs in the SPEC product line. Selecting a SPEC belleville washer not only saves design time but also avoids tooling costs, improves delivery and is generally more cost-effective than custom-designed belleville washer.

Design Considerations
The method of mounting and loading affects performance and design of belleville washers. If a washer is mounted on a flat plate, its useful range of deflection for accurate loads is from 15 to 85% h. Deflections beyond 85% h are possible, but loads will be considerably higher than calculated. Loads should be applied uniformly around the inner and outer edges. Generous radii on the corners cause a decrease in the amount of active material, shorten the moment arm and increase the rate of belleville washers. Sharp radii cause stress concentrations and severely reduce fatigue life.

Some belleville washers must deliver precise loads near the flat position or be deflected beyond the flat position. In such cases, a method of mounting is recommended which positions the washer, applies load uniformly around its circumference, maintains a
Belleville Spring Washers

relatively constant amount of active material and provides a positive stop to prevent overtravel. One method is illustrated in Figure 11-3. Here, the rate will increase when the washer is deflected beyond flat because the moment arm decreases.

Stress is not distributed uniformly in belleville washers. The highest stress is at the top inner edge and is compressive (Figure 11-4). Highest tensile stresses are generated at both bottom corners. S\textsubscript{T2} is higher than S\textsubscript{T1} for most bellevilles with h/t ratios greater than 0.6 (Figure 11-5). In cyclic applications, it is good practice to calculate stress range at both locations. Belleville washers should be designed with stresses low enough to prevent setting if the washer is accidentally compressed to the flat position.

Design Calculations

Design equations are taken from the mathematical analysis by Almen and Laszlo and are: (Reference 5)

\[
P = \frac{Ef}{(1 - \mu^2)Ma^2} \left[(h - f)(h - f/2)t + t^3 \right] \quad (11-1)
\]

\[
P_F = \frac{Eht^3}{(1 - \mu^2)Ma^2} \quad (11-2)
\]

\[
S_c = \frac{-Ef}{(1 - \mu^2)Ma^2} \left[C_1(h - f/2) + C_2t \right] \quad (11-3)
\]

\[
S_{T1} = \frac{Ef}{(1 - \mu^2)Ma^2} \left[C_2t - C_1(h - f/2) \right] \quad (11-4)
\]

\[
S_{T2} = \frac{Ef}{(1 - \mu^2)a^2} \left[T_1(h - f/2) + T_2t \right] \quad (11-5)
\]

- A = O.D./2
- C\textsubscript{1} = compressive stress constant (see Figure 11-6)
- C\textsubscript{2} = compressive stress constant (see Figure 11-6)
- h = inside height
- H = overall height
- M = constant (Figure 11-6)
- PF = load at flat position
- R = O.D./I.D.
- S\textsubscript{c} = compressive stress at convex I.D. corner
- S\textsubscript{T1} = tensile stress at concave I.D. corner
- S\textsubscript{T2} = tensile stress at concave O.D. corner
- T\textsubscript{1} = tensile stress constant (see Figure 11-7)
- T\textsubscript{2} = tensile stress constant (see Figure 11-7)

In deriving these equations it was assumed that angular deflection of the cross section is relatively small, the cross section is not distorted during deflection and load is distributed uniformly around the circumference.
Fig. 11-1. Belleville Spring Washer.

Fig. 11-2. Load Deflection Curves for Belleville Washers with Various h/t Ratios.
Fig. 11-3. Mounting a Belleville Washer for Deflection Past the Flat Position.

Fig. 11-4. Highest Stressed Regions in Belleville Washers.
Fig. 11-5. Comparison of S_{T1} and S_{T2} for Various Deflections, h/t Ratios and Diameter Ratios (R Values) of Belleville Washers.
Fig. 11-6. Compressive Stress Constants for Belleville Washers.

\[C_1 = \frac{6}{\pi \ln R} \left[\frac{R - 1}{\ln R} - 1 \right] \]
\[C_2 = \frac{6}{\pi \ln R} \left[\frac{R - 1}{2} \right] \]
\[M = \frac{6}{\pi \ln R} \left[\frac{(R - 1)^2}{R^2} \right] \]
Fig. 11-7. Tensile Stress Constants for Belleville Washers.

\[
T_1 = \frac{R \ln R - (R - 1)}{\ln R} \times \frac{R}{(R - 1)^2}
\]

\[
T_2 = \frac{0.5R}{R - 1}
\]
Determining an optimum solution to a belleville washer design problem is a trial and error process which may have to be repeated many times. A simple approach, designed to minimize the number of repetitions, is presented below. All of the graphs are based on belleville washer designs with a ratio of O.D. to I.D. of 2 (R = 2). Designs that have R approximately equal to 2 have maximum energy storage capacity.

The first step is to select an appropriate h/t ratio based on the load, outside diameter and stress constraints given. For example, (referring to Figure 11-8), assume the desired load at flat is 1125N and outside diameter is 76 mm. A washer with an h/t equal to 1.41 would have a maximum stress S_c of 1500 MPa. Loads at intermediate deflection can readily be computed with the aid of Figure 11-9. Material thickness is then determined from:

$$t = \frac{1}{10} \sqrt[4]{\frac{OD^2 \times P_F}{132.4 \times (h/t)}} \quad \text{metric}$$

$$t = \sqrt[4]{\frac{OD^2 \times P_F}{19.2 \times 10^7 (h/t)}} \quad \text{English}$$

Before finalizing a design based on these graphs, it is best to check results using the equations, making final adjustments as required. For cyclic applications, stress levels S_{T1} and S_{T2} must be determined in order to estimate belleville washer life.
Belleville Spring Washers

Choice of Stress Level – Static
For static applications, stress at the convex inner corner S_c usually controls the spring set point. Carbon steel belleville washers will start to set when stress (S_c) reaches 120% of tensile strength (Table 11-1). Set is removed in most belleville washers, and in this case stress (S_c) can reach 275% of tensile strength before additional set occurs. These calculated stresses are considerably higher than actual stresses due to yielding. If washers are to be plated or operated at elevated temperatures, these values must be reduced.

Choice of Stress Level – Cyclic
For cyclic applications, it is necessary to consider both the stress level and stress range at the concave corners ST_1 and ST_2. Minimum and maximum stress must be evaluated at both ST_1 and ST_2 using a modified Goodman diagram. The location with the more severe conditions will control washer life. The modified Goodman diagram (Figure 11-10) illustrates fatigue strength for various thicknesses of carbon and alloy steel washers at HRC 47 to 49. Shot peening increases fatigue strength while burrs, edge cracks and surface imperfections reduce it.

Stacks of Belleville Washers
To increase deflection or loads, belleville washers can be used in series, parallel or a combination of series and parallel (Figure 11-11). Deflection for a series stack of identical belleville washers is equal to the number of washers multiplied by the deflection of one, while the load is equal to the load of one washer. When belleville washers with and h/t ratio greater than 1.3 are used in a stack, the load deflection curve will be erratic as some washers will snap through the flat position. To avoid this problem, the h/t ratio for each washer in a series stack should not exceed 1.3.

![Fig. 11-9. Load Deflection Characteristics for Belleville Washers.](http://home.asbg.com/ASPortal/Pages/Handbook/belleville_spring_washers.htm)
Load on a parallel stack of identical belleville washers is equal to the load of one multiplied by the number of washers, while deflection is equal to the deflection of one washer.

The load deflection curve for both series and parallel stacks has hysteresis due to friction. Hysteresis (Figure 11-12) is greater for parallel than series stacks and can be minimized by lubrication. The energy absorbed by this hysteresis helps to dampen vibrations. By careful selection, stacks can be designed with increasing, approximately linear or decreasing rates. Stacked belleville washers must be guided either over a pin or in a tube. Hardness of the guides should be at least HRC 50 to minimize wear. Clearance between washer holes and pin or tube should be about 1.5% of the relevant diameter.

Fig. 11-10. Modified Goodman Diagram for Fatigue Strength of Belleville Washers. Carbon and Alloy Steel at HRC 47-49 with Set Removed but Not Shot-Peened.

A belleville washer 0.8mm (0.030") thick may be expected to have a life of approximately 10^6 cycles.
Belleville Spring Washers

Tolerances
To ensure proper clearance, it is good practice to specify outside diameter with a minus-only tolerance and inside diameter with a plus-only tolerance. Recommended tolerances are shown in Table 11-2. Load tolerances should be specified at a test height. For belleville washers with h/t < 0.25, recommended load tolerances are ± 15%. For washers with h/t > 0.25, use ± 10%. The recommended tolerance for washers made of nonferrous materials generally is ± 15%. Closer diameter and load tolerances are available.

How to Specify
A checklist to aid the spring designer in specifying belleville spring washers is shown on the next page. For washers with critical load requirements, it is recommended that a test fixture be developed.

Table 11-1. Maximum Recommended Stress Levels S_c for Belleville Washers in Static Applications.

<table>
<thead>
<tr>
<th>Material</th>
<th>Percent of Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Set Not Removed</td>
</tr>
<tr>
<td>Carbon or Alloy Steel</td>
<td>120</td>
</tr>
<tr>
<td>Nonferrous and Austenitic Stainless Steel</td>
<td>95</td>
</tr>
</tbody>
</table>

Fig. 11-11. Stacks of Belleville Washers.

Series Parallel Combination of Series and Parallel
Belleville Spring Washer Design Example

In a clutch, a minimum pressure of 900N (202 lbf) is required. This pressure must be held as nearly constant as possible while the clutch facing wears down 0.80 mm (0.031”). The washer O.D. is 76 mm (2.99”). Material selected for this application is carbon steel.
1. Base the load on a value 10% above minimum load, or 900 + 10% = 990 N. Assume O.D./I.D. = 2. From Figure 11-9, select a load deflection curve which gives approximately constant load between 50 and 100% of deflection to flat. Choose the h/t = 1.41 curve.

2. From Figure 11-9, the percent load at 50% deflection to flat is 88%.

3. Flat load is $P_F = 990 / 0.88 = 1125$ N

4. Using Figure 11-8 (follow line A-B from 1125 N to h/t = 1.41, and line B-C to approximately 76 mm O.D.), estimated stress is 1500 MPa.

5. From Table 11-1, maximum static stress without set removed is 120% of tensile strength. From Table 19-1 tensile strength at HRC 48 will be approximately 1650 MPa. Yield point without residual stress will be $1650 \times 1.20 = 1980$ MPa. Therefore, stress 1500 MPa is less than maximum stress of 1980 MPa.

6. Stock thickness is

7. $h = 1.41 \times t = 1.41 \times 1.37 = 1.93$ mm
 $H = h + t = 1.93 + 1.37 = 3.30$ mm

8. Referring to Figure 11-9, the load of 990 N will be reached at $f_1 = 50\%$ of maximum available deflection. $f_1 = 0.50 \times 1.93 = 0.97$ mm deflection, or the load of 990 N will be reached at $H_1 = H - f_1 = 3.30 - 0.97 = 2.33$ mm height at load. To allow for wear, the spring should be preloaded at $H_2 = H_1 - f_2$ (wear) = 2.33 – 0.80 = 1.53 mm height. This preload corresponds to a deflection $f_2 = H - H_2 = 3.30 - 1.53 = 1.77$ mm. Then $f_2/h = 1.77/1.93 = 0.92$ or 92%.

9. Because 92% of h exceeds the recommended 85% (the load-deflection curve is not reliable beyond 85% deflection when a washer is compressed between flat surfaces), increase the deflection range to 40% to 85%. From Figure 11-9, the percent load at 40% deflection is 78.5% and $P_F = 990 / 0.785 = 1261$ N. Repeat previous procedures 4, 5, 6, 7, and 8, and find that $f_2/h \times 100 = 81\%$ of h.

Final Design Specifications:

Material: AISI 1074, 1075

O.D.: 76 +0.00, -0.05 mm (2.99 +0.00, -0.020")
I.D.: 38 +0.040, -0.00 mm (1.50 +0.016, -0.00")

Thickness t: 1.40 mm (0.055") Reference

Height h: 1.97 mm (0.078") Reference

Load: 990N (223 lbf) ± 10% at h1 = 1.18 mm (0.046")

Compressive S_C: 1276 MPa (185,000 psi) at f_2 85% of h

Tensile Stress S_{T1}: -203 MPa (-29,500 psi) at f_2 85% of h

Tensile Stress S_{T2}: +710 MPa (103,000 psi) at f_2 85% of h
BELLEVILLE SPRING WASHER SPECIFICATION CHECKLIST
(Fill in required data only.)

Material

Working Conditions:
To work in ________________mm(in.) diameter hole
To work over ________________mm(in.) diameter pin
Load __________________N(lbf), ± __________________N(lbf)
Test height __________________mm(in.)
Relaxation __________________%
Required life __________________cycles.
Required reliability (see Section 4) __________________

Special Information:
Maximum operating temperature ____________________ °C(°F)
Operating environment ____________________
To be used in a stack (type) ____________________

Reference Data:
Thickness ____________________mm(in.)
Outside Diameter ____________________mm(in.)
Inside Diameter __________________%mm(in.)
Free height ____________________mm(in.)
h/t __________________
Introduction
For purposes of classification, the term flat spring refers to all springs made from sheet, strip or plates that are not of another category such as washers or power springs. Flat springs may contain bends and complicated forms. Thus, the term flat is not an accurate description of the spring itself. Flat springs are produced in an unlimited variety of shapes from a wide assortment of materials.

Flat springs can perform functions beyond normal spring functions. A flat spring may be required to conduct electricity, act as a latch or hold a part in position. Because flat springs are custom-designed to perform several functions, standard designs are not available and tooling is often a major cost consideration.

Design techniques for flat springs vary in complexity. Simple methods, discussed in this handbook, use familiar cantilever and simple beam equations to determine stress and deflection. Recognizing that the neutral axis of a curved member is not at the centroid, more accurate results are obtained with equations based on curved beam theory. If the amount of elastic deflection is of interest, the Castigliano method is helpful. For a complete description of these methods, refer to "Design of Curved Members for Machines" by Blake (Reference 6). More recently, methods based on finite element analysis have been successfully employed for springs subject to relatively small deflections.

Design Considerations
Most flat springs are loaded in bending. The stress for relatively wide strip is highest at the surface between the two edges. For cyclic applications, a smooth surface is required. Sharp edges or burrs should be eliminated by abrasive finishing after blanking or avoided by use of edge-finished strip. Sharp bends are not only difficult to form but act as stress concentrators and should be avoided. Ductility of strip is greatest in a direction parallel to the rolling direction; therefore, the bend axis should be perpendicular to the rolling direction. Prestrengthened material is often more cost-effective than material that is hardened after forming because parts distort during hardening, sometimes requiring fixture tempering.

A detailed drawing, along with notes on the functional requirements of a part, is the best way to specify a flat spring. Although loads specified at a test height are easier to control than loads specified at a deflection, many designers specify loads at a deflection.

Design Equations
Design equations for flat springs are based on Bernoulli-Euler Beam Theory for the bending of beams subjected to small deflections. The maximum stress is:

\[
S = \frac{Mc}{I}, \quad \text{where } c \text{ is one-half the thickness.} \quad (12-1)
\]

For beam springs with a relatively low width-to-thickness ratio, the maximum stress and deflection, as given by the formulas below, are reasonably accurate. As the width-to-thickness ratio increases, however, the lateral deformation that would normally accompany the longitudinal fiber stresses becomes restricted, effectively increasing the flexural rigidity of the spring. This increased stiffness is accounted for by replacing the elastic modulus (E) by:

\[
\frac{E}{1 - \mu^2} \quad (12-2)
\]

in the beam deflection equations (12-4, 12-6, and 12-7). When the width-to-thickness ratio is greater than 10 and the length-to-width ratio is less than 5, this factor should be applied unless the load is distributed along the width of the spring. For example, with spring steel having \(\mu = 0.30 \) and a load concentrated at the center, the modulus should be increased by about 10%.

Cantilever Springs
The most basic type of flat spring is the rectangular cantilever spring. It is usually mounted as shown in Figure 12-1. Maximum bending stress occurs at the clamping point and is calculated from
These equations are only satisfactory when the ratio of deflection to cantilever length \((f/L)\) is less than 0.3. For large deflections, a method is shown in Figure 12-2.

In cantilever springs with a trapezoidal section (Figure 12-3), stress is uniform throughout. In general, benefits gained by using a trapezoidal section are offset by the increased production cost of this special shape. Stress for trapezoidal cantilever springs is determined from:

\[
S = \frac{6PL}{bt^2} \quad \text{(12-3)}
\]

Where the load is given by:

\[
P = \frac{fEb t^3}{4L^3} \quad \text{(12-4)}
\]

\[
S = \frac{6PL}{b_0 t^2} \quad \text{(12-5)}
\]

While the load is given by:

\[
P = \frac{fEb_0 t^3}{4L^3K} \quad \text{(12-6)}
\]

\(K\) is a constant based on the ratio of \(b/b_0\) (Figure 12-4). These equations are also only valid for small deflections where the ratio of deflection to cantilever length is less than 0.3.
Simple Beam or Elliptical Springs
Simple beams are usually rectangular in shape and formed into an arc as illustrated in Figure 12-5. Load is usually applied at the center of the arc. Such a spring is not subject to higher stresses at the clamping point as is a cantilever spring. If the spring is clamped or pierced to provide a precise location, stress increases will be encountered at the clamp or hole. When the ends are free to move laterally, deflection in the direction of loading is related to load by:

\[P = \frac{4fEbt^3}{L^3} \] \hspace{1cm} (12-7)

Stress is given by:

\[S = \frac{1.5PL}{bt^2} \] \hspace{1cm} (12-8)

These equations are only satisfactory for small deflections where the ratio of deflection to beam length \(f/L \) is less than 0.15.

Choice of Operating Stress
Maximum recommended operating stress levels are presented in Table 12-1 for static applications and 12-2 for cyclic applications. Allowances must be made for stress concentrations due to clamping, burrs and sharp bends for particular applications. A shift in position of the neutral axis causes a stress concentration at the inner surface of:

$$K_{ID} = \frac{3C^2-C-0.8}{3C(C-1)}$$

Fig. 12-2. Calculating Large Deflection in Cantilever Beams. (After Bisshopp and Drucker, Reference 7, page 102)

To use Fig. 12-2:

Calculate $\frac{12PL^2}{Ebt^3}$
and at the outer surface of:

\[K_{OD} = \frac{3C^2 - C + 0.8}{3C(C+1)} \]

C is the index as shown in Figure 12-6.

Holes, corners, notches and abrupt changes in cross section cause stress concentrations. The theoretical stress correction factor for the case of a transverse hole in wide strip is illustrated in Figure 12-7, where the nominal stress is calculated for the net section.

Tolerances

Tolerances for the blanked dimensions of flat springs are the same as tolerances for any metal stamping. Forming tolerances depend on the material and part configuration. Angular tolerances, due to forming, should be greater than \(\pm 2^\circ \) whenever possible. Thickness tolerances are equal to strip thickness tolerances presented previously (Table 3-12). Load tolerances also depend on part configuration but generally should not be less than \(\pm 10\% \). Associated Spring engineers should be consulted for specific tolerance information.

How to Specify

Because of the infinite variety of shapes and functions of flat springs, and engineering drawing is the best way to specify a part.
Fig. 12–3. Trapezoidal Cantilever Spring.
Flat Spring Design Example
Design a cantilever spring to exert a force of 5.0 ± 0.5N (1.1 ± 0.1 lbf) at a distance of 100 mm (3.937") from a clamp. The spring will be deflected an additional 5 mm to open an electrical circuit. A 1 million cycle life with a 90% survival rate is desired. Maximum width is 10 mm. The spring operates in an ambient environment, therefore AISI 1075 was selected.
1. Assume that the load in the fully deflected position is 60% greater than the load in the static position and that width is 8 mm. From the rate equation:

\[\frac{P}{f} = \frac{Ebt^3}{4L^3} = \frac{3}{5} = \frac{(207,000)(8)t^3}{(4)(100)^3} \]

Thickness is 1.13 mm (select t = 1.10).

2. Calculate stress:

\[S = \frac{6PL}{bt^2} = \frac{(6)(8)(100)}{(8)(1.1)^2} = 496 \text{ MPa} \]

TS for strip with high strength (Figures 3-4 and 3-6, page 21) is 1480 MPa (215,000 psi). Maximum stress divided by tensile strength equals 34%. Table 12-1 indicates that this is a safe operating stress. Maximum deflection is 8 divided by 0.6 which equals 13.3 mm. This is a small deflection since ratio f/L is less than 0.3.

Final Design Specifications

Length L: 100 mm (3.937”)
Width b: 8 mm (0.315”)
Thickness t: 1.1 mm (0.043”)
Load \(P_1 \): 5 ± 0.5 N (1.12 ± 0.11 lbf)
Load \(P_2 \): 8 N (1.80 lbf) Reference
Deflection \(f_1 \) at \(P_1 \): 8.3 mm (0.327")
Deflection \(f_2 \) at \(P_2 \): 13.3 mm (0.524")
Table 12-1. Maximum Design Stresses for Cantilever and Simple Beam Springs in Static Applications.

<table>
<thead>
<tr>
<th>Percent of Tensile Strength</th>
<th>Ferrous Material</th>
<th>Nonferrous Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Residual Stress</td>
<td>Maximum Residual Stress</td>
<td>No Residual Stress</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
<td>75</td>
</tr>
</tbody>
</table>

Table 12-2. Maximum Design Stresses for Carbon Steel Cantilever and Simple Beam Springs in Cyclic Applications.

<table>
<thead>
<tr>
<th>Number of Cycles</th>
<th>Percent of Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Shot-Peened</td>
</tr>
<tr>
<td>10^5</td>
<td>53</td>
</tr>
<tr>
<td>10^6</td>
<td>50</td>
</tr>
<tr>
<td>10^7</td>
<td>48</td>
</tr>
</tbody>
</table>

Shot peening is not recommended for thin materials and complex shapes. This information is based on an ambient environment. Stress ratio = 0.
Fig. 12-5. Simple Beam Spring.

![Simple Beam Spring Diagram](image-url)
Fig. 12–6. Stress Correction due to Shift in Neutral Axis at Sharp Bends.

\[C = \frac{2r}{t} \]

\[K_{ID} = \frac{3C^2 - C - 0.8}{3C(C - 1)} \]

\[K_{OD} = \frac{3C^2 - C + 0.8}{3C(C + 1)} \]
Fig. 12-7. Stress Concentration Factor (K_t) for Bending at Transverse Hole. (After Peterson, Reference 10, page 102.)

![Diagram of Stress Concentration Factor](image)
Introduction

Special spring washers exert a thrust load and absorb vibration, reduce end play or apply pressure. The state of stress is primarily bending, and most of the general design considerations for flat springs (Section 12) apply. Spring washers are used in seals, bearings, motors and other rotating mechanisms, and because of the trend toward miniaturization and compactness, demand for them is increasing.

The Associated Spring SPEC product line contains many precision engineered wave, curved and finger spring washers. These washers are made to close tolerances and are available for immediate delivery. Selecting SPEC washer designs saves design time, avoids tooling costs and is generally more cost-effective than specifying custom-designed parts.

Curved Washers

Curved washers exert a relatively light thrust load and are often used to absorb axial end play. Designers must provide space for diametral expansion in a direction perpendicular to the A dimension (Figure 13-1). Bearing surfaces should be hard to prevent washer corners from scraping or digging in. The spring rate is approximately linear up to 80% of available deflection. Beyond 80% the rate increases and is considerably higher than calculated.

Design equations for spring washers are similar to those for simple beams, discussed in Section 12, except for an empirical correction factor K. The equation for load is:
O.D. is outside diameter in the flat position and the equation for stress is:

\[P = \frac{4fEt^3}{(OD)^2K} \quad (13-1) \]

\[S = \frac{1.5P}{t^2} \quad K \quad (13-2) \]

Correction factor K is shown in Figure 13-2. These equations are approximate and yield satisfactory solutions only for deflections up to 80% of h where f is less than 1/3 of O.D. Associated Spring engineers should be consulted when clearances are critical or more exact designs required.

Fig. 13–1. Typical Curved Spring Washer.

Long axis of the washer in free position
Wave spring washers, Figure 13-3, are especially useful to apply moderate thrust loads when radial space is limited. The rate is linear between 20 and 80% of available deflection. During forming, the washer is often stretched at the crest and trough of the waves. Washers that are round in the free position go out-of-round when deflected. Generally, a ratio of $D/b = 8$ is a good balance between flexibility and load-carrying ability. When the ratio of D/b is substantially lower than 8, a belleville washer is preferred.

The number of waves N_a can be equal to 3 or more and is usually selected on the basis of desired spring rate, since spring rate is proportional to the number of waves raised to the fourth power, as:

$$k = \frac{P}{f} = \frac{Ebt^3N_a^4D_o}{2.40D^3D_l} \quad (13-3)$$

This formula is based on the equations for a simple beam with correction factors based on experience to improve accuracy. Stress is given by:

$$S = \frac{3\pi PD}{4bt^2N_a^2} \quad (13-4)$$

The outside diameter of the washer changes upon deflection and at flat is given by:

$$D_o' = \sqrt{D_o^2 + 0.458h^2N_a^2} \quad (13-5)$$

D_0 is the outside diameter in the free position. The above equations for load, stress and diametral change are not exact solutions, but do provide useful engineering estimates for design purposes.
Special Spring Washers

Finger Washers
Finger washers, Figure 13-4, combine the flexibility of curved washers and the distributed loading points of wave washers. Load, deflection and stress are approximated by assuming that the fingers are cantilever springs; then samples are made and tested to prove the design. Finger washers are used in static applications such as applying an axial load to ball bearing races to reduce vibration and noise.

Choice of Operating Stress – Static
Operating stresses recommended for special spring washers are similar to stress levels recommended for flat washers and are similar to stress levels recommended for flat spring and are shown in Table 13-1 as a percent of tensile strength. Finger washers are generally produced in the stress-relieved condition. If
favorable residual stresses are required, consult Associated Spring.

Choice of Operating Stress – Cyclic

Maximum recommended operating stresses for cyclic conditions are shown in Table 13-2 for curved and wave washers. Finger washers are not recommended for cyclic applications.

Tolerances

Dimensional tolerances are similar to those on flat springs. Load tolerances depend primarily on strip thickness tolerances and are listed in Table 13-3. All load tolerances should be specified at a test height and only those dimensions critical to spring function should have tolerances. Special tolerances are available for demanding applications.
Special Spring Washers

The specification checklist on the next page is provided as a guide to all critical aspects of special spring washers.

Special Spring Washer Design Example

A wave washer is needed to go into a 80 mm (3.15") bore and over a 60 mm (2.362") shaft, to support a load of approximately 500 to 550 N (112 to 124 lb) with 1.8 mm (0.071") deflection. The application requires a steady load and is therefore a static application. The washer will operate in an ambient environment. AISI 1075 is the preferred material.

Since deflection is comparatively large for a spring of this type, select the most flexible design — three wave configuration.

Assume a 75 mm (2.953") outside diameter and a 64 mm (2.320") inside diameter to fit the given conditions. This would make the mean diameter (D) 69.5 mm (2.736").

1. Substituting these values in the load-deflection equation, solve for thickness:
2.

Table 13-1. Maximum Recommended Operating Stress Levels for Special Spring Washers in Static Applications.

<table>
<thead>
<tr>
<th>Material</th>
<th>Percent of Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stress-Relieved</td>
</tr>
<tr>
<td>Steels, Alloy Steels</td>
<td>80</td>
</tr>
<tr>
<td>Nonferrous Alloys and Austenitic Steel</td>
<td>—</td>
</tr>
</tbody>
</table>

Finger washers are not generally supplied with favorable residual stresses.
\[t = 3 \sqrt{\frac{(2.40)(525)(69.5)^3(64)}{(207,000)(1.8)(5.5)(3)^4(75)}} = 1.30 \text{ mm} \]

\[P_1 = \frac{Efb t^3 N_a^4 \left(\frac{D_o}{D_i} \right)}{2.4 D^3} = 530 \text{ N} \]

Fig. 13-4. Typical Finger Spring Washer.
1. Set the maximum stress at solid at 80% of tensile strength. Steel with a hardness of HRC 49 has a tensile strength of 1725 MPa (250,000 psi) (Table 13-1 and Figure 3-6). 80% of 1725 MPa is 1380 MPa. Solve for deflection at that stress. Using the equation:

\[
f_s = \frac{9.6 \cdot D^2 \cdot S \cdot D_1}{3 \pi \cdot E \cdot N^2 \cdot D_0} = \frac{(9.6)(69.5)^2(1380)(64)}{(3)(207,000)(1.3)(3)^2(75)}
\]

\[
f_s = 2.39 \text{ mm}
\]

2.

Table 13–2. Maximum Recommended Operating Stress Levels for Steel Curved and Wave Washers in Cyclic Applications.

<table>
<thead>
<tr>
<th>Life (Cycles)</th>
<th>Percent of Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Stress</td>
</tr>
<tr>
<td>10^4</td>
<td>80</td>
</tr>
<tr>
<td>10^5</td>
<td>53</td>
</tr>
<tr>
<td>10^6</td>
<td>50</td>
</tr>
</tbody>
</table>

This information is based on the following conditions: ambient environment, free from sharp bends, burrs, and other stress concentrations. AISI 1075
Deflection to load of 1.8 mm is 75% of deflection to solid, which is satisfactory. Diameter in the deflected position:

\[D'_o = \sqrt{D_o^2 + 0.458h^2N^2} = \sqrt{(75)^2 + 0.458(1.80)^2(3)^2} \]

\[D'_o = 75.1 \text{ mm} \]

There is adequate clearance.

Final Design Specifications:

Material: AISI 1075
O.D.: 75 ± 0.2 mm (2.953 ± 0.008)
I.D.: 64 ± 0.2 mm (2.520 ± 0.008)
Thickness t: 1.30 mm (0.055 ± 0.002)
H: 3.69 mm (0.145") Reference
Load \(P_1 \): 530 N ± 12% (119 lbf ± 12%)
\(H_1 \): 1.89 mm (0.074")
<table>
<thead>
<tr>
<th>Special Spring Washer Specification Checklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Washer:</td>
</tr>
<tr>
<td>Curved, wave, finger, designer recommendation</td>
</tr>
<tr>
<td>Material:</td>
</tr>
<tr>
<td>Working Conditions:</td>
</tr>
<tr>
<td>To work in _________ mm (in.) diameter hole</td>
</tr>
<tr>
<td>To work over _________ mm (in.) diameter pin</td>
</tr>
<tr>
<td>Load _________ N (lb f) ± _________ N (lb f)</td>
</tr>
<tr>
<td>Test height _________ mm (in.)</td>
</tr>
<tr>
<td>Required reliability (see Section 4)</td>
</tr>
<tr>
<td>Describe one cycle</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Introduction
Power springs, also known as clock, motor or flat coil springs, consist of strip wound on an arbor and confined in a case or ring. Power springs store and release rotational energy in the form of torque, either through the central arbor or the case in which it is restrained. Power springs and prestressed power springs are similar in appearance. However, prestressed power springs have greater energy storage capacity due to residual stress distribution manufactured into the strip prior to placing the spring in its case. When a prestressed power spring is removed from its case, it assumes an S shape, while power springs assume a spiral shape (Figure 14-1). Although design procedures for the two types of springs are similar, manufacturing costs of prestressed power springs are often greater, especially in small quantities.

Because of their ability to store great amounts of rotational energy, power springs and prestressed power springs are used in clocks, spring motors for toys, cameras and timers, as well as in retractor mechanisms for electrical cords and seat belts. To meet the requirements of these varied applications, power springs are produced in a wide range of sizes. They are normally supplied in retainers and have assorted end configurations to facilitate assembly. Some typical retainers and end configurations are shown in Figure 14-2.

Design Considerations
Power springs are stressed in bending and the stress is related to torque by:

\[S = \frac{6M}{bt^2} \]

(14-1)
Load deflection curves for power springs are difficult to predict because the amount of active material changes as the spring is wound and because of friction between coils. Even well-lubricated springs, made by special techniques to reduce friction, exhibit irregular torque behavior and great hysteresis (Figure 14-3). On unloading to zero torque, the arbor may not always return to its original position. In practice, most springs are preloaded to assure a minimum torque at a fixed number of turns. Because of the steep slope at the start and end of the torque rotation curve, torques should be specified between 20 and 80% of total rotation.

The ratio of arbor diameter to stock thickness D_a/t is an important consideration. If the arbor is too small, the spring will set, and if D_a/t is large, it will not be possible to achieve maximum torque. D_a/t ratios of 15 to 25 are generally considered satisfactory.

A second important design consideration is case size in relation to the amount of strip. Laboratory tests have shown that for maximum energy storage capacity, a spring should occupy 40 to 50% of the available space between arbor and case. If more strip is used, the number of turns available for rotation decreases and if less strip is used, the same spring could be put into a smaller case.

The third design consideration is that rotation to solid for most power springs should be fewer than 25 turns and the length-to-thickness ratio should be less than 15,000 because of friction. Prestressed power springs can have higher length-to-thickness ratios and more revolutions to solid.
The final design consideration concerns expected life. Power springs operate at very high stress levels and rarely have lives greater than 200,000 cycles. Lives in the 2,000 to 100,000 cycle range are considered acceptable for most applications. Using round edge material increases life; however, for long life, it is necessary to reduce stress levels. Power springs made from 0.20 to 1.2 mm (0.008 to 0.047") pretempered AISI 1095 steel in the HRC 50 to 52 range can be stressed at 100% of tensile strength for lives up to approximately 10,000 cycles. If maximum stress is 50% of tensile strength, the expected life is approximately 100,000 cycles. The stress ratio is 0 in both cases.

Design Equations

To design a power spring that will deliver a given torque and number of turns, the first step is to determine its maximum torque in the fully wound position, using a normalized torque revolution curve (Figure 14-4). If, for example, a design requires a spring to deliver a minimum torque of 0.5 N • m for 10 revolutions and assuming this occurs at the 80% unwound position, maximum torque at solid would be 1.0 N • m. A 10 mm wide 0.58 mm (0.023") thick is required to deliver this torque (Figure14-5). If strip width were 20 mm, the torque per
Fig. 14-4. Typical Normalized Torque-Revolution Curve for Power Springs.

- $L = 5000 \text{ to } 10000$
- $\frac{D_o}{t} = 15 \text{ to } 25$

Spring occupies half the available space

Key:
- Torque, % of Fully Wound
- Revolutions from Solid (% of Total)
mm of width would be cut in half, and thickness is 0.43 mm. Average maximum solid stress for this thickness is 1920 MPa (278,000 psi) from Figure 14-6.

The number of turns that a power spring will deliver when it occupies one-half of the space between arbor D_a and case D_c can be estimated from the theoretical equation:

$$\theta = \frac{\sqrt{2(D_c^2 + D_a^2) - (D_c + D_a)}}{2.55t} \quad (14-2)$$

The actual number of turns delivered in practice is a half to one turn less than this value due to the small diameter "free" coils near the arbor. The spring length is:

$$L = \frac{D_c^2 - D_a^2}{2.55t} \quad (14-3)$$
These are optimum conditions and the springs should not be made longer, although it may be made shorter if a reduction in the number of revolutions is acceptable.

When the ratio of space occupied by material to available space is not 50% the following applies:

\[
\theta = \frac{\sqrt{1.27tL + D_a^2} + \sqrt{D_c^2 - 1.27tL} - (D_c + D_a)}{2t} K \quad (14-4)
\]

K is an empirical factor from Table 14-1. Selecting the proper levels of a variable such as arbor diameter, case diameter, number of revolutions and strip length is a trial and error process. An aid to reduce the number of repetitions necessary to choose the best relationship between these variables is shown in Figure 14-7.

The design procedure for prestressed power springs is similar to that for power springs. Prestressed power springs have a greater energy storage capacity and can produce 25 to 55% more torque than comparable power springs. Prestressed power springs designed to deliver the same torque as regular power springs in the same space envelopes are made from thinner strip and have a greater
number of turns available. A common high volume application for prestressed power springs is in automotive seat belt retractors.

Prestressed power springs are characterized by a relatively flat torque-revolution curve. The design procedure for retractor springs is to first determine the torque at solid using the generalized torque-revolution curve (Figure 14-8) for prestressed power springs. The strip thickness is a function of maximum torque at solid (Figure 14-9). Cross curvature imparted to the strip minimizes intercoil friction. The total number of turns available in a prestressed power spring is:

\[
\theta = \frac{\sqrt{\left(\frac{D_a^2}{t}\right)^2 + \frac{4L}{\pi t} - \frac{D_a}{t}}} {2} - \left(4 + \frac{D_c}{t} - \sqrt{\left(\frac{D_c^2}{t}\right)^2 - \frac{4L}{\pi t}}\right)
\]

\[(14-5)\]

<table>
<thead>
<tr>
<th>(0.785 \frac{(D_c^2 - D_a^2)}{Lt})</th>
<th>1.5</th>
<th>1.6</th>
<th>1.7</th>
<th>1.8</th>
<th>1.9</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0.850</td>
<td>0.834</td>
<td>0.823</td>
<td>0.813</td>
<td>0.804</td>
<td>0.795</td>
</tr>
</tbody>
</table>

\text{Table 14-1. Factor K for Calculating the Number of Revolutions a Power Spring Will Deliver.}

Calculate the expression and select the nearest value. Choose the appropriate K factor.
Prestressed retractor springs occupy less than 50% of the space available. Arbor diameter is usually 35 to 55 times the material thickness and the length-to-thickness ratio is typically 20,000. Prestressed power springs have lives from 80,000 to 120,000 cycles when made from 0.20 to 0.25 mm (0.008 to 0.010”) thick, high tensile AISI 301 stainless steel or carbon steel, and subjected to maximum calculated stresses in the range of 1650 to 2930 MPa (239 to 425X10³ psi).

How to Specify
Because the performance of power springs or prestressed power springs is very dependent on manufacturing technique, only the arbor, case, end configurations and functional properties should be specified and given tolerances. Material thickness and length should be reference dimensions. Torque is usually specified as either a minimum or maximum value at a given number of turns from solid. Torque can also be specified at a nominal value with a ± 15% tolerance at a specified number of turns from solid. Life should be specified as the S₁₀ or cycle range in which 90% of the springs are expected to survive. Many power springs and prestressed power springs are
supplied in a case with the inside end free. End positions are reference dimensions.

Power Spring Design Example

Assume a power spring is to deliver a minimum torque of \(2.54 \text{ N} \cdot \text{m}(22.5 \text{ lbf-in.})\) at eight full revolutions of the arbor. It is to work inside a 102 mm (4") diameter case. Width of stock is 19 mm (0.75"). What are the thickness \(t\) and active length \(L\)?

1. It is best to design about 10% higher than minimum torque or \(2.54 + 10\% = 2.8 \text{ N} \cdot \text{m}\).

2. Assume a load point at some middle position, say 66% of rotation to solid. Since 66% wound is the same position as 34% unwound, from Figure 14-4, it can be seen that the spring will produce 92% of full torque. The fully wound torque is \(2.80 \text{ N} \cdot \text{m} ÷ 0.92 = 3.04 \text{ N} \cdot \text{m}\). Total number of revolutions will be \(8 ÷ 0.66 = 12.1\). Because 12.1 – 8 = 4.1 is greater than 1, it is not necessary to add more material.

Fig. 14–8. Typical Torque-Revolution Curve for Prestressed Power Springs. Made from Steel Strip 0.13–0.26 mm (0.005–0.010") thick.

\[
\begin{align*}
L &= \frac{5000}{t} \\
D_o &= \frac{25}{t} \\
20,000 & \leq \text{Torque}\%\,\text{of}\,\text{Fully}\,\text{Wound} \\
55 & \leq \text{Revolutions from Solid (\% of Total)}
\end{align*}
\]
1. Using 19 mm width of stock, torque is $3.04 \text{ N} \cdot \text{m} \times \frac{10}{19} = 1.60 \text{ N} \cdot \text{m}$. Material thickness is 0.76 mm (Figure 14-5).

2. In Figure 14-7, the L/t ratio for 12.1 total revolutions is 5,500 and D_c/t ratio is 120, therefore length L is $0.76 \times 5500 = 4180$ mm and case diameter (D_c) is $0.76 \times 120 = 91.2$ mm. Assuming a nominal D_a/t ratio of 20, arbor diameter (D_a) is $0.76 \times 20 = 15.2$ mm. Rechecking the total available revolutions by:

\[
\theta = \frac{\sqrt{2(D_c^2 + D_a^2)} - (D_c + D_a)}{2.55t}
\]

\[
\theta = \frac{\sqrt{2(91.2^2 + 15.2^2)} - (91.2 + 15.2)}{(2.55)(0.76)}
\]

\[
\theta = 12.56 \text{ revolutions}
\]

This agrees closely with the original calculation of 12.1. Torque is directly proportional to width.

Final Design Specifications

- Thickness t: 0.76 ± 0.019 mm ($0.030 \pm 0.00075''$)
- Width b: 19 ± 0.13 mm ($0.750 \pm 0.005''$)
- Material: AISI 1095 carbon steel
- Length L: 4180 mm ($164''$) Reference
- Case Diameter D_c: 91.2 mm ($3.60''$)
- Shaft Diameter D_a: 15.2 mm ($0.598''$)
- Minimum Torque at 8 Revolutions: $2.54 \text{ N} \cdot \text{m}$ (22.5 lbf-in.)
Fig. 14-9. Maximum Theoretical Torque at Solid for Prestressed Power Springs.

Torque is directly proportional to width.
Introduction

A constant force spring is a roll of prestressed strip which exerts a nearly constant restraining force to resist uncoiling (Figures 15-1 and 15-2). The force is constant because the change in the radius of curvature is constant. This is true if the change in coil diameter due to buildup is disregarded.

Long extension capabilities, constant torque and virtual absence of intercoil friction have led many designers to specify constant force springs in such applications as brush springs for motors, counterbalance springs for window sashes and carriage return springs for typewriters. Constant force motor springs are used to drive mechanisms for timers, movie cameras and cable retractors. Associated Spring has included many pre-engineered constant force extension springs in the SPEC product line. These springs are available for immediate delivery and are especially useful to designers and engineers for prototype applications.

Extension Type

Constant force extension springs are supplied as a coil of strip with a natural radius of curvature \(R_n \) (Figure 15-3). If such a spring is mounted on a drum, the drum diameter should be 10 to 20% larger than its natural diameter. One and one-half wraps should remain on the drum at maximum extension. The active portion of the material is approximately equal to 1.25 times the diameter \(D_D \). Consequently, the spring does not reach its rated load until the extension is greater than 1.25 \(D_D \) (Figure 15-1). Radius of...
Curvature changes from \(R_n \) to infinity in the active portion and requires a clearance. Recommended distance from drum center to the straight section is 0.8 times the diameter \(D_D \) (Figure 15-3). The strip becomes unstable at long extensions and should be guided to prevent twisting or kinking on recoil. Idler pulleys must be larger in diameter than the natural diameter and should never be used to cause back-bending against the natural radius of curvature (Figure 15-4). Idler rolls reduce the life of constant force springs. The maximum recommended bending stress levels based on strip with a No. 1 round edge are shown in Figure 15-7. Some typical methods for mounting extension type springs are illustrated in Figure 15-5.
The design equations for extension type springs are:
Constant Force Springs

\[
P = \frac{E b t^3}{6.5 D_n^2} \quad \text{for } N \leq 10 \\
P = \frac{E b t^3}{6.5 D_1} \left(\frac{2}{D_n} - \frac{1}{D_1} \right) \quad \text{for } N > 10 \\
S = \frac{E t}{D_n}
\]

- \(D_1\) = outside coil diameter
- \(D_D\) = drum diameter
- \(D_n\) = natural diameter
- \(N\) = number of turns
- \(L = 1.56N (D_1 + D_D) = f + 5D_D\)

For typical designs, ratio \(b/t = 100\) and ratio \(D_D/D_n = 1.2\).

Tolerances

Width tolerances are equal to the tolerances on the slit strip. Allowance must be made in the guides to accommodate edge camber inherent in strip. Load tolerances normally are held within ± 10%; closer tolerances are available on request.
Motor Type

Constant force spring motors are available in two configurations known as A and B motors (Figure 15-6). When a constant force spring is mounted on output and storage drums, the spring will tend to lower its potential energy by winding onto the storage drum. Torque can be applied or generated from the output drum. Constant torque should not be mistaken for constant speed. To achieve constant speed, the mechanism must be restrained by a governor or similar device.

The design equations for B motors are:

\[
M = \frac{Eb t^3 D_3}{13} \left(\frac{1}{D_n} + \frac{1}{D_3}\right)^2 \\
S = Et \left(\frac{1}{D_n} + \frac{1}{D_3}\right) \\
L = \pi N (D_3 + N t) + 10 D_3 \\
R_c = R_n \sqrt{4 + \frac{4R_3}{R_n} + \frac{R_n}{R_3} + \left(\frac{R_3}{R_n}\right)^3}
\]

\[\text{D}_n = \text{natural diameter} \]
\[\text{D}_2 = \text{storage drum diameter} \]
\[\text{D}_3 = \text{output drum diameter} \]
\[\text{R}_3 = \text{output drum radius} \]
\[\text{R}_c = \text{center to center distance of drums} \]

Note that for A motor springs, \(D_3 \) is negative in the torque equation and drops out of the stress equation. Typical values for the design parameters are:

\[b/t = 100, \ D_n/t = 250, \ D_3/D_n = 2, \ D_3/D_2 = 1.6 \]
Choice of Stress Levels

Maximum recommended stress levels for constant force spring motors depend on desired life. Stress is estimated from Equation 15-6 which gives the theoretical fiber stress in a spring. Due to residual stresses, the actual stress experienced by a spring may be considerably less than indicated. However, in most cases, the Equation 15-6 gives a good stress approximation. Stress versus cycle life is presented in Figure 15-7. The term cycle refers to a stress cycle experienced by any portion of the spring. Moving an element of material through the active region constitutes a cycle for that element.
Tolerances
Width tolerances for constant force motor springs are dictated by strip tolerances and diameter tolerances are determined by storage and output drum tolerances. Torque tolerances are \(\pm 10\% \). In specifying constant force spring motors, only the space and functional requirements should have tolerances. Strip thickness and length should be considered reference dimensions.

How to Specify
The specification checklist below is provided as a guide to all critical aspects of constant force springs.
Fig. 15-7. Maximum Bending Stress versus Number of Stress Cycles for Constant Force Spring Motors. Based on No. 1 Round edge strip

CONSTANT FORCE SPRING SPECIFICATION CHECKLIST

(Fill in required data only)

Type of Constant Force Spring:
- Extension type _____________, motor type _____________

Material _____________

Working Conditions:
- Allowable space envelope for spring _____________
- Load _____________N(lbf) ± _____________N(lbf)
- Torque _____________N·mm(lbf-in.) ± _____________N·mm(lbf-in.)
- Extended length _____________mm(in.)
- Required life _____________cycles
- Number of revolutions required _____________
- Describe one cycle _____________

Special Information:
- Maximum operating temperature _____________°C(°F)
- Operating equipment _____________

Reference Data:
- Thickness _____________mm(in.)
- Width _____________mm(in.)
- Length _____________mm(in.)
- Material edge no. _____________
- Drum diameter (extension type) _____________mm(in.)
- Output drum diameter (motor type) _____________mm(in.)
- Storage drum diameter (motor type) _____________mm(in.)
- Natural diameter _____________mm(in.)
- Center-to-center distance of drums _____________mm(in.)
Introduction
This group includes hair springs and spiral torsion springs or brush springs. Spiral springs are characterized by the requirement that their coils do not touch during operation. Stress occurs in bending and, in most applications, deflections are limited to fewer than three revolutions.

Hair Springs
Hair springs are small spiral springs with space between coils. Hair springs are used in meters, instruments and timing mechanisms, and are usually mounted on hubs or collets. The outer end is often clamped or hinged. If a hair spring is subject to deflections greater than two to three revolutions, the coils become unstable and buckle into a ball-like configuration called caging. In general, the width-to-thickness ratio b/t should be kept within a range of 3:1 to 15:1. The length to thickness ratio L/t should be in a 1000:1 to 3000:1 range. A typical design is one with a b/t = 10 and L/t = 2000.

Deflection is given by:

This equation applies when both ends are rigidly mounted. If the outer end is hinged, deflection for a given torque will be about 25% greater than calculated above. Spring rate is constant, provided the length of active material remains constant. Hysteresis is near zero.

Uncorrected stress is calculated from:

\[S = \frac{6M}{bt^2} \]
(16–3)
For fatigue applications, particularly for hair springs that contain sharp bends, a correction factor that accounts for curvature is used. Correction factors are expressed as:

Round wire:

\[K_{OD} = \frac{4C + 1}{4C + 4} \]
\[K_{ID} = \frac{4C - 1}{4C - 4} \]

Square wire:

\[K_{OD} = \frac{4C}{4C + 3} \]
\[K_{ID} = \frac{4C}{4C - 3} \]

Choice of Stress Level

Maximum corrected stresses for hair springs subject to cyclic service are presented in Table 16-1. These stresses are for a stress ratio of zero. For applications subject to stress reversal, maximum stress values should be reduced to 60% of stated values.

Tolerances

Hair springs are produced in a wide range of sizes. For small sizes, their tolerances depend on wire tolerances. Associated Spring engineers should be consulted for specific tolerance information.

Brush Springs

Spiral torsion springs are generally called brush springs because of their historic use in applying pressure to carbon brushes in motors and generators. Brush springs are seldom deflected more than 360° and generally have a length-to-thickness ratio L/t between 200 and 1000. The torque revolution curve is linear, provided that rotation is small, the coils do not touch each other and the amount of active material remains constant. Design equations are the same as for hair springs. Short brush springs with fewer than two turns will have a slightly higher rate than indicated in these equations.
Selecting an arbor diameter to determine space requirements for a brush spring is complex. The task is made easier by use of:

\[\theta \approx \frac{\sqrt{D_a^2 + 1.27Lt}}{2t} - \frac{2L}{\pi(OD+D_a)} \]

\(D_a \) = arbor diameter.

This approximation assumes that coils are spaced uniformly in the free position. Inactive material at points of attachment is not considered.

Choice of Stress Level

Maximum uncorrected stress levels for static applications are shown in Table 16-2. For fatigue applications, maximum corrected stress levels are presented as a function of life in Table 16-3. Correction factors are necessary to account for the stress concentration due to curvature (Equations 16-4, 5, 6, or 7).

Table 16–1. Maximum Corrected Design Stresses for Hair Springs in Cyclic Applications.

<table>
<thead>
<tr>
<th>Material</th>
<th>Maximum Stress</th>
<th>Modulus E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MPa</td>
<td>psi</td>
</tr>
<tr>
<td>Spring Steel</td>
<td>552</td>
<td>80,000</td>
</tr>
<tr>
<td>18–8 Stainless</td>
<td>517</td>
<td>75,000</td>
</tr>
<tr>
<td>Ni-Span C</td>
<td>552</td>
<td>80,000</td>
</tr>
<tr>
<td>Beryllium Copper</td>
<td>414</td>
<td>60,000</td>
</tr>
<tr>
<td>Phosphor-Bronze</td>
<td>414</td>
<td>60,000</td>
</tr>
</tbody>
</table>

This information is based on ambient conditions. Stress ratio is 0. For a stress ratio of -1, these stress values must be multiplied by 0.6.
Spiral Springs

Tolerances
While the dimensional tolerances for brush springs vary with the application, load, tolerances can be held within ±10%.

How to Specify
The specification checklist below is provided as a guide to all critical aspects of spiral springs.

Brush Spring Design Example
A torque of 100 N·mm (0.885 lb-in) is required for 120° of revolution. The spring can be 6.5 mm (0.256") wide and will work on a 9.5 mm (0.374") diameter arbor. Material is carbon steel. Stress at 100 N·mm (0.855 lb-in) is 585 MPa (85,000 psi). Both ends are clamped and there are no sharp bends.

<table>
<thead>
<tr>
<th>Material</th>
<th>Percent of Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stress-Relieved</td>
</tr>
<tr>
<td>Carbon Steel</td>
<td>80</td>
</tr>
<tr>
<td>Nonferrous and Austenitic Stainless Steel</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 16-2. Maximum Uncorrected Design Stresses for Brush Springs in Static Applications.
\[S = \frac{6M}{bt^2}, \quad t = \sqrt{\frac{6M}{bs}} = \sqrt{\frac{6(100)}{6.5(585)}} = 0.397 \text{ mm} \]

Then \(L = \frac{\pi Ebt^3 \theta}{6M} \), when \(\theta = \frac{120}{360} = 0.333 \) revolutions

\[L = \frac{\pi(20.7 \times 10^4)(6.5)(0.397)^3(0.33)}{6(100)} = 146.8 \text{ mm} \]

and \(\text{O.D.} = \frac{2L}{\pi \left(\frac{\sqrt{D_a^2 + 1.27Lt} - D_a}{2t} - \theta \right)} - D_a \)

\[= \frac{2(146.8)}{\pi \left(\frac{\sqrt{(9.5)^2 + (1.27)(146.8)(0.397)} - 9.5}{2(0.397)} - 0.333 \right)} - 9.5 \]

\(\text{O.D.} = 14.8 \text{ mm} \)
Table 16-3. Maximum Corrected Design Stresses for Carbon Steel Brush Springs in Cyclic Applications.

<table>
<thead>
<tr>
<th>Fatigue Life (Cycles)</th>
<th>Percent of Tensile Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Corrected Stress</td>
</tr>
<tr>
<td>10^4</td>
<td>80</td>
</tr>
<tr>
<td>10^5</td>
<td>62</td>
</tr>
<tr>
<td>10^6</td>
<td>60</td>
</tr>
<tr>
<td>10^7</td>
<td>58</td>
</tr>
</tbody>
</table>

This information is based on ambient conditions. Springs are free from burrs, notches and stress concentrations. Stress ratio is 0.

SPIRAL SPRING SPECIFICATION CHECKLIST
(Fill in required data only.)

- **Type of spiral spring:**
 - Hair spring
 - Brush spring

- **Material:**

- **Working Conditions:**
 - To work over ________ mm (in.) diameter arbor/hub
 - To work in ________ mm (in.) diametral space
 - Torque ________ N-mm (lb-f-in.) at ________ degrees of rotation
 - Torque ________ N-mm (lb-f-in.) at ________ degrees of rotation
 - Required life
 - Describe one cycle

- **Special Information:**
 - Maximum operating temperature ________ °C (°F)
 - Operating environment
 - Describe arbor/hub (sketch)
 - Describe inner and outer ends (sketch)

- **Reference Data:**
 - Thickness ________ mm (in.)
 - Width ________ mm (in.)
 - Length ________ mm (in.)
 - Material edge no.
Volute Springs

Introduction
Volute springs are similar to conical compression springs. A volute spring consists of a relatively wide, thin strip of metal wound on the flat so that each turn or coil telescopes inside the preceding one. The material is stressed in torsion. Such a spring, when fully compressed, has a solid height equal to the strip width. Double volute springs are similar to two volute springs in series, but must be made from blanked forms (adding to their cost).

Volute springs can store large amounts of energy in a small space. Other advantages include vibration damping provided by friction between the coils, extra absorption of impact energy, good lateral stability and a nonlinear load deflection curve. The latter produces a rapidly increasing rate as coils bottom out in succession.

Disadvantages of volute springs are that intercoil friction causes galling and stress concentrations that may lead to early failure in cyclic applications. There is also a very nonuniform stress distribution within the spring, which tends to further reduce fatigue performance. If a nonlinear rate is undesirable, the load deflection curve can be made more linear by winding the larger coils with a greater helix angle so all coils bottom out at the same time.

Volute springs are produced in a wide range of sizes. Small sizes are generally cold-wound from either pretempered or annealed carbon or spring temper stainless steel strip. Large sizes, often used in suspension and bumper systems, are usually hot-wound from carbon and low alloy steels.
Choice of Stress Level

Maximum operating stress levels are presented in Table 17-1 for static applications. Many large, hot-wound volute springs have set removed, while most cold-wound volute springs are supplied in stress-relieved condition.

![Table 17-1. Maximum Uncorrected Design Stresses for Volute Springs in Static Applications.](image)

Maximum recommended stresses for cyclic service are given in Table 17-2. This applies only to volute springs that have no coil interference and are made from wire or strip with round edges.

Design Equations

Volute springs are usually mounted between flat plates so that all coils can bottom out. A bearing surface of at least $\frac{3}{4}$ of a coil is required at each end. An approximate design technique uses methods developed for conical and rectangular wire springs.

The spring rate of an active element is determined from:

\[
k = \frac{P}{f} = \frac{Gbt^3 K_2}{D^3 N_a}
\]

(17-1)

where K_2 is a constant shown in Figure 5-16. The rate for the entire spring is obtained from the rates of all active spring elements by:
\[
k = \frac{1}{1/k_1 + 1/k_2 + 1/k_3 \ldots + 1/k_N} \tag{17-2}
\]

Stress is calculated from:

\[
S = \frac{PD_1 K_F}{K_1 bt^2} \tag{17-3}
\]

where \(D_1\) is the mean diameter of the inside coil and \(K_F\) is given in Figure 5-17. For a spring with a constant helix angle, stress will be highest at this location. For variable pitch springs, stress is often highest at the outside coil. More detailed design methods are presented in Reference 3 and 9. For critical applications, consult Associated Spring engineers for design assistance and tolerance recommendations.

Table 17–2. Maximum Corrected Design Stresses for Carbon Steel Volute Springs in Cyclic Applications.

<table>
<thead>
<tr>
<th>Fatigue Life Cycles</th>
<th>Percent of Tensile Strength Maximum Design Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^4)</td>
<td>45</td>
</tr>
<tr>
<td>(10^5)</td>
<td>35</td>
</tr>
<tr>
<td>(10^6)</td>
<td>33</td>
</tr>
<tr>
<td>(10^7)</td>
<td>30</td>
</tr>
</tbody>
</table>

This information is based on ambient conditions. Strip has round edge or rolled wire. No intercoil friction. Stress ratio is 0.
Introduction
Wire forms are designed with a wide variety of shapes to perform many functions. Wire forms are often used as links to carry loads with a minimum deflection, electrical resistance units or as rings and clips to hold parts in place. There are no general design equations for wire forms. The equations for torsion springs (Section 9) are often modified to determine the stresses and deflections due to bending, while the equations for compression springs (Section 5) are modified to determine the stresses and deflections due to twisting.

Wire forms are made from both high strength spring materials and annealed materials. Sharp bends not only are difficult to form but cause stress concentrations and should be avoided whenever possible. Most wire forms are manufactured in one operation on automatic equipment; therefore, tooling is required.

How to Specify
An engineering drawing is the best way to specify the wire form. Consultation with Associated Spring engineers early in the design stage of wire forms will often result in considerable cost savings. Also minor changes in part design can sometimes facilitate manufacture on automatic machinery, as well as reduce tool costs.
Glossary of Spring Terminology

Active Coils Those coils which are free to deflect under load.

Angular Relationship of Ends Relative position of hooks or loops of an extension spring (or ends of a torsion spring) to each other.

Baking Heating of electroplated springs to relieve hydrogen embrittlement

Block See Solid Height

Buckling Bowing or lateral displacement of a compression spring. This effect is related to slenderness ratio L/D.

Close Wound Adjacent coils are touching.

Closed and Ground Ends Same as Closed Ends, except the first and last coils are ground to provide a flat bearing surface.

Closed Ends Compression spring ends with coil pitch angle reduced so they are square with the spring axis and touch the adjacent coils.

Closed Length See Solid Height.

Coils Per Inch See Pitch

Deflection Motion imparted to a spring by application or removal of an external load.

Elastic Limit Maximum stress to which a material may be subjected without permanent set.

Endurance Limit Maximum stress, at a given stress ratio, at which material will operate in a given environment for a stated number of cycles without failure.

Fixture Tempering Restraining parts during tempering to improve dimensional control.

Free Angle Angular relationship between arms of a helical torsion spring which is not under load.
Free Length Overall length of a spring which is not under load.

Gradient See Rate.

Heat Setting A process to prerelax a spring in order to improve stress relaxation resistance in service.

Helical Springs Springs made of bar stock or wire coiled into a helical form. This category includes compression, extension and torsion springs.

Hooks Open loops or ends of extension springs.

Hysteresis Mechanical energy loss occurring during loading and unloading of a spring within the elastic range. It is illustrated by the area between load-deflection curves.

Initial Tension A force that tends to keep coils of a close-wound extension spring closed and which must be overcome before the coils start to open.

Loops Formed ends with minimal gaps at the ends of extension springs.

Mean Diameter The average diameter of the mass of spring material, equal to one-half the sum of the outside and inside diameters. In a helical spring, this is the equivalent to the outside diameter minus one wire diameter.

Modulus in Shear or Torsion (Modulus of Rigidity G) Coefficient of stiffness used for compression and extension springs.

Modulus in Tension or Bending (Young’s Modulus E) Coefficient of stiffness used for torsion or flat springs.

Moment A product of the distance from the spring axis to the point of load application, and the force component normal to the distance line.

Natural Frequency Lowest inherent rate of free vibration of a spring vibrating between its own ends.

Patenting The process of heating carbon steel above its critical temperature and cooling at a controlled rate to achieve a fine pearlitic microstructure.

Pitch Distance from center to center of wire in adjacent coils in an open-wound spring.

Plain Ends End coils of a helical spring having a constant pitch and ends not squared.

Plain Ends, Ground Same as Plain Ends, except wire ends are ground square with the axis.

Rate Spring gradient, or change in load per unit of deflection.

Residual Stress Stress mechanically induced by such means as set removal, shot-peening, cold working, or forming. It may be beneficial or not, depending on the spring application.

Set Permanent change of length, height or position after a spring is stressed beyond material’s elastic limit.

Set Point Stress at which some arbitrarily chosen amount of set (usually 2%) occurs. Set percentage is the set divided by the deflection which produced it.

Set Removal An operation which causes a permanent loss of length or height due to spring deflection.

Shot-Peening Blasting the surfaces of spring material with steel or glass pellets to induce compressive stresses that improve fatigue life.

Slenderness Ratio Ratio of spring length to mean diameter L/D in helical springs.

Solid Height Length of a compression spring when deflected under sufficient load to bring all
adjacent coils into contact.

Spiral Springs Springs formed from flat strip or wire wound in the form of a spiral, loaded by torque about an axis normal to the plane of the spiral.

Spring Index Ratio of mean diameter to wire diameter.

Squared and Ground Ends See Closed and Ground Ends.

Squared Ends See Closed Ends

Squareness Angular deviation, between the axis of a compression spring in a free state and a line normal to the end planes.

Stress Range Difference in operating stresses at minimum and maximum loads.

Stress Ratio Minimum stress divided by maximum stress.

Stress Relief A low temperature heat treatment given springs to relieve residual stresses produced by prior cold forming.

Torque See Moment

Total Number of Coils The sum of the number of active and inactive coils in a spring body.

Bibliographical References

Trademarks
Die-Q-Lator, Flexi-Pak, Interlock, Lev’l Torq, Micro-Edge, Raymond, SPEC and Torq-Coil are registered trademarks of Barnes Group Inc. Clutch Pack, HEP, Ray-Life, Retractor Pack and Spring Flow are other trademarks of Barnes Group Inc.

<table>
<thead>
<tr>
<th>Conversion Factors, Metric and English Units</th>
<th>To Convert</th>
<th>Multiply By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area</td>
<td>in²</td>
<td>645.2</td>
<td>mm²</td>
</tr>
<tr>
<td>Density</td>
<td>lb/in³</td>
<td>27.68</td>
<td>g/cm³</td>
</tr>
<tr>
<td>Force</td>
<td>lbf</td>
<td>4.448</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>ozf</td>
<td>0.278</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>lbf</td>
<td>0.4536</td>
<td>kgf</td>
</tr>
<tr>
<td>Frequency</td>
<td>c/s</td>
<td>1.000</td>
<td>Hz</td>
</tr>
<tr>
<td>Length</td>
<td>in.</td>
<td>25.4</td>
<td>mm</td>
</tr>
<tr>
<td></td>
<td>ft.</td>
<td>304.8</td>
<td>mm</td>
</tr>
<tr>
<td>Mass</td>
<td>lb</td>
<td>0.4536</td>
<td>kg</td>
</tr>
<tr>
<td>Moduli (E and G)</td>
<td>psi</td>
<td>0.006895</td>
<td>MPa</td>
</tr>
<tr>
<td>Pressure</td>
<td>psi</td>
<td>6.895</td>
<td>kPa</td>
</tr>
<tr>
<td>Spring Rate</td>
<td>lb/in.</td>
<td>0.1751</td>
<td>N/mm</td>
</tr>
<tr>
<td></td>
<td>lb/in.</td>
<td>0.01785</td>
<td>kg/mm</td>
</tr>
<tr>
<td>Stress</td>
<td>psi</td>
<td>0.006895</td>
<td>MPa</td>
</tr>
<tr>
<td>Torque</td>
<td>lbf-in.</td>
<td>112.9</td>
<td>N·mm</td>
</tr>
<tr>
<td></td>
<td>lbf-ft</td>
<td>1355</td>
<td>N·mm</td>
</tr>
<tr>
<td></td>
<td>ozf-in.</td>
<td>7.062</td>
<td>N·mm</td>
</tr>
<tr>
<td>Temperature</td>
<td>°F</td>
<td>= (°F − 32) ÷ 1.8</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>= 1.8°C + 32°</td>
<td>°F</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>psi</td>
<td>0.006895</td>
<td>MPa</td>
</tr>
<tr>
<td>Volume</td>
<td>in³</td>
<td>16,387</td>
<td>mm³</td>
</tr>
<tr>
<td>Work</td>
<td>ft-lbf</td>
<td>1.365</td>
<td>J</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRC</td>
<td>hardness, Rockwell C scale</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>in.</td>
<td>inch</td>
</tr>
<tr>
<td>J</td>
<td>joule</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>lbf</td>
<td>pound force</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>N</td>
<td>newton</td>
</tr>
<tr>
<td>ozf</td>
<td>ounce force</td>
</tr>
<tr>
<td>Pa</td>
<td>pascal</td>
</tr>
</tbody>
</table>

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Prefix</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>mega</td>
<td>1,000,000</td>
</tr>
<tr>
<td>k</td>
<td>kilo</td>
<td>1,000</td>
</tr>
<tr>
<td>h</td>
<td>hecto</td>
<td>100</td>
</tr>
<tr>
<td>c</td>
<td>centi</td>
<td>0.01</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
<td>0.001</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
<td>0.000001</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>15N</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>66</td>
<td>84.5</td>
<td>92.5</td>
</tr>
<tr>
<td>64</td>
<td>83.5</td>
<td>92</td>
</tr>
<tr>
<td>62</td>
<td>82.5</td>
<td>91</td>
</tr>
<tr>
<td>60</td>
<td>81</td>
<td>90</td>
</tr>
<tr>
<td>58</td>
<td>80</td>
<td>89.5</td>
</tr>
<tr>
<td>56</td>
<td>79</td>
<td>88.5</td>
</tr>
<tr>
<td>54</td>
<td>78</td>
<td>87.5</td>
</tr>
<tr>
<td>52</td>
<td>77</td>
<td>86.5</td>
</tr>
<tr>
<td>50</td>
<td>76</td>
<td>85.5</td>
</tr>
<tr>
<td>48</td>
<td>74.5</td>
<td>84.5</td>
</tr>
<tr>
<td>46</td>
<td>73.5</td>
<td>83.5</td>
</tr>
<tr>
<td>44</td>
<td>72.5</td>
<td>82.5</td>
</tr>
<tr>
<td>42</td>
<td>71.5</td>
<td>81.5</td>
</tr>
<tr>
<td>40</td>
<td>70.5</td>
<td>80.5</td>
</tr>
<tr>
<td>38</td>
<td>69.5</td>
<td>79.5</td>
</tr>
<tr>
<td>36</td>
<td>68.5</td>
<td>78.5</td>
</tr>
<tr>
<td>34</td>
<td>67.5</td>
<td>77</td>
</tr>
<tr>
<td>32</td>
<td>66.5</td>
<td>76</td>
</tr>
<tr>
<td>30</td>
<td>65.5</td>
<td>75</td>
</tr>
<tr>
<td>28</td>
<td>64.5</td>
<td>74</td>
</tr>
<tr>
<td>26</td>
<td>63.5</td>
<td>72.5</td>
</tr>
<tr>
<td>24</td>
<td>62.5</td>
<td>71.5</td>
</tr>
<tr>
<td>22</td>
<td>61.5</td>
<td>70.5</td>
</tr>
<tr>
<td>20</td>
<td>60.5</td>
<td>69.5</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
General Nomenclature

A = Area, mm² (in²)

b = Width, mm (in.)

C = Spring index, D/d

D = Mean diameter, (O.D. + I.D.)/2, mm (in.)

I.D. = Inside diameter, mm (in.)

O.D. = Outside diameter, mm (in.)

d = Wire diameter, mm (in.)

E = Modulus of elasticity in tension or Young’s Modulus, MPa (psi)

f = Deflection, mm (in.)

g = Gravitational constant, 9.807 m/sec² (386.4 in./sec²)

G = Shear modulus or modulus of rigidity, MPa (psi)

I = Moment of inertia, mm⁴ (in⁴)

K = Design constant

Kₗ = Stress correction factor for helical springs

k = Spring rate, N/mm (lbf/in.) or N-mm/revolution (lbf-in/revolution)

L = Length, mm (in.)

Lₖ = Free length, mm (in.)

Lₗ = Length at solid, mm (in.)

M = Moment or torque, N·mm (lbf-in.)

Nₐ = Number of active coils or waves

Nₜ = Total number of coils

n = Frequency, hertz

P = Load, N (lbf)

r = Radius, mm (in.)

ρ = Density, g/cm³ (lb/in³)

S = Stress, MPa (psi)

θ = Angular deflection, expressed in number of revolutions

TS = Tensile strength, MPa (psi)

t = thickness, mm (in.)

YS = Yield strength, MPa (psi)

μ = Poisson’s ratio