ACADEMIC COUNCIL
AGENDA
Monday, March 4, 2013
CNS 200
3:30 – 5:00 PM

1. Presidential courtesy

2. Report from the Secretary of the General Faculty

3. Report from the Executive Secretary
 a. Correspondence
 b. Oral reports

4. Council Subcommittee Reports
 a. Subcommittee to consider proposing IDEA form for administrators
 b. Subcommittee on broader academic freedom language for governance documents
 c. Subcommittee on the status of part-time faculty
 d. Subcommittee on calendar issues
 e. Subcommittee on sexual misconduct policies

5. Petitions for immediate hearing

6. Old Business

7. New business
 a. Committee on Conference with the Board of Trustees: Report from December meeting and guidance for March meeting
 b. Proposal from SOE for new 5-year BS/MS in Computer Engineering (attachment)
 c. Proposal from GSEAP for 5-year BA/MA in Industrial/Occupational Psychology (attachment)
 d. Budget Committee membership (attachment)
 e. Repeat course policy (attachment)
 f. Procedures governing faculty searches (See attachment on pp. 19-25 of AC packet for 12/3/12)
 g. Regularization of language in Handbook and Journal of Record (Pending Item I, attachment)
 h. Time code issues

• Lists of Attachments, Pending, and Ongoing Items are on page 2
List of Attachments:

For item 4.d. Report of the Subcommittee on Calendar Issues (pages 3-8)
For item 7.b. SOE proposal for 5-year BS/MS in Computer Engineering (Excerpts) (pages 9-31) (N.B.: For complete proposal, see GFS web site: http://faculty.fairfield.edu/gfs/AC/2012-2013/ac12_13.html)
For item 7.c. GSEAP proposal for 5-year BA/MA in Industrial/Organizational Psychology (pages 32-39)
For item 7.d. Memos from General Faculty Secretary and President regarding composition of Budget Committee (pages 40-42)
For item 7.e. Memo from General Faculty Secretary regarding changes to repeat course policy (pages 43-44)
For item 7.g. Memo from ACEC regarding regularization of language in Handbook and Journal of Record (pages 45-46)
For item 7.h. Memo from Dean Robbin Crabtree regarding time code issues (page 47)

Pending Items:
A. Faculty Data Committee (AC 12/3/07).
B. MFA in Creative Writing, Five-Year-Review due in 12/2012 (AC 12/3/07).
C. Re-evaluation of offering both paper and online options for IDEA forms, spring 2014 (AC 5/14/12)
D. Re-evaluation of continued use of “yellow sheet” qualitative evaluations, spring 2014 (AC 5/14/12)
E. AC revisits the accessibility of teaching evaluation data, Due spring 2012. (AC 4/19/10)
F. AC three year review of Merit Appeals Policy, fall 2013. (AC 11/1/10)
G. AC three year review of Intellectual Properties Policy, spring 2014. (AC 3/7/11)
H. MPA, five year review in 2017-2018 (AC 9/10/12)
I. Handbook items to be revisited (AC 4/16/12)

Ongoing Items:
1. Report by SVPAA to AC each semester to inform the council of any approved exceptions to the Athletic Department’s policy of not scheduling athletic events that conflict with final exams.
2. Report from the Committee on Conference with the Board of Trustees after each meeting with board members. At the end of each academic year, discuss items for the Conference Committee to put on the agenda for their meetings with members of the board the following year.
Report of the Academic Council Subcommittee on Calendar Issues
February 17, 2013

At its meeting of 10/1/12, the Academic Council passed the following motion:

That the Academic Council elects a two-person subcommittee from its 2012-13 faculty membership to:
(1A) Review all of Fairfield’s policies related to the academic calendar;
(1B) Examine how our academic calendar issues are addressed by other schools;
(1C) If appropriate, propose policy changes and/or guidelines for calendar construction to the AC.
(2) Review any academic calendars proposed in 2012-13 before publication and report concerns to the AC.
(3) Draft language for the Journal of Record that would articulate that a two-person AC subcommittee is appointed every year by the AC in September and is charged annually to review any academic calendars published that year and report concerns to the AC before they are published.

Profs. Epstein and Lane were elected to the subcommittee.

1. Semester Length

There have on some occasions in the past been references by various representatives of the Fairfield administration to Connecticut state mandates of minimum semester length. There seem in actuality to be no state rules or regulations setting a minimum length for an academic semester at private universities. However, NEASC, in its statement of “Policy on Credits and Degrees,” refers to federal guidelines on semester length:

Federal Definition and Commission Review of the Credit Hour
As an accreditor recognized by the U.S. Secretary of Education, the Commission is obliged to follow federal law and regulations pertinent to that recognition. Federal regulation defines a credit hour as an amount of work represented in intended learning outcomes and verified by evidence of student achievement that is an institutional established equivalence that reasonably approximates not less than –
(1) One hour of classroom or direct faculty instruction and a minimum of two hours of out of class student work each week for approximately fifteen weeks for one semester or trimester hour of credit, or ten to twelve weeks for one quarter hour of credit, or the equivalent amount of work over a different amount of time; or
(2) At least an equivalent amount of work as required in paragraph (1) of this definition for other academic activities as established by the institution including laboratory work, internships, practica, studio work, and other academic work leading to the award of credit hours.

Terms of Study:
Quarter: A calendar of ten weeks of instructional time or its equivalent.
Semester: A calendar 15 weeks of instructional time or its equivalent in effort.
There is some ambiguity in this definition. It is not entirely clear, for instance, if “15 weeks of instruction” is meant to refer to a span of 15 calendar weeks when instruction is provided, or to the equivalent of 15 full weeks of class time based on a standard of 3 hrs./week for a class. Nor is it clear if an exam period is included among “weeks of instruction.”

A survey of academic calendars at other private universities in the Northeast reveals that nearly all have semesters of approximately 14 weeks of class instruction and one week of exams. It is also clear that Fairfield’s academic calendars closely resemble those of its peer institutions, and that Fairfield generally conforms to the norm of a 15-week semester, with the final week devoted to exams.

There are some ways in which Fairfield’s calendar varies from those of other schools in the region:

2. The Fall Semester

Many other schools begin their Fall semesters in the last week of August. Most of these schools either end their Fall semester earlier than Fairfield does or provide a one-week Fall Break.

There have been concerns in the past, mostly on the part of the Administration, that Fairfield’s Fall exam period ends too close to Christmas. Given that Fairfield’s Fall semesters tend to include a standard 14-weeks of classes, there are few options available to move up the end of the semester. Faculty contracts begin on Sept. 1 of each calendar year. To begin the Fall semester in August would require changes to faculty contract language. No such changes seem necessary or warranted to the Calendar Subcommittee. We note, though, that if the concern is not the last day of exams but the submission of final grades, there is nothing necessitating that final grades for Fall semester classes be submitted before Christmas.

3. The Spring Semester

It is in the Spring semester that significant problems in Fairfield’s academic calendar appear. There are three main causes:

1. Journal of Record language dictates that the break between the end of the Fall semester and the beginning of the Spring semester should be “approximately one month”;
2. Fairfield has a long-standing tradition of holding its Commencement ceremonies on the Sunday before Memorial Day weekend;
3. in recent years, for a number of reasons the administration has abandoned the practice (maintained at several peer institutions with similar calendars) of designating at least one Tuesday or Wednesday in the Spring semester as an “academic Monday.”
The result is that in recent years, and notably in the current 2012-2013 calendar and the published 2013-2014 calendar, the Spring semester is both shorter than the Fall semester and also conspicuously uneven in the distribution of class days among days of the week.

The Spring 2013 semester began on 1/22, and the last day of classes is 5/1. The original calendar (before weather-related cancelations) included these teaching days:

- Mondays: 11
- Tuesdays: 14
- Wednesdays: 14
- Thursdays: 13
- Fridays: 12

Note that Monday-Thursday classes meet for one week less than Tuesday-Friday classes, and that Monday-Thursday classes meet for the equivalent of only 12 weeks.

The problem is equally pronounced in the published academic calendar for next year. The Spring 2014 semester, as it currently stands, begins on 1/21 and ends on 4/30. The distribution of teaching days is:

- Mondays: 11
- Tuesdays: 14
- Wednesdays: 14
- Thursdays: 13
- Fridays: 13

In this calendar, Monday-Thursday classes have 3 fewer class meetings than Tuesday-Friday classes, and again meet for the equivalent of only 12 weeks.

4. Suggested remedies

Some possible ways to address the brevity and imbalance of the Spring semester include:

- Revert to designating the Tuesday after President’s Day an “academic Monday.” Monday-Thursday classes and Tuesday-Friday classes would be roughly equivalent in length, though both would be somewhat shorter than 14 weeks.
- Start the Spring semester earlier. This would require a change to Journal of Record language regarding the time between the Fall and Spring Semesters. Alternatively, faculty contract language could be changed to allow the Fall semester to begin before Sept. 1; the Fall semester could then end earlier, and the Spring semester could begin earlier in January, though still approximately one month after the end of the Fall semester.
- End the Spring semester later, either by shortening “Senior Week” or by moving Commencement to the Sunday of Memorial Day weekend.

The subcommittee feels that the most reasonable course of action would be to:

1. reintroduce one “academic Monday” on the Tuesday after President’s Day.
2. lengthen the Spring semester by 2 additional teaching days.
3. move Commencement to Memorial Day weekend.
The reinstitution of “academic Mondays” would have to be done with the understanding that some part-time faculty with teaching conflicts at other institutions would be allowed to cancel class for that day, and that students with conflicts due to clinicals, internships, etc., would be granted excused absences. As to the date of Commencement, the faculty have been told by the administration on numerous occasions that while this may in the past have conflicted with the lease agreements of students living at the beach, this is no longer the case. Furthermore, it would seem to be potentially more convenient for many families of graduates to attend Commencement on the holiday weekend.

Under any of these scenarios—even the reinstitution of “academic Mondays”—there would remain fewer class meetings on Monday than on the other days of the week. The subcommittee therefore recommends the elimination of Monday turbo time codes for undergraduate courses. Graduate schools may have their own requirements or standards regarding semester length, and may wish to address the dearth of Monday meetings in other ways, such as lengthening some class meetings.

Finally, we would like to note that three of the last four semesters have seen the cancellation of a significant number of class days due to “Storms of the Century.” It seems increasingly likely that these ostensibly anomalous events are becoming the norm. It would therefore be prudent to designate in the published academic calendar make-up days for classes and exams. In the Fall, these could be placed at the end of the exam period, in the days leading up to Christmas. (The last day of exams was 12/21 in Fall 2012 and is scheduled to be 12/20 in Fall 2013.) In the Spring semester, which is even more likely to be affected by cancellations, potential make-up days could be designated during the so-called Senior Week between the end of exams and Commencement weekend.

5. Motion for a standing Calendar Review Subcommittee

The subcommittee proposes the following motion:

That the Academic Council form a standing Calendar Review Subcommittee. The subcommittee should consist of two members elected each year from among the members of the Academic Council. The subcommittee is charged with reviewing all Fairfield academic calendars before their publication and making any necessary recommendations for changes to the Academic Council and the Senior Vice President for Academic Affairs.
Appendix A:
Academic Calendars at Peer Institutions in the Northeast

2012-2013 Academic Calendars

Labor Day: 9/3; **MLK Day:** 1/21; **Memorial Day:** 5/27

<table>
<thead>
<tr>
<th>School</th>
<th>Start</th>
<th>End</th>
<th>FB</th>
<th>Th</th>
<th>RD</th>
<th>Exams</th>
<th>Start</th>
<th>End</th>
<th>SB</th>
<th>Easter</th>
<th>RD</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fordham†</td>
<td>8/29</td>
<td>12/13</td>
<td>10/8</td>
<td>W-Su</td>
<td>---</td>
<td>12/14-20</td>
<td>1/14</td>
<td>5/2</td>
<td>3/11-17</td>
<td>Th-M</td>
<td>5/3-6</td>
<td>5/7-14</td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/14</td>
<td>5/1</td>
<td>3/4-8</td>
<td>Th-M†</td>
<td>5/3-6</td>
<td>5/7-14</td>
</tr>
<tr>
<td>Loyola‡</td>
<td>9/4</td>
<td>12/10</td>
<td>10/19</td>
<td>W-Su</td>
<td>12/11</td>
<td>12/12-20</td>
<td>1/14</td>
<td>4/29</td>
<td>3/4-10</td>
<td>3/28-4/1</td>
<td>3/30</td>
<td>5/1-9</td>
</tr>
<tr>
<td>Nova§</td>
<td>8/27</td>
<td>12/13</td>
<td>10/15-22</td>
<td>W-Su</td>
<td>12/14</td>
<td>12/15-21</td>
<td>1/14</td>
<td>5/2</td>
<td>3/4-10</td>
<td>Th-M</td>
<td>5/3</td>
<td>5/4-10</td>
</tr>
<tr>
<td>PC</td>
<td>9/4</td>
<td>12/7</td>
<td>10/8</td>
<td>W-Su</td>
<td>12/8, 9, 11</td>
<td>12/10, 12-17</td>
<td>1/22</td>
<td>5/3</td>
<td>3/4-8</td>
<td>Th-M</td>
<td>5/4, 5, 7</td>
<td>5/6, 8-13</td>
</tr>
<tr>
<td>Holy Cross</td>
<td>8/29</td>
<td>12/7</td>
<td>10/8-12</td>
<td>W-Su</td>
<td>12/8-10</td>
<td>12/11-15</td>
<td>1/22</td>
<td>5/6</td>
<td>3/4-8</td>
<td>Th-M</td>
<td>5/7-8</td>
<td>5/9-15</td>
</tr>
<tr>
<td>Quinnip.⁵</td>
<td>8/27</td>
<td>12/8</td>
<td>9/26</td>
<td>Th-Su</td>
<td>12/9</td>
<td>12/10-15</td>
<td>1/22</td>
<td>5/4</td>
<td>3/11-16</td>
<td>Fr-Su</td>
<td>5/5</td>
<td>5/6-11</td>
</tr>
<tr>
<td>SHU</td>
<td>8/27</td>
<td>12/10</td>
<td>10/8-9</td>
<td>W-Su</td>
<td>---</td>
<td>12/11-15</td>
<td>1/14</td>
<td>5/6</td>
<td>3/4-8</td>
<td>W-M</td>
<td>---</td>
<td>5/7-14</td>
</tr>
<tr>
<td>FU</td>
<td>9/4</td>
<td>12/14</td>
<td>10/8</td>
<td>W-Su</td>
<td>12/15-16</td>
<td>12/17-21</td>
<td>1/22</td>
<td>5/1</td>
<td>3/11-17</td>
<td>Fr-M</td>
<td>5/2, 5, 8</td>
<td>5/3-10</td>
</tr>
</tbody>
</table>

2013-2014 Academic Calendars

Labor Day: 9/2; **MLK Day:** 1/20; **Memorial Day:** 5/26

<table>
<thead>
<tr>
<th>School</th>
<th>Start</th>
<th>End</th>
<th>FB</th>
<th>Th</th>
<th>RD</th>
<th>Exams</th>
<th>Start</th>
<th>End</th>
<th>SB</th>
<th>Easter</th>
<th>RD</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fordham [N.A.]</td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td>9/3</td>
<td>12/11</td>
<td>10/14</td>
<td>W-Su</td>
<td>12/12-15</td>
<td>12/14-21</td>
<td>1/13</td>
<td>5/1</td>
<td>3/3-7</td>
<td>Th-M</td>
<td>5/2-5</td>
<td>5/6-13</td>
</tr>
<tr>
<td>Nova§</td>
<td>8/26</td>
<td>12/12</td>
<td>10/14-18</td>
<td>W-Su</td>
<td>12/13</td>
<td>12/14-20</td>
<td>1/13</td>
<td>5/1</td>
<td>3/3-7</td>
<td>Th-M</td>
<td>5/2</td>
<td>5/3-9</td>
</tr>
<tr>
<td>PC</td>
<td>9/3</td>
<td>12/6</td>
<td>10/14</td>
<td>W-Su</td>
<td>12/7, 8, 10</td>
<td>12/9-11, 16</td>
<td>1/21</td>
<td>5/2</td>
<td>3/10-14</td>
<td>Th-M</td>
<td>5/3, 4, 6</td>
<td>5/5, 7-12</td>
</tr>
<tr>
<td>Holy Cross</td>
<td>8/28</td>
<td>12/6</td>
<td>10/14-18</td>
<td>W-Su</td>
<td>12/7-9</td>
<td>12/10-14</td>
<td>1/21</td>
<td>5/5</td>
<td>3/3-7</td>
<td>Th-M</td>
<td>5/6-7</td>
<td>5/8-14</td>
</tr>
<tr>
<td>Quinnip. [N.A.]</td>
<td></td>
</tr>
<tr>
<td>SHU</td>
<td>8/26</td>
<td>12/9</td>
<td>10/14-15</td>
<td>W-Su</td>
<td>---</td>
<td>12/10-14</td>
<td>1/13</td>
<td>5/5</td>
<td>3/3-7</td>
<td>W-Tu</td>
<td>---</td>
<td>5/6-13</td>
</tr>
<tr>
<td>FU</td>
<td>9/4</td>
<td>12/11</td>
<td>10/14</td>
<td>W-Su</td>
<td>12/12, 15, 18</td>
<td>12/13-20</td>
<td>1/21</td>
<td>4/30</td>
<td>3/24-28</td>
<td>F-M</td>
<td>5/1, 4, 7</td>
<td>5/2-9</td>
</tr>
</tbody>
</table>

1. Monday classes on Wednesday 9/5 and on Thursday 12/13.
2. No classes on Easter Monday except for those beginning at 4:00 p.m. and later.
4. Monday classes on Wednesday 5/1.
5. Monday classes meet on Tuesday 2/19 and Wednesday 4/3.
6. No “reading days,” but classes end on Saturday and exams begin on Monday.
7. Yom Kippur.
8. Final exam snow date: 12/17.
9. With storm-related alterations.
10. Monday classes on Wednesday 4/30. Also, no Sunday exams.
11. Final exams snow date: 12/16.

March 4, 2013

Academic Council
Packet for Meeting
Appendix B:
Academic Calendars at Patriot League Schools

2012-2013

<table>
<thead>
<tr>
<th>School</th>
<th>start</th>
<th>end</th>
<th>FB</th>
<th>TH</th>
<th>RD</th>
<th>exams</th>
<th>start</th>
<th>end</th>
<th>SB</th>
<th>Easter</th>
<th>RD</th>
<th>Exams</th>
<th>Grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUCKNELL</td>
<td>8-22</td>
<td>12-4</td>
<td>10-7,8</td>
<td>W-Su</td>
<td>1</td>
<td>12-6-13</td>
<td>1-16</td>
<td>4-30</td>
<td>25-29</td>
<td>2</td>
<td>13-20</td>
<td>5-25</td>
<td></td>
</tr>
<tr>
<td>COLGATE</td>
<td>8-27</td>
<td>12-7</td>
<td>10-6-9</td>
<td>W-Su</td>
<td>2</td>
<td>12-10-14</td>
<td>1-21</td>
<td>5-3</td>
<td>9-17</td>
<td>3</td>
<td>6,7,9,10</td>
<td>5-19</td>
<td></td>
</tr>
<tr>
<td>LAFAYETTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-28</td>
<td>5-10</td>
<td>25-29</td>
<td>2</td>
<td>13-20</td>
<td>5-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEHIGH</td>
<td>8-27</td>
<td>12-7</td>
<td>10-8,9</td>
<td>W-Su</td>
<td>3</td>
<td>12-9,11,13,14</td>
<td>1-14</td>
<td>4-26</td>
<td>11-15</td>
<td>3</td>
<td>4-30:5-8</td>
<td>5-20</td>
<td></td>
</tr>
<tr>
<td>STONEHILL</td>
<td>8-29</td>
<td>12-12</td>
<td>10-8,9</td>
<td></td>
<td>2</td>
<td>12-14-20</td>
<td>1-14</td>
<td>5-3</td>
<td>2-10</td>
<td>2</td>
<td>5-4-10</td>
<td>5-19</td>
<td></td>
</tr>
</tbody>
</table>

2013-2014

<table>
<thead>
<tr>
<th>School</th>
<th>start</th>
<th>end</th>
<th>fall break</th>
<th>TH</th>
<th>RD</th>
<th>exams</th>
<th>start</th>
<th>end</th>
<th>SB</th>
<th>Easter</th>
<th>RD</th>
<th>Exams</th>
<th>Grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUCKNELL</td>
<td>8-28</td>
<td>12-10</td>
<td>10-12-15</td>
<td>W-Su</td>
<td>1</td>
<td>12-12-19</td>
<td>1-15</td>
<td>4-29</td>
<td>8-16</td>
<td>4-30</td>
<td>5-1-8</td>
<td>5-18</td>
<td></td>
</tr>
<tr>
<td>COLGATE</td>
<td>8-29</td>
<td>12-13</td>
<td>10-12-15</td>
<td>W-Su</td>
<td>3</td>
<td>12-16,17,19,20</td>
<td>1-20</td>
<td>5-2</td>
<td>15-23</td>
<td>3</td>
<td>5-5,6,8,9</td>
<td>5-18</td>
<td></td>
</tr>
<tr>
<td>LAFAYETTE</td>
<td>8-26</td>
<td>12-6</td>
<td>10-12-15</td>
<td>W-Su</td>
<td>3</td>
<td>12-10-17</td>
<td>1-27</td>
<td>5-9</td>
<td>17-21</td>
<td>2</td>
<td>12-19</td>
<td>5-24</td>
<td></td>
</tr>
<tr>
<td>LEHIGH</td>
<td>8-26</td>
<td>12-6</td>
<td>10-12-15</td>
<td>W-Su</td>
<td>3</td>
<td>12-10-18</td>
<td>1-13</td>
<td>4-25</td>
<td>3-7</td>
<td>3</td>
<td>4-29:5-7</td>
<td>5-19</td>
<td></td>
</tr>
<tr>
<td>STONEHILL</td>
<td>8-28</td>
<td>12-11</td>
<td>10-12-15</td>
<td>W-Su</td>
<td>1</td>
<td>12-13-19</td>
<td>1-13</td>
<td>5-1</td>
<td>8-16</td>
<td>1</td>
<td>5-3-9</td>
<td>5-18</td>
<td></td>
</tr>
</tbody>
</table>
School of Engineering

Dual-Degree Program
Master of Science Degree
In

Electrical and Computer Engineering

Note: Appendices A (Course Descriptions), B (Advisory Board), C (Equipment Inventory) and D (Thesis Students and Publications) are available at the GFS website: http://faculty.fairfield.edu/gfs/AC/2012-2013/ac12_13.html
INTRODUCTION

We propose that the School of Engineering (SOE) create a new degree structure in Electrical and Computer Engineering (ECE), a dual-degree 5-year BS/MS course of study, by combining the curricula for the BS degree and the Master of Science degree in this discipline, both now being offered in the SOE. This new initiative responds to changes in the economic climate, and the constantly evolving needs for innovation in engineering design and development, across all technological and economic sectors. An ECE graduate has knowledge that is acutely needed in contemporary society. Graduates of the program will be awarded a BS in Computer Engineering or a BS in Electrical Engineering with an MS in ECE. The two different programs will remain different at the undergraduate level (with each having a separate accreditation) but remain combined at the graduate level.

1. Overview and Summary

Graduate engineering education is now a key to innovation and creativity in technology, and central to the national economy, social welfare, security, and management. There is a dramatic change in the role of, and increased emphasis on, master's level engineering education. The gateway to Master's degree programs is a rigorous undergraduate education. Under these circumstances, new pathways to advanced degrees in science and engineering have been established in some schools. For example, MIT now has a 5-year program that provides students with a dual BS/MS degree in engineering. This change reduces the time to a master's degree by one or more years.

In this spirit we propose the 5-year dual-degree program resulting in a BS degree in Computer or Electrical Engineering and an MS degree in the discipline of Electrical and Computer Engineering. The new program will embrace the educational objectives of the traditional undergraduate program, as well as those of the graduate program. It will also emphasize experiential learning in terms of summer industrial internships following the sophomore year, and graduate courses that guide students through a process of design and innovation at the level of a professional engineer. Graduates of the program will have mastered the knowledge and tools they need to create the next generation of computer solutions to technological and societal problems.

The proposed program is in accord with the mission and strategic plan of the School of Engineering to create skilled engineers with a well-developed cultural orientation, an understanding of economic values, and a sense of ethical and social responsibility.

2. Need and Opportunity

The proposed program is supported by the SOE to leverage its available resources so as to create an accelerated learning environment for undergraduate students.
Education is a means toward increasing human capital leading to improved productivity and endogenous substantial and sustainable economic growth. The Bureau of Labor Statistics reports that jobs in computer engineering and in computer support services are among the top ten professions (teachers and registered nurses lead the list). These two sectors will see net gains of 307,000 and 420,000, respectively, through the year 2012, i.e., 45.5% and 39.4% increases.

Even in these tighter economic times, new engineering bachelor’s degree graduates earn some of the highest starting salaries and unemployment has not hit the profession as hard as others: in 2009 the Bureau of Labor Statistics indicates that 6.9 percent of engineers were unemployed versus 9.3 percent of all workers. The median salary for Computer Engineers is $97,400 and the median salary for Electrical Engineers is $82,160. Source: http://www.bls.gov/oco/ocos027.htm#projections_data.

While salaries have been going up, the number of MS engineering degrees has declined. The number of master’s degrees awarded in engineering dropped 1.7% in 2007, following a 6.4% decrease in 2006. A total of 37,803 engineering master’s degrees were awarded in engineering in 2006, down from 38,451 in 2006 and the record high of 41,087 in 2005. Source: Engineering & Technology Degrees, 2007, a report from the Engineering Workforce Commission (EWC).

Undergraduate Enrollment by Discipline:

![Graph showing undergraduate enrollment by discipline](image)

Figure 1. EE/CpE is the Second Most Popular Engineering Degree

Figure 1 shows that Electrical and Computer Engineering is, nationwide, the most popular engineering degree, next to Mechanical Engineering.
Figure 2. Electrical and Computer Engineering

Figure 2 shows that when we combine Electrical and Computer Engineering we have the most popular engineering MS degree in the country [www.asee.org/colleges]. According to the Census Bureau’s Population Estimates Program, Connecticut ranks 3rd in the country (behind New York and Massachusetts), with 13.6% of its population in the 25-34 age group having a graduate or professional degree. Thus, these MS degrees are highly sought after.

Electrical and Computer Engineering solutions are ubiquitous in all facets of the technology that serves as the economic engine in advanced and developing countries. The economies of all countries that belong to the Organization for Economic Cooperation and Development (OECD) depend on the development and implementation of computer products. Labor productivity and higher revenue streams in all developed economies are correlated to the efficiencies created by computer technologies. In the last decade, virtually all of America's increase in labor productivity growth came from either increased computer-based capital expenditures or productivity gains in the IT sector.

The rest of the world, e.g., Japan, China, and Europe, is catching up fast. In the United States, the importance of computer development continues to increase as the economy continues its transformation into a more service-and knowledge-based activity with human creativity and physical capital as the drivers of economic growth. Some colleges and universities have been responding in the last three years by increasing the number of BS degree graduates in computer engineering and IT.
The industrial and business environment in southern Connecticut is extremely favorable to jobs for graduates and internships for students in the computer engineering programs at Fairfield. Sixty of the State's one hundred largest industrial and service companies and twelve of the 25 largest banks are within 30 miles of the Fairfield campus, from Greenwich to New Haven and from Fairfield to Ridgefield and Shelton. This list includes General Electric, United Technologies, Xerox, Pitney Bowes, Hubbell Inc., Pharma, and many others. The SOE Advisory Board and the SOE alumni provide additional means for cementing the School's relations with the technology and business environment. The proposed program will make deeper the pool of expert talent to satisfy the needs of social and economic institutions in the State.

A growing fraction of the student population in the ECE Master's program consists of international students who are attracted to the Fairfield program over others in neighboring institutions, but are gearing up to return to their country of origin following their Master's degree and a year of practical training. This appears to be the general trend throughout the country. Should it continue, it is likely to leave the US with a short supply of talent in Computer Engineering, and a reduced competitiveness, at a time when skills and talent are most needed in the face of galloping globalization. This was shown in *Computing the Gains: The economic benefits of the IT revolution are now visible in Europe and Japan*, The Economist, 23 Oct 2003 and in PRISM, American Society of Engineering Education, March 2006.

Master's Degrees by Residency, 2010

![Bar chart showing permanent resident and nonresident alien percentages](image)

<table>
<thead>
<tr>
<th>Year</th>
<th>Permanent Resident</th>
<th>Nonresident Alien</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>53.9%</td>
<td>46.1%</td>
</tr>
<tr>
<td>2002</td>
<td>54.1%</td>
<td>45.9%</td>
</tr>
<tr>
<td>2003</td>
<td>53.5%</td>
<td>46.5%</td>
</tr>
<tr>
<td>2004</td>
<td>42.0%</td>
<td>58.0%</td>
</tr>
<tr>
<td>2005</td>
<td>42.0%</td>
<td>58.0%</td>
</tr>
<tr>
<td>2006</td>
<td>39.8%</td>
<td>60.2%</td>
</tr>
<tr>
<td>2007</td>
<td>38.7%</td>
<td>61.3%</td>
</tr>
<tr>
<td>2008</td>
<td>47.3%</td>
<td>52.7%</td>
</tr>
<tr>
<td>2009</td>
<td>44.1%</td>
<td>55.9%</td>
</tr>
</tbody>
</table>

Figure 3. MS Engineering Degrees by Residency

The ASEE report shows that the number of degrees awarded to foreign nationals is again on the rise, indicating a trend toward a drain of the very innovation and engineering entrepreneurship this country needs, at a time when it needs it most (during a time of precarious economic recovery).

The five-year BS/MS program mitigates this trend by bringing into the discipline talented students at the crucial first step in their college career, and assisting them to attain professional status in a timely manner.

Table I, below, shows the number of graduates from the separate undergraduate and graduate programs in the last 6 years. The proposed program will bring a better balance between the two segments of college education in Electrical and Computer Engineering at Fairfield University.
<table>
<thead>
<tr>
<th>Year</th>
<th>MSECE</th>
<th>BS CpE</th>
<th>BS EE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>2007</td>
<td>11</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2008</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2009</td>
<td>12</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>2010</td>
<td>12</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2011</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2012</td>
<td>15</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

Table I. Graduates for the years 2006-2011

The first year that the ECE MS program had graduates was 2006. Providing a path to an MS degree should enable a smoother transition into the graduate program and encourage undergraduates to seek a graduate degree.

3. Rationale. Reasons for the program

In the face of the on-going international movement toward globalization that has changed the way industry and technology work, academic institutions will need to identify the best way to prepare their students for work in this environment. This question is most crucial in the case of engineering and the more applied of the sciences. It is reiterated that one answer might be a new degree structure like the 5-year program proposed here.

Given the fact that the number of universities that offer ECE degrees is relatively small, and the need for computer development to solve complex problems across all sectors of technology is skyrocketing, the SOE has a responsibility to assist in the education of experts in this discipline. The proposed program will enable students to enter graduate studies in ECE in a timely manner in order to achieve positions of responsibility in their companies early in their career.

The School of Engineering has the responsibility to illustrate and articulate to students the societal need for computer and systems design and development in support of the processes that shape daily life. Hence the School must use its resources creatively to provide effective access to knowledge in this engineering discipline.

There is a further factor that favors the 5-year approach to the BS/MS degree. Increasingly, engineering organizations and practitioners are saying that the body of knowledge necessary to practice engineering is beyond the traditional four-year Bachelor's degree program. Furthermore, momentum is building toward requiring education beyond the BS degree in order to become a Professional Engineer. At a time when technical complexity has increased, the fifth year in engineering education to produce a graduate who can perform at the Professional Engineer level might be justified. For comparison purposes, medicine, law, pharmacy, architecture and occupational therapy, all require more formal education than engineering does at the level of the present four-year BS curriculum.
4. Objectives. What does the program seek to accomplish?

The ECE 5-year dual degree program enables its graduates to practice in the ECE profession one year sooner than students that take the normal path. The MS degree program educates and assists its students to become accomplished professionals in their discipline in the first few years of their career, following graduation from Fairfield University. For this purpose students in the program will acquire the knowledge and skills to:

- Analyze, design, verify, validate, implement and maintain computer systems,
- Appropriately apply discrete mathematics, probability and statistics, and relevant areas of computer science and supporting disciplines to complex computer systems, and
- Be able to work in depth in one or more significant application domains.

The SOE wishes to provide an alternative avenue to interested students who wish to achieve personal and professional growth and success in a more time-effective manner, the program demands rigor and manifested intellectual discipline. The students admitted to the program will have a cumulative GPA of 3.0 or higher, and a GPA in the Computer or Electrical Engineering programs of 3.2 or higher, in their junior year when they declare their intention to follow the 5-year track. Those students will be able to round out their knowledge through a senior-year curriculum enriched with graduate level courses, and experience an even more rigorous fifth year of advanced studies.

Finally, the proposed 5-year program is in accord with the mission of the School of Engineering and, by extension, with the mission of Fairfield University as a comprehensive Jesuit institution that values intellectual rigor and service to faith and justice on the part of all its students. As a point of reference, the SOE mission statement included in most of its publications is as follows:

The Mission of the School of Engineering is to maintain the highest level of institutional integrity and remain committed to the Ignatian ideals of education, namely intellectual rigor, service to others and service to faith, with the promotion of justice for all.

In pursuit of this mission, the School of Engineering will commit its resources to the nurturing of the intellectual capital and skills of students across disciplines. The school will act to assemble and maintain the material resources needed to support a robust working and learning environment. The School's graduates will have mastered theoretical and practical knowledge of engineering skills, and will have acquired additional competencies in communication, critical judgment, social responsibility and a sense of economic, environmental, and ethical values. These men and women will be prepared to shape the future. They will practice the engineering disciplines and allied activities in many areas of human endeavor, including industry/ manufacturing, business, government service and education, or continue with postgraduate studies. Finally, the School will maintain a continuous engagement with the community it aims
to serve, and strengthen its commitment to the promotion of excellence in engineering education by serving the manpower and professional needs of industry and business. The SOE provides options to Connecticut engineers for lifelong education and renewal of skills. The SOE serves all its constituencies with integrity, clarity of purpose and professionalism. Toward that end the SOE has adopted the following students learning and pedagogy tenets:

We make a close relationship between the students and the SOE the top priority.

Faculty are involved with programmatic, curricular, and pedagogical change;

Faculty grow professionally through publication and conference attendance.

Faculty keep close ties to industry

Faculty are dedicated to active learning

The proposed program is in full accord with the objectives articulated in the SOE mission statement.

5. Impact
The proposed program will not replace any existing one; the program will not drain students or resources from existing programs. On the contrary, it will impact beneficially the number of undergraduates who choose Computer Engineering as a course of study, and as a professional career, and will leverage effectively the resources that are already present in the School of Engineering. It will be a more focused program overall, with the fifth year providing ample opportunity for a deeper understanding of the nuts and bolts of the discipline, as well as intensive research and development in the framework of Capstone Project courses. Appendix D shows a list of students who completed a MS Thesis and a list of student publications.

6. Program Detail

6.a. Benchmarking 5-year degree ECE MS programs:
It is always instructive to benchmark a new program against similar or equivalent programs in other institutions:

University of Illinois. Urbana-Champaign: Five-year degree BS/MS program in computer science. BS component: 120 credits; same required courses as the traditional BS degree (out of a total of 129-132), plus 3 graduate level courses in architecture, theory, and Computer; GPA of 3.5 MS component: 16 additional credits in graduate course work plus 4 credits of
the MS thesis; overall GPA of 3.0 maintained through completion of the MS component of
the program.

Santa Clara University: Five-year BS/MS in Computer Engineering or Computer
Engineering. Under the combined B.S./M.S. Program, a full-time SCU undergraduate student
can begin work on courses required for a master's degree before the B.S. degree requirements
are complete, typically leading to a master's degree in computer engineering or Computer
Engineering within a year of obtaining the bachelor's degree. The regular full-time
undergraduate fees cover tuition for up to 16 units of graduate courses taken during the
senior year. No course can be used to simultaneously satisfy requirements in both the BS and
MS degree programs. Students in this program will receive a BS degree after satisfying the
standard undergraduate degree requirements. To earn the MS degree, students must fulfill all
the requirements for the MS degree specified in the graduate catalog.

University of California, Berkeley: Five-Year BS/MS in Computer Engineering. It is
expected that 5th year students will follow the generic program shown below, meeting all of
the requirements for the EECS MS degree while also broadening their experiences. Student
use the spring semester of their senior year to formulate and begin work on their MS project
to insure they will be able to finish it by the end of their fifth year. The outline of the 5th year
curriculum is as follows: Fall: EE/CS 299 (1 unit) 2 Grad EECS courses in area of technical
depth (8 units) 1-2 courses outside EECS in area of breadth (4-6 units) Spring: EE/CS 299 (2
units) 1 Grad EECS course in area of technical depth (4 units) 1-2 courses outside EECS in
area of breadth (4-6 units)

University of Miami: BS/MS 5-YEAR PROGRAM; this program permits students to receive
a baccalaureate degree (BSEE) and a Master of Science (MS) degree in five years. The two
degrees are awarded simultaneously when the combined requirements have been met for both
degrees. Qualified students who want to be enrolled in this program must apply before the
end of their junior year and meet all pertinent graduate school requirements, including a
minimum of 3.0 GPA and a satisfactory GRE score. In lieu of the 6-credit thesis requirement,
participants may complete either one significant design project or two shorter duration
projects. The design projects are monitored by at least two mentors; one of the mentors must
be a member of the primary faculty in the department. The projects are completed by the
acceptance of a verbal presentation and a written report by the student's mentors. The thesis
option requires an oral defense.

The University of Massachusetts at Amherst: BS/MS 5-YEAR PROGRAM; This program
offers a BS in EE or Computer and Systems Engineering as well as ECE MS. During the first
4 years, additional graduate-level courses are taken that are transferred into the MS program.
Eight additional courses are taken including two additional project courses during the
summer.
The University of California at San Diego; ECE BS/MS program in 5 years. No GRE required, for admission; But a GPA of 3.0 or better with strong letters of recommendation is required. Students begin graduate level coursework in the senior year.

Georgia Tech; ECE BS/MS program in 5 years. Application is done in the junior year and the application fee is waived. There is no GRE required. The GPA minimum for admission is 3.5. A letter of recommendation is required. There are additional special requirements for those who plan for the Ph.D. option.

Carnegie Mellon: ECE BS/MS program in 5 years. They use a “unit” system that is not easy to translate into our credit system. A “B” or better is required for undergraduates to be considered for admission into the program after the completion of 96 “units”.

George Washington University: ECE BS/MS program in 5 years. They require 8 additional graduate level courses for a total of 24 credit hours. There is no MS thesis requirement. A GPA minimum of 3.0 is required by the end of the 8th term of the BS program. There is no GRE requirement.

Drexel University: ECE BS/MS program in 5 years. They award the BS and MS diploma at the same time. Admission requires 90 credit hours in the BS program with GPA of at least 3.3. There is no GRE requirement. The thesis is optional. Drexel is on a tri-semester system.

University of Minnesota: ECE BS/MS program in 5 years. Students need 79 credit hours with a GPA of 3.4 of better. The GRE is not required, nor are letters of recommendation. An additional 24 graduate credit hours are required. The thesis is optional.

6.b. The 5-year program at Fairfield University-Academics

Several elements of the programs presented above will be adopted for the 5-year program. In general terms, the education will include:

Mathematics as a formal basis for the discipline.

Principles, which constitute the lasting concepts that, underlie the discipline.

Practices that include specialized skills, patterns and techniques.

Applications of both principles and practices.

Tools that must be state-of-the-art; e.g., computer-aided Computer engineering.
6.6.1. Changing from Undergraduate to Graduate Status

Students may request a change of status from the undergraduate to the undergraduate/graduate combined plan of study at any point after the following conditions are met:

Completed 98 credits towards the BS in Electrical or Computer Engineering.

Completed all required Junior-level (300-level) math and EE or CpE courses specified in the undergraduate catalog.

For Computer Engineering, students will have successfully completed 6 courses in Computer Engineering or Computer Science with a GPA of 3.2, and are enrolled in at least one graduate course in the ECE MS program at the time the change is requested.

For Electrical Engineering, students will have successfully completed 6 courses in Electrical Engineering with a GPA of 3.2, and are enrolled in at least one graduate course in the ECE MS program at the time the change is requested.

Have an overall GPA of 3.0 or higher.

Students are also required to submit two letters of recommendation, one of which must be from their faculty advisor.

The educational goals and content of the graduate studies under this program are essentially the same as in the ECE Master's Degree Program, but the curriculum is arranged differently in order to allow completion of the requirements for two degrees in five years.

Students follow the standard undergraduate curriculum for the first three years, and then complete the BS degree requirements during their fourth year while taking graduate courses. During the fifth year the students take an additional eight courses to complete their MS degree. In addition, they may participate in internships between their third and fourth years, and would then be directed to take one elective graduate course during the summer between the fourth and fifth year, in order to expeditiously complete the program requirements.

Students will be awarded the BS degrees and MS degrees when the requirements in Table II are satisfied. The Accreditation Board for Engineering and Technology, ABET, requires that students complete a Senior Design project, as part of the BS degree curriculum.

6.6.2. Educational Goals of the Curriculum

The proposed program will provide students with the knowledge and skills to innovate and lead in their discipline in the framework of research and development in academic institutions, research institutions, service organizations and a wide variety of science, technology or business domains. These outcomes will be achieved through carefully chosen knowledge that students
will gain by virtue of expert curriculum design, instruction, inquiry and professional development that will make each student an agent of positive change.

For this purpose the program curriculum will guide the students to become proficient in the following domains:

Fundamentals: Students will develop their creative intellectual potential by undergoing a thorough grounding in the fundamentals of science, mathematics, computer science, and engineering, and, further, develop their ability to formulate and analyze problems and synthesize well-designed solutions based on this knowledge and their critical judgment.

Depth and Breadth: Students will develop breadth and depth in disparate areas of Electrical or Computer Engineering and their ability to apply this knowledge to problem solving and designing, building, testing, and validating of Electrical or Computer based systems.

Flexibility: Students will study in a flexible environment which allows each one the opportunity to pursue individual interests and academic strengths through electives, projects, and internships, and to thereby become accustomed to a sense of flexibility in thinking as they pursue their career.

Teamwork: Students will be able to work successfully in diverse multi-disciplinary teams with individuals whose expertise spans other engineering disciplines, and in an internship environment with non-engineering disciplines, such as social sciences and business.

Strategic and Ethical Thinking: Students will develop the ability to think in a sophisticated and ethical manner about technology and their careers, and be encouraged to always question their objectives and be engaged in lifelong learning.

Systems Building: Students will develop an appreciation for the environment in which engineering is practiced, and will learn to define problems and formulate solutions from a systems perspective.

Leadership: Students will be encouraged to develop the capacity to lead and become professionals who will evaluate how and why Computer Engineering is practiced and to pursue careers that will help fulfill societal needs.

6.b.III. Curriculum Components

The five-year curriculum for the proposed program is shown on Table II. It consists of 156 credit hours over the five-year span. This number includes the 6-credit Senior Project. The VPAH is a Visual & Performing Arts history elective in one of the areas of: Art History (AH), Studio Art (SA), Theatre (TA), Music (MU), Film (FM), New Media (NM), Radio (RA) or Television (TL).
Summers are left unscheduled so that students may engage in professional development activities. We encourage and help students to get valuable industrial experience. Some students will elect to take additional coursework during the summers in addition to or in lieu of industrial work.

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Cred</th>
<th>Spring</th>
<th>Cred</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>MA 145 Calculus I</td>
<td>4</td>
<td>MA 146 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PS 15 General Physics I</td>
<td>3</td>
<td>PS 16 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PS 15L General Physics Lab I</td>
<td>1</td>
<td>PS 16L General Physics Lab II</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EG 31 Fundamentals of Eng</td>
<td>3</td>
<td>HI 10 Origins of the Mod. World</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PH 101 Intro to Philosophy</td>
<td>3</td>
<td>SW 131 Fund. Of Prog. For Eng.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EN 11 Texts and Contexts I</td>
<td>3</td>
<td>EN 12 Texts and Contexts II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>term total</td>
<td>17</td>
<td>term total</td>
<td>17</td>
</tr>
<tr>
<td>Second Year</td>
<td>MA 245 Calculus III</td>
<td>4</td>
<td>MA 321 Ordinary Diff Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EE 213 Intro Electric Circuits</td>
<td>3</td>
<td>CD 211 Engr Graphics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EE 213L Electric Circuits Lab</td>
<td>1</td>
<td>SCEL Science Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MA 351 Prob & Statistics</td>
<td>3</td>
<td>SCEL SCEL Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>GE General Elective I</td>
<td>3</td>
<td>RS 101 Exploring Religion</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SW 232 Adv. Prog. And Data Struct.</td>
<td>3</td>
<td>EC 11 Intro Microeconomics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>term total</td>
<td>17</td>
<td>term total</td>
<td>16</td>
</tr>
<tr>
<td>Third Year</td>
<td>MA 231 Discrete Math.</td>
<td>3</td>
<td>CR 246 Digital Design II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CR 245 Digital Design I</td>
<td>3</td>
<td>GE General Elective II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CR 245L Digital Design Lab I</td>
<td>1</td>
<td>EN English Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CR 331 Biomedical Signal Proc</td>
<td>3</td>
<td>CR 332 Biomedical Imaging</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CR 320 Computer Networks</td>
<td>3</td>
<td>EE 346 Embedded Mico Cont.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PH Phil Elective</td>
<td>3</td>
<td>EE 346L Embedded Mico Cont. Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>term total</td>
<td>16</td>
<td>term total</td>
<td>16</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>CR 33 Biomedial Visual.</td>
<td>3</td>
<td>HI History Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CR 390 Senior Project I</td>
<td>3</td>
<td>CR 391 Senior Project II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 415 Numerical Methods</td>
<td>3</td>
<td>SS/EL Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 420 Reading in ECE</td>
<td>3</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RS EL Religious Studies Elective</td>
<td>3</td>
<td>AE Applied Ethics Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AH Art history Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>term total</td>
<td>18</td>
<td>term total</td>
<td>15</td>
</tr>
<tr>
<td>Fifth Year</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>term total</td>
<td>12</td>
<td>term total</td>
<td>12</td>
</tr>
<tr>
<td>OVERALL TOTALS</td>
<td></td>
<td>156</td>
<td>80</td>
<td>76</td>
</tr>
</tbody>
</table>
Table IIa. The 5-Year ECE MS Program with Computer Engineering BS

<table>
<thead>
<tr>
<th>Year</th>
<th>Fall</th>
<th>Cred</th>
<th>Spring</th>
<th>Cred</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>MA 145 Calculus I</td>
<td>4</td>
<td>MA 146 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PS 15 General Physics I</td>
<td>3</td>
<td>PS 16 General Physics II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PS 15L General Physics Lab I</td>
<td>1</td>
<td>PS 16L General Physics Lab II</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EG 31 Fundamentals of Eng</td>
<td>3</td>
<td>SW 131 Fund. Of Prog. For Eng.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PH 101 Intro to Philosophy</td>
<td>3</td>
<td>HI 10 Origins of the Mod. World</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EN 11 Texts and Contexts I</td>
<td>3</td>
<td>EN 12 Texts and Contexts II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>term total</td>
<td>17</td>
<td>term total</td>
<td>14</td>
</tr>
<tr>
<td>Second Year</td>
<td>MA 245 Calculus III</td>
<td>4</td>
<td>MA 321 Ordinary Diff Equations</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EE 213 Intro Electric Circuits</td>
<td>3</td>
<td>EE 221 Freq. Domain Circuit Analysis</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EE 213L Electric Circuits Lab</td>
<td>1</td>
<td>CD 211 Engr Graphics I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MA 351 Probability and Statistics I</td>
<td>3</td>
<td>RS 101 Exploring Religion</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH 111 General Chemistry I</td>
<td>3</td>
<td>HI EL History Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CH 111L Gen Chem I Lab</td>
<td>1</td>
<td>AH EL Art History Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>GE General Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>term total</td>
<td>18</td>
<td>term total</td>
<td>18</td>
</tr>
<tr>
<td>Third Year</td>
<td>ME 201 Statics</td>
<td>3</td>
<td>EE 331 Analog Electronic Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CR 245 Digital Design I</td>
<td>3</td>
<td>EE 331 L Analog Electronic Design Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CR 245L Digital Design Lab I</td>
<td>1</td>
<td>MG 300 Feedback & Control Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EE 231 Intro. Electronic Circuits</td>
<td>3</td>
<td>PH EL Philosophy Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EE 231L Electronic Circuits Lab</td>
<td>1</td>
<td>EN English Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EE 301 Systems & Signals I</td>
<td>3</td>
<td>ME EL Mechanical Engineering Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>RS EL Religious Studies Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>term total</td>
<td>17</td>
<td>term total</td>
<td>16</td>
</tr>
<tr>
<td>Fourth Year</td>
<td>EC 11 Intro to Microeconomics</td>
<td>3</td>
<td>EG 391 Senior Project II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EG 390 Senior Project I</td>
<td>3</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 415 Numerical Methods</td>
<td>3</td>
<td>GE General Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EE 321 Electromagnetic Fields</td>
<td>4</td>
<td>AE 287 Engineering Ethics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 420 Reading in ECE</td>
<td>3</td>
<td>SS/EL Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>term total</td>
<td>16</td>
<td>term total</td>
<td>15</td>
</tr>
<tr>
<td>Fifth Year</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
<td>ECE Grad. Maj. Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>term total</td>
<td>12</td>
<td>term total</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>OVERALL TOTALS</td>
<td>155</td>
<td>80</td>
<td>75</td>
</tr>
</tbody>
</table>

Table IIb. The 5-Year ECE MS Program with Electrical Engineering BS

The Senior Design Project I and II, in the 4th year have been joined with graduate courses. The graduate level courses in year 5 include room for the optional thesis. ABET requires a year of math and science, and our students will get a minor in math as well as a minor in biomedical engineering.

All the courses listed in Table II are presently in existence. No new courses need be developed at this point. Syllabi for the courses are available upon request. Syllabi for the courses listed in Table II are available upon request. The course descriptions are included in Appendix A.

6.b.IV. Learning Goals and Required Courses

The courses that provide the knowledge and skills and tools that students need to achieve the program objectives are discussed below.

CR245/CR245L, CR246, EE346/EE346L: These courses cover the concepts, skills, methodologies, techniques, tools, and perspectives needed by the hardware engineer needed to design and implement computer-based systems.
SW 131, SW 232, CR320: These courses teach students to develop a thorough understanding of the latest programming languages and tools, related computer science skills. Students learn the essentials of classes, objects, inheritance, and polymorphism. Students also learn to model problems in an object-oriented fashion. Students will achieve an understanding of how object-oriented applications are designed and built. Students learn how computational resources are pooled, shared, and dynamically assigned and reassigned to workload in line with "need" policy, thus creating the opportunity for greater efficiency and agility.

ECE415, CR331, CR332, CR333: These courses give the students depth into the field of signal processing, imaging, and visualization. The application is in the biomedical device field, emphasizing the role of engineering as a service to society.

ECE420 gives students the ability to do research, pose a research problem and communicate it to their peers.

EG390/EG391: These senior project courses are done at the completion of the 4-year program. The student applies their knowledge of computer development by participating in a group project that designs and implements a complete computer system. These courses address the management of the computer development process. Each aspect of the computer design process (requirements gathering, specification, development, design and architecture of computer hardware, coding, testing, documentation and maintenance) is discussed and applied.

7. Administrative Structure and Governance
The program will be administered by the chair of the Computer Engineering department, Dr. Douglas Lyon, with oversight by the Dean of Engineering, and the Dean's Council. It will be further assisted by a curriculum advisory group of faculty and industry representatives. Dr. Lyon will be responsible for the day-to-day administration of the program, long-term planning, and internal and external relations, and will report to the Dean.

The Advisory Board of the School of Engineering will also have a hand in assisting the program to maintain communications and interactions with industry for the placement of interns and for prized collaborations in the framework of the Capstone Project courses. The current composition of the SOE Advisory Board is shown in Appendix B.

8. Resources. Resources available and resources needed.
The academic resources needed for the proposed dual-degree five-year program are all available in the SOE, in view of the fact that both the traditional 4-year undergraduate program and the ECE Master's program have been operational for some time. The proposed program is a modification to the existing programs. This modification will leverage the courses and
computer and hardware assets already at the disposal of the Computer Engineering program in the SOE. Existing laboratories listed in Table III support all laboratory aspects of the program, from language skills to computer development practices, etc.

8.a. Faculty
The faculty who will teach Electrical and Computer Engineering courses are:

1. Beal, Jack, Professor, Physics; Ph.D., Michigan State University.
2. Botosani, Paul, Adjunct Professor and Director of Laboratories, Electrical Engineering and Automation, Ph.D., Polytechnic Institute of Bucharest.
3. Cavello, James, Adjunct Instructor, MBA Carnegie Mellon.
4. Denenberg, Jeffrey, Adjunct Professor, Electrical Engineering; Ph.D., Illinois Institute of Technology.
5. Govil, Pradeep, Adjunct Assoc. Professor, Electrical Engineering; MSEE, Carnegie Mellon.
6. Lyon, Douglas, Professor and Chairman of the Computer Engineering Department, Ph.D., Rensselaer Polytechnic Institute.
7. Lopes, Gino, Adjunct Instructor, MSEE, Fairfield University
8. Marquis, Maynard, Adjunct Assistant Professor, MSEE, Yale University.
9. Munden, Ryan, Assistant professor, Ph.D., Yale University.
10. Pizzo, Clement, Adjunct Associate Professor, Electrical Engineering; EED, Polytechnic Institute of New York.
11. Talty, Tim, Professor and Chairman of the Electrical Engineering Department; Ph.D., University of Toledo, Ohio.
12. Vagos, Hadjimichael, Professor, Electrical Engineering/Physics; Ph.D., University of California, Berkeley.
13. Weiman, Carl, Adjunct Associate Professor, Computer Engineering; Ph.D., Ohio State University.

These faculty members are sufficient to cover all areas of the ECE curriculum. No other resources are requested for the implementation of the proposed five-year program.
8.b. Laboratories
The School of Engineering has assembled the resources required for the successful implementation of the MSECE program. Furthermore, funding for future equipment replacement to keep pace with advancing technology, and for further programmatic development, is now available. Hence, satisfying the demands of the proposed program will have no adverse impact on other programs.

Dedicated laboratories in SOE are under the supervision of the Director of Laboratories, Dr. Paul Botosani. He is assisted by part time lab assistants. All laboratories are equipped with leading-edge instrumentation. The MS ECE laboratory courses use the equipment listed in Table VI. They are all presently available, and, as indicated already, provisions have been made for their replacement in the future, as needs arise. The domains on the computer engineering side include courses that will be taught in a studio mode – as in the RPI model- and will include hands-on work incorporated into class work.

The SOE classrooms have video projectors with networked computers. Some of the computer engineering classes, e.g., Voice & Signal Processing, need special equipment, e.g., microphones, speakers and sound cards. Those are available and installed. Other resources, currently available also, include scanners, full-color printers, DVD writer and digital cameras for the purposes of the Image Processing course and the Computer Graphics and Computer Animation classes.

Finally, a special robotics studio/lab is available in support of the Network Programming and Embedded Systems courses. The extensive computer resources required for the program are all available.

The laboratory facilities available for the proposed program are listed in Table III.

Table III: Laboratory Equipment Support the ECE Program

<table>
<thead>
<tr>
<th>Item</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arduino Board</td>
<td>ECE 448L Microcontroller Laboratory</td>
</tr>
<tr>
<td>Altera Boards</td>
<td>ECE 406 Advanced Digital Design</td>
</tr>
<tr>
<td>Screen Printer</td>
<td>ECE 515L Microelectronics Laboratory</td>
</tr>
<tr>
<td></td>
<td>ECE 520L Systems Design Laboratory</td>
</tr>
<tr>
<td></td>
<td>ECE 510L Product Design Laboratory</td>
</tr>
<tr>
<td>Programmable Kiln</td>
<td>ECE 515L Microelectronics Laboratory</td>
</tr>
<tr>
<td></td>
<td>ECE 520L Systems Design Laboratory</td>
</tr>
<tr>
<td>Equipment Description</td>
<td>Lab Location</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Electronics Test Equipment</td>
<td>ECE 510L Product Design Laboratory</td>
</tr>
<tr>
<td></td>
<td>ECE 515L Microelectronics Laboratory</td>
</tr>
<tr>
<td></td>
<td>ECE 520L Systems Design Laboratory</td>
</tr>
<tr>
<td></td>
<td>ECE 510L Product Design Laboratory</td>
</tr>
<tr>
<td></td>
<td>ECE 530L Power Electronics Laboratory</td>
</tr>
<tr>
<td></td>
<td>ECE525L Communications Laboratory</td>
</tr>
<tr>
<td>Instrumentation for temperature coefficient of expansion measurements.</td>
<td>ECE 510L Product Design Laboratory</td>
</tr>
<tr>
<td>Instrumentation for thermal capacity measurements.</td>
<td>ECE 510L Product Design Laboratory</td>
</tr>
<tr>
<td>Instrumentation for thermal conductivity measurements</td>
<td>ECE 510L Product Design Laboratory</td>
</tr>
<tr>
<td>Instrumentation for measurements of mechanical properties of materials (Instron).</td>
<td>ECE 510L Product Design Laboratory</td>
</tr>
<tr>
<td>Infrared temperature measurement system</td>
<td>ECE 510L Product Design Laboratory</td>
</tr>
<tr>
<td>AC/DC power</td>
<td>ECE 530L Power Electronics Laboratory</td>
</tr>
<tr>
<td>Power Transformers</td>
<td>ECE 530L Power Electronics Laboratory</td>
</tr>
<tr>
<td>Variable frequency power supply</td>
<td>ECE 530L Power Electronics Laboratory</td>
</tr>
<tr>
<td>Electronic Components</td>
<td>ECE 530L Power Electronics Laboratory</td>
</tr>
<tr>
<td>Instrumentation for RF measurements.</td>
<td>ECE 525L Communications Laboratory</td>
</tr>
<tr>
<td>Instrumentation for Wireless Communications</td>
<td>ECE 525L Communications Laboratory</td>
</tr>
</tbody>
</table>

In conclusion, the needed resources for the successful implementation of the MS ECE program, as detailed in this proposal, have all been assembled. The School of Engineering has as its overarching objective to create an effective learning environment for MS ECE, and all its other programs. It will spare no effort to achieve this objective.
8.c. The SOE Administration

A part-time network administrator provides IT support to the School and centrally administers computer packages. SOE has six dedicated computer laboratories and seven instrumentation laboratories assigned to different engineering tasks (electrical, electronics, robotics, automation, manufacturing, mechanical, materials, power).

8.d. Computer Inventory

The list of the most prominent Computer tools that support instruction in the SOE are included in Appendix C.

9. Projections for the Future

The quality and efficacy of the proposed 5-year course of study will be subject to the same Assessment and Continuous Quality Improvement Process (ACQIP) in effect in the SOE since 1997. ACQIP is the protocol that allows continuous evaluation of the degree of achievement of program learning goals and program objectives across all academic programs in the SOE.

With all the resources currently on hand, there is no additional expense that need be added to the SOE budget, and no budget for the program modification need be provided at this point.
Appendix E

Deans’ Council Meeting Minutes
Excerpts
October 23, 2012

(NOTE: THE PART OF THE MINUTES RELEVANT TO THE 5YP IS IN ITALICS)

Members present: Jack Beal, Doug Lyon, Etemad Shahrokh, Harvey Hoffman, Paul Botosani, Tim Talty, and Wook-Sung (WS) Yoo

Members excused: Bill Taylor

Undergraduate Curriculum Committee

Jack and Doug reported that University Curriculum Committee unanimously approved the 5-Year BS/MS Dual Degree program in Computer Engineering department with very minor correction at its June meeting in 2012. Educational Planning Committee will meet on Nov. 15 and Academic Council will meet in Dec. 2012 or Jan 2013 for further action.

The UCC committee reviewed the curriculum. Shah questioned about the tuition of 5 year program how is applied. WS confirmed that students in the program pay tuition based on the number of credits taken as part-time, not paying full $50K. More discussion was made including the number of required credits and thesis option. The 5 year program of CE department was unanimously approved by the committee.

Appendix F

UNIVERSITY CURRICULUM COMMITTEE MEETING

Minutes of the meeting of October 02, 2012 (Excerpts)

Approved November 06, 2012

Attending: Professors Mousumi Bose Godbole, Bruce Bradford, Shah Etemad, Anita Fernandez, Johanna Garvey, Alison Kris, Scott Lacy, Larry Miners, Rajasree Rajamma, Shanon Reckinger, Vin Rosivach, Giovanni Ruffini (Chair), Yohuru Williams, Tommy Xie, SVPAA Paul Fitzgerald, Deans: Jack Beal, Robin Crabtree, Don Gibson.

Guests: Dean Perkus, Professors: Doug Lyon, Tim Talty

4. School of Engineering. Program changes:
Profs: Lyons and Talty were introduced by Prof. Beal. Prof. Beal explained the rationale behind the school’s decision to offer a dual degree program by combining the BS and MS program into a 5 year program. Prof. Lyons added that the students will have the option of getting a B.S. in Computer Engineering or a B.S. in Electrical Engineering with an M.S. in ECE. He explained the program structure for the proposed program.

This was followed by questions from the attendees:

Prof. Miners: Can students end the program with a BS if they want?

Prof. Lyons: Yes. They don’t have to wait all the 5 years to get the degree.

Answering Prof. Rosivach’s question regarding the curriculum requirements, Prof. Lyons said that there are some ABET [accreditation] requirements. With the current programming, we will exceed 48 credit hour requirement for graduation. There is still a large liberal arts core. That has not been diluted.

Prof. Lyons said that the students can enter the program in their junior year.

SVPAA Fitzgerald asked for an explanation regarding the use of summers and inter-sessions in the proposed program. Is this something that international students would understand and appreciate? International students cannot work during summer. So, it may be attractive to offer core courses during summers.

Prof. Lyons: There is a summer internship (see page 11 of the handout) between the 3rd and 4th year. If they are not U.S. citizens, then there may be restrictions. In order not to delay graduation, we would encourage them to take summer classes. But otherwise, summers are free. International students do understand the concept.

Prof. Miners: Is it a popular program?

Prof. Lyons: There are several schools offering this. We are searching for new business models for increasing our enrollment. This seems to work well for software engineering. So, we are following on their lead.

Prof. Bose Godbole: When can they declare their intention to do the masters degree?

Prof. Lyons: They should at least complete 6 courses. Others can do it in the junior year (see page #9). There is a GPA restriction too.

Prof. Fernandez inquired regarding the thesis requirement in the proposed program. Prof. Lyons responded that at the graduate level, a thesis is increasingly becoming optional.

Following this discussion, Prof. Ruffini requested the committee to consider the second proposal from the SOE.

Prof. Beal presented the second proposal from School of Engineering: To phase out, over a two year period, the awarding of the Associate of Engineering Degree by the School of Engineering. The degree would not be offered beyond May 2014. He also offered the rationale for ending the Associate of Engineering degree. He said that Fairfield University does not advertise these programs currently. Fairfield is competing with the community colleges who are our partners for prospective associate degree students. Only part time students are there in the associate program currently. All of them are also enrolled in the bachelors program.
Prof. Miners: Any relationship between the associate degree and 3/2 program?

Prof. Beal: No.

Prof. Rosivach: When BEI was initially instituted, it was an important goal for SOE.

Prof. Beal: The original objective has disappeared. Now, we have a day program. We don’t believe that having the associate degree is part of our mission now.

Dean Crabtree: How will this affect scheduling the evening programs?

Prof. Beal: We do not see any significant changes.

Prof. Williams: Are we encouraging the students to go to Community college?

Prof. Beal: No, we don’t promote it.

Hearing no further questions, Profs. Lyon and Talty were allowed to leave.

Prof. Kris moved to accept the motion that: the UCC approve the proposal that the School of Engineering (SOE) create a new degree structure in Electrical and Computer Engineering (ECE), a dual-degree 5-year BS/MS course of study, by combining the curricula for the BS degree and the Master of Science degree in this discipline. The motion was seconded by Prof. Bradford.

Prof. Kris spoke in support of the motion. SVPAA Fitzgerald also spoke supporting the motion saying that the new program does not require any further resources. Further, the 5 yr programs are becoming very popular at Fairfield (e.g., accounting). We will have to consider how to promote these programs internationally.

Dean Crabtree spoke on how the core curriculum was integrated into the new program. Math, Natural science, English and Ph 10 are there. Generally, core is mapped well in the program. She pointed out that the arts and science faculty are very sensitive to having the foundational courses being taken later in the academic career. In the current programming, 5 core courses have been saved for the final year so that way students will be in the core classes in their junior and senior year.

Prof. Beal agreed with Prof. Crabtree. Students are pretty loaded in the senior year. But we deliberately want the Applied Ethics course to be taken in the senior year.

Prof. Beal pointed out that the international students usually come with a 3 year equivalent program.

Prof. Crabtree said that one of the developments in international markets is the development of liberal arts colleges. At Fairfield, international students will be able to take core classes.

The motion passed unanimously with 13 votes in favor.
Appendix G.

Minutes of the Educational Planning Committee (Draft) (Excerpts)

Draft EPC Minutes

November 15, 2012
Present: Lynn Babington, Peter Bayers, Paul Fitzgerald, Sheila Grossman, Olivia Harriott, Evagelia Bilias Lolis, Mark Scalese, Carl Scheraga, Christopher Staeger

Absent: Catherine Giapponi, Susan Franzosa, Qin Zhang

B. Dual Degree Program: MSc in Electrical and Computer Engineering
Professor Doug Lyons described the proposed 5 year BS/MS program in electrical and computer engineering. The curricula for the two areas would be combined and graduates would be awarded a BS in Computer or Electrical Engineering with an MS in Electrical and Computer Engineering. Professor Lyons explained the demand for this combined degree is high and shared how other universities are successfully offering it. It is a very financially attractive solution to engineering students who are seeking jobs requiring more than the baccalaureate preparation. Both students and parents are asking for this program. The 5 year dual program in Software Engineering has shown positive growth.

SVPAA Fitzgerald asked if students would have to overload during the BS program and decide immediately in freshman year if they want this program in order to accomplish the goals of the dual program. Professor Lyons said some semesters have 18 credits but the first year is identical for the 4 and 5 year program so it would behoove the student to decide if they wanted this dual program early on but not immediately as freshmen in the BS program. Professor Grossman suggested that since summers and intersessions are not course assigned, students could lighten their 18 credit load by taking courses then along with their internships. Professor Staeger compared the proposed program to the 5 year accounting BS/MS program which has been successful. Dean Babington asked if the proposed program was similar to competitors’ programs. Professor Lyons agreed it was and that the dual bachelor and masters degree programs seemed to be a national trend. Professor Staeger asked if the 3 – 2 year program between Fairfield University and UCONN, RPI, and Columbia would be discouraged with this new proposed program that offered a masters. Professor Lyons felt this new program would just offer another option for students. Professor Bilias Lolis asked how faculty would be able to determine the undergraduate’s potential for graduate education since students would be deciding on graduate education at such a young age. Professor Lyons feels this is not a problem since student and professor ratio is low so professors have a good assessment of candidates’ potential. Professor Scalese proposed that the School of Engineering change the requirement in Art History to show that students are required to take a course in VPA History and not solely Art History. Professors Beal and Lyons agreed to fix this on curricula plans. Professor Bayers made the motion to terminate the AD Program in Engineering and Professor Bilias Lolis seconded. The motion passed unanimously.

Dean Babington made the motion to approve the Dual Program in Engineering and Professor Staeger seconded. Professor Bilias Lolis felt the need for this program is well identified and that the program seems to be modeled well but asked if there were other benchmarks that would predict success the Engineering faculty could use to admit the young undergraduates to a graduate program. The idea of entrance examinations for graduate programs not showing indications for success was made. Professor Staeger reinforced that the Engineering faculty do request two recommendations for admission from faculty at the time students apply for this new program. The motion passed unanimously.
Graduate School of Education and Allied Professions

NEW PROGRAM PROPOSAL FORM

Initiator(s) of Proposal Faith-Anne Dohm, Ph.D., Director of Applied Psychology

Faculty Member(s) to be Present at Committee Meeting Faith-Anne Dohm, Ph.D.

Department Psychological & Educational Consultation (DPEC)

Proposed Program Title Five-year Integrated Bachelor’s/Master’s Degree in Industrial/Organizational Psychology

Proposed Number of credits

39 total credits: 9 credits (6 undergraduate, 3 graduate) completed at the undergraduate level plus 30 credits completed at the graduate level

Address each of the following in your New Program Proposal. Please number pages in all parts of your proposal.
(type responses directly under questions or attach a separate sheet)

1. **Rationale** for the new program, including: a marketing analysis that describes the potential need for the new program; demonstration of compliance with appropriate professional accreditation guidelines; benefits to the department, GSEAP and university; and alignment with GSEAP unit goals and mission. All proposals for new programs should be developed in consultation with the Dean’s office. Summarize the outcome(s) of those conversations (e.g., need, benefits, whether a market analysis is needed).

 This is not a new program per se. Rather it provides a different route to the current master’s degree offered in Industrial/Organizational Psychology. It has the potential to benefit the university, the Graduate School of Education & Allied Professions (GSEAP), and the Department of Psychological & Educational Consultation (DPEC) by encouraging current Fairfield University undergraduate students (particularly those in psychology or business) to continue on for another year in order to earn a master’s degree. It will benefit undergraduate psychology and business students by providing an opportunity to earn a master’s degree within a year of completing their undergraduate degrees (the traditional master’s degree in I/O that we offer is a full-time, two-year program). It also will be a benefit to the university because it will be the first formal collaboration between GSEAP and both the undergraduate Psychology department and the Dolan School of Business.

 In response to a recent survey conducted by the Office of Institutional Research, 34 of the 87 Fairfield University undergraduate respondents indicated that they would be very interested (20.69% of respondents, n = 18) or interested (18.39%, n = 16) in a 5-year program in Industrial/Organizational Psychology. Given that our goal is an annual cohort of no more than 10 5-year students, this response rate suggests more than adequate interest in the program.

12 Parts of this are adapted from Fairfield University’s Journal of Record, p. 54.
2. A *description* of the proposed program, including program goals, requirements (incl. courses, internships, practica, admission/exit, GPA, etc.) as it would appear in the catalog. A completed new course proposal form must be included for all new courses in the program (see New Course Proposal Form and Syllabus Template).

This program will be open to Fairfield University undergraduate psychology majors and minors, and business majors who meet the academic requirements for the program (other Fairfield University undergraduate students who meet the requirements may also apply, but the students who will transition most easily to the program are those specified).

To be eligible for admission, students need to have an overall GPA of 3.0 in their undergraduate courses. They also must earn grades of at least B+ in three courses taken while they are undergraduates (PY 203 Statistics for the Life Sciences and PY 209 Research Methods, both offered by the undergraduate psychology department; PY 420 Introduction to Industrial/Organizational Psychology, taken for credit towards the undergraduate degree but offered by GSEAP – it is the first specialty course required for the current IOP master’s degree program). These GPA and grade requirements are in place because the 1-year/30-credit program will be academically intense, and we want to maximize the likelihood that students can be successful.

Course Requirements for the Five-Year Integrated Bachelor’s/Master’s Degree in Industrial/Organizational Psychology

(39 credits: 9 undergraduate and 30 graduate)

Undergraduate Courses (6 credits)
PY 203 Statistics for the Life Sciences
PY 209 Research Methods

Graduate Course Taken as Undergraduate in Senior Year (3 credits)
PY 420 Introduction to Industrial/Organizational Psychology (will count as a PY undergraduate elective; may count as a BU elective pending DSOB approvals)

Graduate Courses (30 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY 501 Fundamentals of Survey Design</td>
<td>1st (Summer)</td>
</tr>
<tr>
<td>PY 475 Program Evaluation</td>
<td>1st (Summer)</td>
</tr>
<tr>
<td>MG 503 Legal & Ethical Environment of Business</td>
<td>1st (Summer)</td>
</tr>
<tr>
<td>PY 406 Organizational Development *</td>
<td>2nd (Fall) *</td>
</tr>
<tr>
<td>PY 435 Psychology of Personality</td>
<td>2nd (Fall)</td>
</tr>
<tr>
<td>PY 471 Effective Interviewing</td>
<td>2nd (Fall)</td>
</tr>
<tr>
<td>PY 545 Designing Training and Development Programs *</td>
<td>2nd (Fall) *</td>
</tr>
<tr>
<td>PY 480 Consulting Theory and Practice</td>
<td>3rd (Spring)</td>
</tr>
<tr>
<td>PY 485 Performance Coaching</td>
<td>3rd (Spring)</td>
</tr>
</tbody>
</table>
*During the Fall semester, PY 545 and PY 406 will be taught sequentially at the same
day/time (e.g., for four hours each week or eight hours every other week). The semester will
start with PY 545 then segue into PY 406 when PY 545 is completed. In this way students will
be working on three courses at a time during the semester, but completing four courses by the
end of the semester.

3. **Impact.** What program(s) if any, will this replace? How will it impact current programs in your
discipline or other disciplines? Will it overlap or replicate other programs?

 The program will increase the likelihood that the current master’s degree program can
remain a viable program. Students in the five-year program will take courses with
students in the non-accelerated program. At this time we could accommodate a cohort of
up to 10 students each year into the five-year program.

4. **Structure and Governance.** Where will the program be housed? Who will make decisions about
curriculum and staffing?

 The program will be housed under Applied Psychology within the Department of
Psychological & Educational Consultation. The program director, in consultation with the
department chair and IOP faculty, will make decisions about curriculum and staffing.

5. **Resources.** Describe available and needed resources (e.g., personnel, space, fiscal, library holdings)

 The only needed resources required initially would be: (1) the re-assignment of Dr. Paul
Maloney to direct his recruiting effort to this program, (2) on-campus advertising
materials to be distributed to undergraduate business and psychology majors and minors,
(3) funds to host information sessions for faculty and prospective students, and (4)
additional adjunct professor hours as we transition from the current schedule of courses in
the IOP master’s program to a schedule of courses that will accommodate the five-year
program. Currently we have the capacity to accept a cohort of at least 10 students each
year.

6. **Projections for the Future.** What are your anticipated plans for this program down in two years? five
years? When and how will you evaluate its effectiveness?

 This coming year will be the approvals year (2012-13). If we can get the campus-based
approvals completed in Fall 2012(i.e., GSEAP Curriculum Committee, Undergraduate
Curriculum Committee, Educational Policy Committee) and the approval of Academic
Council and the Office of Higher Education in Spring 2013, we could recruit our first
cohort during Spring 2013, Summer 2013, and Fall 2013, with the expectation of the first
candidates starting in Summer 2014 (if we get through the approvals processes more
quickly, we could recruit to start in Summer 2013). Within five years of the start, we
should see a reliable cohort of at least six students starting the program each summer.
Effectiveness of the program will be evaluated via alumni and employer surveys (the
alumni surveys include a question re length of time to employment in the field), as well as via regular examination of candidate success in courses, on their fieldwork placements, and on the comprehensive examination.

5. When was this proposal discussed and approved by faculty in your department (include all dates)?

Please provide excerpts from departmental minutes when the proposal was discussed and approved.

The proposed program was discussed at a regularly scheduled department meeting on September 19, 2012. There were no areas of concern, and the department provided explicit approval for the proposal to be submitted to the GSEAP Curriculum Committee. The relevant excerpt from the department meeting is as follows:

“Faith-Anne Dohm briefly shared about the 5-yr. Industrial Organization (IO) program she is proposing and referenced the materials previously sent to department members for review. Support for the courses and program ensued. In particular, the collaboration with the Business School and fostering the visibility of the program on campus were particularly noted as positive outcomes ... There was unanimous agreement by the department members to move forward with the 5-yr. IO proposal.”

7. Has this proposal been discussed with faculty in other departments? **YES**

(Consult with dean’s office to determine how proposal might affect other programs/departments and whether or not discussions with other departments are necessary.)

Provide a detailed description of your discussion(s) with other programs or departments affected by this proposal.

The program has been discussed with the dean and associate dean of the Dolan School of Business and with the Chair of the undergraduate psychology department. A letter of support from Dr. Don Gibson, Interim Dean of DSOB, is attached (attachment B). A second letter of support from Dr. Judy Primavera, Undergraduate Psychology Department Chair, also is attached (attachment C).

Approved by Department Chair: ___________________________ Date ___________________________

(Signature)

Approved by GSEAP Curriculum Committee: **YES – approved on 10-22-12** *
*Relevant excerpt from the GSEAP Curriculum Committee’s approved minutes:

New Program Proposal: 5-year Integrated Bachelor’s/Master’s Degree Program in Industrial/Organizational Psychology

The Committee noted that the proposed changes form a cohesive unit for conceptualizing and implementing an Integrated 5-year BA/MA Program in Industrial / Organizational Psychology. Dr. Maloney stated that the proposal is based on an expressed need for a 5-year combined BA / MA track. Committee members asked about admissions criteria and at what stage in their undergraduate training students might be admitted. They noted the strong support from Dr. Gibson, Dean of the School of Business and Dr. Primavera, Chair of Psychology (undergraduate). Dr. Maloney spoke in favor of the proposal as a whole in that it not only will attract more students but also constitutes an interdisciplinary approach and collaboration with GSEAP, the Business School and the undergraduate Department of Psychology.

Dr. Dohm was invited to attend the meeting and respond to some questions. She responded that students from other programs might be able to take PY 5XX on a space-available basis, after students for whom it is a required course.

Dr. Dohm also stated that students will be admitted to the 5-year program in their senior year. The prerequisites are a GPA of 3 and grades of B+ in their Statistics, Research, and a 400-level IO course. The course PY 420 Introduction to Industrial / Organizational Psychology (I/O) has no prerequisites, and students who do not go on the 5-year program can use the credits in PY 420 for their psychology / business majors. If students wish to apply to the traditional 36-credit MA program, they would be able to use PY 420 if they had not used it as part of their BA degree program. Otherwise, they would be able to waive it for an elective course.

Motion (Haug / Maloney): Approval of 5-year Integrated BA/MA Program in Industrial / Organizational Psychology. Passed Unanimously

Note: The PY 5XX referred to in the GSEAP Curriculum Committee minutes refers to the PY 501 course listed on the current proposal.
3. New Business
 a. GSEAP 5-Year BA/MA in Industrial & Organizational Psychology

 Prof. Dohm from GSEAP made a presentation to the committee. It was mentioned how the proposed 30 credit program would provide more options for students. Faculty from the Psychology Department are enthusiastic collaborators on this project. It was made clear that the UCC would be endorsing only the undergraduate portion of the proposal.

 Motion to approve made by Prof. Kris, seconded by Prof. Fernandez. Motion carried by unanimous vote, 13-0.

* Relevant excerpts of Psychology Department minutes of 1/29/13:

1. Faith-Anne Dohm, Ph.D., Director of Applied Psychology, GSEAP, attended our meeting to discuss their Five-Year Integrated Bachelor’s /Master’s Degree in Industrial/Organizational Psychology Program.

 She gave an overview discussing a rationale for the program, description of the program, eligibility for admission and course requirements. Dr. Dohm stated that undergraduate Psychology majors would be the most likely candidates for the 5-year BA/MA program given that Statistics and Research Methods are required for the undergraduate BA/BS degree. Dr. Dohm also explained that students will be admitted to the 5-year program in their senior year. The prerequisites are a GPA of 3.0 and grades of B+ in their Statistics, Research and a 400 level I/O course. The course PY420 Introduction to Industrial/Organizational Psychology (I/O) has no prerequisites and the proposal would allow for students who do not go on to the 5-year program to use the 3 credits earned for PY420 as one of their psychology major elective courses.

 It was suggested that Paul Maloney who offers PY420 and the Psychology Department’s adjunct Elizabeth Norris who teaches our PY132 talk and compare syllabi.

 Some questions were addressed:
 • The nature of the GSEAP’s I/O program’s research courses. Some members of the Psychology Department questioned if undergraduate-level Statistics and research methods were high level enough for a master’s program. Dr. Dohm explained the various I/O-related research methods are addressed by the program across several courses and are sufficient for the post-graduation employment endeavors of their students.
 • The requirements will not impact our Statistics and Research Methods since the program hopes to attract only 10 students. Some members of the Psychology department questioned if the 5-year program might burden our existing course loads and class size in Statistics and Research Methods. Dr. Dohm explained that the
arrangement with the Psychology department did not include any “outside applicants” from other universities and applied primarily to Fairfield University psychology major undergraduates. If there were an occasional psychology minor or other Fairfield undergraduate interested in pursuing the I/O masters degree, enrollment in PY203 or PY209 would be strictly on an availability basis – no additional sections of PY203 or PY209 would be asked for. Dr. Dohm stated that Dean Crabtree has given her assurance that if additional sections were needed that it would be “worked out.” Dr. Dohm said that if there was not room in courses, there was no expectation that enrollment caps would be raised. She also stated that if the demand should ever get to the point where that was more than we expected and/or could handle with existing resources that we (GSEAP applied psychology, undergraduate psychology, deans of both schools) would have to talk about the resources needed by both GSEAP applied psychology and undergraduate psychology.

Judy stated that both Linda Henkel and Shannon Harding (both on sabbatical) had sent their comments to her about the I/O proposal. Neither objected to the GSEAP proposal as long as the issue of overburdening PY203 & PY209 was adequately addressed.

We were asked to vote on whether to approve that our students can take PY420 in place of PY 132 as one of their psychology electives and do we approve the concept of the I/O Masters Program.

Faith-Anne Dohm left the room, after a lengthy discussion the department moved and approved:

- that psychology majors who have not taken PY132 would be allowed to take PY420 and that the 3 credits could be counted as one of their electives towards their psychology major.
- That the psychology department feels that the 5-Year I/O Masters Program is potentially a good opportunity for some of our majors
[September 11, 2012]

Faith-Anne,

I would like to offer the support of the Dolan School of Business for your proposal of a 5-year BA/MA Program in Industrial/Organizational Psychology for Fairfield University business and psychology undergraduates. This is an important course offering for business students who are contemplating careers in organization development, human resource management, management consulting, organizational coaching, or academic careers in organizational behavior or I/O psychology.

Students who are Management majors concentrating in human resource management and those with minors in psychology may be most interested in the program; their undergraduate courses of study could most easily accommodate the three courses to be taken at the undergraduate level. There may also be other business majors who would be interested in pursuing the double degree.

Students in this proposed program would be invited to take MG 503, Legal and Ethical Environment of Business, which seems appropriate for this program of study and for the existing MA in Industrial/Organizational Psychology students. At your direction, I can also pursue acceptance of the PY 420 Introduction to Industrial/Organizational Psychology course with the DSB Management department and the DSB Graduate Curriculum Committee.

Associate Dean and Director of Graduate Programs Mark Ligas can serve as a liaison to GSEAP in promoting this new program to our business undergraduate students.

We look forward to this new avenue of collaboration with GSEAP! I look forward to seeing this program come to fruition.

Best regards,
Don

Donald E. Gibson, Ph.D.
Dean and Professor
Charles F. Dolan School of Business
Fairfield University
Date: October 28, 2012
To: Academic Council
From: Susan Rakowitz, General Faculty Secretary
Re: Changes to the University Budget Committee

Below is an email exchange between President von Arx, S.J. and me about changes he's making to the University Budget Committee. The memo that accompanied his first email (and was sent to the Deans and Directors the next day) follows. It specifies that faculty will continue to be represented by the three faculty members who are elected by the General Faculty to serve on the Budget Committee. What is unstated is that for the last several years, the President had also extended an invitation to the Chairs of the Faculty Salary Committee and the Educational Planning Committee (or their designees) to attend the Budget Committee.

Dear Sue:

After getting input from a number of faculty who have served on the Budget Committee in recent years and after consultation with the relevant vice presidents, I have decided to streamline somewhat the membership of the committee. Faculty representatives elected by the General Faculty will, of course, continue to serve. Let me know if you have any questions.

Jeffrey P. von Arx, S.J.

Dear Jeff,

Thank you for sharing advance notification of this plan with me.

As GFS, it's not my position to comment on the non-faculty changes to the University Budget Committee, other than to note that the 5-year report we just sent to NEASC included as an example of an improvement in governance, "an increased role for students on administrative committees (e.g., the University Budget Committee now has two student representatives)." But I do have concerns about reversing the recent inclusion of delegates from the Faculty Salary Committee and the Educational Planning Committee. Faculty who are directly elected to the Budget Committee do an excellent job of broadly representing the faculty, and the issue isn't simply about whether there are two additional faculty voices in the room. The problem is with losing the direct link between the Budget Committee and those faculty committees that most often deal with budgetary issues. Having served on the Budget Committee as Chair of the FSC, I know that those two delegates may offer perspectives that the other faculty representatives don't have. Furthermore, as important as what the EPC and FSC delegates may bring to the Budget Committee, is what they bring back to their committees from the Budget Committee. It's to everyone's advantage if faculty who are discussing salary and compensation or assessing the resource implications of academic programs have a broader perspective on the university budget.
In light of these concerns, I respectfully ask you to reconsider the inclusion of faculty delegates from EPC and FSC on the University Budget Committee.

Thank you,

Susan

Dear Sue:

Streamlining the Budget Committee was at the suggestion of elected faculty reps who have sat on the committee. They argued that the Committee had become too unwieldy to conduct business effectively and I was persuaded by their argument, and since it’s a presidential committee, it’s up to me to make the change. Note as well that I have decreased the number of administrative reps. If the faculty want representatives of the EPC and the FSC on the Budget Committee, they are free to elect them. I note that Carl Scheraga, Chair of EPC, is a faculty rep to this year’s Budget Committee. If the FSC would like to send a someone to the Budget Committee meetings for this year they are welcome to do so, and we will provide schedules and agenda so that they can decide when they would like to attend. There will be times when the input of the Faculty Salary Committee will be explicitly invited. Since the Budget Committee is advisory and takes no votes, there is no question of voice versus vote, and whoever comes from FSC is welcome to participate in the discussions of the Committee.

Jeffrey P. von Arx, S.J.

Dear Jeff,

Thank you for your response.

I'll follow up with the FSC and see how they would like to proceed. I'll also apprise the Academic Council of the situation.

Susan
To: Deans & Directors Group
From: President Jeffery von Arx, SJ
Re: University Budget Committee

As you may know, the University Budget Committee has evolved since it was first formed some 20 years ago. Over the past several months, I have heard directly and indirectly from a number of faculty and staff with suggestions regarding ways to make the Committee function better and adapt it to the Fairfield of today. After careful consideration of these comments, I am writing to clarify the Committee’s charge and appoint its members.

Charge of the Committee

The University Budget Committee is appointed by the President to provide a forum for input from a variety of University constituencies into the overall budget process and the specific budget proposal presented by the President to the Board of Trustees for approval each year. The role of the Committee shall be to assist the Vice President for Finance in presenting an operating budget to the President that is not only balanced financially, but is optimal from a total University perspective. During the Fall semester, the Committee will normally focus on gaining an understanding of the revenue and expense drivers of the operating budget and the major academic, student and other programs provided across the institution, all within the context of the external environment and the University’s Strategic Plan. During the Spring semester, the Committee’s work will focus more on providing input and feedback on specific budgetary decisions that the President and Vice President for Finance will recommend to the Trustees.

Committee Structure

The University Budget Committee shall consist of the following members:

- Vice President for Finance (chair)
- Assistant Vice President for Budget & Financial Analysis
- 3 faculty representatives elected by the General Faculty with staggered terms. For this fiscal year, these are: Mike Coyne, Joe Dennin, Carl Scheraga
- FUSA President or his/her designee
- Staff representative appointed by the President for a 2-year term
- Senior Vice President for Academic Affairs
- Vice President for Administration & Chief of Staff
- Vice President for Student Affairs
- 1 Dean, appointed by the President for a 2-year term, currently Robbin Crabtree

Other members of the administration, faculty and staff may be invited to attend particular meetings, make presentations, etc. as needed. Meetings will be scheduled by the Vice President for Finance. Her office will be in touch with Committee members shortly to schedule this semester’s meetings.

I appreciate the thoughtful input I received. Thanks to all who provided comments and suggestions.
Date: October 8, 2012
To: Academic Council
From: Susan Rakowitz, General Faculty Secretary
Re: Changes to Repeat Course Policy

It recently came to my attention that a longstanding academic policy, the repeat course policy, was changed in the Undergraduate Course Catalogue this summer without consultation with and approval of the faculty. The particulars of the policy and changes are presented below, but the breakdown in process must be addressed first.

Process

The *Faculty Handbook* makes it clear that academic policies fall under the purview of the General Faculty. ("…the area of competence most appropriate to the General Faculty is educational policy. It is the General Faculty’s special role to be concerned with excellence in this area which includes admissions, curriculum, courses of study, degrees, permanent educational policies, and other matters pertaining to the academic life of the University." I.A.1.) Most academic policies are contained in the *Journal of Record* (JOR), and the JOR charges the General Faculty Secretary with a reconciliation process entailing annual pre-publication review of drafts of University documents, including the Undergraduate Catalogue, for consistency with JOR policies.

The change in question was made after I reviewed a draft of the Undergraduate Catalogue this summer. It came to my attention through a question from a Dean last week. When I asked Associate Academic Vice President Mary Frances Malone how it happened that a substantive change was made to the Catalogue without appropriate faculty input, and after my mandated review of the draft, she said that, "…I did not view it as a substantive change. I did check the Journal of Record and found no reference to this so I assumed it was within our purview to adjust the practice…"

This response completely misses the point of the reconciliation policy. It is not up to administrators to determine what’s consistent with the JOR or to judge what is a substantive change. Once the GFS has reviewed the documents, there should be no further changes other than corrections of typos and those revisions called for by the GFS. If other changes are considered, they should, of course, be sent to the GFS for review. To do otherwise (as was done here), is to subvert the reconciliation policy. Furthermore, the administration should be well aware that creating and promulgating a new academic policy without faculty approval is an egregious violation of faculty prerogatives as laid out in the *Handbook*.

Policy

It is true that the repeat course policy is not in the JOR. It has been in the Catalogue in its 2011 form since 2004 and in a slightly less clear form for as long as I can track. Given the murky origins of the policy, I don't know whether faculty had appropriate input initially; it's possible the policy pre-dated the compilation of the JOR. Nevertheless, the issue of grades and credits for repeated courses is clearly academic policy. As such, it should be decided upon by and approved by the Academic Council for inclusion in the JOR.

The unapproved Repeat Course Policy (which appears in the 2012-2013 Catalogue) is as follows. Changes to the longstanding policy are marked in bold.

Repeat Course Policy

When a student repeats a course that was failed, the new grade will be recorded. Grade point values will be averaged into the cumulative average, and the credits will count toward the
degree. The original grade will remain on the transcript and be calculated into the cumulative average. When a student repeats a course for which the student has previously obtained a passing grade, the new course and grade will be recorded on the transcript with the notation, repeat course. **The original grade and the repeated grade will be averaged into the GPA.** The credit for the repeat course will not count toward the degree. The original grade will remain on the transcript.

The longstanding Repeat Course Policy follows. Again the text that was unilaterally changed by the administration is marked in bold:

Repeat Course Policy

When a student repeats a course that was failed, the new grade will be recorded. Grade point values will be averaged into the cumulative average, and the credits will count toward the degree. The original grade will remain on the transcript and be calculated into the cumulative average.

When a student repeats a course for which the student has previously obtained a passing grade, the new course and grade will be recorded on the transcript with the notation, repeat course. **Neither the credits nor the grade will count toward the degree.** The original grade will remain on the transcript.

Recommendation

The Council should decide what the repeat course policy will be and approve appropriate language for the *Journal of Record.*
MEMORANDUM
Academic Council Executive Committee
Fairfield University

TO: Academic Council
FROM: Academic Council Executive Committee
DATE: January 17, 2013
RE: Matters from the review of the Handbook (prior to a new edition) that the AC agreed to take up

A process to review the Faculty Handbook for clarity and consistency and recommend changes to the AC, if appropriate, prior to the publication of a new edition [AC motion 3/29/2010] was begun by the faculty members on the 2010-11 AC Executive Committee and completed by the faculty members on the 2011-12 AC Executive Committee. The full report from that work (dated 2/14/2012) is on the Secretary of the General Faculty’s website with the materials for the March 5, 2012 AC meeting; the report was taken up by the Council on April 16, 2012.

The report contained a section (pages 7-8) “(IV) A list of issues that came to our attention for which the Council should determine whether or not these matters should be taken up.” Of the nine items on that list, the Council decided [see 4/16/2012 AC minutes] to take up six. In this memo, the Executive Committee is recommending ways in which the Council might want to address each of these six matters. The items are numbered and appear as they did in the original report. The Council decided to take no action on items numbered 5, 8 and 9.

1. The Grievance Procedure in Appendix I could be revised to conform to AAUP standards.

Recommend: A subcommittee be formed to compare the current Grievance Procedure to AAUP standards and to recommend revisions to the Council, if appropriate.

2. The language on voting rights for faculty members on leave (I.A.4 (a) (b) (c)) could be revisited and revised.

Recommend: According to the Handbook, faculty members on leave have severely restricted voting rights. Specifically, they do not have the right to vote at General Faculty meetings, except that they can cast an absentee ballot in an election or for any unchanged proposal that appears on the agenda. Presumably the policy was intended to protect the time of faculty on leave, but if followed, the policy could disenfranchise faculty from important votes. The Executive Committee suggests that the Council consider the following change: to allow faculty members on leave the right to vote if they are interested but not require them to attend General Faculty meetings and not to use the small number of faculty members on leave in calculating the number needed for a quorum. In this way, faculty members on leave need not feel pressured to attend meetings – either to vote or to reach a quorum, but faculty members on leave who wish to may either attend and vote or send a proxy.
MOTION. Amend the Faculty Handbook section I.A.4 by deleting items b. and c. and revising (shown below in bold and underline) and re-lettering d.:

b. Faculty members have a contractual obligation to attend meetings of the General Faculty, except when on leave. A faculty member on leave may vote or designate a proxy to vote on his or her behalf in a General Faculty meeting, but is not counted in determining a quorum. An active faculty member [continue to end].

3. The language in the Handbook on page 22, in II.A.2.a, paragraph 3 on appeals is, “A candidate whose promotion is not recommended by the Rank and Tenure Committee may appeal that recommendation to the Committee only if he/she has additional significant information that had not been submitted with the original application file.” This is not consistent with the Timetable and Guidelines for Tenure and Promotion in the Journal of Record, which state that a candidate may appeal with additional information or clarification.

Recommend: That the Rank and Tenure Committee be charged with recommending revisions to either the Handbook or the Timetable and Guidelines for Tenure and Promotion to remove this inconsistency.

4. The language in the Handbook on page 24, in II.A.3.c. (2) may be problematic with regard to time on maternity leave counting towards tenure.

Recommend: Fairfield’s maternity policy was designed so that women would not necessarily have their careers interrupted and tenure delayed when taking a leave from teaching for childbirth. A subcommittee, including faculty with recent experience on the Rank and Tenure Committee, should be charged with drafting language for the Handbook and/or Journal of Record clarifying how time spent on maternity leave will ordinarily be treated with regard to tenure.

Recommend: That the Faculty Salary Committee be charged with making recommendations that would ensure that this reference to maternity leave in the Handbook reflects the current policy.

7. The language in the Handbook on page 34, in II.C.4, on teaching load is, technically, correct, but could be clarified to emphasize that a normal teaching load is 9 hours/week.

Recommend: The AC Executive Committee thinks that this matter can easily be clarified with a Journal of Record entry as follows.

MOTION. Add to the Journal of Record: A normal teaching load for tenured and tenure-track faculty is nine hours per week.
Dear Bob,

Over the past couple of years, faculty have raised the issue of time codes with me, and asked me to bring it forward for discussion. Recently, I brought the general issue to the attention of the Registrar and to you both in an informal way, and I understand a more formal memo would help to move the issue along. Consider this email that memo.

As I was reviewing Dean's Council and CAS Faculty Meeting minutes recently, I see the issue of time codes arises again and again in a variety of ways. The following are a list of issues that warrant consideration, perhaps by a subcommittee of AC:

1. Is our current system of time codes the best for our current curriculum and co-curricular initiatives? We have not done a comprehensive review of our time code systems in a long time, though a number of ad hoc changes have been made: (a) the distribution of time codes by the Registrar, (b) the reduction in the number (and days) of turbos, (c) the blending of the day and evening schedules with new more standard evening time codes, and perhaps others. It seems appropriate to do a comprehensive review every decade or so.

2. Many faculty express interest in a more traditional time code system (MWF/TR/MW and one-day courses). Reasons are varied, but one of the valid (i.e., not self-interested) reasons relates to schedule adjuncts who teach at other institutions. This is a particular challenge in adjunct-intensive programs (EN, MA, MLL, PH, RS). The reduction in the number of turbos has affected the arts, in particular, though the Registrar has worked with them to ensure their workshop courses find places in the schedule.

3. Some faculty would like to see the procedures for scheduling courses in our current time code system changed such that 3-day courses would be scheduled first and given classroom priority, followed by 2-day, and then 1-day. This would encourage (they think) faculty to use more multi-day time codes, and better achieve (and reward) the kind of student-faculty contact we'd like to see (by having faculty on campus and with students more frequently).

4. Many posit that a different time code system would lead to better classroom use, with fewer classroom down times and crunch times.

These are the issues raised, and I think they are worthy of exploration. If AC decides to form a subcommittee, I would suggest that faculty across the schools participate as usual, but also staff members who are most intimately involved in registration and enrollment management. I would nominate Associate Dean Aaron Perkus and Assistant Dean Sue Peterson from the College.

Thank you for your consideration.

Robbin

Robbin D. Crabtree, Ph.D.
Dean of the College of Arts & Sciences
Fairfield University