
Chapter 2
Heisenberg’s Matrix Mechanics

Abstract The quantum selection rule and its generalizations are capable of predict-
ing energies of the stationary orbits; however they should be obtained in a more gen-
eral framework of a universal theory, which could provide the intensities of spectral
lines, scattering cross sections, etc.

Such a dynamical theory has been discovered first by Heisenberg in 1925 by
developing Bohr’s correspondence principle. The Heisenberg ‘matrix mechanics’
serves as a tool for extending the quantum selection rule (1.55) to arbitrary quan-
tum systems, independently of the periodicity of trajectories of the corresponding
classical models. The stationary energies appear to be the eigenvalues of the matrix
Hamiltonian.

All equations and predictions of the Heisenberg theory turn into the classical one
as � → 0; this agrees with the Bohr Correspondence Principle.

Heisenberg’s theory, as was developed immediately by Born, Jordan, Pauli and
others, is capable of producing the Hydrogen spectra, the selection rules and in-
tensities of spectral lines, the quantization of the Maxwell field, etc. Up to now,
Heisenberg’s theory serves as the ground for the quantum electrodynamics and for
modern quantum field theory.

2.1 Heisenberg’s Matrix Formalism

Heisenberg suggested a novel revolutionary treatment of classical kinematics by
combining Bohr’s postulates (1.52) with the quantum selection rule (1.55) and the
Bohr’s Correspondence Principle.

2.1.1 Classical Oscillator

In 1925, Heisenberg [82] applied the correspondence principle to the one-dimens-
ional oscillator

ẋ(t) = p(t), ṗ(t) = f
(
x(t)

)
, f (x) = −V ′(x) (2.1)
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introducing a non commutative algebra of ‘quantum’ observables and the corre-
sponding dynamical equations. This is the Hamilton equation with the Hamiltonian
function

H(x,p) = p2

2
+ V (x); (2.2)

the energy is conserved,

p2(t)

2
+ V

(
x(t)

) = E, t ∈ R. (2.3)

Let us assume that the potential is confining; i.e.,

V (x) → ∞, |x| → ∞.

Then each solution is periodic in time, the period being given by

T =
∮

dt =
∫

γ

dx√
2(E − V (x))

, (2.4)

where γ is the trajectory H(x,p) = E, and dt = dx/dp. This period can be infinite
when E is a critical value of V (x). It can be written as

T = dS

dE
, (2.5)

where S = ∮
p dx is the action integral over the period; i.e.,

S =
∫

γ

√
2
(
E − V (x)

)
dx. (2.6)

Equivalently, (2.5) can be written as

ω = dE

dJ
, J := S/2π, (2.7)

where ω = 2π/T is the angular frequency. The corresponding Fourier series for the
trajectories read

x(t) =
∑

ν∈Z
xνe

iνωt , p(t) =
∑

ν∈Z
pνe

iνωt , (2.8)

where the frequencies can be expressed as follows:

νω = lim
ε→0

E(J + νε) − E(J )

ε
, ν ∈ Z. (2.9)

Thus the classical framework is capable of yielding only the frequencies νω.
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2.1.2 Quantum Oscillator

Main features of the program of Heisenberg are as follows:

I. The position and momentum of an electron in the atom are not observable, since
the Bohr postulates treat ‘stationary orbits’ rather than the electron motion. Re-
spectively, these classical dynamical variables should be reinterpreted by taking
into account the Bohr’s correspondence principle.

II. The form of all classical relations between the dynamical variables (the form
of dynamical equations, the expressions for the Hamiltonian, for the angular
momentum, for the dipole moment, etc.) should be kept.

Correspondence Principles and Quantum Observables

The quantum selection rule (1.55) gives J = n� for n = 1,2,3, . . . . On the other
hand, by the Bohr postulate (1.52),

ωmn = E(m�) − E(n�)

�
. (2.10)

The key Heisenberg’s observation was the parallelism between (2.10) and the rela-
tion (2.9), which can be written approximately as follows:

(m − n)ω ≈ E(m�) − E(n�)

�
, |m − n| � m. (2.11)

Comparing (2.11) and (2.10), Heisenberg suggested, by the Bohr’s correspon-
dence principle, that ωmn should be quantum analogues of the classical ‘obertones’
(m − n)ω. This suggestion is confirmed by the Rydberg–Ritz Combination Princi-
ple (1.1), as written in the form

ωmn = ωmk + ωkn (2.12)

which agrees with the classical ‘combination principle’

ω(m − n) = ω(m − k) + ω(k − n). (2.13)

Respectively, the classical Fourier coefficients xm−n and pm−n should be substituted
by new quantum amplitudes x̂mn and p̂mn, and the Correspondence Principle should
be treated as the asymptotics

x̂mne
iωmnt ≈ xm−ne

iω(m−n)t ,

p̂mne
iωmnt ≈ pm−ne

iω(m−n)t , |m − n| � m.
(2.14)

Hence, the quantum analogues x̂(t) and p̂(t) of the classical abservable x(t) and
p(t) should be constructed in terms of collections of all quantum amplitudes

x̂(t) = {
x̂mne

iωmnt : m,n = 1,2, . . .
}
,

p̂(t) = {
p̂mne

iωmnt : m,n = 1,2, . . .
}
,

(2.15)
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representing the system at time t . The form of the observables was intended to give
an appropriate description of Bohr’s transitions (1.51), introducing the unknown
frequencies ωmn and the corresponding amplitudes x̂mn and p̂mn, which are provi-
sionally responsible for the transitions.

Matrix Algebra

Heisenberg’s main intention was to keep all the classical relations for new ‘quan-
tum observables’ (2.15), taking the correspondence (2.14) as the ‘Ariadne’s thread’.
First, Heisenberg kept the form of dynamical equations (2.1), postulating

∂t x̂(t) = p̂(t), ∂t p̂(t) = f
(
x̂(t)

)
(2.16)

where the derivatives and the first linear equation are well defined for the quantum
observables (2.15). On the other hand, the meaning of the nonlinear function f (x̂)

should be reinterpreted for general nonlinear functions f , at least for the polynomial
functions.

For example, let us discuss the case of f (x) = −λx2 considered by Heisenberg.
The multiplication of the Fourier series (2.8) gives

x2(t) =
∑

μ,ν∈Z
xμxνe

i(μ+ν)ωt . (2.17)

Equivalently, the Fourier component of x2(t) with frequency ω(m − n) is given by

(
x2)

m−n
eiω(m−n)t =

∑

k∈Z
xm−ke

iω(m−k)t xk−ne
iω(k−n)t . (2.18)

Now the correspondence principle (2.14) suggests the definition

(
x̂2)

mn
eiωmnt :=

∑

k∈Z
x̂mk(t)e

iωmkt x̂kn(t)e
iωknt , (2.19)

which agrees with the Rydberg–Ritz Combination Principle (2.12). In other words,

(
x̂2(t)

)
mn

:=
∑

k∈Z
x̂mk(t)x̂kn(t), (2.20)

where x̂mk(t) := x̂mke
iωmkt and x̂kn(t) := x̂kne

iωknt . The rule (2.20) was recognized
as the matrix multiplication by Born, who remembered the lectures delivered by
Jakob Rosanes at the Breslau University when reading the Heisenberg manuscript.
Definition (2.20) has become the cornerstone of the matrix mechanics of Heisen-
berg—it means that a quantum abservable x̂(t) is the matrix of an operator with the
matrix entries xmn(t).
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It is worth noting that the classical observables (2.8) correspond to particular case
of the Töplitz matrices

x̂(t) = (
xm−ne

iω(m−n)t
)
, p̂(t) = (

pm−ne
iω(m−n)t

)
(2.21)

which are Hermitian, since the functions x(t) and p(t) are real. Respectively, the
corresponding quantum observables (2.15) are postulated to be Hermitian.

Now the quantum equations (2.16) are well-defined at least for any polynomial
function f .

Dynamical Equations

Dynamical equations for x̂(t) and p̂(t) follow by differentiating (2.15): using the
key Bohr’s relation (1.52), we obtain

∂t x̂(t) = i
Em − En

�
xmne

iωmnt , ∂t p̂(t) = i
Em − En

�
pmne

iωmnt . (2.22)

In the matrix form, the equations are known as the Heisenberg equations,

i�∂t x̂(t) = [
x̂(t), Ê

]
, i�∂t p̂(t) = [

p̂(t), Ê
]
, (2.23)

in which Ê is the diagonal matrix Emn = Emδmn. The next crucial step was the
identification

Ê = H
(
x̂(t), p̂(t)

)
. (2.24)

Now the Heisenberg equations (2.23) take the form

i�∂t x̂(t) = [
x̂(t),H

(
x̂(t), p̂(t)

)]
, i�∂t p̂(t) = [

p̂(t),H
(
x̂(t), p̂(t)

)]
. (2.25)

From these equations it follows that the dynamics of any polynomial observable
M(x̂(t), p̂(t)) should be described by the similar equation

i�∂tM
(
x̂(t), p̂(t)

) = [
M

(
x̂(t), p̂(t)

)
,H

(
x̂(t), p̂(t)

)]
(2.26)

(by the Jacobi identity for commutators). In particular,

i�∂tH
(
x̂(t), p̂(t)

) = [
H

(
x̂(t), p̂(t)

)
,H

(
x̂(t), p̂(t)

)] = 0, (2.27)

which means the conservation of quantum energy and justifies identification (2.24).

Commutation Relations

Comparing (2.25) with the postulate (2.16), it follows that

i�p̂(t) = [
x̂(t),H(x̂, p̂)

]
, i�f

(
x̂(t)

) = [
p̂(t),H(x̂, p̂)

]
. (2.28)
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Applying to a particular Hamilton function H = p2/2 + x, which corresponds to
f (x) = −1, this establishes

i�p̂(t) = [
x̂(t), p̂2(t)/2

]
, −i� = [

p̂(t), x̂(t)
]
. (2.29)

Here the first identity follows from the second one; the latter is known to be the fun-
damental commutation relation obtained first in the Born and Jordan’s paper [18]:

[
x̂(t), p̂(t)

] = i�. (2.30)

Example 2.1 The examples of linear operators in C∞
0 (R) satisfying (2.30) are as

follows:

x̂ψ(x) = xψ(x), p̂ψ(x) = −i�
d

dx
ψ(x), ψ ∈ C∞

0 (R). (2.31)

Exercise 2.2 Prove the formulas
[
x̂(t), p̂N (t)

] = i�Np̂N−1(t),
[
p̂(t), x̂N (t)

] = −i�Nx̂N−1(t) (2.32)

for any N = 1,2, . . . . Hint: Use (2.30).

2.2 Early Applications of Heisenberg Theory

Heisenberg’s theory was immediately applied in [19, 148] to atoms with the energy-
matrix

Ê = 1

2m
p̂2 + V (x̂), (2.33)

where V (x) is a nucleus potential defined for x ∈ R
3, and x̂, p̂ are subject to com-

mutation relations

[x̂j , p̂k] = i�δjk, [x̂j , x̂k] = [p̂j , p̂k] = 0, j, k = 1,2,3, (2.34)

which ‘follow’ similarly to (2.29). Next triumph of Heisenberg’s theory was the
quantization of a Maxwell field by Dirac [44], who automatically implied the
Planck’s spectral law (1.24). Up to now, Heisenberg approach’s has great value in
quantum field theory (see [13, 33, 77, 138, 158, 159, 163, 189, 195, 196]).

2.2.1 Eigenvalue Problem

The main advantage of Heisenberg’s theory was the identification of the spectral
terms En with eigenvalues of the Hermitian operator Ê. Namely, the matrix Ê

in (2.23) is diagonal by definition, and En are its eigenvalues. To obtain En, one
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should find such dynamical variables x̂ and p̂ that the commutation relations (2.34)
hold, and at the same time, the corresponding matrix (2.24) should be diagonal.

However, the dynamical variables x̂ and p̂ are not specified uniquely by (2.34).
For example, we can choose operators (2.31) and make the transformation x̂ 	→
T −1x̂T , p̂ 	→ T −1p̂T , under which the commutation relations (2.34) are invari-
ant. Then operator (2.24) transforms as follows: Ê 	→ T −1ÊT . The matrix Ê

from (2.24) is Hermitian, like p̂ and x̂. Hence, one could expect to reduce Ê to
the diagonal form:

T −1ÊT =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

· · · · · · · · · · · · · · · · · · · · ·
· · · E2 0 0 0 0 · · ·
· · · 0 E1 0 0 0 · · ·
· · · 0 0 E0 0 0 · · ·
· · · 0 0 0 E−1 0 · · ·
· · · 0 0 0 0 E−2 · · ·
· · · 0 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.35)

The existence of the transformation T was known at that time (1925) for bounded
Hermitian operators with discrete and continuous spectrum in Hilbert spaces [86,
88]. The authors [19] suggested the existence also for unbounded operators—this
was proved later by J. von Neumann [142].

Reduction (2.35) is obviously equivalent to the eigenvalue problem. In fact,
(2.35) reads

∑

n

ÊmnTnk = TmkEk, m,k = 0,±1, . . . . (2.36)

In other words, the columns ek = (Tmk : m = 0,±1, . . .) of the matrix T are the
eigenvectors of Ê:

Êek = Ekek, k = 0,±1, . . . . (2.37)

The eigenvectors can be normalized: for the discrete eigenvalues,

〈ek, el〉 = δkl, (2.38)

where 〈·, ·〉 stands for the inner product in the Hilbert space l2, and similarly for the
eigenfunctions of continuous spectrum. Then the matrix T is orthogonal.

For the Hydrogen atom with the Coulomb potential V (x), the spectrum En was
obtained in this way by Pauli [148], who had obtained the Balmer formula (1.2)
with ωn = En/�.

Example: Quantization of Harmonic Oscillator

The solution of the eigenvalue problem (2.37) for one-dimensional harmonic oscil-
lator was a cornerstown for further development of quantum mechanics and quan-
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tum field theory. In this case, the Hamilton function reads: H = 1
2p2 + 1

2ω2x2, and

Ê = 1

2
p̂2 + 1

2
ω2x̂2, [x̂, p̂] = i�. (2.39)

The following proposition will be proved in Sect. 14.8.

Proposition 2.1 Eigenvalues of Ê are given by En = �ω(n + 1
2 ), n = 0,1, . . . .

2.2.2 Intensity of Spectral Lines

The key observation in the celebrated ‘three-man paper’ [19] was that the matrix
element x̂nn′ = 〈en, x̂en′ 〉 of the transformed matrix T ∗x̂T should be responsible for
intensity of the corresponding spectral line ωnn′ = ωn − ωn′ :

Inn′ = 2e2

3c3
x̂2
nn′ω4

nn′ . (2.40)

This expression is suggested by the Hertz formula (12.127) for radiation of the
dipole with the moment

p = ex̂nn′ . (2.41)

This identification was motivated by the following facts:

(i) p = ex in the classical theory;
(ii) Formula (12.127) for radiation of a harmonic dipole p(t) = exm−n cosω(m −

n)t was used previously by Heisenberg and Kramers for calculation of the
dispersion formula [123];

(iii) The correspondence principle suggests that the Fourier coefficient xn−n′ and
the frequency ω(n − n′) of the classical dipole should be substituted by the
matrix element x̂nn′ and the frequency ωnn′ respectively.

2.2.3 The Normal Zeeman Effect

Formula (2.40) was applied in [19] for the derivation of selection rules and inten-
sity of spectral lines in the normal Zeeman effect (see (9.14)). Calculation of the
corresponding intensities (2.40) relies on the following arguments:

(i) The commutation relations

[M̂1, M̂2] = −i�M̂3 (2.42)

hold for the components of quantum angular momentum M̂ := p̂ × x̂ (cf.
(6.39)).
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(ii) Operators Ê, M̂2 and M̂3 commute and hence can be simultaneously diagonal-
ized (cf. Lemma 6.10(ii)). Therefore, the eigenvectors of Ê can be numbered

by the corresponding eigenvalues E, m and m3 of the operators Ê,
√

M̂2 and
M̂3, respectively.

The selection rules mean that the matrix elements x̂nn′ = 〈en, x̂en′ 〉 and intensi-
ties (2.40) vanish if m′

3 
= m3,m3 ± �. Here, the eigenvector en corresponds to the
triple (E,m,m3), and en′ , to the triple (E′,m′,m′

3). In terms of Bohr’s postulate,
the transitions (E,m,m3) → (E′,m′,m′

3) are forbidden if m′
3 
= m3,m3 ± �. In

short, the selection rule m3 → m′
3,m

′
3 ± � holds.

2.2.4 Quantization of Maxwell Field and Planck’s Law

Dirac [44] was first to quantize a Maxwell field by representing it as the system of
independent harmonic oscillators (1.32). The system is Hamiltonian with the Hamil-
ton function (1.33) and the canonical variables qkα , pkα . Therefore, the commuta-
tion relations for the corresponding Heisenberg matrices should be

{[
q̂kα(t), p̂k′α′(t)

] = i�δkα,k′α′ ,
[
q̂kα(t), q̂k′α′(t)

] = [
p̂kα(t), p̂k′α′(t)

] = 0,

∣∣
∣∣∣

k,k′ ∈ �, α,α′ = 1,2, (2.43)

which is suggested by (2.34). Further, (1.33) implies that the corresponding energy
operator reads:

Ê =
∑

α=1,2

∑

k∈�

Êkα (2.44)

where Êkα = ω(k)
2 [q̂2

kα
+ p̂2

kα
]. Finally, Proposition 2.1 with ω = 1 implies that

eigenvalues of Êkα equal Ekαn = �ω(k)(n+ 1
2 ) with n = 0,1, . . . . Therefore, eigen-

values of Ê are given by finite sums of Ekα,n(kα), since Êkα all commute, and hence
can be simultaneously diagonalized. Hence, the Boltzmann distribution (1.65) im-
plies that the eigenvalues of Êkα are independent for different kα.

Application of the Boltzmann distribution (1.65) to the quantized Maxwell field
immediately implies Planck’s low (1.24). First, the probabilities (1.65) of the eigen-
values Ekαn are given by

p(Ekαn) = 1

Zkα

e− Ekαn
kT , Zkα :=

∑

n

e− Ekαn
kT . (2.45)

This means that we have a discretization of the Einstein type (1.42) for the energy
distribution of each field oscillator. Further arguments mainly repeat those of (1.43)–
(1.44) and (1.36)–(1.37). In fact, the mean value of Ekα is as follows:
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Ēkα =
∑

n

Ekαnp(Ekαn) = −
[

d

dβ
log

∞∑

n=0

e−β�ω(k)(n+ 1
2 )

]

β=1/kT

= −
[

d

dβ
log

e−β�ω(k)/2

1 − e−β�ω(k)

]

β=1/kT

= �ω(k)/2 + �ω(k)e− �ω(k)
kT

1 − e− �ω(k)
kT

; (2.46)

this coincides with (1.44) up to the additional term �ω(k)/2, which makes the total
energy infinite after summation in k. We will drop this term, since the energy is
defined up to an additive constant and should vanish at T = 0. Then we obtain
(1.44):

Ēkα = Ē
(
ω(k)

) := �ω(k)e− �ω(k)
kT

1 − e− �ω(k)
kT

. (2.47)

Therefore, repeating the arguments of (1.36)–(1.37), we arrive at (1.38) and (1.24).
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